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Abstract

Invariant risk minimization (IRM) aims to enable out-of-distribution (OOD) generaliza-
tion in deep learning by learning invariant representations. As IRM poses an inherently
challenging bi-level optimization problem, most existing approaches—including IRMv1—
adopt penalty-based single-level approximations. However, empirical studies consistently
show that these methods often fail to outperform well-tuned empirical risk minimization
(ERM), highlighting the need for more robust IRM implementations. This work theoret-
ically identifies a key limitation common to many IRM variants: their penalty terms are
highly sensitive to limited environment diversity and over-parameterization, resulting in
performance degradation. To address this issue, a novel extrapolation-based framework is
proposed that enhances environmental diversity by augmenting the IRM penalty through
synthetic distributional shifts. Extensive experiments—ranging from synthetic setups to re-
alistic, over-parameterized scenarios—demonstrate that the proposed method consistently
outperforms state-of-the-art IRM variants, validating its effectiveness and robustness.

1 Introduction

In modern machine learning applications, the assumption that training and test data are independent and
identically distributed (i.i.d.) often fails to hold, with distribution shifts commonly observed (Quiñonero-
Candela et al., 2022). In such scenarios, models are required to generalize to previously unseen data
distributions—a challenge known as out-of-distribution (OOD) generalization. Both theoretical analyses
and empirical studies have shown that algorithms built on the i.i.d. assumption, and usually realized via
the classical framework of empirical risk minimization (ERM) (Vapnik, 1991), tend to perform poorly under
distribution shifts (Arjovsky, 2020).

In the context of OOD generalization, invariant risk minimization (IRM) (Arjovsky et al., 2020) has attracted
significant attention. IRM is grounded in invariant representation learning, which aims to learn only those
features from the input data that are consistently useful for inference under distribution shifts (referred
to as invariant features), while discarding all other non-invariant features (referred to as spurious ones).
However, IRM models the learning process as a composition of a feature extractor and a classifier, leading to
a challenging bi-level optimization problem. As a result, strict implementations of IRM have been found to
be practically infeasible (Arjovsky et al., 2020). To address this limitation, (Arjovsky et al., 2020) proposed
an approximation called IRMv1, which reformulates the original bi-level problem as a more tractable single-
level optimization task. Despite numerous IRMv1 variants (Lin et al., 2022; Ahuja et al., 2022; Zhou et al.,
2022; Chen et al., 2022; Zhang et al., 2023), empirical studies have shown that these approaches often fail
to outperform a well-tuned ERM-based strategy (Gulrajani & Lopez-Paz, 2020).

This paper argues that the formulation of IRMv1—widely adopted as the foundation for many recent IRM
variants—leaves room for improvement. Specifically, the loss or penalty function in IRMv1’s single-level
optimization task suffers from two key limitations: (i) it is highly dependent on the diversity of training
environments and does not reliably ensure optimality of the original IRM’s lower-level objective; and (ii)
in over-parameterized settings, this dependence is further amplified, increasing the risk of overfitting to the
training distribution.
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To address the aforementioned limitations, and drawing inspiration from risk extrapolation (REx) (Krueger
et al., 2021), this paper proposes applying distributional extrapolation to the IRMv1 penalty. Since the
original IRMv1 penalty function is inherently non-linear with respect to the data distribution, it is not
directly compatible with distributional extrapolation. To resolve this, the penalty is reformulated to support
extrapolation, ultimately resulting in two novel penalty terms for IRMv1.

Extensive numerical tests—spanning from small-scale settings based on structural equation models
(SEMs) (Armitage, 2005) to more practical scenarios involving diverse computer-vision datasets—
demonstrate that the proposed method consistently outperforms state-of-the-art IRM variants in terms
of both accuracy and various calibration metrics. The implementation of the proposed approach is available
at https://anonymous.4open.science/r/IRM_Extrapolation-49E6.

To summarize, the key contributions of this work are as follows.

(i) It is theoretically shown that limited diversity in training environments contributes to the subopti-
mality of the IRMv1 penalty; see Section 3.

(ii) To enhance environment diversity, distributional extrapolation is incorporated into IRMv1, leading
to two novel penalty terms; see Section 4.

(iii) The effectiveness of the proposed penalty terms is validated through experiments on synthetic SEMs
and more realistic, over-parameterized settings using four computer-vision datasets, demonstrating
superior performance over existing state-of-the-art IRM variants in terms of accuracy and calibration
metrics; see Section 5.

(iv) It is further shown that the proposed penalty terms can also serve as effective enhancements when
integrated into existing IRM variants; see Section 5.

2 Background

2.1 Notations

The model to be trained takes the form of a function f : X → Y, where the input space X ⊂ Rd represents
the set of input data with dimension d, and the output space Y ⊂ R represents the corresponding set of
ground-truth labels. Data from environment e ∈ E are assumed to be generated according to a probability
distribution function (PDF) Pe(x, y), where E denotes the set of all possible environments. For a user-defined
loss ℓ : Y ×Y → R, for example, ℓ(y′, y) := (y′ −y)2, ∀(y′, y) ∈ Y ×Y, risk Re(f) validates model f according
to the following definition:

Re(f) := E(x,y)∼Pe
{ℓ(f(x), y)} , (1)

where E{·} stands for expectation. In the following discussion, it is assumed that Re(f) ≥ 0, ∀f .

2.2 Out-of-distribution generalization

In machine learning, it is commonly assumed that training and test data are i.i.d. To enhance model gener-
alization under this assumption, a variety of techniques have been proposed, including weight decay (Krogh
& Hertz, 1991), early stopping (Prechelt, 2002), data augmentation (Perez & Wang, 2017), and ensemble
learning (Ganaie et al., 2022). Within the i.i.d. framework, empirical risk minimization (ERM) is widely
regarded as one of the most effective approaches for improving generalization. ERM seeks a model which
solves the following task:

min
f : X →Y

∑
e∈Etrain

Re(f) . (ERM)

In the context of deep learning, however, the i.i.d. assumption is often violated, and distribution shifts
commonly occur in practice (Quiñonero-Candela et al., 2022). That is, the training and test data are
drawn from different PDFs. Under such conditions, strategies like ERM—which perform well under the
i.i.d. assumption—are known to fail. The task of ensuring model generalization in the presence of distri-
bution shifts is known as out-of-distribution (OOD) generalization, a challenge that has gained significant
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attention in recent years. OOD generalization is typically formulated as the following min-max optimization
problem (Arjovsky, 2020):

min
f : X →Y

(
ROOD(f) := max

e∈Eall
Re(f)

)
, (2)

where ROOD denotes the worst-case loss across all possible environments, including those generating the test
data. In practice, however, it is rarely feasible to account for all possible environments during training. As
a result, leveraging the limited set of available training environments effectively to minimize ROOD becomes
a critical objective.

2.3 Invariant learning

A central objective in addressing OOD generalization is to ensure that models make consistent predictions
across different environments. This consistency is quantified by the environmental invariance of model
predictions, defined as (Arjovsky, 2020):

E(x,y)∼Pe
{y | f(x)} = E(x,y)∼Pe′ {y | f(x)} , ∀e, e′ ∈ Eall , (3)

that is, the conditional expectation of the label given the model’s output remains invariant across all envi-
ronments. Intuitively, this implies that the relationship between the model’s predictions and the true labels
is preserved regardless of changes in the data distribution.

However, it is important to note that the condition in (3) does not necessarily guarantee high predictive
performance across environments. For instance, a model that produces random predictions would, by defini-
tion, maintain the same random predictive behavior in every environment and thus satisfy the environmental
invariance condition—despite failing to achieve meaningful accuracy. Furthermore, the well-known lack of
environmental invariance in ERM can be attributed to its tendency to rely not only on invariant features
but also on spurious ones (Arjovsky et al., 2020; Sagawa et al., 2020).

2.4 Invariant risk minimization

One approach to achieving environmental invariance is through representation learning, where models are
trained to capture only invariant features (Arjovsky et al., 2020; Ganin et al., 2016). In this context, let the
invariant feature extractor be defined as Φ: X → H, where H is a user-defined feature space, and let the
predictor (e.g., a classifier) be π : H → Y. The overall model is then given by the composition f = π ◦ Φ.
Within this framework, the condition in (3) can be replaced by the following criterion:

E(x,y)∼Pe
{y | Φ(x)} = E(x,y)∼Pe′ {y | Φ(x)} , ∀e, e′ ∈ Eall . (4)

The key distinction from (3) is that, in (4), invariance is enforced with respect to the invariant-feature
extractor Φ rather than the full model f which depends also on the predictor π.

Aiming at (4), invariant risk minimization (IRM) (Arjovsky et al., 2020) has been introduced as the following
bi-level optimization task:

min
Φ: X →H
π : H→Y

∑
e∈Etrain

Re(π ◦ Φ)

subject to π ∈ arg minπ̄ : H→Y Re(π̄ ◦ Φ) , ∀e ∈ Etrain . (IRM)

More specifically, the upper-level problem aims to minimize the sum of losses Re across all training environ-
ments, similar to ERM. However, unlike ERM, the lower-level problem constrains the candidate predictor
π to those that minimize Re simultaneously across all training environments. In essence, (IRM) targets
feature extractors Φ that facilitate predictors π capable of achieving low loss Re across all environments,
thereby promoting invariant representation learning through Φ, in line with the criterion (4). It is worth
noting that the lower-level problem is not a conventional minimization one over an aggregated loss, as is
typical in ERM. Instead, it requires minimizing the loss concurrently across all training environments. This
requirement makes the exact implementation of IRM particularly challenging, motivating the development
of various approximation techniques to make the problem computationally tractable.
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2.5 IRMv1

IRMv1 (Arjovsky et al., 2020) is one of the most well-known approximations of IRM. In IRMv1, the feature
space is set as H = R in Φ: X → H, and the predictor function π : R → Y is assumed to be linear. By
abuse of notation, this linear predictor function will henceforth be represented by its slope π ∈ R. In this
context, f = π ◦ Φ is reduced to the simple product form π · Φ. Since Re(π · Φ) = Re( (π/c) · (c Φ) ) for
any nonzero scalar c, the problem of identifying (π, Φ) in (IRM) exhibits a scaling ambiguity, that is, if
(πopt, Φopt) is a solution of (IRM), then { (πopt/c, c Φopt) | c ∈ R \ {0} } also solve (IRM). Thus, whenever
πopt ̸= 0, (1, πopt · Φopt) solves (IRM). Moreover, when the loss function Re(·) is convex, loss Re(π · Φ) is
convex in the scalar π for any fixed Φ. As a result, under the convexity and differentiability of Re, the
lower-level optimization in (IRM) is equivalent to ensuring that the gradient with respect to π vanishes at
the minimizer πopt: |∇π|π=πoptRe(π · Φ)|2 = 0. Motivated by the aforementioned scaling ambiguity and
equivalence, IRMv1 is formulated as the following single-level approximation of IRM (Arjovsky et al., 2020):

min
Φ: X →Y

∑
e∈Etrain

(
Re(Φ) + λ |∇π|π=1Re(π · Φ)|2

)
, (IRMv1)

where λ ∈ R++—R++ stands for all positive real numbers—is a regularization hyperparameter and Re(·),
in general, is not required to be convex but only differentiable.

IRMv1 has shown promise for out-of-distribution generalization under distribution shifts (Arjovsky et al.,
2020), and numerous subsequent methods have been developed by building upon its penalty formulation (Lin
et al., 2022; Ahuja et al., 2022; Zhou et al., 2022; Chen et al., 2022; Zhang et al., 2023). Additional details
on these variants are provided in Section 6. Nevertheless, empirical evidence suggests that these methods
frequently fail to outperform a well-tuned ERM baseline (Gulrajani & Lopez-Paz, 2020).

3 The insufficiency of IRMv1 for invariance guarantees

For some ϵ ∈ R++, the following relaxation of (IRMv1) facilitates the discussion surrounding Theorem 3.1,
which brings forth the insufficiency of IRMv1 to identify those feature extractors Φ that suppress spurious
features and promote invariant ones:

min
Φ: X →H
π : H→Y

∑
e∈Etrain

Re(π · Φ)

subject to |∇πRe(π · Φ)|2 ≤ ϵ , ∀e ∈ Etrain . (5)

Assumption 3.1. In the context of IRMv1 (π is considered to be a scalar) and for any Φ, there exists
an LΦ ∈ R++ such that the partial differential operator ∇πRe(π · Φ) is LΦ-Lipschitz continuous, that is,
|∇πR(π1 · Φ) − ∇πR(π2 · Φ)| ≤ LΦ |π1 − π2|, ∀π1, π2.
Theorem 3.1. Presume Assumption 3.1. For δ ∈ R++, consider the following set of parameters Fδ:

Fδ :=
{

(π, Φ)
∣∣∣∣ ∑

e∈Etrain
Re(π · Φ) ≤ δ

}
.

Choose δ such that Fδ ̸= ∅. Then,

|∇πRe(π · Φ)|2 ≤ 2LΦδ , ∀(π, Φ) ∈ Fδ , ∀e ∈ Etrain .

Proof. See Appendix A.

Theorem 3.1 suggests that when the training environments are highly similar and it is possible to achieve
sufficiently low (though not necessarily zero) ERM loss by relying on spurious features, the optimality
constraint in (5) may still be satisfied. In such cases, the gradient penalty term |∇πRe(π · Φ)|2 may remain
small across the training environments Etrain, yet become large in the test environments Etest, indicating
overfitting to Etrain. In other words, the regularization term in (IRMv1) or the constraint in (5) does not
provide strong protection against spurious-feature extractors Φ. Specifically, if such a Φ, in conjunction with
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some π, results in a small ERM loss at the upper level of (5), then according to Theorem 3.1, the lower-level
constraint in (5) will also be satisfied for some ϵ (≥ 2LΦδ). As a result, the spurious-feature extractor Φ may
be incorrectly accepted as an invariant-feature one. The claim of Theorem 3.1 is justified by recent studies
on over-parameterized settings where it has been shown that even when the condition |∇πRe(π · Φ)|2 = 0 is
satisfied, the learned feature extractor Φ may still depend on spurious features (Lin et al., 2022; Zhou et al.,
2022).

4 Proposed Method

The preceding discussion reveals a fundamental vulnerability of IRMv1, which becomes pronounced in prac-
tical settings where achieving adequate diversity among training environments is inherently difficult. This
section proposes a method to enhance the diversity of the training data without expanding set Etrain through
data generation. Motivated by Section 3, two novel loss functions are introduced to address the aforemen-
tioned vulnerability of IRMv1.

4.1 Risk extrapolation

Section 3 suggests that increasing the diversity of Etrain is essential for the practical deployment of IRMv1.
When Etrain exhibits limited diversity and the generation of synthetic data is not feasible, it becomes
desirable to expand Etrain with pseudo-unseen environments and to perform optimization over this augmented
set. Inspired by the work of (Krueger et al., 2021), the present study explores the generation of pseudo-
unseen environments through algorithmic design, without the creation of additional data. As observed in
(Krueger et al., 2021), risk Re(x, y) is linear with respect to the PDF Pe(x, y), implying that an affine
combination of risks across different distributions corresponds to the risk associated with a mixture of
those distributions. Leveraging this insight, (Krueger et al., 2021) proposed a method of loss extrapolation
through affine combinations—negative coefficients are allowed—of the individual environment losses Re(·),
thereby representing distributions outside the span of the original training environments. A subsequent min-
max optimization of the risk over this extrapolated space enabled training with respect to pseudo-unseen
environments.

4.2 Robustifying invariant learning through penalty extrapolation

The original IRMv1 regularization loss, |∇πRe(π · Φ)|2, involves computing the gradient of the expected
loss and taking its squared norm. Consequently, the loss is nonlinear with respect to the data distribution
Pe(x, y). This non-linearity presents challenges when attempting to extend the extrapolation approach of
(Krueger et al., 2021), which relies on linear combinations of risks, to the IRMv1 setting.

To address this non-linearity issue, the following loss is introduced:

JIRM,e(π, Φ) := E(x,y)∼Pe

{
|∇πℓ(π · Φ(x), y)|2

}
, ∀(π, Φ) , ∀e ∈ Etrain . (6)

In contrast to |∇πRe(π · Φ)|2—recall that Re(π · Φ) = E(x,y)∼Pe
{ℓ(π · Φ(x), y)}—notice that the squared

norm of the gradient is computed prior to taking the expectation under Pe(x, y) in (6). In this way, the
loss in (6) is linear with respect to the PDF of the data, which in turn facilitates the implementation of the
extrapolation ideas of (Krueger et al., 2021). The following shows that JIRM,e(·, ·) “majorizes” |∇πRe(·, ·)|2.
Lemma 4.1. For any risk function Re(π · Φ) = E(x,y)∼Pe

{ℓ(π · Φ(x), y)}, the following holds true:

|∇πRe(π · Φ)|2 ≤ JIRM,e(π, Φ) , ∀(π, Φ) , ∀e ∈ Etrain .

Proof. See Appendix B.

For notational convenience, and motivated by the discussion in Section 2.5, let

JIRMv1,e(Φ) := JIRM,e(1.0, Φ) , ∀Φ , ∀e ∈ Etrain .

5



Under review as submission to TMLR

Based on JIRMv1,e, this work proposes the following losses (7) and (9) instead of |∇πRe(π · Φ)|2 in (IRMv1).
First in order is the loss

Cmm(Φ) := max
(αe)e∈Etrain ∈A

∑
e∈Etrain

αe JIRMv1,e(Φ)

= ( 1 − αmin |Etrain| ) maxe∈Etrain JIRMv1,e(Φ) + αmin
∑

e∈Etrain
JIRMv1,e(Φ) , (7)

where α := (αe)e∈Etrain stands for a tuple of length equal to the cardinality |Etrain| of Etrain,

A :=
{

α ∈ R|Etrain| |
∑

e∈Etrain
αe = 1 , αmin ≤ αe

}
(8)

is the intersection of the affine set { α ∈ R|Etrain| |
∑

e∈Etrain
αe = 1 } with the bound constraints

{ α ∈ R|Etrain| | αmin ≤ αe }, and the user-defined parameter αmin, which may take negative values, dic-
tates the extent of extrapolation. The proof of the second equality in (7) is provided in Appendix C.
The intuition behind (7) is to select, from a family of induced extrapolated pseudo-unseen environments,
the distribution that maximizes the penalty. This strategy effectively simulates a broader set of training
environments—without the need for synthetic or augmented data—thereby helping to mitigate overfitting
to spurious features, even when the diversity of training environments is limited.

Furthermore, (Krueger et al., 2021) mentions that, in addition to extrapolation, simply adding the variance
of risks across training environments as a regularization term proves to be stable and effective. To this end,
the following alternative loss is also proposed:

Cv(Φ) := γ · Var( {JIRMv1,e(Φ) | e ∈ Etrain} ) +
∑

e∈Etrain
JIRMv1,e(Φ) , (9)

where Var(S) represents the empirical variance over a finite set S of real values, defined by

Var(S) := 1
|S|

∑
s∈S

(s − s̄)2
, s̄ := 1

|S|
∑

s∈S
s ,

and γ is a non-negative scalar that serves as a hyperparameter to determine the extent of regularization on
the variance of the penalty.

To summarize, the following tasks, based on (7) and (9), are proposed as alternatives to the popular (IRMv1):

min
Φ: X →Y

∑
e∈Etrain

Re(Φ) + λ Cmm(Φ) , (mm-IRMv1)

min
Φ: X →Y

∑
e∈Etrain

Re(Φ) + λ Cv(Φ) , (v-IRMv1)

where λ ∈ R++ is a user-defined regularization parameter.

5 Numerical Tests

5.1 Structural equation models

Here, we conduct experiments using structural equation models (SEMs) in a scenario where the training
environments are highly similar to each other, so that spurious features can misleadingly reduce the training
loss.

5.1.1 Setting

The following SEM, taken from (Arjovsky et al., 2020), is considered:

xinv
e ∼ N (0d, e2Id) ,

ye := 1⊤
d xinv

e + u , u ∼ N (0, I1) ,
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xspu
e := ye · 1d + ve , ve ∼ N (0d, e2Id) . (10)

where xinv
e , xspu

e and ye are d×1 vector-valued and scalar-valued realizations of random variables, respectively,
N (0, e2Id) stands for the d-dimensional normal PDF with mean the d × 1 all-zero vector 0d and covariance
matrix e2Id, Id is the d × d identity matrix, 1d is the d × 1 all-one vector, and ⊤ denotes vector/matrix
transposition. Each environment is uniquely characterized by a distinct real value e.

The following estimation task is considered: given the 2d × 1 vector xe := [xinv⊤
e , xspu⊤

e ]⊤, estimate ye by
ŷe := ŵ⊤

invxinv
e + ŵ⊤

spuxspu
e , where the d × 1 parameter vectors ŵinv, ŵspu of the estimation model need to

be identified. In the case where (ŵinv, ŵspu) = (1d, 0d), that is, estimation is based solely on the invariant
feature xinv

e , then the estimation error ye − ŷe = ye − 1⊤
d xinv

e = u ∼ N (0, 1) becomes environment invariant,
so that E{ye − ŷe} = 0 and E{(ye − ŷe)2} = 1, regardless of the value of e. On the other hand, any attempt
to utilize the spurious xspu

e in the estimation model by using a non-zero ŵspu renders the estimation error
environment dependent due to (10).

Tests are conducted for d = 5. To measure invariance, the causal error (1/d)∥ŵinv −1d∥2 and the non-causal
one (1/d)∥ŵspu − 0d∥2 are employed (Arjovsky et al., 2020). Set Etrain comprises two environments, and
three settings are investigated for Etrain: {0.2, 2}, {0.2, 1}, {0.2, 0.6}. As the two values of e are getting closer
to each other, xspu

e becomes spuriously invariant within Etrain, making it increasingly difficult to identify
xinv

e . The model was trained using the mean squared error (MSE) loss function, and hyperparameter tuning
was performed based on validation data within the training environment. Further details are provided in
Section D.1.

5.1.2 Results

Results are shown in Tables 1 and 6. A common trend observed across all methods is that as the e values
in the training environments become more similar, the error rates increase, making it more challenging
to achieve invariance. However, while IRMv1 experiences particularly severe performance degradation,
the proposed methods exhibit consistent improvements across all settings. Notably, mm-IRMv1 achieves
the most substantial gains, with reductions of up to approximately 72% in causal error and 56% in non-
causal error. Results under settings with a larger number of training environments but limited diversity are
presented in Table 6. Even under these conditions, the proposed methods consistently outperform IRMv1.
These findings confirm—from the perspective of learned parameters—that extrapolating the IRMv1 penalty
fosters invariant learning, even when training environment diversity is limited.

Table 1: Invariance errors in SEMs. Even in scenarios where the training environments are similar—making it
difficult to eliminate spurious features—the proposed methods, particularly mm-IRMv1, consistently achieve
substantial improvements over the IRMv1 baseline. Percentages indicate performance changes relative to
IRMv1.

Etrain = {0.2, 2} Etrain = {0.2, 1} Etrain = {0.2, 0.6}
causal err (↓) non-causal err (↓) causal err (↓) non-causal err (↓) causal err (↓) non-causal err (↓)

IRMv1 0.487 ± 0.840 0.205 ± 0.351 0.798 ± 0.152 0.464 ± 0.026 1.418 ± 0.091 0.686 ± 0.068
v-IRMv1 (Ours) 0.414 ± 0.650 (-15.0%) 0.218 ± 0.330 (+6.3%) 0.503 ± 0.137 (-36.9%) 0.360 ± 0.082 (-22.4%) 1.151 ± 0.019 (-18.8%) 0.581 ± 0.027 (-15.3%)
mm-IRMv1 (Ours) 0.218 ± 0.373 (-55.2%) 0.131 ± 0.224 (-36.1%) 0.222 ± 0.059 (-72.2%) 0.206 ± 0.059 (-55.6%) 1.006 ± 0.311 (-29.1%) 0.564 ± 0.153 (-17.8%)

5.2 Vision Datasets

The proposed framework is evaluated in the more typical and over-parameterized deep-learning scenarios for
computer vision.

5.2.1 Setting

The proposed methods are evaluated on four vision classification datasets: Colored MNIST (CMNIST) (Ar-
jovsky, 2020), Colored FashionMNIST (CFMNIST) (Ahuja et al., 2020), PACS (Li et al., 2017), and VLCS
(Torralba & Efros, 2011). Out-of-distribution (OOD) datasets generally differ in the level of generalization
difficulty, depending on the nature of the distributional shift. Specifically, CMNIST and CFMNIST exhibit
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Table 2: Test accuracy (%) is reported for the four datasets individually, along with their average. For each
method, “base” refers to the original IRM variant, while “mm” and “v” denote the versions that incorporate
the penalties defined in (7) and (9), respectively. On average, the proposed approach enhances performance
across all IRM variants, with the “v” variant consistently outperforming the original. Percentages indicate
performance changes relative to the baseline method.

Method CMNIST CFMNIST PACS VLCS Avg.

ERM 30.9±0.6 28.4±0.1 76.7±0.6 57.7±0.3 48.4

base 64.7±0.5 74.3±1.1 75.5±1.4 58.4±0.5 68.2
IRMv1 v 68.1±0.4 74.8±0.5 75.9±3.8 58.4±2.1 69.3 (+1.6%)

mm 66.8±0.6 73.5±0.4 72.7±3.9 59.0±1.1 68.0 (-0.3%)

base 66.5±0.5 75.5±0.9 76.3±2.2 56.7±1.9 68.8
BIRM v 69.0±0.5 75.9±0.7 76.5±3.1 56.6±1.8 69.5 (+1.0%)

mm 66.2±0.6 73.4±0.2 73.4±0.2 56.7±0.6 67.6 (-1.7%)

base 67.2±0.4 67.3±2.2 71.3±1.9 51.2±5.4 64.2
BLO v 67.0±1.9 70.5±2.1 71.4±4.6 53.8±5.4 65.7 (+2.3%)

mm 67.9±0.5 71.2±1.8 69.4±1.2 53.4±6.0 65.5 (+2.0%)

correlation shifts, while PACS and VLCS are characterized by diversity shifts (Ye et al., 2022). A ResNet-18
model (He et al., 2016) is employed as the feature extractor Φ, whose parameters need to be identified, across
all datasets.

The evaluation metrics include accuracy, expected calibration error (ECE), and adapted ECE (ACE) (Nixon
et al., 2019), all computed on the test environments. While accuracy measures predictive performance,
ECE and ACE specifically assess the calibration of the model’s confidence—that is, how well the predicted
confidence aligns with actual correctness. These calibration metrics provide a more nuanced understanding
of model performance. Recent studies have shown that confidence calibration across multiple environments
guarantees the optimality of IRM (Wald et al., 2021), and their empirical connections have been demonstrated
by several works (Ovadia et al., 2019; Immer et al., 2021; Yoshida & Naganuma, 2024; Naganuma et al.,
2025).

The competing methods include empirical risk minimization (ERM), IRMv1, and two recent state-of-the-art
IRM variants: Bayesian IRM (BIRM) (Lin et al., 2022) and BLOC-IRM (BLO) (Zhang et al., 2023). Since
BIRM and BLO are based on the losses JIRMv1,e(Φ) and JIRM,e(Φ), respectively, they are compatible with
the proposed extrapolation method. Accordingly, in addition to IRMv1, the effectiveness of the extrapolation
approach is also evaluated when integrated with BIRM and BLO.

Additional details can be found in Appendix D.

5.2.2 Results

Accuracy. Table 2 presents the test accuracy of each method across the four datasets, along with their
averages. On average, at least one of the proposed variants consistently outperforms the original method for
every IRM variant. Notably, the “v” variant consistently surpasses the original methods. Compared to the
best-performing original baseline (the base variant of BIRM at 68.8%), the proposed approach achieves an
improvement of 1.0% with the v-BIRM variant.

Calibration Metrics. Next, we show the results for calibration metrics in Tables 3 and 4. Specifically,
Table 3 reports results for ECE, and Table 4 for ACE. Across both metrics, our extrapolation methods
consistently improve upon each original variant. The improvement in calibration metrics suggests that
our distributional extrapolation approach effectively mitigates the overconfidence observed in recent neural
networks (Minderer et al., 2021). However, unlike the comparison based on accuracy, we did not observe
a consistent trend regarding the superiority of “v” or “mm”. Notably, when focusing solely on IRMv1, the
variant “v” consistently outperformed the original one, aligning with the trend observed in accuracy.
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Table 3: Test ECE is reported for the four datasets and their average. For each method, “base” denotes the
original IRM variant, while “mm” and “v” refer to the versions incorporating the proposed penalties defined
in (7) and (9), respectively. On average, the proposed approach improves calibration performance across all
IRM variants. Percentages indicate performance changes relative to the baseline method.

Method CMNIST CFMNIST PACS VLCS Avg.

ERM 57.9±1.1 54.4±0.3 12.8±1.0 22.1±0.1 36.8

base 10.4±0.3 17.8±0.6 14.7±1.5 22.8±0.2 16.4
IRMv1 v 10.5±0.5 17.9±1.0 12.9±2.8 23.0±1.3 16.1 (-1.8%)

mm 10.5±0.9 13.8±0.6 16.6±3.6 19.8±0.6 15.2 (-7.3%)

base 10.1±0.9 19.6±0.7 12.9±1.3 22.8±1.0 16.3
BIRM v 10.0±0.4 19.4±0.7 13.5±2.8 23.5±0.2 16.6 (+1.8%)

mm 9.5±0.4 13.4±0.6 13.4±0.6 22.9±1.5 15.3 (-6.1%)

base 13.7±0.2 10.4±0.7 18.4±2.7 17.8±3.6 15.1
BLO v 11.6±1.7 11.6±1.7 18.6±6.0 15.6±1.9 14.7 (-2.6%)

mm 13.0±0.2 13.7±2.3 19.0±2.3 14.1±2.9 14.9 (-1.3%)

Table 4: Test adapted calibration error (ACE) is reported for the four datasets, along with their average.
For each method, “base” denotes the original IRM variant, while “mm” and “v” represent the variants
incorporating the proposed penalties defined in (7) and (9), respectively. On average, the proposed approach
improves calibration performance across all IRM variants. Percentages indicate performance changes relative
to the baseline method.

Method CMNIST CFMNIST PACS VLCS Avg.

ERM 57.8±1.1 54.5±0.3 12.3±0.7 22.0±0.1 36.6

base 14.0±0.3 20.2±0.1 14.1±1.7 22.6±0.1 17.7
IRMv1 v 14.0±0.4 20.2±0.3 12.4±2.6 22.6±1.4 17.3 (-2.3%)

mm 13.8±1.0 17.7±0.5 16.1±3.7 19.9±0.7 16.9(-4.5%)

base 13.8±1.0 21.0±0.4 12.4±1.1 22.9±0.9 17.5
BIRM v 13.3±0.5 20.7±0.5 13.2±2.8 23.1±0.4 17.6 (+0.6%)

mm 13.0±0.0 16.7±0.5 12.4±1.1 23.0±1.6 16.8 (-4.0%)

base 16.5±0.2 14.9±0.3 17.9±2.7 19.1±3.5 17.1
BLO v 14.6±1.3 14.6±1.3 18.0±6.2 16.7±1.7 16.5 (-3.5%)

mm 15.6±0.2 17.2±2.2 18.4±2.3 15.6±2.6 16.7 (-2.3%)

Extrapolation Mitigates IRMv1 Overfitting. Furthermore, the study examines whether the IRMv1
penalty term leads to overfitting to the training environment, as discussed in Section 3, and whether the
proposed methods effectively mitigate this issue using the CMNIST dataset. Figure 1 presents scatter
plots showing the relationships between the IRMv1 penalty values in the training environment and various
evaluation metrics. In these plots, blue circles represent the original IRMv1, green squares denote v-IRMv1,
and red triangles correspond to mm-IRMv1. Each point reflects the recorded values at each epoch during
the final 50 epochs for each method.

Notably, the penalty values for the original IRMv1 approached zero over the final 50 epochs; however, its
performance on test environment metrics was inferior to that of the proposed methods. This finding supports
the vulnerability of IRMv1 discussed in Section 3. In contrast, while the penalty values for the proposed
methods did not decline as sharply as those of IRMv1, they consistently achieved superior performance across
all test metrics, indicating improved out-of-distribution generalization. These results demonstrate that the
proposed distribution extrapolation approach effectively prevents overfitting to the penalty in the training
environment, even in scenarios with limited environmental diversity such as CMNIST, thereby promoting
the learning of truly invariant features.
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Figure 1: The figure illustrates the relationship between the IRMv1 penalty values in the training environ-
ment and the corresponding test evaluation metrics—accuracy, ECE, and ACE (from left to right)—on the
CMNIST dataset. Each point represents the recorded values at each epoch during the final 50 epochs for
each method. Although IRMv1 effectively reduces the training penalty to near zero, its performance across
all test metrics remains suboptimal, reinforcing the vulnerability highlighted in Section 3. In contrast, the
proposed distributional extrapolation methods mitigate overfitting of the IRMv1 penalty to the training
environment and consistently yield improved performance across all evaluation metrics.

Additional visualizations and scatter plots on other IRM variants can be found in Appendix E.2

6 Related Work

6.1 Learning Methods for OOD Generalization

In recent practical applications of deep neural networks, violations of the i.i.d. (independent and identi-
cally distributed) assumption have become increasingly common, making the improvement of generalization
performance under out-of-distribution (OOD) settings a critical challenge. To address this issue, learning
algorithm-based approaches have emerged as one of the mainstream solutions.

Representation learning–based approaches are a widely studied area in the context of OOD generaliza-
tion, aiming to extract invariant features from raw data that are independent of environmental variations.
Prominent examples include IRM (Arjovsky et al., 2020), which relies on bi-level optimization, and domain-
adversarial neural networks (DANN) (Ganin et al., 2016), which employ adversarial learning techniques.

In addition to representation learning, calibration-based approaches have also garnered increasing attention.
Calibration refers to the alignment between a model’s confidence and its predictive accuracy, and has been
theoretically linked to OOD generalization (Wald et al., 2021; Yoshida & Naganuma, 2024). (Wald et al.,
2021) demonstrated a theoretical connection between calibration and model invariance, showing that incor-
porating a calibration-focused regularization term into ERM can enhance OOD generalization performance.

Moreover, methods based on min-max optimization of the loss function have been proposed for OOD gener-
alization. (Sagawa et al., 2020) applied the concept of distributionally robust optimization (DRO) (Ben-Tal
et al., 2013)—which minimizes loss under the worst-case distribution within the training data—to deep
learning and introduced group DRO. However, (Krueger et al., 2021) highlighted the overfitting tendency
of traditional DRO approaches, which are confined to training environments, and proposed a method that
performs DRO over a broader distribution set, closer to potential test environments, via loss extrapolation.

6.2 Variants of IRM

IRM (Arjovsky et al., 2020), introduced as a representation learning framework for OOD scenarios, formulates
the objective as a bi-level optimization problem, which is known to be computationally challenging. To
address this difficulty, a variety of approximation methods have been developed.

10



Under review as submission to TMLR

The most fundamental of these is IRMv1, which assumes a linear form for the predictor π and reformulates
the original problem as a single-level optimization via a penalization approach. However, IRMv1 has been
criticized for its tendency to overfit to training environments. In response, Bayesian IRM (BIRM) (Lin
et al., 2022) adopts Bayesian inference to encourage invariance in the posterior distributions, aiming to
mitigate overfitting. Information bottleneck-based IRM (IB-IRM) (Ahuja et al., 2022) improves the learning
of invariant representations by applying the information bottleneck principle directly to the feature extractor
Φ (Yoshida & Naganuma, 2024).

Alternative formulations based on game theory have also been proposed. IRM game (Ahuja et al., 2020)
formulates the learning objective as a Nash equilibrium over environment-specific losses, while Pareto IRM
(PAIR) (Chen et al., 2022) seeks Pareto-optimal trade-offs among the losses of ERM, IRMv1, and REx to
balance in-distribution and OOD performance.

To address the scalability challenges posed by over-parameterized neural networks, (Zhou et al., 2022) demon-
strated that IRMv1 can be effectively applied to large models by suppressing their fitting capacity through
pruning, thereby preserving invariance. In addition, (Zhang et al., 2023) proposed a novel bi-level opti-
mization strategy that simplifies the lower-level problem of IRM, diverging from conventional single-level
approximation methods.

Despite their theoretical motivations, existing approximation methods have been reported to underperform
compared to well-tuned ERM in practice (Gulrajani & Lopez-Paz, 2020), underscoring the need for more
robust and principled IRM approximations. To this end, the present study introduces improved penalty
formulations for IRMv1, aiming to enhance the performance of existing approximation methods that rely on
the original IRMv1 penalty.

7 Discussion

7.1 v-IRMv1 or mm-IRMv1?

Although mm-IRMv1 consistently outperformed v-IRMv1 in the SEM-based experiments, the opposite trend
was observed on realistic vision datasets, where v-IRMv1 demonstrated more stable and superior perfor-
mance. This discrepancy is attributed to the numerical instability inherent in closed-form min-max opti-
mization problems, as noted by (Krueger et al., 2021).

Specifically, the bottleneck arises from the max operator in (7): although each individual loss JIRMv1,e(Φ)
may be smooth in Φ for all e, function maxe∈Etrain JIRMv1,e(Φ) is not necessarily smooth and may exhibit
a complex, non-differentiable landscape (graph) that is difficult to optimize. During training on realistic
datasets, the environments arg maxe∈Etrain JIRMv1,e(Φ) that achieve the maximum value can change fre-
quently and abruptly. This results into abrupt gradient shifts, numerical instability and increased difficulty
in optimization.

The pronounced success of mm-IRMv1 in the SEM-based experiments is hypothesized to stem from the
model’s low dimensionality. While the vision-dataset experiments employed ResNet-18 in an overparame-
terized regime, the SEM setting used a model with only ten learnable parameters—five for ŵinv and five
for ŵspu—representing a substantially lower-dimensional hypothesis space. This significant reduction in de-
grees of freedom likely renders the model less sensitive to the non-smoothness introduced by the mm-IRMv1
objective, resulting in a less complex optimization landscape and more stable convergence.

As an ablation study on CMNIST, the proposed methods were evaluated using both a 3-layer MLP and
ResNet-18. Table 5 illustrates how model dimensionality influences the test accuracy of mm-IRMv1. In the
low-dimensional setting with the 3-layer MLP, mm-IRMv1 clearly outperforms v-IRMv1. However, in the
higher-capacity, overparameterized ResNet-18, the effects of non-smoothness become more pronounced, and
v-IRMv1 tends to yield superior performance.
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Table 5: Test accuracy of mm-IRMv1 as a function of model dimensionality on CMNIST. In the low-
dimensional and less flexible setting with a 3-layer MLP, mm-IRMv1 consistently outperforms v-IRMv1.
However, as the model scales up and becomes increasingly overparameterized (e.g., ResNet-18), the non-
smoothness introduced by mm-IRMv1 becomes more pronounced, allowing v-IRMv1 to achieve superior
performance.

Methods Architecture (#params)
3-layer MLP (≈0.3M) ResNet18 (≈11.7 M)

IRMv1 65.7 ± 1.6 64.7 ± 0.5
v-IRMv1 65.9 ± 1.6 68.1 ± 0.4
mm-IRMv1 67.0 ± 1.0 66.8 ± 0.6

8 Conclusions

This paper demonstrated that IRMv1, the most widely used approximation of invariant risk minimization
(IRM), does not reliably achieve the intended invariance and is susceptible to overfitting due to reliance on
spurious features. To address this limitation, this work proposed a novel approach that mitigates overfitting
to limited training environments by extrapolating the IRMv1 penalty across data distributions, thereby
pseudo-diversifying the training environments. The effectiveness of the proposed method was validated
through both small-scale experiments using structural equation models (SEMs) and evaluations under recent
overparameterized settings. This contribution offers a practical improvement to existing methods built upon
the IRMv1 penalty and lays the groundwork for more principled approximations of IRM.
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Appendices

A Proof of Theorem 3.1

First, by the definition of Fδ, ∑
e∈Etrain

Re(π · Φ) ≤ δ , ∀(π, Φ) ∈ Fδ ,

and the initial hypothesis that Re(·) ≥ 0, it can be easily concluded that

Re(π · Φ) ≤ δ , ∀(π, Φ) ∈ Fδ , ∀e ∈ Etrain .

Assume, for contradiction to the claim of the theorem, that there exist an ê ∈ Etrain and (π̂, Φ̂) ∈ Fδ such
that

|∇πRê(π̂ · Φ̂)| >
√

2LΦ̂δ . (11)

Hereafter, to simplify notation, Rê(π̂ · Φ̂) will be expressed as Rê(π̂) to stress the fact that it is a function
of π̂ since Φ̂ is fixed.

Let π̂′ := π̂ − η∇πRê(π̂ · Φ̂). By Assumption 3.1, the descent lemma (Nesterov, 2004, Lem. 1.2.3) suggests

Rê(π̂′) = Rê( π̂ − η∇πRê(π̂) )

≤ Rê(π̂) + ∇πRê(π̂)⊤( −η∇πRê(π̂) ) +
LΦ̂
2 |−η∇πRê(π̂)|2

= Rê(π̂) − η|∇πRê(π̂)|2 +
LΦ̂
2 η2|∇πRê(π̂)|2

= Rê(π̂) − (η −
LΦ̂
2 η2) |∇Rê(π̂)|2 . (12)

Let η = 1/LΦ̂. Then

η −
LΦ̂
2 η2 = 1

LΦ̂
−

LΦ̂
2

1
L2

Φ̂
= 1

LΦ̂
− 1

2LΦ̂
= 1

2LΦ̂
.

Hence, by (11) and (12),

Rê(π̂′) ≤ Rê(π̂) − 1
2LΦ̂

|∇πRê(π̂)|2

< δ − 1
2LΦ̂

2LΦ̂δ

= δ − δ = 0 ,

which contradicts the initial hypothesis that Re(·) ≥ 0. This completes the proof.

B Proof of Lemma 4.1

Notice that ∀(π, Φ),

|∇πRe(π · Φ)|2 = | ∇π E(x,y)∼Pe
{ ℓ(π · Φ(x), y) } |2

= |E(x,y)∼Pe
{ ∇πℓ(π · Φ(x), y) } |2

≤ E(x,y)∼Pe

{
|∇πℓ(π · Φ(x), y)|2

}
= JIRM,e(π, Φ) ,

where the interchange between the expectation and the partial gradient in the second equality follows from
the dominated convergence theorem, while the inequality is a direct application of Jensen’s inequality (Ash
& Doléans-Dade, 1999).
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C Derivation of the closed-form expression of (7)

Problem (7) belongs to the class of linear-programming (LP) problems (Nocedal & Wright, 2006, (13.1)).
By defining µ := (µe)e∈Etrain ∈ R|Etrain|

+ and for a ϱ ∈ R, the Lagrangian function (Nocedal & Wright, 2006,
(13.3)) for (7) becomes:

L(α, ϱ, µ) = −
∑

e∈Etrain
αe JIRMv1,e(Φ) + ϱ

(
1 −

∑
e∈Etrain

αe

)
+

∑
e∈Etrain

µe(αmin − αe) ,

where the minus sign is applied to JIRMv1,e(Φ) to align with the convention that the Lagrangian function
is typically formulated for minimization. It is well-known for LP problems that α solves (7) if and only if
there exist (ϱ, µ) such that the following Karush-Kuhn-Tucker (KKT) conditions are satisfied (Nocedal &
Wright, 2006, (13.4)):

(Stationarity:) ∂L
∂αe

= −JIRMv1,e(Φ) − ϱ − µe = 0 , ∀e ∈ Etrain , (13a)

(Complementarity condition:) µe (αmin − αe) = 0 , ∀e ∈ Etrain , (13b)

(Primal feasibility:)
∑

e∈Etrain
αe = 1 , αe ≥ αmin , (13c)

(Dual feasibility:) µe ≥ 0 , ∀e ∈ Etrain . (13d)

Condition (13c) suggests 1 =
∑

e αe ≥
∑

e αmin = αmin |Etrain| ⇒ αmin ≤ 1/|Etrain|. Consequently, the
following two cases are considered.

Case 1: αmin = 1/|Etrain|. If there exists an e ∈ Etrain such that αe > αmin = 1/|Etrain|, then (13c) yields
1 =

∑
e αe >

∑
e αmin =

∑
e 1/|Etrain| = 1, which is absurd. Hence, αe = 1/|Etrain|, ∀e ∈ Etrain. In such a

case,

Cmm(Φ) = 1
|Etrain|

∑
e∈Etrain

JIRMv1,e(Φ) . (14)

Case 2: αmin < 1/|Etrain|. If αe = αmin, ∀e ∈ Etrain, then the absurd result 1 =
∑

e αe =
∑

e αmin <∑
e 1/|Etrain| = 1 is obtained, which suggests that there must exist at least one e ∈ Etrain such that

αe > αmin.

(i) Consider those e ∈ Etrain with αe > αmin—there certainly exists at least one such e. Then, (13b)
yields µe = 0, and (13a) leads to JIRMv1,e(Φ) = −ϱ.

(ii) Consider those e ∈ Etrain with αe = αmin. Then, by (13a) and (13d), µe = −JIRMv1,e(Φ) − ϱ ≥ 0 ⇒
JIRMv1,e(Φ) ≤ −ϱ.

The previous two points suggest −ϱ = maxe∈Etrain JIRMv1,e(Φ). Upon defining Emax :=
arg maxe∈Etrain JIRMv1,e(Φ) and its complement E∁

max := Etrain \Emax, it becomes also clear that if e ∈ E∁
max,

that is JIRMv1,e(Φ) < −ϱ, then necessarily αe = αmin. Because such an α satisfies the KKT conditions,
plugging it back into (7) yields

Cmm(Φ) =
∑

e∈Etrain
αe JIRMv1,e(Φ)

=
∑

e∈Emax
αe maxe∈Etrain JIRMv1,e(Φ) +

∑
e∈E∁

max
αmin JIRMv1,e(Φ)

=
(

1 −
∑

e∈E∁
max

αmin

)
maxe∈Etrain JIRMv1,e(Φ) + αmin

∑
e∈E∁

max
JIRMv1,e(Φ)

=
(

1 − αmin|E∁
max|

)
maxe∈Etrain JIRMv1,e(Φ) + αmin

∑
e∈Etrain

JIRMv1,e(Φ)

− αmin
∑

e∈Emax
JIRMv1,e(Φ)

=
(

1 − αmin|E∁
max|

)
maxe∈Etrain JIRMv1,e(Φ) + αmin

∑
e∈Etrain

JIRMv1,e(Φ)
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− αmin |Emax| maxe∈Etrain JIRMv1,e(Φ)

= (1 − αmin|Etrain|) maxe∈Etrain JIRMv1,e(Φ) + αmin
∑

e∈Etrain
JIRMv1,e(Φ) ,

where |Etrain| = |Emax| + |E∁
max| was used to deduce the last equality. Notice that this last expression for

Cmm covers also the case αmin = 1/|Etrain| of (14), establishing thus (7).

D Implementation Details

D.1 SEMs

All experiments are conducted on a single NVIDIA Tesla T4 GPU.

The experimental setup follows that of Arjovsky et al. (2020). Each environment contains 1,000 gener-
ated samples, and training is performed using full-batch updates. The number of training iterations is
fixed at 20,000, with a constant learning rate of 1 × 10−3. Penalty-related scaling factors are selected
via grid search. The search ranges are: 1 × 100, 1 × 101 for λ, −1 × 100, −5 × 100, −1 × 101 for αmin, and
1 × 100, 1 × 101, 1 × 102 for γ. Results are averaged over three random seeds, and standard deviations are
reported.

D.2 Vision Datasets

All experiments are conducted using a single NVIDIA H100 GPU.

The datasets and their respective configurations are described as follows.

• Colored MNIST (Colored FashionMNIST): Colored MNIST (and Colored FashionMNIST) is a
binary classification dataset derived from MNIST (or FashionMNIST), where digits 0–4 are assigned
to class 0 and digits 5–9 to class 1. Each dataset consists of 70,000 samples (50,000 for training
and 20,000 for testing), with input dimensions of (1, 28, 28). The invariant features correspond to
the original grayscale images, while the spurious features are encoded as a single-channel color (e.g.,
red or green) applied to each image. Typically, each class is associated with a specific color, but
this color flips for a proportion p of the samples. In the experiments, the training environments use
p = [10%, 20%], and the test environment uses p = [90%].

• PACS: The PACS dataset contains 9,991 images of size (3, 224, 224) across 7 classes and 4 distinct
visual styles, each corresponding to a different domain. In the experiments, the Cartoon, Photo,
and Sketch domains are used for training, while the Art Painting domain is used for testing.

• VLCS: The VLCS dataset consists of 10,729 images of size (3, 224, 224) across 5 classes, drawn from
four different sources. For the experimental setup, the Caltech101, LabelMe, and VOC2007 domains
are used for training, while SUN09 serves as the test domain.

The Adam optimizer is used with a learning rate of 5 × 10−4 across all datasets. For correlation shift
experiments, models are trained using full-batch optimization for 500 epochs. For other settings, training is
performed for 200 epochs with a batch size of 32. Following the protocol of Lin et al. (2022); Zhang et al.
(2023), the penalty coefficient λ is set to 1 × 106 for correlation shift experiments and 1 × 100 for diversity
shift experiments.

The hyperparameters αmin and γ are tuned via grid search. The search ranges are:

• αmin ∈ {−1 × 10−1, −2 × 10−1, . . . , −1 × 100}

• γ ∈ {1 × 10−1, 2 × 10−1, . . . , 1 × 100}

Model selection follows the “test-domain validation set” strategy (Gulrajani & Lopez-Paz, 2020) for corre-
lation shift settings, and the “training-domain validation set” strategy (Gulrajani & Lopez-Paz, 2020) for
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diversity shift settings. All reported results are averaged over three random seeds, and standard deviations
are also computed.

E Additional Results

E.1 Results on SEMs

Table 6: Invariance errors in SEMs. Even in scenarios where the training environments are similar—making it
difficult to eliminate spurious features—the proposed methods, particularly mm-IRMv1, consistently achieve
substantial improvements over the IRMv1 baseline.

Etrain = {0.1, 0.5, 1} Etrain = {0.1, 0.4, 0.7, 1} Etrain = {0.1, 0.2, 0.3, 0.4, 0.5}
causal err (↓) non-causal err (↓) causal err (↓) non-causal err (↓) causal err (↓) non-causal err (↓)

IRMv1 0.679 ± 0.093 0.414 ± 0.046 0.986 ± 0.513 0.524 ± 0.192 1.179 ± 0.424 0.570 ± 0.231
v-IRMv1 (Ours) 0.597 ± 0.024 0.381 ± 0.014 0.689 ± 0.320 0.402 ± 0.094 0.776 ± 0.567 0.330 ± 0.195
mm-IRMv1 (Ours) 0.427 ± 0.220 0.305 ± 0.146 0.527 ± 0.252 0.273 ± 0.127 0.736 ± 0.537 0.373 ± 0.204

In Table 1, the number of training environments is limited to two. Additional experiments are conducted
under alternative settings, with results presented in Table 6. Specifically, scenarios with three, four, and
five training environments are evaluated. Across all cases, our methods consistently achieves substantial
improvements.

E.2 Relationship between IRM penalty and Test Performance

This section provides additional figures that illustrate the effectiveness of the proposed methods in mitigating
overfitting of the IRM penalty, consistent with the results shown in Figure 1.

E.2.1 BIRM

Figure 2 illustrates the impact of the proposed extrapolation method on BIRM for CMNIST. While all
methods perform similarly in minimizing JIRMv1,e(Φ) within the training environments, notable differences
emerge in test performance, demonstrating that the proposed approach effectively mitigates overfitting to the
training data. Furthermore, although the test performance of the original BIRM remains nearly constant,
it exhibits instability in JIRMv1,e(Φ) across the training environments.
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Figure 2: The relationship between the IRMv1 penalty values in the training environment and the corre-
sponding test evaluation metrics (from left to right: accuracy, ECE, and ACE) on CMNIST. Each point
represents the values recorded at each epoch during the last 50 epochs for each method.
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E.2.2 BLO

Figure 3 illustrates the impact of the proposed extrapolation method on BLO for CMNIST. While all methods
achieve comparable values of JIRMv1,e(Φ) in the training environments, substantial differences arise in test
performance, indicating that the proposed approach effectively mitigates overfitting to the training data.
Notably, both proposed methods improve calibration metrics relative to the original BLO, demonstrating
that the distributional extrapolation technique reduces overconfidence.
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Figure 3: The relationship between the IRM penalty values in the training environment and the corresponding
test evaluation metrics (from left to right: accuracy, ECE, and ACE) on CMNIST. Each point represents
the values recorded at each epoch during the last 50 epochs for each method.

E.2.3 Extrapolated IRMv1 and other existing methods

Figure 4 presents a comparison of v-IRMv1, mm-IRMv1, and other existing methods on CMNIST. Notably,
v-IRMv1 maintains a consistently low JIRMv1,e(Φ) in the training environments while achieving superior
average test accuracy and calibration metrics compared to the other methods. This suggests that invari-
ant learning is effectively achieved. In contrast, although IRMv1 reports relatively low calibration errors,
it exhibits the lowest test accuracy overall. Additionally, both BIRM and BLO demonstrate suboptimal
performance on at least one evaluation metric.
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Figure 4: The relationship between the IRMv1 penalty values in the training environment and the corre-
sponding test evaluation metrics (from left to right: accuracy, ECE, and ACE) on CMNIST. Each point
represents the values recorded at each epoch during the last 50 epochs for each method.
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