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Abstract

We present SpecMAS, a novel multi-agent system that autonomously constructs
and formally verifies executable system models from natural language specifica-
tions. Given a Standard Operating Procedure (SOP) describing a target system,
SpecMAS parses the specification, identifies relevant operational modes, variables,
transitions, and properties, and generates a formal model in NuSMV code syntax,
an industry-standard symbolic model checker. A dedicated reasoning agent extracts
both explicit and implicit properties from the SOP, and verification is performed
via temporal logic model checking. If any properties fail to verify, an autonomous
debugging agent analyzes counterexamples and iteratively corrects the model until
all properties are satisfied. This closed-loop system design guarantees provable
correctness by construction and advances the state of the art in automated, inter-
pretable, and deployable verification pipelines. We demonstrate the generality,
correctness, and practical feasibility of SpecMAS across a set of representative case
studies and propose a new benchmark dataset for the evaluation and comparison
of model checking performance. We release our code and benchmark dataset
github.com/Idsl-group/SpecMAS.

1 Introduction

The increasing complexity and autonomy of modern software systems have made it critical to
develop frameworks that not only generate such systems from specifications but also provide formal
guarantees about their behavior. Formal specifications define pre-/post-conditions, invariants, and
other assertions that must hold throughout system execution [1, 2]. In mission-critical domains such
as healthcare, aviation, and industrial automation, informal reasoning and empirical testing are not
enough [3, 4]. This is especially true when AI agents are use to generate and execute the system. In
such cases, a proper testing suite or expert-defined system properties may not be available to verify
correctness of the system while it is being generated [5]. This necessitates approaches that integrate
both system synthesis and formal verification in a closed-loop manner.

In this paper, we propose SpecMAS, a novel multi-agent framework that autonomously ingests
system specifications in the form of a Standard Operating Procedure (SOP) and constructs a complete
formal system model using temporal logic and symbolic representations (via NuSMV [6]). We extract
system states, transitions, and property specifications, and systematically verify their correctness
using model checking [7]. To ensure comprehensive verification, our framework includes a dedicated
reasoning agent [8] that identifies and encodes all properties. Explicit properties are directly extracted
from the SOP, while implicit ones are inferred through a property exploration process driven by
semantic analysis and contextual reasoning. If any specification properties fail during verification,
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our system leverages a dedicated Model Checker Debugging Agent that interprets counterexample
traces to iteratively revise and correct the system model or properties until all generated specifications
pass verification checks.

1.1 Objectives and Contributions

1. Automated Model Synthesis: Design a multi-agent system capable of extracting operational
modes, variables, and transitions from natural language SOPs and translating them into formal
NuSMV models.
2. End-to-End Formal Verification: Use symbolic model checking to ensure that all temporal logic
properties (e.g., invariants, safety, reachability) are satisfied by the synthesized model.
3. Recursive Self-Correction: Introduce an agentic feedback loop that interprets NuSMV coun-
terexamples and autonomously revises faulty specifications or transitions until full verification is
achieved.
4. Theoretical Guarantees: Provide a foundation for building agentic systems that are correct by
construction, thus bridging AI generated systems with formal logic and safety.
5. Scalability and Generality: Demonstrate the generalisability of SpecMAS across diverse domains
through empirical validation and analysis on MiniSpecBench dataset with both synthetic and expert-
designed formal models.

A key contribution of SpecMAS is its direct use of NuSMV, an industry-standard tool for symbolic
model checking. Unlike prior work that relies on custom languages or proprietary compilers, our
framework generates models in NuSMV’s native specification language, enabling seamless integration
with existing verification toolchains. This design choice reduces adoption barriers, eliminates the
need for custom infrastructure, and leverages a mature ecosystem with robust support for temporal
logic, counterexample generation, and scalability. By merging model synthesis, formal verification,
and self-correction within a unified multi-agent framework, SpecMAS represents a step toward
trustworthy autonomous systems capable of reasoning about the correctness of their own design.

2 Previous Work

Model checking is a formal verification technique that systematically explores the state space of a
system model to determine whether it satisfies specified properties, typically expressed in temporal
logic such as Computation Tree Logic (CTL) or Linear Temporal Logic (LTL). It has been widely
adopted in safety-critical domains due to its ability to provide exhaustive guarantees about system
behavior under all possible execution paths. Tools like NuSMV have established themselves as
industry standards by offering symbolic and explicit-state verification capabilities. However, despite
its rigor, model checking is traditionally a manual process that requires expert knowledge to construct
accurate models and formal specifications. Recent research has explored automating parts of the
process but poses a significant barrier to scalability and real-world deployment.

2.1 Model Translation and DSL-Based Methods

Several model translation and domain-specific language (DSL) approaches have been proposed to
facilitate formal verification. Preibusch and Kammüller [9] presented a framework for translating
Object-Z specifications to SMV, preserving object-oriented behavior but requiring manual speci-
fication. Zhongsheng et al. [10] compared SPIN, UPPAAL, and NuSMV, finding NuSMV more
suited for distributed systems due to its support for CTL and LTL. DSL-based methods like MoSt [7]
and NL2CTL [11] improve model structure by translating annotated or natural language inputs into
temporal logic, though they rely on structured inputs or synthetic datasets. Liu et al. [12] introduced
a Property Specification Language (PSL) tailored to smart contracts, offering formal rule generation
but with limited generalizability. While these methods enhance automation and clarity, they are often
domain-specific and depend on controlled input formats or prior modeling expertise.

2.2 LLM-Assisted Specification Synthesis and Verification

Wen et al. [13] introduced AutoSpec, a hybrid framework combining static analysis and program
verification with LLM-based specification generation. The system incrementally synthesizes pre-
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Table 1: Addressing limitations of prior work with the proposed SpecMAS method.
Limitation Category SpecMAS Solution
Fragmented Scope Integrates system model generation, property extrac-

tion, and recursive verification into a single multi-agent
pipeline.

Domain Lock-in Designed to be domain-agnostic, able to operate across
SOPs from various fields (e.g., manufacturing, logistics,
control systems).

Post-hoc Verification Ensures correctness-by-construction by embedding ver-
ification directly into the synthesis loop.

No Transition Model Explicitly constructs full NuSMV transition systems
(states, variables, transitions) based on SOPs.

Shallow Property Coverage Extracts both explicit and implicit properties using rea-
soning agents, covering invariants, liveness, and safety
conditions.

No Debugging or Correction Includes a self-corrective debugging agent that uses
counterexamples to iteratively fix unverifiable models.

Non-interpretable Outputs Outputs models in NuSMV, an industry-standard formal
language, ensuring transparency and adoption feasibility.

conditions, postconditions, and loop invariants for C programs and validates them using theorem
provers. Similarly, Ma et al. [14] presented SpecGen, a two-phase approach for formal specifica-
tion generation in Java Modeling Language using LLMs. The first phase engages the LLM in a
conversational prompt-driven loop, refining outputs based on verifier feedback. When this fails, a
second mutation-based mechanism generates specification variants, which are heuristically selected
for verification. SpecGen outperformed traditional tools [15, 16] which utilize templates defined by
human experts to generate candidate specifications. However, such models are fine-tuned for specific
domains (e.g., C/Java programs, smart contracts), limiting their adaptability.

Loop invariants are critical for verifying programs with iterative behavior, yet generating them
remains a long-standing challenge. Wu et al. [17] introduced a neuro-symbolic framework that
leverages LLMs to generate candidate invariants in a “query-filter-reassemble” loop. Bounded Model
Checking (BMC) [18] is used to filter invalid predicates, and surviving clauses are recombined into
new invariant candidates. Pirzada et al. [19] proposed a novel extension of BMC that replaces loop
unrolling with LLM-generated invariants, verified using a first-order theorem prover [20]. This
method was able to prove correctness for programs that other tools [21, 22] failed to verify.

3 Proposed Method

We propose SpecMAS, a multi-agent system that automates the synthesis and verification of formal
models from natural language SOP documents describing a system. At the core of our framework
lies the formal verification of system behavior using model checking, grounded in the semantics of
Kripke structures. Formally, we represent the synthesized system as a finite-state transition system
(Kripke structure) defined by the tuple:

M = ⟨S, S0, R, L⟩ (1)

where, S is a finite set of states, S0 ⊆ S is the set of initial states, R ⊆ S × S is a total transition
relation capturing all valid system behaviors, and L : S → 2AP is a labeling function mapping each
state to a set of atomic propositions that hold in that state. Given a temporal logic specification φ, the
verification task reduces to checking whether the system satisfies the property, denoted as:

M |= φ. (2)

SpecMAS constructsM directly from the SOP by identifying system states, variables, and transition
conditions through a structured parsing and reasoning pipeline. Properties φ are either explicitly
extracted from the SOP or inferred through a property exploration agent. The model is then passed
to a symbolic model checker (NuSMV), which determines the satisfaction of φ. LTL properties are
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interpreted over paths; CTL combines path quantifiers A (for all paths) and E (there exists a path)
with temporal operators X, F, G, U .

Input: Standard Operating Procedure document SOP
Output: Machine–verified NuSMV model MOK

Pipeline I – Kripke Model & Specification Synthesis;
begin // Phase 1 – Information Gathering

TaskInfo← EXTRACTTASKINFORMATION(SOP, KB);
end
begin // Phase 2 – Kripke Model Generator
K ← KRIPKEEXTRACTOR(TaskInfo);
K ← KRIPKESOLVER(K, ReACT, KB);
K ← SELFCORRECT(K, ReACT);
M_raw ← SERIALIZETONUSMV(K);

end
begin // Phase 3 – Specification Generator

φ← PROPERTYEXTRACTOR(SOP, KB);
φ← PROPERTYSOLVER(φ, ReACT);
Specs_raw← SERIALIZESPECS(φ);

end
Pipeline II – Model-Checking and Debugging;
M←M_raw, Specs← Specs_raw;
RevHist← {} // initial revision history;
repeat // coding–debugging loop

if STATUS = Verified then
return (M, Specs) // all properties satisfied

else if STATUS = SyntaxError then
(M, Specs)← FIXSYNTAX(M, Specs, Refine,KB,RevHist);

else if STATUS = CounterExample then
(M, Specs)← GATHERCONTEXT&REFINE(M, Specs, Plan,KB,RevHist);

end
else // unsupported feature

(M, Specs)← FIXSEMANTICS(M, Specs, feedback,KB,RevHist);
end
RevHist← RevHist ∪ {(M, Specs)};

until (STATUS, feedback)← RUNNUSMV(M, Specs);
Algorithm 1: SPECMAS– End-to-End Generation and Verification

In both Linear Temporal Logic (LTL) and Computation Tree Logic (CTL) model checking, a counter-
example is a witness path (or tree) that demonstrates why a temporal-logic specification φ is false
for a Kripke structure M = ⟨S, S0, R, L⟩. For LTL, the violation is witnessed by an infinite
ultimately-periodic path:

π = s0s1 . . . sk (sk+1 . . . sk+ℓ)
ω, s0 ∈ S0, (si, si+1) ∈ R, (3)

whose finite prefix of length k is followed by a loop of length ℓ > 0; by construction π |=LTL ¬φ.
BecauseM is finite, every counter-example returned by a model checker can be represented in this
αβω form, where α = s0 . . . sk and β = sk+1 . . . sk+ℓ.

For CTL, a property failure is shown by a finite path:

π = s0s1 . . . sm, s0 ∈ S0, (si, si+1) ∈ R, (4)

or, for universal violations, a finite tree, that ends in a state sm violating the required sub-formula.
Each position i can be annotated with the set:

Fi =
{
ψ ⊆ φ

∣∣ M, si ̸|= ψ
}
, (5)

so the complete counter-example is the pair
(
π, (F0, . . . ,Fm)

)
and the non-empty set Fm pinpoints

exactly which obligations are violated. Thus, an LTL counter-example is mathematically an ultimately-
periodic path αβω with π |= ¬φ, whereas a CTL counter-example is a finite, transition-consistent
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(a) NuSMV Model and Specifications Generator Agents

(b) NuSMV model-checker Coding and Debugging Agent

Figure 1: Overview of the SPECMAS framework, consisting of two pipelines: (I) Model and
Specification Synthesis, where task information is extracted from the SOP to generate a Kripke
structure and formal properties; and (II) Model Checker Coding and Debugging, which verifies the
synthesized NuSMV model using temporal logic and iteratively refines it based on counterexamples
or syntax errors until all properties are satisfied.

path (or tree) annotated with the falsified sub-formulas at the point of failure. So, if the verification
fails, counter-examples are used by the proposed debugging agent to recursively revise the model
until the relationM |= φ holds for all specified properties, thus ensuring correctness by construction.

3.1 Architecture Overview

As shown in Fig. 1, the proposed architecture is organised around two tightly-coupled agentic
pipelines. The first, Kripke-Model and Specification Synthesis, processes the raw Standard Oper-
ating Procedure (SOP) corpus, extracts states, variables and transitions, and packages the resulting
Kripke structure together with automatically derived CTL/LTL properties into two artefacts: a
.smv model file and a companion specification file. This pipeline unfolds over three successive
phases—Information Gathering, Kripke Model Generation, and Specification Generation. Through-
out these phases every agent can query a shared knowledge base for retrieval-augmented prompts and
invoke a reasoning LLM that performs on-the-fly symbolic checks, validating both the global plan
and the intermediate outputs of each task.

The second pipeline, Model-Checking and Debugging, takes these intermediate artefacts as input,
executes the NuSMV engine, and inspects any syntax errors or counter-example traces that NuSMV
returns. Guided by this feedback, the pipeline iteratively adjusts both the state-transition model and
the property set until the model checker confirms that every specification is satisfied. Its output is
a final, machine-verified NuSMV file, thereby closing the loop from informal SOP text to formally
validated code. During each refinement cycle we expose the complete code-revision history to the
reasoning LLM, enabling it to explore alternative bounds, variable domains and transition guards
when repairing syntax or localisation faults. Once these structural issues are resolved, the verifier
performs a semantic pass; if any SOP requirement remains unmet, the agent replans and the debugging
loop repeats until full compliance is achieved.
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Table 2: LLM-Judge evaluation results across five benchmark systems. Each cell shows a metric or
compliance score, with models grouped by task. Green highlights indicate the top three performers;
red marks the bottom two. * represents that the .smv artifact failed to execute after debugging.

Model Structural
Alignment

Property
Fidelity

Semantic
Fidelity

Code
Bonus

Code
Compliance

Execution
Compliance

Final
Compliance Score

BRP Protocol
SpecMAS 5.66 6.84 5.50 0.38 0.55± 0.02 0.9± 0.14 0.76± 0.08
Claude [25] 6.66 8.16 6.84 0.1 0.60± 0.08 0.38± 0.04 0.46± 0.05
DeepSeek [26] 5.00 5.16 5.34 0.2 0.45± 0.01 0.5± 0.14 0.48± 0.08
Gemini [27] 7.34 8.84 8.17 0.52 0.75± 0.04 0.0∗ ± 0 0.30± 0.01
Qwen [24] 6.67 8.00 7.17 -0.14 0.55± 0.04 0.16± 0.04 0.32± 0.04

Shuttle Autopilot Guidance System
SpecMAS 4.84 5.17 5.66 0.19 0.45± 0.1 0.97± 0.05 0.76± 0.01
Claude 5.66 6.50 6.00 0.25 0.53± 0.08 0.34± 0.12 0.42± 0.1
DeepSeek 4.33 4.33 5.00 0.03 0.37± 0.07 0.45± 0.17 0.42± 0.07
Gemini 4.83 5.66 5.00 -0.23 0.36± 0.04 0.6± 0 0.51± 0.01
Qwen 5.16 5.16 5.33 0.20 0.45± 0.04 0.04± 0.05 0.20± 0.04

Mutual Exclusion
SpecMAS 8.5 7.84 7.00 0.19 0.66± 0.09 0.85± 0.07 0.77± 0.08
Claude 9.66 9.5 9.34 0.02 0.76± 0.13 0.95± 0.07 0.88± 0.09
DeepSeek 8.5 9.16 7.16 0.03 0.66± 0.13 1.0± 0 0.86± 0.05
Gemini 8 9.84 6.5 0.38 0.73± 0.08 0.85± 0.07 0.80± 0.08
Qwen 9.66 10.0 9.5 0.06 0.79± 0.06 0.1± 0 0.38± 0.02

Robot Controller
SpecMAS 4.0 4.50 3.50 0.28 0.38± 0.06 0.90± 0.07 0.69± 0.07
Claude 6.83 8.34 8.0 0.73 0.76± 0.04 0.0± 0 0.30± 0.02
DeepSeek 5.16 6.16 5.50 -0.06 0.44± 0.04 0.64± 0.06 0.56± 0.02
Gemini 8.84 9.34 8.34 0.22 0.75± 0.03 0.0∗ ± 0 0.30± 0.01
Qwen 6.66 7.17 5.66 0.34 0.58± 0.05 0.0∗ ± 0 0.24± 0.02

GigaMax Cache Coherence Protocol
SpecMAS 5.0 5.67 4.67 0.46 0.50± 0.04 0.84± 0.06 0.70± 0.05
Claude 6.5 8.84 6.84 0.27 0.65± 0.01 0.06± 0.04 0.29± 0.01
DeepSeek 6.16 7.16 6.50 0.14 0.56± 0.01 0.66± 0.05 0.62± 0.02
Gemini 8.5 9.34 7.66 0.40 0.76± 0.01 0.0∗ ± 0 0.30± 0.01
Qwen 6.5 7.16 6.84 -0.08 0.53± 0.04 0.61± 0.01 0.57± 0.01

4 Experimental Setup

We report results on MiniSpecBench, a curated suite of 10 Standard-Operating-Procedure (SOP)
documents paired with the reference expert NuSMV model files with CTL/LTL specifiactions. All
expert written .smv files were taken from the canonical NuSMV example suite distributed with
version 2.5.1 and later, covering a broad spectrum of industrial design motifs. Because the original
distribution provides code but no documentation, we automatically synthesised a natural-language
SOP for every NuSMV model using a customised variant of SYNTHIA [23], supplying the ground-
truth .smv files as the sole input. SpecMAS queries the SOP documents and the available knowledge
base (consisting of documents on formal verification; more information in supplementary material)
during agent execution through a retrieval-augmented generation framework.

Results are averaged over two independent LLM-as-a-Judge evaluation runs. Full results on the
MiniSpecBench dataset will be included in the supplementary material. The SpecMAS framework
uses 8-bit-quantised Qwen3-32B model [24] as its backbone reasoning LLM. All experiments are
conducted on a workstation equipped with an AMD Ryzen Threadripper PRO 7955WX, 256GB
RAM and two NVIDIA RTX A6000 GPUs.

5 Evaluation

We evaluate SpecMAS against baseline LLM models using an LLM-as-a-Judge framework [28]
for evaluation. Each generated .smv is assessed across three Code Quality metrics- Structural
Alignment, Property Fidelity, Semantic Fidelity, along with a Bonus metric Code Bonus, and
Compliance Scores.
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Structural alignment captures how faithfully the agent reproduces the topology of the expert model
and consists of the following components: (i) role coverage of critical variables, (ii) accuracy of
transition logic, and (iii) consistency of the chosen module/define decomposition.

Property fidelity measures the logical equivalence and syntactic similarity between the generated
properties and the expert-authored reference properties. It quantifies the quality of the generated
CTL / LTL suite and comprises of: (i) coverage of the SOP- or expert-specified requirements, (ii)
logical equivalence to expert formulas, and (iii) syntactic operator correctness. Semantic Fidelity
evaluates behavioural soundness: (i) behaviour match under the execution semantics, (ii) treatment
of edge cases such as recovery modes or fairness constraints, and (iii) clarity of identifier naming.
Property and Semantic fidelity metrics are essential as generated properties can be logically sound
and semantically well-formed, yet still lead to counterexample traces during model checking due to
mismatches in assumptions, missing state conditions, or incorrect variable scoping.

Compliance Scores are mixtures of penalty and reward values that are used to measure the Model’s
adherence to the input SOP. (i) Code Compliance measures the model’s overall coverage of input
SOP requirement to NuSMV syntax and module definitions, (ii) Execution Compliance denotes the
Model’s functional coverage of input SOP in terms of property specifications and state variables and
the ability to produce executable code without the presence of counter-example traces. The Bonus
Metric evaluates a model’s ability to generate a NuSMV model that surpasses expert-written files in
quality by exploring additional edge cases, tightening specification bounds, and improving structural
modularity beyond the reference implementation. Code Quality metrics are reported on a scale of 10,
the Bonus and Compliance scores are in range [−0.5, 1] and [0, 1] respectively.

Table 2 presents a detailed evaluation of five systems from Mini SpecBench- Mutual Exclusion for two
processes, BRP Message Protocol, Shuttle Autopilot Guidance System, Real-time robot controller,
GigaMax Cache Coherence Algorithm. Each system was assessed across a total of 17 metrics, which
were aggregated into higher-level categories for analysis as described above (implementation details
are provided in supplementary material). The Final Compliance Scores are then calculated as the
weighted average of the Code Compliance (40%) and Execution Compliance (60%) scores.

The evaluation results highlight significant variations in performance across all models and metrics,
reflecting the diverse strengths and limitations of each system in the task of generating executable
and semantically aligned NuSMV code from SOP documents. Among all models tested, SpecMAS,
Claude, and DeepSeek consistently perform better overall, particularly in terms of structural and
semantic fidelity. Claude (3.7-Sonnet) performs competitively, particularly in structural alignment
and property fidelity, closely trailing SpecMAS on several benchmarks. Both Claude and SpecMAS
achieve high Semantic fidelity score, revealing the better instruction following and CoT-based
exploration capabilities of these methods. However, Claude’s performance drops significantly on
execution-sensitive tasks, as seen in its failure to execute the Robot Controller model.

DeepSeek (R1-Distill-Llama-70B) maintains balanced, moderate performance across metrics, ranking
third overall, but occasionally struggles with semantic precision in complex safety-critical systems.
Gemini (Flash-2.5), despite scoring well on some logical and semantic aspects, suffers from poor
execution reliability and fails to generate executable models in three out of five tasks. This reflects
structural inconsistencies and weaker domain alignment. Surprisingly, Qwen (3.0-Chat-235B),
despite having a much larger parameter count than SpecMAS’s Qwen3-32B 8bit model, performs
poorly across most tasks particularly in execution. This suggests that SpecMAS’s advantage does not
come from model size or raw reasoning power alone. Instead, its strength lies in the integration of
model and specification synthesis with an iterative code debugging pipeline.

SpecMAS demonstrates the most stable and robust performance across the five benchmark systems,
achieving the highest Final Compliance Score for four out of five SOPs evaluated in Table 2. It
combines strong formal reasoning, structured synthesis, and execution reliability in a single unified
framework. It further maintains a strong balance across all evaluation axes: structural alignment,
property fidelity, semantic fidelity, and execution correctness. This indicates its superior ability to
generalise system behaviours from SOPs into valid formal models. Notably, SpecMAS excels in
Execution Compliance, outperforming all other models on this critical dimension.
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Table 3: Comparison of lowest Debug-Step models vs. highest Final Compliance score models.
SOP Min Debug-Steps Max Final-Compliance Score ∆ Debug Steps ∆ Score

BRP Protocol DeepSeek 1 SpecMAS 0.76 +5 +0.28
Shuttle Autopilot DeepSeek 0 SpecMAS 0.76 +5 +0.34
Mutual Exclusion Claude 0 SpecMAS 0.77 +6 -0.11
Robot Controller Claude 1 SpecMAS 0.69 +4 +0.39
GigaMax Cache DeepSeek 2 SpecMAS 0.7 +3 +0.08

(a) Comparison of debugging/error correction steps
required to execute generated .smv files.

(b) Comparison of compliance scores for .smv files
of different SOP system domains in MiniSpecBench.

Figure 2: Evaluation of generation performance across debugging effort and compliance quality.

5.1 Qualitative Analysis of Code Generation and Execution Compliance

For all models except SpecMAS, we measure the number of manual debug steps-defined as the
minimal edits required to produce a syntax-error-free file. For SpecMAS, we instead track the number
of iterations performed by our Debugger Agent, which first resolves syntax errors and then iteratively
refines counterexamples until a model-checked artifact is produced. Figure 2a compares the number
of manual debug steps and agent-led repair steps across ten benchmark SOPs. Intuitively, fewer
debug steps suggest that an LLM’s initial draft is closer to a "compile-and-verify" SMV artifact.

However, as shown in Tables 2 and 3, once all files are repaired, SpecMAS consistently outperforms
all baselines on key metrics such as Structural Alignment, Property Fidelity, and Compliance Scores.
This highlights a critical insight: low debug step counts do not necessarily translate into high-quality
or high-compliance .smv files. A plausible explanation is that baseline models may produce files that
are syntactically valid with minimal edits (or none at all), but structurally incomplete or semantically
shallow. For instance, DeepSeek requires zero syntax fixes but achieves very low Final Compliance
Scores. This suggests that, while its code is “runnable”, it often omits critical state variables, transition
logic, or property specifications. In contrast, SpecMAS generates drafts that are more detailed and
semantically rich-capturing edge cases, nuanced transitions, and full property coverage-which, while
increasing the likelihood of syntax errors. But this results in much higher semantic fidelity once
agentic debugging is applied as shown in Figure 2b.

The tendency of baseline LLMs to produce error-prone .smv code is likely linked to NuSMV being a
low-resource, domain-specific language, where token-level exposure during pretraining is minimal.
This leads to higher hallucination rates, a consistent pattern observed especially in Gemini and Qwen.
These issues reinforce the value of providing LLMs with tools and domain-specific context during
generation. Our evaluation strongly supports this hypothesis: tool-augmented, context-aware models
(like SpecMAS) produce higher-quality artifacts, even if they initially require more debugging effort.
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(a) Ablation study showing the impact of removing
core agent pipelines on final compliance score across
selected MiniSpecBench SOPs.

(b) Case study comparing average specification quality
(left axis) and execution compliance (right axis) across
models for the BRP Protocol SOP.

Figure 3: (a) Contribution of individual agents in SpecMAS to overall model-checking performance.
(b) Analysis of the trade-off between Specification quality (SPEC) and Execution Compliance.

5.2 Ablation Studies for Evaluation of Agent Contributions

The ablation study results shown in Figure 3a evaluate the incremental contribution of key components
within the SpecMAS pipeline, specifically the impact of: (i) The baseline Qwen3 32B 8-bit LLM
without planning or verification model, (ii) Model and specifications synthesis alone (iii) the full
pipeline including symbolic model checking and debugging—on the Final Compliance score across
five benchmark SOPs from Table 2. Each axes is decomposed into two stacked segments representing
the weighted contributions of Code Quality and Execution Compliance to the final score.

The ablation results confirm that the key performance gains of SpecMAS are not solely from
LLM-based synthesis, but from its integrated verification and debugging loop. While high-quality
initial generation is important, reliable execution, particularly in formal verification tasks, requires
post-hoc error correction and planning. This is a feature that the full SpecMAS pipeline provides.
Synthesis-only pipeline improves code compliance over baseline Qwen model and often fails to
produce executable models. For instance, in the Robotics Controller and GigaMax Cache benchmarks,
execution performance without debugging counterexample traces remains low.

We observe a drop in performance for the Mutual Exclusion SOP when using only the model and
specification synthesis pipeline. The intermediate artefact generated at this stage was not executable
due to syntax errors and a missed explicit state transition condition. Additionally, the property
exploration plan introduced a novel property related to turn alternation which was not explicitly
required by the SOP. Once the agentic debugging loop was activated, it successfully identified and
corrected both the structural and property-level issues.

5.3 Case Study: Evaluating the Impact of Proposed Agents

We observe that although SpecMAS occasionally scores lower than baseline LLMs like Claude and
Gemini on structural alignment, property fidelity, and semantic fidelity, it still achieves the highest
Final Compliance scores. This raises a question about how lower Code Compliance artifacts can
outperform more aligned model files in Execution Compliance. We attribute this to two main factors:
(1) the execution-centric design of SpecMAS and (2) the brittleness of one-shot generation in baseline
models. To illustrate this, we examine the BRP protocol SOP from MiniSpecBench.

Figure 3b highlights this paradox. It plots Execution Compliance against Average Specification
(SPEC) quality for BRP Protocol SOP, calculated as the mean of structural alignment, property
fidelity, and semantic fidelity. Although Qwen achieves the highest mean SPEC quality score, it fails
almost completely in Execution Compliance similar trend can is observed for Gemini as well. In
contrast, SpecMAS and Claude have more modest average SPEC quality scores, but maintain a high
Execution Compliance.

This discrepancy reveals a critical flaw in one-shot generation approaches. While their outputs may
appear structurally or logically correct, they lack post-generation verification, counterexample-guided
refinement, and SOP-grounded planning. As a result, even minor syntax or semantic issues that
are undetectable by surface-level scoring can lead to failure during NuSMV execution. In contrast,
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SpecMAS deliberately trades alignment and fidelity scores to incorporate multi-agent planning and
automated debugging pipelines that corrects errors before finalizing the model file. This result in
lower Code Compliance score, but a substantially higher Execution Compliance—an outcome that is
far more valuable for formal verification tasks.

6 Conclusion

In this work, we introduced SpecMAS, a multi-agent framework for generating formally verified sys-
tems from natural language SOPs using model checking. Through evaluations on the MiniSpecBench
suite, SpecMAS consistently outperformed state-of-the-art LLMs across key metrics. Our results
highlight the value of an execution-centric, multi-agent approach over one-shot code generation.
By combining planning, retrieval, and automated debugging, SpecMAS improves the reliability of
generated NuSMV models. This work marks a step forward in applying agentic LLMs to system
synthesis and verification, paving the way for more robust LLM based formal verification agents.

7 Limitations and Future Directions

While SpecMAS demonstrates strong potential for formal self-verification of agentic systems, some
limitations remain that highlight valuable opportunities for future research and refinement.

First, handling underspecified or inconsistent SOPs is inherently challenging due to the variability and
ambiguity of real-world documentation. SpecMAS already mitigates this through reasoning-capable
LLMs, hierarchical planning, and SCMRAG [29] based retrieval to infer missing information and
align transitions with the logical intent of the SOP. However, extreme ambiguity may still require
human-in-the-loop assistance. Integrating guided expert feedback into the verification loop is an
extension that would enhance semantic fidelity and interpretability without compromising automation.

Second, while the system’s property extraction and symbolic relevance checks substantially reduce
vacuous or trivial properties, there remains limited risk that certain verified properties may not fully
capture the intended operational semantics. The built-in entailment classification and counterexample-
based debugging already provide interpretability and grounding, but future versions can incorporate
richer semantic reasoning and coverage metrics to strengthen this safeguard further.

Third, SpecMAS currently relies on NuSMV for symbolic model checking, which restricts full
generalization to hybrid or probabilistic systems. Nonetheless, our results on the traffic collision
avoidance and shuttle autopilot controller tasks show that the framework can model continuous
behaviors through discrete abstractions. Future expansions will integrate complementary verification
backends such as SPIN, extending the approach to hybrid and stochastic systems.

Finally, scalability is an ongoing consideration. Symbolic model checking can encounter state-
space explosion in high-complexity systems, occasionally increasing reasoning time and debugging
iterations. Current results show strong convergence, with an average of only 18 additional steps on the
most complex tasks. Future work will explore component-based and modular verification, allowing
larger systems to be decomposed and verified more efficiently. Also, the current implementation
of SpecMAS focuses on generated SOPs rather than human-authored documents. This choice was
made because existing NuSMV model files lacked corresponding natural-language specifications,
making aligned SOP-model pairs unavailable. SYNTHIA was designed to generate semantically
faithful yet syntactically diverse SOPs from human-authored code artifacts. We plan to incorporate
human-written SOPs in future work to assess robustness under natural linguistic variability.

In summary, these limitations represent growth avenues rather than shortcomings, each pointing
toward richer semantic understanding, broader generalizability, and improved scalability. Addressing
them will further strengthen SpecMAS as a reliable, interpretable, and extensible framework for
formal self-verification of LLM-generated system models.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Sections 3, 5, and 5.3 cover the major claims we’ve made. Section 5.2 provides
an explanation for our claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [No]
Justification: We have briefly discussed certain limitations in the paper; a full, detailed
discussion will be provided in the supplementary material.
Guidelines:

• The answer NA means that the paper has no limitation, while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: We talk about our experimental results and their analysis on a benchmark
dataset.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have discussed in detail the reproducibility of our main experimental
results in Sections 4 and 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: All the data and code files will be provided as part of the supplementary
material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 4 talks about the experimental setup in detail.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: We perform quantitative and qualitative analysis for our results as explained in
Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide detailed information about our experimental setup Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work does conform to NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: Our work focuses primarily on foundational research and does not directly
address immediate societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We believe the nature of our work presents minimal risk of misuse. Nonetheless,
we remain mindful of responsible research practices and are open to incorporating safeguards
should future developments introduce any potential concerns.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have ensured that all original creators of the files and LLMs used in
our experiments are appropriately credited. Additionally, we have adhered to the relevant
licenses and terms of use associated with these assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce new assets in Section 4 of the paper, including the benchmark
suite and evaluation framework. Additional documentation and usage instructions will be
provided in the supplementary materials to ensure reproducibility and ease of use.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work doesn’t involve the use of crowdsourcing nor research on human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work doesn’t involve crowdsourcing nor research done on human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We describe the usage of LLMs as a central component of our core method-
ology. Specifically, our framework leverages LLMs for the generation, refinement, and
evaluation.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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