
Published as a conference paper at ICLR 2025

SEPARATE: A Simple Low-rank Projection for
Gradient Compression in Modern Large-scale
Model Training Process

Hanzhen Zhao1, Xingyu Xie2, Cong Fang1,3,∗, Zhouchen Lin1,3,4

{hzzhao, xyxie, fangcong, zlin}@pku.edu.cn
1 State Key Lab of General AI, School of Intelligence Science and Technology, Peking University
2 Department of Mathematics, National University of Singapore
3 Institute for Artificial Intelligence, Peking University
4 Pazhou Laboratory (Huangpu), Guangzhou, Guangdong, China

Abstract

Training Large Language Models (LLMs) presents a significant communi-
cation bottleneck, predominantly due to the growing scale of the gradient
to communicate across multi-device clusters. However, how to mitigate
communication overhead in practice remains a formidable challenge due
to the weakness of the methodology of the existing compression methods,
especially the neglect of the characteristics of the gradient. In this paper, we
consider and demonstrate the low-rank properties of gradient and Hessian
observed in LLMs training dynamic, and take advantage of such natural
properties to design SEPARATE, a simple low-rank projection for gradient
compression in modern large-scale model training processes. SEPARATE re-
alizes dimensional reduction by common random Gaussian variables and an
improved moving average error-feedback technique. We theoretically demon-
strate that SEPARATE-based optimizers maintain the original convergence
rate for SGD and Adam-Type optimizers for general non-convex objectives.
Experimental results show that SEPARATE accelerates training speed by
up to 2× for GPT-2-Medium pre-training, and improves performance on
various benchmarks for LLAMA2-7B fine-tuning.

1 Introduction

With massive amounts of data, billions of parameters, and multi-device clusters, the remark-
able strides of Large Language Models (LLMs) across multiple disciplines [9, 48, 5, 8] are
attributed to such scalable intrinsic characteristics and training paradigms. However, corre-
sponding challenges erupt, as multiple rounds of communication of massive model parameters
across multi-device clusters have created a significant communication bottleneck in training
process. For example, pre-training a BERT-Large model (340M parameters) with a single
batch size on 16 GPUs shows that 92% of the training time is spent on gradient all-reduce
in backward propagation [49]. Therefore, a critical problem urgently to be addressed is how
to relieve the communication burden while ensuring the quality of model training.

In response to the aforementioned problem, a variety of gradient compression strategies
have been proposed to reduce the communication overhead of gradients between devices.
Such strategies can be broadly categorized into two compression techniques, including low-
precision compressors (e.g., SignSGD [6], 1-bit Adam [49] and 1-bit LAMB [29]) and low-rank
compressors (e.g., Atomo [57] and PowerSGD [55]). Moreover, error-feedback technique [46,
49, 29] focuses on compensating for errors accumulated during compression by changing the
objects to compress from the gradient to the gradient and historical error summation [49,
29]. Error-feedback-based compression algorithms have been theoretically proven to have
lower communication complexity when applied to SGD-Type optimizers [53, 30, 18].

∗Corresponding author

1

Published as a conference paper at ICLR 2025

However, from the system perspective, how to mitigate communication overhead in practice
remains a core problem and a formidable challenge. For example, low-bit gradients (e.g., less
than 8-bit) are not supported by typical hardware. Thus, quantizing gradients into less than
8 bits can lead to significant precision loss and numerical instability. For biased low-precision
compressors with error-feedback techniques, which do not support communication primitive
all-reduce due to their inherent structures, they must use all-gather for aggregation. It
limits them only suitable for master-server communication patterns, incompatible with
advanced ring-based and tree-based patterns in current large-scale model training [38] and
extremely slows down the communication speed [1]. Therefore, there remains a significant
gap between the performance of these methods in training practice and their theoretical
results. Considering the system-level speed, recent studies [1, 62] indicate that when training
representative LLMs with off-the-shelf DistributedDataParallel (DDP), most of gradient
compressors show longer wall-clock training time than vanilla Adam. Furthermore, inte-
grating these gradient compressors into commonly used optimizers often requires significant
modifications, necessitating additional effort to ensure compatibility and maintain effective.

These system-level limitations drive us to consider improvements at the methodological
level. The ineffectiveness of these methods stems from inherent flaws in their methodology.
Specifically, these algorithms seldom take the characteristics of the gradient of LLMs into
account, leading to additional computation or communication rounds to compensate for
the errors introduced by compression. For low-precision compressors, the compression ratio
is upper bounded by floating-point digit number 32. Worse, vector-wise quantization is
independent of the properties of the gradient and is commonly computationally heavy.
Several low-rank compressors [55] consider the low-rank approximation of gradient, but the
compression and decompression are so complex that the time cost in extra computation
is close to or even larger than the saved communication time cost. Therefore, the design
concept of modern "workable" gradient compression algorithms is that

We should design compression algorithms by leveraging the properties of the
model, ensuring the suitability for modern LLMs efficient training ecology, and

lightweighting compression and decompression computation to save time.

Contribution. In this work, we focus on how to design a universal gradient compression
technique in line with the above concept. We propose SEPARATE, a SimplE low-rank
Projection for grAdient compRession in modern lArge-scale model Training procEss, which
compresses the gradient to arbitrary low-dimension one before communication and then
reconstructs after, no matter what optimizers and training frameworks are used. Instead of
a low-rank approximation estimate of weight matrix for parameter-efficient fine-tuning like
LoRA [22], we stand on the low-rank structure of the gradient itself.

The motivation of SEPARATE originally comes from the observation of geometric properties
of the Hessian spectrum during training dynamic. Especially, many studies reveal that the
eigen-spectrum of Hessian is often "top-heavy" [55, 43, 44, 61], indicating that several top
eigenvalues are dominant the trace of Hessian. This fact intuitively suggests the theoretical
feasibility of low-rank gradient compression with restricted variance through careful designed
compression strategy. We show the existence of such low-rank properties in Section 3, and
the theoretical validity of SEPARATE in Section 5.

Let us give a general introduction to SEPARATE to illustrate its effectiveness. Considering
gradient g ∈ Rd to communicate, we generate a common Gaussian random matrix M ∈ Rd×m

on each node and do p = g×M to compress g. After communication, we use the same random
matrix for decompression g̃ = p×M⊤. Considering that E[1mpMM⊤] = pE[1mMM⊤] = p,
we show the compressor is unbiased, and the compression ratio m is arbitrary. Moreover,
the variance analysis seems to be more important. We show theoretically that the variance
is bounded in Section 4, and the gradient complexity for SGD and Adam-Type optimizers
maintains the same order as vanilla SGD and Adam in Section 5.

We demonstrate that SEPARATE works well in both LLMs pre-training and fine-tuning tasks.
To reduce compression error in training process, we design a novel error-feedback mechanism
for SEPARATE. We estimate more stable compression errors using a moving average of
historical errors and incorporate these errors back into the gradient before compression. We

2

Published as a conference paper at ICLR 2025

0 200 400 600
Spectrum of Gradient

0.00

0.02

0.04

0.06 GPT-2-125M
Layer 5 ATTN
Layer 5 MLP
Layer 11 ATTN
Layer 11 MLP

0 250 500 750 1000
Spectrum of Gradient

0.00

0.02

0.04

0.06 GPT-2-345M
Layer 11 ATTN
Layer 11 MLP
Layer 23 ATTN
Layer 23 MLP

0 20 40 60 80 100
Eigenvalue

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

101

De
ns

ity
 (L

og
 S

ca
le

)

Hessian Spectrum

0 10 20 30 40 50 60 70 80
Eigenvalue

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

101

De
ns

ity
 (L

og
 S

ca
le

)

Hessian Spectrum

Figure 1: Low-rank gradient and Hessian observations in practice. The two pictures on the
left show the spectrum of gradient matrices of chosen layers in GPT-2-125M and GPT-2-345M
respectively. The X-axis represents the order of eigenvalues from largest to smallest, and
the Y-axis represents the magnitude of eigenvalues. The two pictures on the right show the
spectrum of Hessian in ResNet-20 and ResNet-110 trained on CIFAR-10 respectively. The
X-axis represents the eigenvalue, and the Y-axis represents the corresponding density.

also reset the error periodically to eliminate bad historical information and select update
directions preciously. For GPT-2 [40] pre-training, SEPARATE can improve the training
speed of AdamW by 2× times. For LLAMA2 [51] fine-tuning, SEPARATE can obtain better
performance on downstream tasks.

As a gradient projection method, SEPARATE is independent of the choice of optimizers and
can be regarded as a plug-in, which can be simply implemented with a few lines of code in
off-the-shelf frameworks as shown in Algorithm 2. In addition, the method is robust to some
extent, and its performance is insensitive to the selection of hyperparameters. As long as
the selection of compression ratio meets the random direction sampling quantity required in
theoretical analysis, the algorithm can show effective performance.

2 Related Work

Communication Efficient Training. As the scale of models explosively grows in recent
years [48, 36, 25, 52], the redundant communication of gradient has become the main
bottleneck of training. Gradient compression [29, 55, 49, 46, 56, 34] is a promising solution
for communication-efficient training among GPUs clusters. In general, the compression
techniques can be divided into low-precision methods [49, 29, 46, 34] and low-rank methods
[55, 32, 2]. Besides, several theoretical and empirical analyses of more general unbiased
compressor C [18, 53, 21] are also proposed to show the effect of gradient compression
theoretically. Moreover, ZeRO++ [56] has been proposed to apply quantization techniques
to sharding strategy [41].

Error-feedback Technique. Gradient compression techniques bring information loss
during the training process and impair the training accuracy and performance of the model.
The accumulation of error may cause algorithm divergence [46]. To solve such a problem,
the error-feedback technique was first proposed by [46], which adds the compression error to
the gradient before compression in this iteration. Afterward, various works study the effect
of the error feedback technique from theory to practical methods. Recent works [18, 53]
study the theoretical convergence of unbiased compressor C with error-feedback technique
on convex and non-convex settings. Moreover, many induce the error-feedback technique to
adaptive gradient algorithms[27, 15] which is commonly used in training of large models,
such as 1-bit Adam [49] and 0/1 Adam [34]. LoCo [60] first presents the error-feedback-based
efficient training method for the sharding strategy.

Low-rank Approximation. Many studies focus on the low-rank approximation of weight
or gradient matrix in neural network training dynamic and propose the error bound [55,
22]. However, such a low-rank approximation of weight (e.g., LoRA [22]) may not reach
a comparable performance as full-rank in pre-training [31] and fine-tuning [58]. Some
studies show that the Hessian in deep neural networks is "top-heavy" [43, 33, 44], which
means the eigenvalue drops fast and the Hessian maintains low-rank, and some recent
studies theoretically illustrate that the gradient is naturally low-rank [13, 63]. In fact, some
classical methods have considered low-rank estimation of trace, like the Hutchinson estimator
[23]. Such related works provide the potential to design a simple gradient compression

3

Published as a conference paper at ICLR 2025

Algorithm 1 SEPARATE: A Simple Low-rank Projection for Gradient Compression
Require: Initialization model parameters, N nodes, one-round communication budget m,

error reset frequency T , β ∈ [0, 1], a common Gaussian random number generator, initialize
e0 ∈ B(0, c1)
while k ≤ K do

STEP 1. In each node n compute stochastic gradient gk
n and hk

n = gk
n + ekn;

STEP 2. Generate fresh i.i.d. common random Gaussian vectors ξ1, · · · , ξm ∼ N(0, Id)
and compute [p1,n, · · · , pm,n] with pi,n = ⟨hk

n, ξi⟩ as the low-dimension projection of hk
n;

STEP 3. Do all-reduce and obtain global projected gradient [p̃1, · · · , p̃m];
STEP 4. Compute h̃k

n = 1
m

∑m
i=1 p̃i · ξi and use h̃k

n for model weight update in node n;
STEP 5. Update error ek+1

n = (1 − β)ekn + β(hk
n − h̃k

n) if k%T ̸= 0, or ek+1
n = 0 if

k%T = 0 (error reset);
end while

by low-rank projection with restricted variance. Some recent research about training or
gradient accumulation consider the low-rank property of gradient or Hessian, and use random
projection for memory reduction [67, 19], but lack deep analysis on bounded variance.

3 Low-rank Property of Gradient and Hessian in Training

Through some phenomena observed in practice and simple theoretical analysis of Transformer
[54], we further illustrate the widespread existence of the low-rank property of gradient.
Moreover, we also demonstrate that the eigen-spectrum of Hessian is "top-heavy", consistent
with some previous work about Hessian spectrum of neural networks [43, 44]. We study
these observations practically in this work. As shown in Figure 1, the landscape of gradient
in representative LLMs training possesses low-rank property. Specificaly, We observe the
spectrum of GPT-2-Small (125M, with 12 Transformer-based layers) and GPT-2-Medium
(345M, with 24 Transformer-based layers). We observe the gradient spectrums of attention
and MLP in middle layer and last layer, respectively. The eigenvalues of grad drop fast,
especially in MLP layers. This phenomenon is more pronounced in larger models. Based
on recent study on Transformer’s dynamic [50], we theoretically prove that the gradient of
MLP layer in Transformer shows low-rank property over time in Appendix D.

Moreover, we study the spectrum of Hessian of trained deep neural networks. In fact, early
studies [43]have discovered that the eigenvalues of simple networks (e.g., 3-layer networks)
drop fast. As shown in Figure 1, we study the spectrums of Hessian of different scales of
ResNet [20] trained on CIFAR-10 [3]. Except several extremely large eigenvalues, most of
eigenvalues of the Hessian are close to zero. It is more obvious in larger network structures.
This means that a lot of the directions along the loss are almost flat, and the trace of Hessian
is bounded much less than O(d), which ensures our theoretically analysis in Section 5.

4 SEPARATE: A Simple Low-rank projection

Considering low-rank property of gradient and "top-heavy" observation of Hessian, a natural
idea of gradient compression is to randomly project the gradient to low-dimensional subspace.
As the sample is up to a certain level (usually much less than dimension d), the dominant
information of gradient can be exactly recovered. This leads to our SEPARATE method. The
core idea of SEPARATE is composed with two parts. First, we design a Gaussian random
projection compressor for dimensionality reduction of gradient. Hessian-trace-bounded
proposes the theoretical guarantee for random projection. Second, to solve the critical
challenge that the compression error in gradient compression would accumulate during the
training process, we propose a novel moving average error feedback technique to ensure
practical utility. We introduce SEPARATE method in Algorithm 1.

4

Published as a conference paper at ICLR 2025

4.1 Common Random Projection Compressor

For classic multi-node parallel training, each node computes its local stochastic gradient gk
n

with their mini-batch data. Then through communication like all-reduce each node obtains
the global gradient for model update.

As mentioned early, we take the low-rank property of gradient and "top-heavy" property
of Hessian into account to design a variance-bounded low-rank projection for gradient
compression, applicable to most of practical scenarios in large-scale model training. Specifi-
cally, for the gradient vector g, each node generates m common random Gaussian variables
ξi, · · · , ξm ∼ N(0, Id). Then each node computes

pi = ⟨g, ξi⟩ ,∀i ∈ [m]. (1)

After compression, each node constructs [p1, · · · , pm] as the compressed gradient for com-
munication like all-reduce. Then they obtain the global [p̃1, · · · , p̃m],and reconstruct the
gradient as

g̃ =
1

m

m∑
i=1

p̃i · ξi. (2)

Then we theoretically illustrate the unbiasedness and variance-bounded property of our
common random projection in Lemma 4.1 and Lemma 4.2 as below. The proof details are
shown in Appendix B.
Lemma 4.1. g̃ is an unbiased estimator of g,

Eξ1,···ξm g̃ = g. (3)

Lemma 4.2. The variance of g̃ under norm ∥ · ∥A, where A is a given positive semi-definite
symmetric matrix, can be bounded by 3tr(A)

m ∥g∥2 − 1
m∥g∥2A,

Eξ1,··· ,ξm∥g̃ − g∥2A ≤ 3tr(A)

m
∥g∥2 − 1

m
∥g∥2A. (4)

Remark 4.3. Lemma 4.1 directly indicates the unbiasedness of common random projection,
which is standard for low-rank compression techniques [55, 67, 19]. What we really highlight
is Lemma 4.2, which illustrate that the variance of our compression strategy under the
Mahalanobis norm can be bounded by the trace of given matrix. Considering the standard
convergence analysis of SGD or Adam-Type optimizers, the second order factor of Taylor
expansion of the objective function can be written as Mahalanobis norm under Hessian matrix,
and the "top-heavy" property ensures the trace of Hessian is much smaller than dL, where d
is the dimension and L is Lipschitz constant defined in Assumption 5.2. This provides the
potential for SEPARATE-based algorithms to surpass other compressors in the order of d in
convergence speed. We show the theoretical results in Section 5.

4.2 Moving Average Error Feedback

Error-feedback technique is widely used in gradient compression methods [46, 42, 60] to
mitigate the information loss during compression. It is worth considering how error-feedback
works for our common random projection compressor, even though Lemma 4.1 and Lemma
4.2 show the unbiasedness and trace-bounded variance, because the accumulated error in
continuous updates may cause wide deviation. One straight solution is to use the gradient

compression error from the previous iteration as ekn = argmine∈Rd

∥∥∥e− (h̃k
n − gk

n

)∥∥∥2 =

h̃k
n − gk

n, where gk
n is the original gradient on the n-th node and h̃k

n is the reconstruction
of compressed gradient. However, we empirically discover the instability of this estimate,
because for single-step iteration, random vectors for projection may have a large deviation
from the direction of true gradient. This means potential abrupt fluctuations of ekn, especially
for several continuous iterations with a series of random vectors with very different directions.
This may lead to the whole training process converging to another suboptimal region. This
phenomenon is particularly prominent when training from scratch, changing the shape of
loss curve and the convergence result of loss (see Section 6.3). To solve this problem, inspired

5

Published as a conference paper at ICLR 2025

by the idea of momentum technique in the analyses of accelerated gradient descent [37], we
take the moving average of the historical compression error and the current one to maintain
the continuity to some degree:

ekn = argmin
e∈Rd

β

2

∥∥∥e− (h̃k
n − gk

n

)∥∥∥2+1− β

2

∥∥e− ek−1
n

∥∥2 = (1− β) ek−1
n + β

(
h̃k
n − gk

n

)
, (5)

where β ∈ [0, 1] represents the trade-off between two factors. We demonstrate that the
moving average error feedback can reduce the total accumulated error when applying it
to SGD or Adam-Type optimizers in Lemma C.2 and Lemma C.3. In brief, we simply
formulate the iteration of SGD and Adam-Type optimizers as θk = θ0 −

∑k
i=i η

i ◦ gi, where
θ means the model’s weight and ◦ means the Hadamard product of two vectors. Our analysis
shows that moving average error-feedback effectively reduces the accumulated gap of weights
updated by g and by g̃ as∥∥∥∥∥

k∑
i=1

ηi ◦ gi −
k∑

i=1

ηi ◦ g̃i

∥∥∥∥∥ ≤ O
(
η∥ek∥

)
, (6)

which means as the training goes on, the accumulated compression error of the top k rounds
is only of ek-order, instead of the accumulation from e0 to ek. Compared with vanilla error
feedback technique [46], taking moving average of the historical error maintains stability to
some extent and reduces the variance of accumulated error.

Moreover, we consider the compression error in the early training process cannot guide the
later iteration, so we reset the compression error after a given number of iterations like
128. Combining the techniques above we propose SEPARATE method in Algorithm 1. Our
SEPARATE can be applied to all the gradient-based optimizers with a few lines of codes, as
shown in Algorithm 2.

5 Convergence Guarantee

In this section, we propose the convergence guarantee of our SEPARATE method. We
consider the following non-convex optimization problem

min
θ

f(θ) = Eζ∼D [F (θ, ζ)] , (7)

where F is the non-convex optimization objective and θ is the model weight to update. Data
is sampled from a given distribution D. We focus on the convergence rate of SEPARATE-
based SGD and Adam-Type Optimizer to find an ϵ-approximate first-order stationary point
of the objective f(·). For such SEPARATE-based optimizers, they update the model weight
as below:

SGD : θk+1 = θk − ηh̃k, Adam-Type :


mk = (1− β1)m

k−1 + β1h̃
k,

ηk = η × v
(
h̃0, · · · , h̃k

)
,

θk+1 = θk − ηk ◦mk,

(8)

where β1 ∈ (0, 1), and v(·) computes a series of pre-conditioners based on different AdamType
optimizers. For example, v(·) computes the inverse of the second order moment of Adam’s
gradient like v

(
h̃0, · · · , h̃k

)
= 1/

√
vk + δ where vk = (1− β2)v

k−1 + β2(h̃
k)2. Adam-Type

optimizers differ from various definitions of v(·) [27, 15, 47]. We analyze them uniformly.

Like the common analysis of the convergence rate of general non-convex objective [24, 59],
we define the ϵ-approximate first-order stationary point as below.
Definition 5.1 (ϵ-stationary point). The model weight θ is an ϵ-appriximate first-order
stationary point of f if ∥∇f(x)∥ ≤ ϵ.

Definition 5.1 means for SGD and Adam-Type optimizers, we need to find the iteration
round K such that mink∈[K] E

∥∥∇f(θk)
∥∥ ≤ ϵ, or more tightly

1

K

K−1∑
k=0

E
∥∥∇f(θk)

∥∥2 ≤ ϵ2. (9)

6

Published as a conference paper at ICLR 2025

Moreover, we formally present some assumptions to constrain the objective function and the
optimization problem. Assumption 5.2 and 5.3 are commonly used to describe the properties
of the objective in stochastic setting [24, 16]. Assumption 5.4 ensures the trace of Hessian is
bounded globally, which is also common in practical applications [43].
Assumption 5.2 (L-smoothness). The function f is L-smooth if it satisfies

∥f(θ1)− f(θ2)∥ ≤ L∥θ1 − θ2∥, ∀θ1,θ2 ∈ Rd. (10)
Assumption 5.3 (Stochastic Gradient Boundness). The stochastic gradient gk on each
device is unbiased and its infinite norm and variance are bounded as:

E∥gk∥∞ ≤ c∞, E
∥∥∇f(θk)− gk

∥∥2 ≤ σ2, ∀k ∈ [K]. (11)
Assumption 5.4 (Hessian-domination). The function f is A-Hessian dominated if there
exists a positive semi-definite symmetric matrix A such that ∇2f(θ) ⪯ A,∀θ ∈ Rd.

Now we present the main theorem of the convergence rate of SEPARATE-based SGD and
Adam-Type optimizers in general non-convex setting. The proof of two Theorems can be
seen in Appendix C.
Theorem 5.5 (SEPARATE-based SGD convergence). Suppose Assumption 5.2, 5.3 and 5.4
hold. Let e0 ∈ B(0, c1), namely ∀x ∈ B(0, c1),∥x∥ ≤ c1. Let m ≤ tr(A)

L and η ≤ m
4tr(A) . With

η = O
(
d−1/2ϵ2

)
in SEPARATE-based SGD, after K = Ω

(
d1/2ϵ−4

)
iterations in Algorithm

1, it holds
1

K

K∑
k=0

E
∥∥∥∇f(θ̃k)

∥∥∥2 ≤ O
(
ϵ2
)
. (12)

Remark 5.6. This improved convergence rate under standard non-convex stochastic setting
is derived from our analysis of trace-bounded variance in Lemma 4.2. In the common analysis
of compression techniques, compression reduces the amount of information through single
step communication by O(d) times, or with O(d)-variance [2]. Moreover, considering error
feedback technique brings bias, the analysis is commonly element-wise [2, 46]. Thus the
convergence rate is often dimensional dependent O

(
dϵ−4

)
, but they assume it is default

and usually ignore this item [46]. Considering modern LLMs training, the dimension of
parameters is often extremely large and cannot be ignored. Fortunately, our analysis provides
an improved rate on the order of d from O(d) to O

(
d1/2

)
under natural defined Assumption

5.3 from "top-heavy" Hessian observation. It is the first gradient compression method to
achieve such rate to the best of our knowledge.
Theorem 5.7 (SEPARATE-based Adam-Type convergence). Suppose Assumption 5.2, 5.3
hold. Assume cl ≤ ∥v(·)∥∞ ≤ cu and ∥ηk − ηk−1∥∞ ≤ ηβ1(1− β1)

K−kcu. Let e0 ∈ B(0, c1),
η ≤ min

{
cl

2Lc2u
,

β1c
0.5
l

5c1.5u (1−β1)L

}
. With η = O

(
d−1ϵ2

)
and β1 = O

(
d−1ϵ2

)
in SEPARATE-

based Adam-Type optimizers, after K = Ω
(
dϵ−4

)
iterations in Algorithm 1, it holds

1

K

K−1∑
k=0

E
[∥∥∥∇f(θ̃k)

∥∥∥2 + 1

4

∥∥mk
∥∥2] ≤ O

(
ϵ2
)
. (13)

Remark 5.8. Because different coordinates of the gradient are updated with different step
sizes in Adam-Type optimizers, the convergence rate is inevitably dependent on dimension d,
and combined with compression and error feedback, Adam-Type optimizers are often O(d) at
the order of d. Theorem 5.7 shows that integrating SEPARATE with various Adam-Type
optimizers does not affect their convergence speed. Thus SEPARATE-based Adam-Type
optimizers share the same stochastic gradient complexity as O

(
ϵ−4
)

when ignoring the
dimensional factor d.

6 Experiments

6.1 SOTA Comparison with Communication Efficient Methods

We evaluate SEPARATE on both pre-training and fine-tuning tasks of LLMs. The experiment
setting details are shown in Appendix E.

7

Published as a conference paper at ICLR 2025

0 10000 20000 30000 40000 50000
Steps

3.2

4.0

4.8

Tr
ai

ni
ng

 L
os

s

GPT-2-345M
AdamW (16-bit)
SEPARATE(CR=4)
SEPARATE(CR=8)
SEPARATE(CR=16)
POWERSGD

(a) Loss against Steps

0 40000 80000 120000 160000
Times(s)

3.2

4.0

4.8

Tr
ai

ni
ng

 L
os

s

GPT-2-345M
AdamW (16-bit)
SEPARATE(CR=4)
SEPARATE(CR=8)
SEPARATE(CR=16)
POWERSGD

2x SpeedUp

(b) Loss against Time
GPT-2-125M GPT-2-345M

Model Size

0

200

400

600

800

1000

1200

1400

Ti
me
(m
s)

GPT-2 Single Step Time Cost

AdamW

SEPARATE-4

SEPARATE-8

SEPARATE-16

(c) Single Step Time

Figure 2: Loss curve and single step time cost of vanilla AdamW and SEPARATE with
different compression ratios (CR) on GPT-2-345M trained with 10B tokens OpenWebtext
dataset. (a) shows the loss against the iteration steps, and (b) shows the loss against the
wall-clock time. (c) shows the single-step time cost of vanilla AdamW and SEPARATE with
different compression ratios.

Table 1: Performance comparison with representative communicatio-efficient methods. We
fine-tune LLAMA2-7B on the alpaca-gpt4 dataset and evaluate the performance on down-
stream tasks, including commonsense reasoning, world knowledge, math, and code.
Method TriQA GSM8K MBPP NQ WinoG Arc-e Arc-c PIQA HellaS Avg.S Avg.R
Adam 49.39 15.69 19.40 3.07 46.09 72.31 53.90 57.07 26.45 38.15 3.22
PowerSGD 50.78 18.65 22.40 2.52 40.57 62.43 42.71 52.88 30.12 35.90 3.00
1-bit Adam 62.08 16.53 16.80 5.15 49.57 49.21 37.97 52.88 22.04 34.69 3.22
ZeRO++ 57.49 18.42 22.20 1.72 49.88 43.03 30.85 47.61 33.97 33.91 3.22
SEPARATE 57.18 20.17 21.40 4.18 49.25 72.66 49.83 52.99 29.73 39.71 2.22

Pre-Training GPT-2 from Scratch. We train GPT-2-345M with vanilla AdamW optimizer
as a baseline and compare the convergence speed of our SEPARATE-based AdamW optimizer
with baseline and PowerSGD [55]. We set different compression ratios of SEPARATE and
compare the convergence speed of iteration steps and wall-clock time, respectively in Figure
2 (a) and (b). Figure 2 (a) demonstrates that though high compression ratio results in more
steps to reach the same loss, SEPARATE-based optimizer with the proper compression ratio
even has a faster convergence speed of iteration steps. Figure 2 (b) shows that SEPARATE
can accelerate the training speed up to 2× for GPT-2-345M pre-training by trade-off the
compression ratio and one-step cost, compared with baseline and PowerSGD. Thus we think
effective designing algorithms based on low-rank gradient and Hessian of model ensures
accurate training with lower cost. Moreover, we test the single-step time cost of vanilla
AdamW and SEPARATE with different compression ratios on GPT-2-125M and GPT-2-
345M. We find that when model scale increases, the effect of SEPARATE is more remarkable,
so SEPARATE is significant in training large-scale models.

Fine-tuning LLAMA2 and Evaluating on Downstream Tasks. We follow Llama-
Accessory [66] and fine-tune LLAMA2-7B[51] model on alpaca-gpt4 [39] dataset for three
epochs, and evaluate the ability of fine-tuned model on several downstream tasks including
commonsense reasoning, world knowledge, math and code. We report the scores obtained on
these evaluation benchmarks in Table 1. We compute the average score (Avg.S, ↑) and average
rank (Avg.R, ↓) of each method. The results indicate that SEPARATE outperforms other low-
rank or low-bit optimizers with error feedback and ZeRO++, even beyond the performance
of vanilla Adam optimizer without compression on the comprehensive performance of all
the downstream tasks. Moreover, other communication-efficient optimizers have much worse
performance than SEPARATE and vanilla Adam, especially on commonsense reasoning tasks.
The possible reason for this result is that their last-iteration-based error feedback cannot
deal with the accumulated error during the whole process, while SEPARATE is applied with
the moving average of the historical error to stabilize the error and error reset mechanism to
remove useless information.

6.2 Ablation Experiments

We conduct ablation experiments to explore the effect of each component in SEPARATE,
including 1)error-feedback technique (Err.Fed.), 2)moving average update of error (Err.Avg.)

8

Published as a conference paper at ICLR 2025

Table 2: Effects of components in SEPARATE to the performance of LLAMA2-7B fine-tuned
on alpaca-gpt4 dataset, including error-feedback technique (Err.Fed.), moving average on
error (Err.Avg.) and error reset mechanism (Err.Re.).
Method Err.Fed. Err.Avg. Err.Re. GSM8K MBPP NQ Arc-e Arc-c PIQA Avg.
SEPARATE1 False N/A N/A 21.53 22.00 4.57 71.25 49.15 52.61 36.86
SEPARATE2 True False N/A 20.17 21.80 4.35 69.14 51.19 52.29 36.49
SEPARATE3 True True N/A 20.92 22.00 4.49 69.49 51.53 52.23 36.77
SEPARATE4 True True 512 20.39 21.40 4.46 70.02 49.49 52.45 36.37
SEPARATE5 True True 128 20.17 21.40 4.18 72.66 49.83 52.99 36.87

Table 3: Effect of different compression ratios of SEPARATE to the performance of LLAMA2-
7B fine-tuned on alpaca-gpt4 dataset, where SEPARATE-X means we set the compression
ratio at X.
Method TriQA GSM8K MBPP NQ WinoG Arc-e Arc-c PIQA HellaS Avg.
SEPARATE-8 55.43 18.88 21.00 4.13 45.78 74.07 50.85 52.83 32.43 39.49
SEPARATE-16 57.18 20.17 21.40 4.18 49.25 72.66 49.83 52.99 29.73 39.71
SEPARATE-64 59.00 19.03 20.40 4.54 49.8 68.43 48.47 52.88 28.59 39.02
SEPARATE-128 58.93 18.65 22.40 4.79 50.28 65.78 47.46 52.67 27.79 38.75

and 3)error reset mechanism (Err.Re.). For training from scratch, without error-feedback and
moving average techniques, the training process becomes unstable and cannot converge. We
show the results in Section 6.3. For fine-tuning tasks, we fine-tune the LLAMA2-7B model
on alpaca-gpt4 dataset, applying SEPARATE on Adam optimizer with bfloat16 precision.
The results are shown in Table 2.

Error-feedback Technique. We first study the effect of directly applying the vanilla
error-feedback technique on the common random projection compressor of SEPARATE.
Comparing SEPARATE1 with SEPARATE2, we can observe that directly applying error-
feedback technique even slightly impairs the whole fine-tuning performance, especially on
commonsense reasoning tasks such as WinoG, Arc and PIQA. This may be due to the
randomness of projection directions. When the random projection directions are far from
the dominant directions of Hessian in several continuous iterations, the variance of error will
become extremely large and misguide the next iteration. Thus we need another technique to
smooth errors and drop the misleading information arising from randomness.

Moving Average Update of Error. We use the moving average of the historical error and
the current one to replace the direct error from the last iteration, to reduce the instability
of vanilla error-feedback technique. Comparing SEPARATE2 and SEPARATE3 we can
find that the moving average update of error improves the whole fine-tuning performance,
especially on Arc-c and MBPP tasks. However, because of the randomness of the compressor,
the accumulated misleading information of inexact directions still impairs the performance
compared with SEPARATE1.

Error Reset Mechanism. We notice that random projection may generate bad directions
far away from the dominant ones of Hessian even with unbiased estimate. Especially
compared with quantization methods some bad projections may cause extremely large error.
To solve the accumulated bad random information arising from the random projection in the
compression error, we design error reset mechanism to reset the accumulated error frequently.
Comparing SEPARATE3, SEPARATE4 and SEPARATE5, we find that the appropriate
set of error reset frequency T can improve the performance, and too large set of error reset
frequency still causes the misleading information accumulation and worse accuracy.

6.3 Hyper-parameters Choice of SEPARATE

Random Seed Choice of Projection. In the SEPARATE method, we introduce extra
randomness due to the random projection. Thus in practice we need to set an extra random
seed for commonly generating the same random Gaussian vectors on different devices. In
order to clarify that our method works not depending on the choice of seed, we select different
common random seeds for projection to repeat training GPT-2-350M with compression ratio

9

Published as a conference paper at ICLR 2025

0 10000 20000 30000 40000 50000
Steps

3.2

4.0

4.8

Tr
ai

ni
ng

 L
os

s

GPT-2-345M
SEED=3407
SEED=4396
SEED=37

(a) Choice of Seed

0 2000 4000 6000 8000 10000
Steps

4.5

6.0

Tr
ai

ni
ng

 L
os

s

GPT-2-345M
beta=1.00
beta=0.95
beta=0.90
beta=0.85

(b) Choice of Error β

GPT-2-125M GPT-2-345M LLAMA2-7B
Model

0

10

20

30

40

Pe
ak

 M
em

or
y(

GB
)

Peak Memory
BASELINE
SEPARATE

(c) Peak Memory

Figure 3: Hyper-parameter choice of SEPARATE and memory cost report. (a) shows the
effect of different common random seeds to SEPARATE training with compression ratio 16.
(b) shows the effect of different β choices of moving average update of error to SEPARATE
training with compression ratio 16. (c) shows the peak memory in Adam and SEPARATE
training on different models with compression ratio 16.

16. The results are shown in Figure 3 (a), where we randomly set seed as 3407, 4396 and 37,
and the results make no difference.

β in Moving Average of Error. SEPARATE method introduces an extra hyper-parameter
β for moving average update of error. Experiments on GPT-2-345M (first 10k steps) in
Figure 3 (b) reveal strong sensitivity to β: β = 1 (no moving average) causes slowed initial
convergence and subsequent deviation from optimal dynamics; β = 0.95 yields acceptable
performance, while lower β (≤ 0.80) destabilizes training, causing NaN losses, which means
that if we gradually ignore the compression error of current iteration, (specifically β = 0
means we do not use error-feedback technique), the training process becomes unstable and
cannot converge. Thus, moderate β balances convergence and stability.

Compression Ratio. Experiments evaluating compression ratios (from 8 to 128) in
SEPARATE demonstrate its unique flexibility over quantization methods, as validated in
Table 3. One advantage of SEPARATE is that SEPARATE can set the compression ratio
by users themselves instead of 4 or 8 (at most 32) like quantization methods. Moreover,
moderate ratios (e.g., 16) improve downstream task performance through noise-induced
generalization, while extreme ratios (e.g., 128) incur manageable accuracy degradation but
reduce communication costs to ‌25%‌ of 1-bit quantization with superior performance. We
also find that with different compression ratios, SEPARATE focuses on different types of
tasks, so users can set the ratio adaptively.

6.4 Memory Cost of SEPARATE

We report the peak memory in Figure 3 (c). Results show the peak memory when training or
fine-tuning corresponding models, which demonstrates that the extra memory of SEPARATE
is negligible in comparison with the communication cost it saves. Moreover, by expanding
the random vector buffer, we can save time in generating random Gaussian vectors, which
means we can use some memory cost to exchange computational time in compression and
decompression to accelerate the training process.

7 Conclusion

In this paper, we propose a simple low-rank projection forgradient compression in modern
large-scale model training process named SEPARATE. We have carried out theoretical
analysis and a lot of experimental verification to illustrate SEPARATE provides an easy way
to apply gradient compression to all types of gradient-based optimizers across various training
frameworks, while maintaining high-quality training performance and achieving significant
compression. We think SEPARATE is helpful for the further study and popularization of
large-scale models.

10

Published as a conference paper at ICLR 2025

Acknowledgments

This work is supported by National Key R&D Program of China (2022ZD0160300) and the
NSF China (No.s 62376008 and 62276004).

References

[1] Saurabh Agarwal et al. “On the utility of gradient compression in distributed training
systems”. In: Proceedings of Machine Learning and Systems 4 (2022), pp. 652–672.

[2] Alham Fikri Aji and Kenneth Heafield. “Sparse communication for distributed gradient
descent”. In: arXiv preprint arXiv:1704.05021 (2017).

[3] Krizhevsky Alex. “Learning multiple layers of features from tiny images”. In:
https://www. cs. toronto. edu/kriz/learning-features-2009-TR. pdf (2009).

[4] Jacob Austin et al. “Program synthesis with large language models”. In: arXiv preprint
arXiv:2108.07732 (2021).

[5] Yutong Bai et al. “Sequential modeling enables scalable learning for large vision models”.
In: arXiv preprint arXiv:2312.00785 (2023).

[6] Jeremy Bernstein et al. “signSGD: Compressed optimisation for non-convex problems”.
In: International Conference on Machine Learning. PMLR. 2018, pp. 560–569.

[7] Yonatan Bisk et al. “Piqa: Reasoning about physical commonsense in natural language”.
In: Proceedings of the AAAI conference on artificial intelligence. Vol. 34. 05. 2020,
pp. 7432–7439.

[8] Andreas Blattmann et al. “Align your latents: High-resolution video synthesis with
latent diffusion models”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2023, pp. 22563–22575.

[9] Tom Brown et al. “Language models are few-shot learners”. In: Advances in neural
information processing systems 33 (2020), pp. 1877–1901.

[10] Peter Clark et al. “Think you have solved question answering? try arc, the ai2 reasoning
challenge”. In: arXiv preprint arXiv:1803.05457 (2018).

[11] Karl Cobbe et al. “Training verifiers to solve math word problems”. In: arXiv preprint
arXiv:2110.14168 (2021).

[12] OpenCompass Contributors. “Opencompass: A universal evaluation platform for foun-
dation models”. In: GitHub repository (2023).

[13] Romain Cosson et al. “Low-Rank Gradient Descent”. In: IEEE Open Journal of Control
Systems (2023).

[14] Ning Ding et al. “Delta tuning: A comprehensive study of parameter efficient methods
for pre-trained language models”. In: arXiv preprint arXiv:2203.06904 (2022).

[15] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradient methods for online
learning and stochastic optimization.” In: Journal of machine learning research 12.7
(2011).

[16] Cong Fang, Zhouchen Lin, and Tong Zhang. “Sharp analysis for nonconvex sgd escaping
from saddle points”. In: Conference on Learning Theory. PMLR. 2019, pp. 1192–1234.

[17] Aaron Gokaslan and Vanya Cohen. OpenWebText Corpus. http://Skylion007.
github.io/OpenWebTextCorpus. 2019.

[18] Eduard Gorbunov et al. “MARINA: Faster non-convex distributed learning with com-
pression”. In: International Conference on Machine Learning. PMLR. 2021, pp. 3788–
3798.

[19] Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-Rank Adapters Are Secretly
Gradient Compressors. 2024. arXiv: 2402.03293 [cs.LG]. url: https://arxiv.org/
abs/2402.03293.

[20] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–778.

[21] Yutong He, Xinmeng Huang, and Kun Yuan. “Unbiased Compression Saves Communi-
cation in Distributed Optimization: When and How Much?” In: Advances in Neural
Information Processing Systems 36 (2024).

11

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://arxiv.org/abs/2402.03293
https://arxiv.org/abs/2402.03293
https://arxiv.org/abs/2402.03293

Published as a conference paper at ICLR 2025

[22] Edward J Hu et al. “Lora: Low-rank adaptation of large language models”. In: arXiv
preprint arXiv:2106.09685 (2021).

[23] M.F. Hutchinson. “A stochastic estimator of the trace of the influence matrix for Lapla-
cian smoothing splines”. In: Communication in Statistics- Simulation and Computation
18 (Jan. 1989), pp. 1059–1076. doi: 10.1080/03610919008812866.

[24] Prateek Jain, Purushottam Kar, et al. “Non-convex optimization for machine learning”.
In: Foundations and Trends® in Machine Learning 10.3-4 (2017), pp. 142–363.

[25] Albert Q Jiang et al. “Mixtral of experts”. In: arXiv preprint arXiv:2401.04088 (2024).
[26] Mandar Joshi et al. “Triviaqa: A large scale distantly supervised challenge dataset for

reading comprehension”. In: arXiv preprint arXiv:1705.03551 (2017).
[27] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In:

arXiv preprint arXiv:1412.6980 (2014).
[28] Tom Kwiatkowski et al. “Natural questions: a benchmark for question answering

research”. In: Transactions of the Association for Computational Linguistics 7 (2019),
pp. 453–466.

[29] Conglong Li et al. “1-bit LAMB: communication efficient large-scale large-batch training
with LAMB’s convergence speed”. In: 2022 IEEE 29th International Conference on
High Performance Computing, Data, and Analytics (HiPC). IEEE. 2022, pp. 272–281.

[30] Zhize Li et al. “Acceleration for compressed gradient descent in distributed and federated
optimization”. In: arXiv preprint arXiv:2002.11364 (2020).

[31] Vladislav Lialin et al. “Relora: High-rank training through low-rank updates”. In: The
Twelfth International Conference on Learning Representations. 2023.

[32] Yujun Lin et al. “Deep gradient compression: Reducing the communication bandwidth
for distributed training”. In: arXiv preprint arXiv:1712.01887 (2017).

[33] Yuanshi Liu et al. Accelerated Gradient Algorithms with Adaptive Subspace Search for
Instance-Faster Optimization. 2023. arXiv: 2312.03218 [cs.LG].

[34] Yucheng Lu et al. “Maximizing communication efficiency for large-scale training via
0/1 adam”. In: arXiv preprint arXiv:2202.06009 (2022).

[35] David Luebke. “CUDA: Scalable parallel programming for high-performance scientific
computing”. In: 2008 5th IEEE international symposium on biomedical imaging: from
nano to macro. IEEE. 2008, pp. 836–838.

[36] Deepak Narayanan et al. “Efficient large-scale language model training on gpu clus-
ters using megatron-lm”. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 2021, pp. 1–15.

[37] Yurii Nesterov. Introductory lectures on convex optimization: A basic course. Vol. 87.
Springer Science & Business Media, 2013.

[38] Pitch Patarasuk and Xin Yuan. “Bandwidth optimal all-reduce algorithms for clusters of
workstations”. In: Journal of Parallel and Distributed Computing 69.2 (2009), pp. 117–
124.

[39] Baolin Peng et al. “Instruction tuning with gpt-4”. In: arXiv preprint arXiv:2304.03277
(2023).

[40] Alec Radford et al. “Language models are unsupervised multitask learners”. In: OpenAI
blog 1.8 (2019), p. 9.

[41] Samyam Rajbhandari et al. “Zero: Memory optimizations toward training trillion pa-
rameter models”. In: SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE. 2020, pp. 1–16.

[42] Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. “EF21: A new, simpler, theoretically
better, and practically faster error feedback”. In: Advances in Neural Information
Processing Systems 34 (2021), pp. 4384–4396.

[43] Levent Sagun, Leon Bottou, and Yann LeCun. “Eigenvalues of the hessian in deep
learning: Singularity and beyond”. In: arXiv preprint arXiv:1611.07476 (2016).

[44] Levent Sagun et al. Empirical Analysis of the Hessian of Over-Parametrized Neural
Networks. 2018. arXiv: 1706.04454 [cs.LG]. url: https://arxiv.org/abs/1706.
04454.

12

https://doi.org/10.1080/03610919008812866
https://arxiv.org/abs/2312.03218
https://arxiv.org/abs/1706.04454
https://arxiv.org/abs/1706.04454
https://arxiv.org/abs/1706.04454

Published as a conference paper at ICLR 2025

[45] Keisuke Sakaguchi et al. “Winogrande: An adversarial winograd schema challenge at
scale”. In: Communications of the ACM 64.9 (2021), pp. 99–106.

[46] Frank Seide et al. “1-bit stochastic gradient descent and its application to data-parallel
distributed training of speech dnns”. In: Fifteenth annual conference of the international
speech communication association. 2014.

[47] Noam Shazeer and Mitchell Stern. “Adafactor: Adaptive learning rates with sublin-
ear memory cost”. In: International Conference on Machine Learning. PMLR. 2018,
pp. 4596–4604.

[48] Mohammad Shoeybi et al. “Megatron-lm: Training multi-billion parameter language
models using model parallelism”. In: arXiv preprint arXiv:1909.08053 (2019).

[49] Hanlin Tang et al. “1-bit adam: Communication efficient large-scale training with
adam’s convergence speed”. In: International Conference on Machine Learning. PMLR.
2021, pp. 10118–10129.

[50] Yuandong Tian et al. “Joma: Demystifying multilayer transformers via joint dynamics
of mlp and attention”. In: arXiv preprint arXiv:2310.00535 (2023).

[51] Hugo Touvron et al. “Llama 2: Open foundation and fine-tuned chat models”. In: arXiv
preprint arXiv:2307.09288 (2023).

[52] Hugo Touvron et al. “Llama: Open and efficient foundation language models”. In: arXiv
preprint arXiv:2302.13971 (2023).

[53] Alexander Tyurin and Peter Richtárik. “DASHA: Distributed nonconvex optimization
with communication compression, optimal oracle complexity, and no client synchro-
nization”. In: arXiv preprint arXiv:2202.01268 (2022).

[54] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information
processing systems 30 (2017).

[55] Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. “PowerSGD: Practical
low-rank gradient compression for distributed optimization”. In: Advances in Neural
Information Processing Systems 32 (2019).

[56] Guanhua Wang et al. “Zero++: Extremely efficient collective communication for giant
model training”. In: arXiv preprint arXiv:2306.10209 (2023).

[57] Hongyi Wang et al. “Atomo: Communication-efficient learning via atomic sparsification”.
In: Advances in neural information processing systems 31 (2018).

[58] Wenhan Xia, Chengwei Qin, and Elad Hazan. “Chain of lora: Efficient fine-tuning of
language models via residual learning”. In: arXiv preprint arXiv:2401.04151 (2024).

[59] Xingyu Xie et al. “Adan: Adaptive Nesterov momentum algorithm for faster optimizing
deep models”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
(2024).

[60] Xingyu Xie et al. “LoCo: Low-Bit Communication Adaptor for Large-scale Model
Training”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2025).

[61] Xingyu Xie et al. “Optimization hyper-parameter laws for large language models”. In:
arXiv preprint arXiv:2409.04777 (2024).

[62] Hang Xu et al. “Compressed communication for distributed deep learning: Survey and
quantitative evaluation”. In: (2020).

[63] Greg Yang, James B Simon, and Jeremy Bernstein. “A spectral condition for feature
learning”. In: arXiv preprint arXiv:2310.17813 (2023).

[64] Pengyun Yue et al. CORE: Common Random Reconstruction for Distributed Opti-
mization with Provable Low Communication Complexity. 2023. arXiv: 2309.13307
[cs.LG].

[65] Rowan Zellers et al. “Hellaswag: Can a machine really finish your sentence?” In: arXiv
preprint arXiv:1905.07830 (2019).

[66] Renrui Zhang et al. “Llama-adapter: Efficient fine-tuning of language models with
zero-init attention”. In: arXiv preprint arXiv:2303.16199 (2023).

[67] Jiawei Zhao et al. “Galore: Memory-efficient llm training by gradient low-rank projec-
tion”. In: arXiv preprint arXiv:2403.03507 (2024).

[68] Yanli Zhao et al. “Pytorch fsdp: experiences on scaling fully sharded data parallel”. In:
arXiv preprint arXiv:2304.11277 (2023).

13

https://arxiv.org/abs/2309.13307
https://arxiv.org/abs/2309.13307

Published as a conference paper at ICLR 2025

Algorithm 2 SEPARATE: PyTorch-like
random_variable_buffer.Initialization() ♯ initialize the variable buffer
def Communication_hook (model.weight): ♯ definition hook function for overlap
computation

projected_grad = Project (grad, random_variable_buffer) ♯ random project the
grad

Communication(projected_grad)
grad = Reproject(projected_grad, random_variable_buffer)
random_variable_buffer.Update() ♯ update variable buffer with new random variables

for model.weight in model.weights:
model.weight.register_hook(Communication_hook)
♯ register hook for each layer’s weight of the model

A Discussion

In this section, we make a discussion about some related methods for memory-efficient
training, the details of our method application, and the robustness. Such a discussion
provides us with a clearer understanding of the domain, practicability, and extensibility of
our method.

Compared with Memory-Efficient Training. Memory-efficient training is another
area of efficient training, focusing on how to reduce the memory cost during training
process. We notice that random projection is also used for memory reduction, such as
Flora for gradient accumulation [19] and GaLore for memory-efficient update in compact
space [67]. These approaches seem to show similarity and potential in combination with
our method, but we consider different sides of efficient training. It is usually a trade-off
because there are key bottlenecks about the extra computational cost for memory reduction.
Communication in modern LLMs training framework (e.g., Megatron-LM [48]) overlaps
between local computation and global all-reduce. This allows us to tolerate only minimal
extra computational preprocessing overhead, lest long synchronization times cause the wall-
clock training time to rise. One matrix projection is almost at the limit of tolerance, and
SVD is almost intolerable. To the best of our knowledge, only our "simple but efficient
operation" can manage to reduce the training wall-clock time.

Details of SEPARATE Application. For the common random projection compressor
shown in Algorithm 1, we introduce common random vector generators on different nodes of
the distributed training clusters. This setup leads our analysis, but it does not incur any
additional overhead in actual application, because we can easily set a dedicated common
random seed to generate the same random variables on each node during initialization.
Moreover, we could easily apply SEPARATE to all kinds of gradient-based optimizers and
can be regarded as a plug-in, which can be simply implemented with a few lines of code in
off-the-shelf frameworks as shown in Algorithm 2. This means that our method is also the
first gradient compression technique that can be seamlessly integrated with FSDP rather
than DDP to the best of our knowledge.

Robustness with Few Parameter Tuning. We expect to propose a simple and effective
gradient compression method that can be efficiently adapted to existing LLMs training
frameworks. Therefore, we expect the method to have a certain degree of robustness,
that is, it does not depend on the resetting of hyperparameters. In our experiments, all
hyperparameters are derived from the default settings of the corresponding model trained
under the corresponding framework. In other words, we do not adjust the hyperparameters
individually for SEPARATE. We show the hyperparameters setting in Appendix E. In
addition, the method introduces the compression ratio. Our variance analysis and the
main theorem demonstrate that, provided the selection of the compression ratio aligns with
the conditions in our theoretical analysis (Theorem 5.5 and 5.7), our method can exhibit
effective performance. This theoretical underpinning ensures that our method is robust
within the specified compression ratio. Second, in practical applications, especially for models
with a substantial number of parameters, such as those in the millions or billions, we can

14

Published as a conference paper at ICLR 2025

defaultly set the compression ratio as 16, 32 or 64. As illustrated in Table 3, the performance
differences between compression ratios of 16, 32, or 64 times for gradient information are
minimal. Consequently, the choice of compression ratio is more influenced by the user’s
device constraints rather than the intrinsic characteristics of the model.

B Properties of SEPARATE Compressor

In this section, we propose several properties of the expectation and variance of the common
random projection compressor in SEPARATE. The first analysis of such properties is
proposed in the research of distributed optimization theory [64]. Let a represent the vector
for communication and ã represent the estimate one generated by the compressor. In Lemma
4.1 and Lemma 4.2, we show that ã is an unbiased estimator, and the variance of ã can be
tr(A)-bounded under arbitrary matrix A-norms, respectively.
Lemma B.1. ã is an unbiased estimator of a,

Eξ1,···ξm
ã = a. (14)

Proof of Lemma 4.1.

Eξ1,·,ξm ã = Eξ1,··· ,ξm

[
1

m

m∑
i=1

⟨a, ξi⟩ · ξi

]
= Eξ1ξ1ξ

⊤
1 a = Ia

= a

(15)

Lemma B.2. The variance of ã under norm ∥ · ∥A, where A is a given positive semi-definite
symmetric matrix, can be bounded by 3tr(A)

m ∥a∥2 − 1
m∥a∥2A,

Eξ1,··· ,ξm
∥ã− a∥2A ≤ 3tr(A)

m
∥a∥2 − 1

m
∥a∥2A. (16)

Proof of Lemma 4.2. For the simplicity of notation, we use Eξ to denote Eξ1,··· ,ξm
.

Eξ∥ã− a∥2A = Eξ

∥∥∥∥∥ 1

m

m∑
i=1

(⟨a, ξ⟩ · ξ − a)

∥∥∥∥∥
2

A

= Eξ

[
1

m2

m∑
i=1

(
a⊤ξiξ

⊤
i Aξiξ

⊤
i a− a⊤Aa

)]

=
1

m
Eξ1a

⊤ξ1ξ
⊤
1 Aξ1ξ

⊤
1 a− 1

m
∥a∥2A.

(17)

Let A = U⊤DU be the eigenvalue decomposition of A where D = diag{b1, · · · , bd} is a
diagonal matrix, and ζ = Uξ1 be a linear transformation of the random variable ξ1. We
have

Eξ1

[
ξ1ξ

⊤
1 Aξ1ξ

⊤
1

] a
= Eζ

[
U⊤ζζ⊤Dζζ⊤U

]
= U⊤Eζ

[
d∑

i=1

biζ
2
i · ζζ⊤

]
U

b
= U⊤

(
d∑

i=1

bi · I+ 2D

)
U

c
= tr(A) · I+ 2A

⪯ 3tr(A) · I.

(18)

In a
=, we use ζ ∼ N(0, Id) based on the rotational invariance of the standard Gaussian

distribution. In b
=, we use the second and forth moment of standard Gaussian variables:

15

Published as a conference paper at ICLR 2025

Eζ2
i = 1 and Eζ4

i = 3. In c
=, we use tr(U⊤DU) = tr(U⊤UD) = tr(D). The last inequality

of (18) is due to tr(A) · I ⪰ A. Combining (18) and (17), we have

Eξ1,··· ,ξm∥ã− a∥2A ≤ 3tr(A)

m
∥a∥2 − 1

m
∥a∥2A. (19)

C Deferred Proof in Section 5

C.1 Useful Lemmas

In this Section, we propose several useful lemmas for the proof of our main theorem in
Section 5.
Lemma C.1. For the gradient h̃k

n = 1
m

∑m
i=1 p̃i · ξi where p̃i =

1
N

∑N
n=1 pi,n is the global

average of pi,n in each machine after communication in Algorithm 1, we have

h̃k = gk +
1

β

(
ek − ek+1

)
, (20)

where h̃k = 1
N

∑N
n=1 h̃

k
n, gk = 1

N

∑N
n=1 g

k
n and ek = 1

N

∑N
n=1 e

k
n.

Proof of Lemma C.1. For the estimate h̃k defined in Lemma C.1, we have

h̃k =
1

N

N∑
n=1

h̃k
n

=
1

N

N∑
n=1

1

m

m∑
i=1

1

N

N∑
n=1

〈
hk
n, ξi

〉
· ξi

=
1

m

m∑
i=1

1

N

N∑
n=1

〈
hk
n, ξi

〉
· ξi

=
1

N

N∑
n=1

(
hk
n +

1

m

m∑
i=1

〈
hk
n, ξi

〉
· ξi − hk

n

)

=
1

N

N∑
n=1

gk
n + ekn − δkn

(21)

where δkn = hk
n − 1

m

∑m
i=1

〈
hk
n, ξi

〉
· ξi. Taking average of δkn, we have

δk =
1

N

N∑
n=1

(
hk
n − 1

m

m∑
i=1

〈
hk
n, ξi

〉
· ξi

)
= hk − h̃k

=
1

β

(
ek+1 − (1− β)ek

)
,

(22)

where the last equality uses ek+1 = (1 − β)ek + β(hk − h̃k) which is the average of the
iteration of ek+1

n in Algorithm 1. Combining the two equalities above, we have

h̃k = gk + ek − δk = gk +
1

β

(
ek − ek+1

)
. (23)

We complete the proof of Lemma C.1.

Lemma C.2. Suppose the setting in Theorem 5.5 hold, and we use h̃k in Algorithm 1 to
update the model weight θk in SGD as

θk+1 = θk − ηh̃k. (24)

16

Published as a conference paper at ICLR 2025

Then we have

E

∥∥∥∥∥
k∑

i=0

(h̃i − gi)

∥∥∥∥∥ ≤ 1 + (1− β)k+1

β
c1. (25)

Proof of Lemma C.2. Consider the expectation of ∥ek+1∥ about the random Gaussian vari-
ables ξ1, · · · , ξm and the stochastic mini-batch as below

E∥ek+1∥ = E
[
Eξ1,··· ,ξm

∥ek+1∥
]
. (26)

First we have
Eξ1,··· ,ξm

∥ek+1∥ = Eξ1,··· ,ξm
∥(1− β)ek + β(hk − h̃k)∥

≤ (1− β)Eξ1,··· ,ξm∥ek∥+ Eξ1,··· ,ξm∥β(hk − h̃k)∥
= (1− β)∥ek∥,

(27)

where the first inequality uses h̃k is the unbiased estimate of hk. Thus we have
E∥ek+1∥ ≤ (1− β)E∥ek∥ ≤ (1− β)k+1∥e0∥ ≤ (1− β)k+1c1. (28)

Considering the accumulated bias of h̃k and hk, based on Lemma C.1 we have

E

∥∥∥∥∥
k∑

i=0

(h̃i − gi)

∥∥∥∥∥ =
1

β
E

∥∥∥∥∥
k∑

i=0

ei − ei+1

∥∥∥∥∥ ≤ 1

β

(
E∥ek+1∥+ c1

)
≤ 1 + (1− β)k+1

β
c1. (29)

Lemma C.3. Suppose the setting in Theorem 5.7 hold, and we use h̃k in Algorithm 1 to
update te model weight θk in Adam-Type optimizers as (8). Then consider the following two
sequences {mk}Kk=0 and {m̃k}Kk=0 as:

mk = (1− β1)m
k−1 + β1g

k,

m̃k = (1− β1)m̃
k−1 + β1h̃

k.
(30)

Assume that for the sequence {ηk}Kk=0, each element of ηk satisfies

ηcl ≤ ηki ≤ ηcu, |ηki − ηk−1
i | ≤ ηβ1(1− β1)

K−kcu,∀i ∈ [d], k ∈ [K]. (31)
Then we have

E

∥∥∥∥∥
K∑
i=0

ηi ◦
(
m̃i −mi

)∥∥∥∥∥ ≤ 2c1cuη
√
d

β
. (32)

Proof of Lemma C.3. First we extend the iterations of {mk}Kk=0 and {m̃k}Kk=0:

mk = (1− β1)m
k−1 + β1g

k = (1− β1)
k−1m0 + β1

k∑
t=1

(1− β1)
k−tgt, (33)

and

m̃k = (1− β1)m̃
k−1 + β1h̃

k = (1− β1)
k−1m0 + β1

k∑
t=1

(1− β1)
k−th̃t. (34)

Based on Lemma C.1, we have
k∑

i=0

ηi ◦
(
m̃i −mi

)
≤ β1

β

k∑
i=0

ηi ◦

(
i∑

t=0

(1− β1)
i−t(et − et+1)

)
. (35)

Then we element-wisely analyse the upper bound of the accumulated error as below. We
use the non-blackbody letters to represent the element of vectors for convenience with some
symbolic abuse. ∣∣∣∣∣β1

β

k∑
i=0

ηi
i∑

t=0

(1− β1)
i−t(et − et+1)

∣∣∣∣∣
=

∣∣∣∣∣β1

β

k∑
t=0

(
k−1∑
i=t

(ηi − ηi−1)(1− β1)
i−t − ηk−1(1− β1)k−t

)
et

∣∣∣∣∣ .
(36)

17

Published as a conference paper at ICLR 2025

Then using Lemma C.2, we take the expectation of the accumulated error as below:

E

∥∥∥∥∥
k∑

i=0

ηi ◦
(
m̃i −mi

)∥∥∥∥∥
≤

√
d · E

∥∥∥∥∥
k∑

i=0

ηi ◦
(
m̃i −mi

)∥∥∥∥∥
∞

≤
√
d · E sup

n∈[d]

∣∣∣∣∣β1

β

k∑
t=0

(
k−1∑
i=t

(ηin − ηi−1
n)(1− β1)

i−t − ηk−1
n (1− β1)k−t

)
etn

∣∣∣∣∣
≤ β1c1cuη

√
d

β
E

∣∣∣∣∣β1

k−1∑
t=1

t(1− β1)
t +

k−1∑
t=1

(1− β1)
t

∣∣∣∣∣
≤ 2c1cuη

√
d

β
.

(37)

For the first inequality we use the property of vector norm that ∥ · ∥ ≤
√
d∥ · ∥∞. For the

second inequality we use the definition of vector’s infinite norm. For the third inequality
we use the assumption that |ηi − ηi−1| ≤ ηβ1(1 − β1)

K−icu,∀i ∈ [K] to obtain the upper
bound of each element, and use Lemma C.2 to estimate the upper bound of E|etn| that
E|etn| ≤ E|e0n| ≤ c1 . For the forth inequality we use the summation of series to obtain that
β1

∑k−1
t=1 t(1− β1)

t +
∑k−1

t=1 (1− β1)
t ≤ 2

β1
. Thus we have

E

∥∥∥∥∥
k∑

i=0

ηi ◦
(
m̃i −mi

)∥∥∥∥∥ ≤ 2c1cuη
√
d

β
. (38)

Lemma C.4. Consider the moving average iteration like AdamType as
mk = (1− β)mk−1 + βgk, (39)

where gk = ∇f(θk) + ξk is the stochastic gradient with Eξk = 0 and E∥ξk∥2 ≤ σ2. Then we
have

E
∥∥mk −∇f(θk)

∥∥2 ≤ (1− β)E
∥∥mk−1 −∇f(θk−1)

∥∥2 + (1− β)2L2

β
E
∥∥θk−1 − θk

∥∥2 + β2σ2.

(40)

Proof of Lemma C.4. Based on the iteration of m we have
mk−∇f(θk) = (1−β)

(
mk−1 −∇f(θk−1)

)
+(1−β)

(
∇f(θk−1)−∇f(θk)

)
+β
(
gk −∇f(θk)

)
.

(41)
Then taking expectation of both sides we have

E
∥∥mk −∇f(θk)

∥∥2 = (1− β)2E
∥∥mk−1 −∇f(θk−1)

∥∥2 + (1− β)2E
∥∥∇f(θk−1)−∇f(θk−1)

∥∥2
+ β2σ2 + 2(1− β)2E

(〈
mk−1 −∇f(θk−1),∇f(θk−1)−∇f(θk−1)

〉)
≤ (1− β)2(1 + a)E

∥∥mk−1 −∇f(θk−1)
∥∥2

+ (1− β)2
(
1 +

1

a

)
E
∥∥∇f(θk−1)−∇f(θk−1)

∥∥2 + β2σ2

≤ (1− β)E
∥∥mk−1 −∇f(θk−1)

∥∥2
+

(1− β)2

β
E
∥∥∇f(θk−1)−∇f(θk−1)

∥∥2 + β2σ2

≤ (1− β)E
∥∥mk−1 −∇f(θk−1)

∥∥2 + (1− β)2L2

β
E
∥∥θk−1 − θk

∥∥2 + β2σ2.

(42)

18

Published as a conference paper at ICLR 2025

C.2 Proof of Theorem 5.5

Proof. Consider the two SGD-based iteration {θk}Kk=1 as:

θk+1 = θk − ηgk = θ0 − η

k∑
i=0

gi (43)

and {θ̃k}Kk=1 as:

θ̃k+1 = θ̃k − ηh̃k = θ0 − η

k∑
i=0

gi + η

k∑
i=0

(
gi − h̃i

)
. (44)

For k ∈ [K], due to the L-smooth assumption of the objective f and Lemma C.1, we have

E
∥∥∥∇f(θ̃k)−∇f(θk)

∥∥∥ ≤ LE
∥∥∥θ̃k − θk

∥∥∥ = ηLE

∥∥∥∥∥
k−1∑
i=0

(
gi − h̃i

)∥∥∥∥∥ ≤ (1 + (1− β)k)ηLc1
β

.

(45)

Next, we write the second-order Taylor expansion of f(θk+1) at θk as below:

f(θk+1) ≤ f(θk) + ⟨∇f(θk),θk+1 − θk⟩+ 1

2
⟨A(θk+1 − θk),θk+1 − θk⟩. (46)

Taking expectation of (46) with condition on the iteration before k and random Gaussian
variables to both sides of (46), using Lemma 4.1, Lemma 4.2 and Assumption 5.4, we have

Ef(θk+1) ≤ E
[
f(θk) +

〈
∇f(θk),θk+1 − θk

〉
+ η2

(
3tr(∇2f(θk))

2m

∥∥∥∇f(θ̃k)
∥∥∥2 + ∥∥∥∇f(θ̃k)

∥∥∥2
A

)]
≤ Ef(θk)− ηE

〈
∇f(θk),∇f(θ̃k)

〉
+ ηE

〈
∇f(θk),∇f(θ̃k)−∇f(θk)

〉
+ η2

(
3tr(A)

2m
+ L

)
E
∥∥∥∇f(θ̃k)

∥∥∥2
a
≤ Ef(θk)− η

∥∥∥∇f(θ̃k)
∥∥∥2 + ηE

〈
∇f(θk),∇f(θ̃k)−∇f(θk)

〉
+ ηE

〈
∇f(θ̃k)−∇f(θk),∇f(θ̃k)

〉
+ η2 · 5tr(A)

2m
E
∥∥∥∇f(θ̃k)

∥∥∥2
≤ Ef(θk)− η

∥∥∥∇f(θ̃k)
∥∥∥2 +O

(
η

(
(1 + (1− β)k)ηLc1

β

√
dc∞

))
+ η2 · 5tr(A)

2m

(∥∥∥∇f(θ̃k)
∥∥∥2 + σ2

N

)
(47)

where in
a
≤ we use m ≤ tr(A)

L . Then, using η ≤ m
4tr(A) , we have

1

K

K∑
k=0

E
∥∥∥∇f(θ̃k)

∥∥∥2 ≤
8
(
f(θ̃0)− f(θ̃∗)

)
3ηK

+O
(
(2− β)ηLc1

β

√
dc∞

)
+O

(
ησ2

N

)
. (48)

By letting η = O
(
d−1/2ϵ2

)
, K = Ω

(
d1/2ϵ−4

)
. we have

1

K

K∑
k=0

E
∥∥∥∇f(θ̃k)

∥∥∥2 ≤ O
(
ϵ2
(
f(θ̃0)− f(θ̃∗) +

(2− β)Lc1
β

c∞ +
σ2

N

))
= O

(
ϵ2
)
. (49)

Thus we finish the proof of Theorem 5.5.

19

Published as a conference paper at ICLR 2025

C.3 Proof of Theorem 5.7

Proof. We also consider two AdamType-based iteration {θk}Kk=1 as:

θk+1 = θk − ηk ◦mk = θ0 −
k∑

i=0

ηi ◦mi, (50)

where mk = (1− β1)m
k−1 + β1g

k, and {θ̃k}Kk=1 as:

θ̃k+1 = θ̃k − ηk ◦ m̃k = θ0 −
k∑

i=0

ηi ◦ m̃i = θ0 −
k∑

i=0

ηi ◦mi +

k∑
i=0

ηi ◦ (mi − m̃i), (51)

where m̃k = (1− β1)m̃
k−1 + β1h

k. Based on Lemma C.3, we have

E
∥∥∥∇f(θ̃k)−∇f(θk)

∥∥∥ ≤ LE
∥∥∥θ̃k − θk

∥∥∥ = LE

∥∥∥∥∥
k∑

i=0

ηi ◦ (mi − m̃i)

∥∥∥∥∥ ≤ 2Lc1cuη
√
d

β
, (52)

and

E
∥∥∥θ̃k − θk

∥∥∥2 = E

∥∥∥∥∥
k∑

i=0

ηi ◦ (mi − m̃i)

∥∥∥∥∥
2

≤ 4c21c
2
uη

2d

β2
. (53)

Based on the L-smooth assumption of the objective f , we have

Ef(θk+1) ≤ Ef(θk) + E
〈
∇f(θk),θk+1 − θk

〉
+

L

2
E
∥∥θk+1 − θk

∥∥2
= Ef(θk)− E

〈
∇f(θk),ηk ◦mk

〉
+

L

2
E
∥∥θk+1 − θk

∥∥2
= Ef(θk)− E

〈
∇f(θ̃k),ηk ◦mk

〉
+

L

2
E
∥∥θk+1 − θk

∥∥2
+ E

〈
∇f(θ̃k)−∇f(θk),ηk ◦mk

〉
≤ Ef(θk)− E

〈
∇f(θ̃k),ηk ◦mk

〉
+

L

2
E
∥∥θk+1 − θk

∥∥2 + 2Lc1cuc∞η2d

β

= Ef(θk) +
1

2
E
∥∥∥√ηk ◦

(
∇f(θ̃k)−mk

)∥∥∥2 − 1

2
E
∥∥∥√ηk ◦ ∇f(θ̃k)

∥∥∥2
− 1

2
E
∥∥∥√ηk ◦mk

∥∥∥2 + L

2
E
∥∥ηk ◦mk

∥∥2 + 2Lc1cuc∞η2d

β

≤ Ef(θk) +
cuη

2
E
∥∥∥∇f(θ̃k)−mk

∥∥∥2 − clη

2
E
∥∥∥∇f(θ̃k)

∥∥∥2
+

(
Lc2uη

2

2
− clη

2

)
E
∥∥mk

∥∥2 + 2Lc1cuc∞η2d

β

≤ Ef(θk) +
cuη

2
E
∥∥∥∇f(θ̃k)−mk

∥∥∥2 − clη

2
E
∥∥∥∇f(θ̃k)

∥∥∥2
− clη

4
E
∥∥mk

∥∥2 + 2Lc1cuc∞η2d

β
.

(54)

For the first inequality we use (52). For the second inequality we use the upper and lower
bound of η. For the third inequality we set η ≤ cl

2Lc2u
. Then based on Lemma C.4 we have

E
∥∥∥mk −∇f(θ̃k)

∥∥∥2 ≤ (1− β1)E
∥∥∥mk−1 −∇f(θ̃k−1)

∥∥∥2 + (1− β1)
2L2

β1
E
∥∥∥θ̃k−1 − θ̃k

∥∥∥2 + β2
1σ

2

N
.

(55)

For the second factor we have

E
∥∥∥θ̃k−1 − θ̃k

∥∥∥2 ≤ 3

(
E
∥∥θk−1 − θk

∥∥2 + E
∥∥∥θ̃k − θk

∥∥∥2 + E
∥∥∥θ̃k−1 − θk−1

∥∥∥2) . (56)

20

Published as a conference paper at ICLR 2025

Thus, we have

E
∥∥∥mk −∇f(θ̃k)

∥∥∥2 ≤ (1− β1)E
∥∥∥mk−1 −∇f(θ̃k−1)

∥∥∥2 + 3c2uη
2(1− β1)

2L2

β1
E∥mk−1∥2

+
β2
1σ

2

N
+

24L2c21c
2
uη

2d

β2
.

(57)

By adding equation (54) at θk+1 and a× equation (57) at θk+1, we have

Ef(θk+1) + aE
∥∥∥mk+1 −∇f(θ̃k+1)

∥∥∥2 ≤ Ef(θk) +
(cuη

2
+ a(1− β1)

)
E
∥∥∥∇f(θ̃k)−mk

∥∥∥2
− clη

2
E
∥∥∥∇f(θ̃k)

∥∥∥2 − (clη

4
− 3ac2uη

2(1− β1)
2L2

β1

)
E
∥∥mk

∥∥2
+

aβ2
1σ

2

N
+

2Lc1cuc∞η2d

β
+

24aL2c21c
2
uη

2d

β2
.

(58)

Letting a = ηcu
β1

and G(θk) = Ef(θk) + ηcu
β1

E
∥∥∥mk+1 −∇f(θ̃k+1)

∥∥∥2, we have

G(θk+1) ≤ G(θk)− clη

2
E
∥∥∥∇f(θ̃k)

∥∥∥2 − (clη

4
− 3c3uη

3(1− β1)
2L2

β2
1

)
E
∥∥mk

∥∥2
+

cuηβ1σ
2

N
+

2Lc1cuc∞η2d

β
+

24L2c21c
3
uη

3d

β1β2

≤ G(θk)− clη

2
E
∥∥∥∇f(θ̃k)

∥∥∥2 − clη

8
E
∥∥mk

∥∥2
+

cuηβ1σ
2

N
+

2Lc1cuc∞η2d

β
+

24L2c21c
3
uη

3d

β1β2
,

(59)

where we set η ≤ β1c
0.5
l

5c1.5u (1−β1)L
. Then we sum the inequality above from k = 0 to K − 1 and

obtain

1

K

K−1∑
k=0

E
[∥∥∥∇f(θ̃k)

∥∥∥2 + 1

4

∥∥mk
∥∥2] ≤ 2(G(θ0)−G(θK))

ηclK
+

2cuβ1σ
2

clN
+

4Lc1cuc∞ηd

clβ

+
48L2c21c

3
uη

2d

clβ1β2
.

(60)

Considering that

G(θ0)−G(θK) ≤ Ef(θ0)− Ef(θK) +
ηcu
β1

E
∥∥∥m0 −∇f(θ̃0)

∥∥∥2
≤ Ef(θ0)− Ef(θ∗) +

ηcuσ
2

β1N
,

(61)

and letting Ef(θ0)− Ef(θ∗) = ∆, we have

1

K

K−1∑
k=0

E
[∥∥∥∇f(θ̃k)

∥∥∥2 + 1

4

∥∥mk
∥∥2] ≤ 2∆

ηclK
+

2cuσ
2

clKβ1N
+

2cuβ1σ
2

clN
+

4Lc1cuc∞ηd

clβ

+
48L2c21c

3
uη

2d

clβ1β2
.

(62)

Finally setting K = Ω
(
dϵ−4

)
, η = O

(
d−1ϵ2

)
and β1 = O

(
d−1ϵ2

)
, we have

1

K

K−1∑
k=0

E
[∥∥∥∇f(θ̃k)

∥∥∥2 + 1

4

∥∥mk
∥∥2] ≤ O

(
ϵ2
)
. (63)

We end the proof of Theorem 5.7.

21

Published as a conference paper at ICLR 2025

D Low-rank Property of Gradient in Training Dynamic

In this section, we give an simple theoretical analysis to demonstrate that the gradient of
project-up layers of MLP in Transformer-based models becomes low-rank with training time.
Our analysis is based on recent study on the framework of Transformer dynamic, JoMA [50],
and fix an error in related study [67].

We follow the definitions and assumptions of Transformer in JoMA [50], and compute the
dynamic of project-up layer in Transformer MLP as below.
Lemma D.1. Suppose the embedding matrix U ∈ Rm×M is fixed, where M represents the
vocabulary size. The active function is linear and the back propagation gradient is stationary
[50]. The weight matrix is W ∈ Rm×n. Let ∆ = [∆1, · · · ,∆n], where ∆j = Eq[gjx] ∈ RM .
gj is the back propagated gradient of hidden node j in MLP, Eq represents the conditional
expectation given the query q, and x represents the token distribution in the previous layer,
for example, the activation output of the previous layer. Following the same definitions and
assumptions in JoMA [50], the project-up matrix V = U⊤W ∈ RM×n satisfis

V̇ =
1

A
exp

(
V ◦V

2

)
◦∆, (64)

where A is the normalization of softmax.

Proof. Let V = [v1, · · · ,vn] and W = [w1, · · · ,wj]. Following the Theorem 2 in study of
JoMA framework [50], for each hidden node j, vj = U⊤wj satisfies

v̇j =
1

A
∆j ◦ exp

(
v2
j/2
)
, (65)

where v2
j = vj ◦ vj is the element-wise product of vector. Then we notice that Lemma D.1

is the matrix form of equation (65).

With Lemma D.1, we analyse the training dynamic of V. Row-wisely write V as V =[
u⊤
1 , · · · ,u⊤

M

]⊤ and ∆ as ∆ =
[
δ⊤1 , · · · , δ⊤M

]⊤. Based on Lemma D.1, for j ∈ [M], we have

u̇j =
1

A
exp

(
u2
j/2
)
◦ δj =

1

A
diag

(
exp

(
u2
j/2
))

δj (66)

Based on the assumption that the back propagation gradient is stationary and x is the
output of previous layer, which means it is given. Thus the ∆j is constant, and the direction
of uj is controlled by a diagonal matrix. Let u̇j = Dj(t)δj , where Dj(t) is a diagonal matrix
with initialization Dj(0) = 0. Then we have

Ḋj(t) =
1

A
diag

(
exp

(
D2

j (t)δ
2
j

2

))
. (67)

Let a2j = maxi∈[n] δ
2
ji and b2j = mini∈[n] δ

2
ji. Then we have

1

A
diag

(
exp

(
D2

j (t)b
2
j

2

))
⪯ Ḋj(t) ⪯

1

A
diag

(
exp

(
D2

j (t)a
2
j

2

))
. (68)

Element-wisely analyze the diagnoal matrix Dj(t) = diag (dj1(t), · · · , djn(t)). For i ∈ [n],
we have

1

A
exp

(
d2ji(t)b

2
j

2

)
≤ ḋji ≤

1

A
exp

(
d2ji(t)a

2
j

2

)
. (69)

For dynamic like ẋ = Ceβ
2x2

, we have

x(t) =
1

β
erf−1

(
2βC√

π
t

)
, (70)

22

Published as a conference paper at ICLR 2025

Table 4: Comparison of SEPARATE with previous common gradient compression algorithms
in standard application metrics, including gradient complexity , real communication time,
memory cost, ring-based communication support, and sharding support. Here, Ψ represents
the scale of model parameters, N represents the number of nodes in distributed cluster,
B is the communication bandwidth (bytes/s), r is the dimension of low-rank subspace of
gradient to PowerSGD, and m is the random Gaussian samples in SEPARATE in Algorithm
1. Here we only consider the order of ϵ in gradient complexity, ignoring others especially the
dimension of parameters d. We discuss the order of d in detail in Section 5. We consider the
mixed-precision setting for memory overhead.

Methods Gradient
Complexity Communication Cost Memory Cost Ring-based

Comm.
Gradient
Sharding

SGD O
(
ϵ−4

)
4Ψ(N − 1)/(BN) 2Ψ + 6Ψ/N ✓ ✓

Adam [27] O
(
ϵ−4

)
4Ψ(N − 1)/(BN) 2Ψ + 14Ψ/N ✓ ✓

1-bit Adam [49] O
(
ϵ−4

)
0.625ΨN/B 18Ψ ✗ ✗

1-bit LAMB [29] O
(
ϵ−4

)
0.625ΨN/B 22Ψ ✗ ✗

PowerSGD [55] ✗ 4r
√
Ψ(N − 1)/(BN) 14Ψ + 2r

√
Ψ ✓ ✓

SEPARATE-SGD O
(
ϵ−4

)
4m(N − 1)/(BN) 4Ψ + 6Ψ/N ✓ ✓

SEPARATE-Adam O
(
ϵ−4

)
4m(N − 1)/(BN) 4Ψ + 14Ψ/N ✓ ✓

Table 5: Compare SEPARATE with LoRA. Suppose that the weight matrix W ∈ Rm×n, the
low-rank reparameterized size of LoRA is r, and the compression ratio of SEPARATE is k.

SEPARATE LoRA
Weight mn mn+ nr +mr
Grad Comm. mn/k nr +mr
Pre-train ✓ ✗
Fine-tune ✓ ✓

where erf(x) is Gaussian error function. Then we have
√
2

bj
erf−1

(√
2

π

bj
A
t

)
≤ dji(t) ≤

√
2

aj
erf−1

(√
2

π

aj
A
t

)
. (71)

Since the bound is independent of i, for each j we have
√
2

bj
erf−1

(√
2

π

bj
A
t

)
I ⪯ Dj(t) ⪯

√
2

aj
erf−1

(√
2

π

aj
A
t

)
I. (72)

It demonstrates that for each line of V, the direction of uj is near to the direction of δj with
error dependent to aj and bj . Next we show that the change of direction from one line to
another is very different resulting in low-rank property of V. Let

h(t, a) =

√
2

a
erf−1

(√
2

π

a

A
t

)
. (73)

Then we have h(t, bj)I ⪯ Dj(t) ⪯ h(t, aj)I. Considering limt→
√
πA/

√
2a h(t, a) → +∞, let

j∗ = argmaxj bj be the row with the largest entry of bj . Then if bj∗ ≥ aj for all j ̸= j∗,
when t → t∗ =

√
πA/

√
2bj∗ , we have Dj∗(t) ⪰ h(t, bj∗)I → +∞ but Dj(t) ⪯ h(t, aj)I is still

finite because t
′
=

√
πA/

√
2aj ≥ t∗.

Such analysis demonstrates that the magnitude of each row of V changes drastically. The
dominant direction of V will become extremely large when others are still in a small range
over time. V will become near rank-1 over time and V̇ has lower rank because Ḋ have D on
exponents. Such analysis is consistent with what we observed in Figure 1 in Section 3.

23

Published as a conference paper at ICLR 2025

Table 6: Performance comparison with LoRA. We fine-tune LLAMA2-7B on the alpaca-
gpt4 dataset and evaluate the performance on downstream tasks, including commonsense
reasoning, world knowledge, math, and code.

Method TriQA GSM8K MBPP NQ WinoG Arc-e Arc-c PIQA Avg.

Adam 49.39 15.69 19.40 3.07 46.09 72.31 53.90 57.07 39.62

Adam-LoRA 62.08 16.53 16.80 5.15 49.57 49.21 37.97 52.88 36.27

SEPARATE 57.18 20.17 21.40 4.18 49.25 72.66 49.83 52.99 40.96

E Expeiment Details

E.1 Model Configurations

We pre-train the GPT-2-345M [40] model on OpenWebtext dataset [17] of 10B tokens from
scratch. We show the results in Figure 2. Second, we compare the SEPARATE with several
representative baselines to fine-tune the LLAMA2-7B model and evaluate on downstream
tasks. The baselines include typical low-rank optimizers with error feedback technique
like PowerSGD [55], representative low-bit optimizers like 1-bit Adam [49], and recent
quantization efficient training strategy ZeRO++ [56]. For fairness, we use SEPARATE-based
Adam for comparison. In this section, we propose the experiment details including model
and hyper-parameters settings. Without special emphasis all experiments are under bfloat16
precision.

GPT-2. We conducted the training of GPT-2-345M model [40] from scratch on the
OpenWebtext [17] dataset on 8× NVIDIA 3090 24G GPUs cluster. We ran a total of 50000
iterations and processed a total of 10B tokens. The experiment was configured with PyTorch
DDP training framework without model and pipeline parallelism to simplify the experimental
setting and fit existing devices. Our global batch size was 8× 512. We set the learning rate
at 6.0e-4 with the cosine decay down to the minimum 6.0e-5 after 2000 iterations of warm-up.
We also used the gradient accumulation and set the gradient accumulation step at 4. We
used the global gradient norm clipping of 1 and set the AdamW with β1 = 0.9, β2 = 0.95
and weight decay as 0.1.

LLAMA2-7B. We conducted the fine-tuning of LLAMA2-7B [51] model on alpaca-gpt4
dataset [39] within the PyTorch FSDP [68] framework. We followed protocols from LLAMA-
Accessory [66] and fine-tuned LLAMA2-7B for three epochs on 8× NVIDIA A6000 48G
GPUs cluster. To fit the devices we set the data parallelism at 4 and model parallelism at 2
without pipeline parallelism. We set the global batch size at 32, the learning rate of 2e-5,
gradient clipping of 2 and gradient accumulation step at 8.

E.2 Benchmarks

Following the previous work [66], we conducted evaluation on chosen benchmarks on the
popular OpenCompass [12] platform. We chose the benchmarks including commonsense
reasoning, world knowledge, math and code as follows:

• Commonsense Reasoning: Hellaswag [65], Winogrande [45], ARC-Easy [10], ARC-
Challenge [10] and PIQA [7].

• World Knowledge: NaturalQuestions [28] and TriviaQA [26].
• Math: GSM8K [11].
• Code: MBPP [4].

E.3 Application to Training Process as a Plug-in

SEPARATE can be easily applied to real large-scale model training tasks. SEPARATE
only needs small amount of extra computation costs, which can be formulated as tensor
multiplication form that is well supported by modern computational device architectures
like CUDA [35]. By using hook mechanism in PyTorch, we can compress the latter layer’s

24

Published as a conference paper at ICLR 2025

Algorithm 3 G-SEPARATE: General Version of Simple Low-rank Projection
Require: Initialization model parameters with L layers, N nodes, layer-wise communication

ratio {ml}Ll=1, layer-wise {βl}Ll=1, βl = 0.95,∀l ∈ [L], error reset frequency Te, adaptive
update frequency Ta, a common Gaussian random number generator, initialize e0 ∈ B(0, c1)
while k ≤ K do

STEP 1. In each node n compute stochastic gradient gk
n,l and hk

n,l = gk
n,l + ekn,l;

STEP 2. Generate fresh i.i.d. common random Gaussian vectors ξ1, · · · , ξmk
l
∼ N(0, Id)

and compute [p1,n,l, · · · , pmk
l ,n,l

] with pi,n,l = ⟨hk
n,l, ξi⟩ as the low-dimension

projection of hk
n,l;

STEP 3. Do all-reduce and obtain global projected gradient [p̃1,l, · · · , p̃mk
l ,l
];

STEP 4. Compute h̃k
n,l =

1
mk

l

∑mk
l

i=1 p̃i,l · ξi and use h̃k
n,l for model weight update

in node n;
STEP 5. Update error

ek+1
n,l = (1− βk

l)e
k
n,l + βk

l (h
k
n,l − h̃k

n,l) if k%Te ̸= 0,
ek+1
n,l = 0 if k%Te = 0 (error reset);

STEP 6. Layer-wisely update compression ratio and βl

mk+1
l = int

(
1 +mk

l ·
(
1 +

⟨h̃k
n,l,g

k
n,l⟩

∥h̃k
n,l∥·∥g

k
n,l∥

))
,

βk+1
l = max

{
min

{
βk
l ·
(
1 +

⟨h̃k
n,l,g

k
n,l⟩

∥h̃k
n,l∥·∥g

k
n,l∥

)
, 0.99

}
, 0.90

}
if k%Ta = 0,

mk+1
l = mk

l ,
βk+1
l = βk

l , if k%Ta ̸= 0;
end while

gradient and do communication while the optimizer computes the former layer’s gradient
in backpropagation process. Thus we properly arrange the overlapped computation and
communication order, the time cost of compression can be hidden in the backpropagation
computation, and SEPARATE can realize faster training time. Moreover, SEPARATE
can be applied to ring-based or tree-based communication. Different from quantization
methods, SEPARATE is not troubled by numerical anomalies like overflow or underflow,
so it well supports reduce-scatter operation. SEPARATE also supports sharding strategy
which is commonly used for training large language models [41]. Even though the gradient is
separated into different nodes, the linearity of random projection ensures the correctness of
SEPARATE’s results. We propose an example that how to use SEPARATE as a plug-in by
hook mechanism in Algorithm 2.

Besides, SEPARATE brings extra memory costs for training because of the store of error and
random variables. Setting up a random variable buffer, we can reduce the memory costs by
reusing this part of memory to store the stream of random variables. In summary, from the
results in Table 4, it is evident that SEPARATE demonstrates superior properties compared
to other methods.

E.4 Additional Experiments

Parameter-efficient fine-tuning (PEFT) techniques accelerate the application of pre-trained
language models to different downstream tasks without the need to fine-tune all of the
model’s parameters [14]. Among them, the popular Low-Rank Adaptation (LoRA [22])
reparameterizes the weight matrix to low-rank approximations and fine-tuning the reparam-
eterized ones. We compare SEPARATE with popular LoRA on scopes of application and
performance on downstream tasks in Table 5 and Table 6. The results demonstrate that
SEPARATE has better versatility and effect than LoRA.

E.5 General Version of Simple Low-rank Projection

25

Published as a conference paper at ICLR 2025

0 2000 4000 6000 8000 10000
Steps

5.0

7.5

10.0

Tr
ai

ni
ng

 L
os

s

GPT-2-345M
Adam(16 bit)
SEPARATE
G-SEPARATE

Figure 4: Loss curve of vanilla Adam,
SEPARATE with compression ratio 8, and
G-SEPARATE on GPT-2-345M trained
with 10B tokens OpenWebtext dataset.

In this section, we study how to adaptively select
the compression ratio and β for moving average
error feedback. We expect to dynamically adjust
these hyperparameters by combining the character-
istics of the parameters at each layer of the model
and the training dynamic. Our research focuses on
two aspects. First, the adaptive strategy needs to
remain simple and efficient to ensure the overall
training wall-clock time is reduced. Thus, we still
do not consider the strategies that require periodic
heavy computations, such as periodic SVD. Second,
considering the robustness of our method shown in
Appendix A, we think the dynamic adjustment of
hyperparameters should not be too sharp to avoid
instability in training. Under this consideration, we
get the general version of SEPARATE in Algorithm
3.

We layer-wisely compute the cosine similarity of the gradient estimate and the gradient
itself frequently to evaluate the estimate accuracy, and update the compression ratio and
β in moving average error feedback dynamically. As shown in Algorithm 3 STEP 6, if the
estimate is accurate, we try to use a more aggressive compression ratio and a larger β in the
nest stage, and vice versa. All steps in Algorithm 3 are layer-wise, and we use the subscript l
to represent the operation on the l-th layer. The initialization of ml can be arbitrary such as
16, 32 or 64. The adaptive mechanism can adjust it to the proper region of the corresponding
layer through several dynamic update processes.

We pre-train GPT-2-345M on 10B tokens OpenWebtext dataset from scratch to verify the
effectiveness of G-SEPARATE. We follow the same hyperparameter setting of our pre-training
experiment in Appendix E.1. For G-SEPARATE, we set the adaptive update frequency
Ta = 2000 to ensure the stability of training. The results shown in Figure 4 indicate that
the adaptive extension more slightly fits the baseline, but shares the similar performance of
the original algorithm in total.

26

	Introduction
	Related Work
	Low-rank Property of Gradient and Hessian in Training
	SEPARATE: A Simple Low-rank projection
	Common Random Projection Compressor
	Moving Average Error Feedback

	Convergence Guarantee
	Experiments
	SOTA Comparison with Communication Efficient Methods
	Ablation Experiments
	Hyper-parameters Choice of SEPARATE
	Memory Cost of SEPARATE

	Conclusion
	Discussion
	Properties of SEPARATE Compressor
	Deferred Proof in Section 5
	Useful Lemmas
	Proof of Theorem 5.5
	Proof of Theorem 5.7

	Low-rank Property of Gradient in Training Dynamic
	Expeiment Details
	Model Configurations
	Benchmarks
	Application to Training Process as a Plug-in
	Additional Experiments
	General Version of Simple Low-rank Projection

