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Abstract

Recent work shows that by mimicking a random teacher network, student networks
learn to produce better feature representations, even if they are initialized at the
teacher. In this paper, we characterize how students escape this global optimum
and investigate how this process translates into concrete properties of the repre-
sentations. To that end, we first describe a simplified setup and identify very large
step sizes as the main driver of this phenomenon. Then, we investigate key signal
propagation and representation separability properties during the escape. Our
analysis reveals a two-stage process: the network first undergoes a form of repre-
sentational collapse, then steers to a parameter region that not only allows for better
propagation of input signals but also gives rise to well-conditioned representations.
This might relate to the edge of stability and label-independent dynamics.

1 Introduction

The teacher-student setting has been a rich source of phenomena and has been used widely to
better understand the behavior of modern deep neural networks (like their dynamics [9] or double
descent [16]). But the influence of the teacher-student is not just restricted to theoretical endeavors.
As a matter of fact, distillation for model compression is perhaps the most popular instance of this
and has seen widespread practical adoption. The surprising properties of self-distillation, i.e. between
models of identical architecture, has enabled significant advancements in self-supervised learning
(SSL) for computer vision [10, 1].

An investigation on the role of self-distillation for self-supervised representation learning by Sarnthein
et al. [19] brought to light an intriguing phenomenon; students distilled from randomly initialized
teachers produce superior feature mappings as measured by linear probing accuracy. Additionally,
the authors observe that initializing the student networks close to the teacher amplifies the effect.
Instead of arriving at the solution corresponding to the teacher network, the student navigates away
into a different region of the loss landscape which produces better representations. Switching to a
finetuning setup, they observed that students lie on the border of a convex basins in the supervised
loss landscape and contain sparse subnetworks, so-called lottery tickets [7, 8]. From this, raise the
question whether this can be explained by label-independent training dynamics.
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Our aim is to contribute to the understanding of this phenomenon, to extract the teacher-student
formulation from self-supervision and distillation, and pose it as a more general object of study. As
opposed to theoretically analyzing the convergence of the student toward an optimum, we propose to
investigate a special form of divergence away from the global optimum of the teacher. We believe
that the theoretical accessibility of teacher-student formulations in combination with our empirical
results yields an interesting question to narrow the gap between theoretical understanding and deep
learning practice.

Outline. We first state the teacher-student formulation and introduce the key assumptions. Then,
we empirically elucidate the dynamics of the escaping phenomenon, comparing the effect of finite
step sizes versus stochasticity in the gradient. Using the derived minimal setting, we investigate the
signal propagation properties of a network and show how they improve during the escape from the
random teacher initialization. Finally, we investigate how representations are propagated and find
that enhanced signal propagation alone does not explain the gain in representational power. Instead,
early layers strongly separate the data already at initialization — a property that is preserved more
efficiently after escaping the initialization.

2 Escaping Random Teacher Initializations
Typically, in teacher-student frameworks, a teacher network fθT provides labels for an input dataset
D = {xi}ni=1. Given a student network fθ, the aim is to minimize the discrepancy between the
teacher and the student outputs:

θ(S) = argmin
θ

L
(
fθ(D), fθT (D)

)
.

Instead of being pre-trained like in distillation, we take the teacher network to be random, i.e., its
parameters θT are drawn from an underlying distribution, as in Kaiming or Xavier initialization. The
student network is then initialized in close proximity to its teacher

θ(0) = θT + εθ̃ ,

where θ̃ is yet another draw from the same initializing distribution and ε ∼ N (0;σεI). If ε = 0, then
there is nothing to optimize since the student is at a global minimum. So, in this procedure, typically
one starts close to the teacher, with a small σε ≈ 10−10, which together with the finite step size η
and batch size B, allows for a departure from the teacher and gradient dynamics:

θ(i+1) = θ(i) − η · ∇θL
(
fθ(i)(DB), fθT (DB)

)
.

Representations. How does this escaping process act on the student network? As the the teacher
network cannot convey any information about the underlying dataset labels, we investigate the
representations generated by the student. For now, we reproduce the phenomenon of [19] in Fig. 1c
and (d), but in our more concise setting. As is common in self-supervised learning, we measure the
feature quality by applying a linear probe, i.e. we train and evaluate a logistic regression on φ(D),
using the models’ encoders as feature map. We observe that the linear probing accuracy collapses
initially, then recovers, and even outperforms the teacher. Next, we aim to understand the driver
behind this phenomenon and in Sec. 3, we investigate other properties of the feature representations.

Empirical Setup. We simplify the setup of [19]: (1) we append only one linear layer (dout = 512)
to a VGG11 [21] encoder, both initialized according to K. He et al. [12], (2) we use plain SGD without
momentum or weight decay instead of AdamW and (3) we replace the cross-entropy (CE) with a
mean-squared error (MSE) loss function. We use CIFAR10 [14] and B = 256 if not stated otherwise.

Step size warm-up analysis. As the use of Adam [13] in [1, 19] disguises a suitable step size η,
we start by determining it empirically. We follow [22] and perform an LR-Range-Test in Fig. 1a.
Exponentially increasing the step size from 10−6 to 106 for 5 epochs captures interactions between
the loss landscape and step size. While the supervised loss diverges at η = 10, the divergence out of
the random teacher initialization occurs in two steps, the second being at a large step size η = 500.
We try different ways of stabilizing dynamics with such large step sizes in App. A and reuse the
feature normalized loss N-L(xS , xT ) = L(xS/||xS ||2, xT /||xT ||2), from the original DINO setup
[1]. The resulting N-MSE loss and its gradient are conveniently bounded from above and therefore
enable the use of uncommonly large step sizes η such as 1e4!
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(a) Step size divergence analysis.
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(b) Escaping dynamics of SGD and GD.
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(c) Step size vs linear probing.
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(d) Batch size vs linear probing.

Figure 1: Escaping random teacher initializations.

Role of step size. Using the insight from Fig. 1a, we select a few exponentially spaced step size
candidates, attempt to escape under N-MSE and measure linear probing accuracy. In Fig. 1c, we
observe no progress for small η = 32, as predicted by Fig. 1a. For increasing η (light to dark), we
reproduce the phenomenon from [19] with our simplified model and additionally observe correlation
between step size and probing performance. Note that for η ∈ {3162, 1e5}, our model undergoes a
collapse during training from which it can recover, whereas η > 1e4 results in unrecoverable collapse
during 20k steps.

Optimization stochasticity: integral or superfluous? Given the necessity of noise to escape, we
investigate if there is something crucial about the gradient noise, which for SGD has been shown
to exhibit interesting properties [23, 2]. In Fig. 1d, we experiment with increasing batch sizes up to
full-batch (B = 49152, reduced CIFAR10 set) and fixed η = 1e4. We observe that with fewer noise,
the model takes longer to uncollapse in 6k steps. Most importantly, we observe a successful escape
and better probing for full-batch gradient descent with no gradient noise and only large learning rates.

Escaping Dynamics. To understand the full-batch (B = 49152) vs mini-batch (B = 256) escaping
dynamics better, we plot training loss and gradient norm in Fig. 1b. Within the first three steps, the very
large step size causes a loss spike and overshoots into a plateau, where loss and gradient magnitude
are again relatively small. Interestingly, this plateau corresponds to low probing performance in
Fig. 1d and rank-collapsed representations, as we shall see in Sec. 3. Focusing on GD nicely uncovers
how the gradient magnitude progressively increases until it reaches an oscillatory state. Then, the
probing performance starts to rise and significantly exceed its value at initialization.

3 Signal Propagation & Representation
Motivated by the observed representational collapse in Fig. 1, we investigate how the student network
incurs a transition in the quality of representations as it proceeds from the teacher θT , via the point of
collapse θ(C), to the student after 100 epochs θ(S). To that end, we focus on signal propagation and
representation properties, following [5, 2].

Approach. We will denote the matrix of representations over the dataset D of size n at some layer
l of a given network, with width dl as the matrix φθ,l(D) = X(l) ∈ Rdl×n. Investigating the three
checkpoints θT , θ(C), and θ(S), we denote the corresponding representations as X(l)

T , X(l)
C , and X

(l)
S .

Effective Rank. We compute the effective rank erank(X) = exp(H(p(X)) ≤ rank(X), where
H(p) =

∑
pk log pk is the entropy of pk(X) = σk(X)∑

σj(X) , the normalized singular value distribution
of X [18]. This is a continuous approximation of the rank, which reaches the exact rank if the rows of
X(l) are orthogonal. In Fig. 2a, we display the layerwise erank(X(l)) for these three points in the
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landscape. Starting with the teacher, we observe that the representations are rank deficient across the
layers. This is well known and can be attributed to a combination of (lower) input rank and improper
signal propagation [20, 17]. Next, we consider the effective rank behavior of θ(C) and observe that
the rank decreases to single digits. Such a rank deficiency, means that multiple samples are mapped
to one common, or a few linearly dependent representations. Finally, θ(S) consistently retains more
signal per propagation step than the teacher network. Crucially, this higher rank implies that more
useful information to distinguish between data points is being retained.

Dead Neurons. If we go a step further, we can ask how the representations are transformed to low
rank. Is it due to some of the weight matrices exhibiting rank deficiencies? Or do the representations
across layers get organized such that less number of neurons are fired? We find that the latter case of
rank collapse is more prominent, where more neurons are inactive across the entire dataset D, which
means that rows of post-activation X(l) are zero. This is observable quite clearly in Fig. 2b, where we
count the number of rows = 0⃗ in X(l), revealing that some neurons are dead already at initialization
Θ(T ). Furthermore, up to 60% of the neurons are inactive in the collapsed state θ(C). But remarkably,
the model manages to recover from this through its large learning gradient dynamics.

Condition Number. Finally, we estimate the condition number of X(l) = φl(D), as a metric of
label-independent feature quality. We approximate cond(X) = σmax/σ

′
min, where σ′

min = mink σk,
s.t.

∑k
j=0 pj > 0.999. This means that we select the k-th singular value that captures 99.9% of the

variance in the spectrum as σ′
min. We observe the common trend that θ(S) provides better conditioned

features than at collapse θ(C) and initialization θ(T ). Better conditioning of the data means that
optimization on a downstream task such as finetuning or linear probing is is well behaved. Therefore,
this could explain the improved linear probing.

Separability of Representations. We have seen in the above sections that the escaping process
leads to more well-behaved representations, namely in the sense of higher effective rank and better
conditioning. While this gives an explanation towards better linear probing performance, we are
going to investigate the whether the organization of the representations enables better discriminability
and thus higher probing performance in this section.

We now make use of the underlying label information, which, notably, was not utilized in the escaping
process1. To that end, we investigate the separability of representations using classical metrics arising
in Fisher discriminant analysis such as the (trace of) between/within cluster and total covariance
Σb, Σw, Σt [6, Chapter 4.11]. In particular, the separability discriminant tr(Σ†

wΣb) indicates the
variance of the representations within classes (or clusters) relative to the variance of the cluster center
representations. This has lately been used in understanding representations of deep networks [11].

In Fig. 3b, we see how the student produces better separable features than the teacher network, by
considering its discriminant relative to the teacher network. Furthermore, the collapsed parameteriza-
tion θ(C) can not discrimination between representations of different classes. Likewise, in Fig. 3a, we
see that the between-cluster variance of θ(C) is much higher than the student or the teacher network.
Fig. 3c shows that the teacher encodes good features in its early layers, but deteriorates in later layers,
presumably due to a loss of signal. Overall, these metrics precisely show the benefit wrought upon by
the escaping mechanism that result in higher probing performance.
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(a) Effective rank.
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Figure 2: Signal Propagation

1While here we make use of labeled information, one could also imagine first clustering the representations
and then using the cluster membership as a proxy of the labels.
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(a) Between-cluster variance.
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(b) Separability discriminant.
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Figure 3: Feature Representation

4 Discussion
We described the inner workings of the random distillation procedure [19] from the same initialization.
First, we found that a very large stepsize of 1e4 is the main driver behind this phenomenon, even
under full-batch gradient descent. Then we showed how such a procedure inherently results in a
student network that has better signal propagation qualities, in terms of higher effective rank and
well-conditioning of the representations. Finally, we highlighted how this procedure leads to better
organization of the representations, by enhancing their separability and ultimately linear probing
accuracy.

Besides, now that we understand phenomenology, carrying out a theoretical characterization would
be the next natural step. Our description of the training dynamics might allow to draw a connection to
the catapult mechanism [15] or edge of stability phenomenon [3, 4]. Treating the escaping process as
a data-dependent initialization, we propose to further investigate the finetuning behavior as has been
started in [19]. We hope that our work fosters further research into the mysterious mechanisms that
underlie the loss landscapes of deep networks and ultimately contributes to bridging the gap between
theoretical understanding and deep learning practice.
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A Stabilizing

(a) linear probe vs training epoch and step size.
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(b) step size schedules.
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Figure 4: Stabilizing the large step size dynamics using MSE, ND-MSE and N-MSE loss functions,
as well as different warm-up schedules. The dynamics can be stabilized under a detached, normalized
MSE (ND-MSE) and slow linear warmp of the step size. The detaching the norm from the backprop-
agation path is a common pattern in BatchNorm and LayerNorm.
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