
Published in Transactions on Machine Learning Research (05/2023)

Optimum-statistical Collaboration Towards General and Ef-
ficient Black-box Optimization

Wenjie Li li3549@purdue.edu
Department of Statistics, Purdue University

Chi-Hua Wang chihuawang@ucla.edu
Department of Statistics, University of California, Los Angles

Guang Cheng guangcheng@ucla.edu
Department of Statistics, University of California, Los Angles

Qifan Song qfsong@purdue.edu
Department of Statistics, Purdue University

Reviewed on OpenReview: https: // openreview. net/ forum? id= ClIcmwdlxn

Abstract

In this paper, we make the key delineation on the roles of resolution and statistical un-
certainty in hierarchical bandits-based black-box optimization algorithms, guiding a more
general analysis and a more efficient algorithm design. We introduce the optimum-statistical
collaboration, an algorithm framework of managing the interaction between optimization er-
ror flux and statistical error flux evolving in the optimization process. We provide a general
analysis of this framework without specifying the forms of statistical error and uncertainty
quantifier. Our framework and its analysis, due to their generality, can be applied to a large
family of functions and partitions that satisfy different local smoothness assumptions and
have different numbers of local optimums, which is much richer than the class of functions
studied in prior works. Our framework also inspires us to propose a better measure of
the statistical uncertainty and consequently a variance-adaptive algorithm VHCT. In theory,
we prove the algorithm enjoys rate-optimal regret bounds under different local smoothness
assumptions; in experiments, we show the algorithm outperforms prior efforts in different
settings.

1 Introduction

Black-box optimization has gained more and more attention nowadays because of its applications in a large
number of research topics such as tuning the hyper-parameters of optimization algorithms, designing the
hidden structure of a deep neural network, and resource investments (Li et al., 2018; Komljenovic et al.,
2019). Yet, the task of optimizing a black-box system often has a limited budget for evaluations due to its
expensiveness, especially when the objective function is nonconvex and can only be evaluated by an estimate
with uncertainty (Bubeck et al., 2011b; Grill et al., 2015). Such limitation haunts practitioners’ deployment
of machine learning systems and invites scientists’ investigation for the authentic roles of resolution (opti-
mization error) and uncertainty (statistical error) in black-box optimization. Indeed, it raises a question
of optimum-statistical trade-off: how can we better balance resolution and uncertainty along the
search path to create efficient black-box optimization algorithms?

Among different categories of black-box optimization methods such as Bayesian algorithms (Shahriari et al.,
2016; Kandasamy et al., 2018) and convex black-box algorithms (Duchi et al., 2015; Shamir, 2015), this
paper focuses on the class of hierarchical bandits-based optimization algorithms introduced by (Auer et al.,

1

https://openreview.net/forum?id=ClIcmwdlxn

Published in Transactions on Machine Learning Research (05/2023)

(a) Difficult function (b) Function 1 + 1/(ln x)

Figure 1: 1(a): A difficult function proposed by Grill et al. (2015) which has exponentially increasing
(2ν1ρ

h)-near-optimal regions in the standard partition. 1(b): An example function that violates the ν1ρ
h

local smoothness assumption by Grill et al. (2015) in the standard partition and thus cannot be analyzed by
prior works, but has no local optimum.

2007; Bubeck et al., 2011b). These algorithms search for the optimum by traversing a hierarchical partition
of the parameter space and look for the best node inside the partition. Existing results, such as Bubeck et al.
(2011b); Grill et al. (2015); Shang et al. (2019); Bartlett et al. (2019); Li et al. (2022), heavily rely on some
specific assumptions of the smoothness of the blackbox objective and the hierarchical partition. However,
their assumptions are only satisfied by a small class of functions and partitions, which limits the scope of their
analysis. To be more specific, existing studies all focus on optimizing “exponentially-local-smooth" functions
(see; Eqn. (3)), which can have an exponentially increasing number of sub-optimums as the parameter space
partition proceeds deeper (Grill et al., 2015; Shang et al., 2019; Bartlett et al., 2019). For instance, Grill
et al. (2015) designed a difficult function (shown in Figure 1(a)) that can be optimized by many existing
algorithms because it satisfies the exponential local-smooth assumption. However, functions and partitions
that do not satisfy exponential local-smoothness, but with a bounded or polynomially increasing number
of near-optimal regions have been overlooked in the current literature of black-box optimization. A simple
example is Figure 1(b), which is not exponentially smooth but has a trivial unique optimum. Such a simple
example depresses all previous analyses in existing studies due to their dependency on the exponential local-
smoothness assumption. What is worse, different designs of the uncertainty quantifier can generate different
algorithms and thus may require different analyses. Consequently, a more unified theoretical framework to
manage the interaction process between the optimization error flux and the statistical error flux is desirable
and beneficial towards general and efficient black-box optimization.

In this work, we deliver a generic perspective on the optimum-statistical collaboration inside the exploration
mechanism of black-box optimization. Such a generic perspective holds regardless of the local smoothness
condition of the function or the design of uncertainty quantification, generalizing its applicability to a larger
class of functions (e.g., Figure 1(b)) and algorithms with different uncertainty quantification methods. Our
analysis for the proposed general algorithmic framework only relies on mild assumptions. It allows us to
analyze functions with different levels of smoothness and also inspired us to propose a variance-adaptive
black-box algorithm VHCT.

In summary, our contributions are:

• We identify two decisive components of exploration in black-box optimization: the resolution descriptor
(Definition 1) and the uncertainty quantifier (Definition 2). Based on the two components, we introduce
the optimum-statistical collaboration (Algorithm 1), a generic framework for collaborated optimism in
hierarchical bandits-based black-box optimization.

• We provide a unified analysis of the proposed framework (Theorem 3.1) that is independent of the specific
forms of the resolution descriptor and the uncertainty quantifier. Due to the flexibility of the resolution
descriptor, this analysis includes all black-box functions who satisfy the general local smoothness assump-

2

Published in Transactions on Machine Learning Research (05/2023)

tion (Condition GLS) and have a finite near-optimality dimension (Definition 1), which are excluded from
prior works.

• Furthermore, the framework inspires us to propose a better uncertainty quantifier, namely the variance-
adaptive quantifier (VHCT). It leads to effective exploration and advantages our bandit policy by utilizing
the variance information learnt from past samplers. Theoretically, we show that the proposed framework
secures different regret guarantees in the face of different smoothness assumptions, and VHCT leads to a
better convergence when the reward noise is small. Our experiments validate that the proposed variance
adaptive quantifier is more efficient than the existing anytime algorithms on various objectives.

Related Works. Pioneer bandit-based black-box optimization algorithms such as HOO (Bubeck et al.,
2011b) and HCT (Azar et al., 2014) require complicated assumptions of both the the black-box objective and
the parameter partition, including weak lipschitzness assumption. Recently, Grill et al. (2015) proposed the
exponential local smoothness assumption (Eqn. (3)) to simplify the set of assumptions used in prior works
and proposed POO to meta-tune the smoothness parameters. Some follow-up algorithms such as GPO (Shang
et al., 2019) and StroquOOL (Bartlett et al., 2019) are also proposed. However, both GPO and StroquOOL
require the budget number beforehand, and thus they are not anytime algorithms (Shang et al., 2019; Bartlett
et al., 2019). Also, the analyses of these algorithms all rely on the exponential local smoothness assumption
(Grill et al., 2015).

2 Preliminaries

Problem Formulation. We formulate the problem as optimizing an implicit objective function f : X 7→ R,
where X is the parameter space. The sampling budget (number of evaluations) is denoted by an unknown
constant n, which is often limited when the cost of evaluating f(x) is expensive. At each round (evaluation)
t, the algorithm selects a xt ∈ X and receives an stochastic feedback rt ∈ [0, 1] , modeled by

rt ≡ f(xt) + εt,

where the noise εt is only assumed to be mean zero, bounded by [− b
2 ,

b
2] for some constant b > 0, and

independent from the historical observed algorithm performance and the path of selected xt’s. Note that
the distributions of εt are not necessarily identical. We assume that there exists at least one point x∗ ∈ X
such that it attains the global maximum f∗, i.e., f∗ ≡ f(x∗) ≡ supx∈X f(x). The goal of a black-box
optimization algorithm is to gradually find xn such that f(xn) is close to the global maximum f∗ within the
limited budget.

Regret Analysis Framework. We measure the performance of different algorithms using the cumulative
regret. With respect to the optimal value f∗, the cumulative regret is defined as

Rn ≡ nf∗ −
n∑
t=1

rt.

It is worth noting that an alternative measure of performance widely used in the literature (e.g., Shang et al.,
2019; Bartlett et al., 2019) is the simple regret St ≡ f∗ − rt. Both simple and cumulative regrets measure
the performance of the algorithm but are from different aspects. The former one focuses on the convergence
of the algorithm’s final round output, and the latter cares about the overall loss during the whole algorithm
training. The cumulative regret is useful in scenarios such as medical trials where ill patients are included in
the each run and the cost of picking non-optimal treatments for all subjects shall be measured. This paper
chooses to study the cumulative regret, while in the literature, there were discussions on the relationship
between these two (Bubeck et al., 2011a).

Hierarchical partitioning. We use the hierarchical partitioning P = {Ph,i} to discretize the parameter
space X into nodes, as introduced by Munos (2011); Bubeck et al. (2011b); Valko et al. (2013). For any
non-negative integer h, the set {Ph,i} partitions the whole space X . At depth h = 0, a single node P0,1
covers the entire space. Every time we increase the level of depth, each node at the current depth level will
be separated into two children; that is, Ph,i = Ph+1,2i−1 ∪ Ph+1,2i. Such a hierarchical partition naturally

3

Published in Transactions on Machine Learning Research (05/2023)

inspires algorithms which explore the space by traversing the partitions and selecting the nodes with higher
rewards to form a tree structure, with P0,1 being the root. We remark that the binary split for each node we
consider in this paper is the same as in the previous works such as Bubeck et al. (2011b); Azar et al. (2014),
and it would be easy to extend our results to the K-nary case (Shang et al., 2019). Similar to Grill et al.
(2015), we refer to the partition where each node is split into regular, same-sized children as the standard
partitioning.

Given the objective function f and hierarchical partition P, we introduce a generalized definition of near-
optimality dimension, which is a natural extension of the notion defined by Grill et al. (2015).

Near-optimality dimension. For any positive constants α and C, and any function ξ(h) that satisfies
∀h ≥ 1, ξ(h) ∈ (0, 1], we define the near-optimality dimension d = d(α,C, ξ(h)) of f with respect to the
partition P and function ξ(h) as

d ≡ inf{d′ > 0 : ∀h ≥ 0,Nh(αξ(h)) ≤ Cξ(h)−d
′
} (1)

if exists, where Nh(ε) is the number of nodes Ph,i on level h such that supx∈Ph,i
f(x) ≥ f∗ − ε.

In other words, for each h > 0, Nh(αξ(h)) is the number of near-optimal regions on level h that are (αξ(h))-
close to the global maximum so that any algorithm should explore these regions. d = d(α,C, ξ(h)) controls
the polynomial growth of this quantity with respect to the function ξ(h)−1. It can be observed that this
general definition of d covers the near optimality dimension defined in Grill et al. (2015) by simply setting
ξ(h) = ρh and the coefficient α = 2ν for some constants ν > 0 and ρ ∈ (0, 1).

The rationale of introducing the generalized notion ξ(h) is that, although the number of nodes in the partition
grows exponentially when h increases, the number of near-optimal regions Nh(ε) of the objective function
f may not increase as fast, even if the near-optimal gap ε converges to 0 slowly. The particular choice
of ξ(h) = ρh in Grill et al. (2015) indicates that Nh(αρh) ≤ Cρ−dh, which may be over-pessimistic and
makes it a non-ideal setting for analyzing functions that change rapidly and don’t have exponentially many
near-optimal regions.

Such a generalized definition becomes extremely useful when dealing with functions that have different local
smoothness properties, and therefore our framework can successfully analyze a much larger class of functions.
We establish our general regret bound based on this notion of near-optimality dimension in Theorem 3.1.

It is worth mentioning that taking a slowly decreasing ξ(h), although reduces the number of near-optimal
regions, does not necessarily imply that the function is easier to optimize. As will be shown in Section 3
and 4, ξ(h) is often taken to be the local smoothness function of the objective. A slowly decreasing ξ(h)
makes the function much more unsmooth than a function with exponential local smoothness, and hence is
still hard to optimize.

Additional Notations. At round t, we use H(t) to represent the maximum depth level explored in the
partition by an algorithm. For each node Ph,i, we use Th,i(t) to denote the number of times it has been
pulled and rk(xh,i) to denote the k-th reward observed for the node, evaluated at a pre-specified xh,i
within Ph,i, which is the same as in Azar et al. (2014); Shang et al. (2019). Note that in the literature, it is
also considered that xh,i follows some distribution supported on Ph,i, e.g., Bubeck et al. (2011b).

3 Optimum-statistical Collaboration

This section defines two decisive quantities (Resolution Descriptor and Uncertainty Quantifier) that play
important roles in the proposed optimum-statistical collaboration framework. We then introduce the general
optimum-statistical collaboration algorithm and provide its theoretical analysis.
Definition 1. (Resolution Descriptor OE). Define OEh to be the resolution for each level h, which is
a function that bounds the change of f around its global optimum and measures the current optimization
error, i.e., for any global optimum x∗,

∀h ≥ 0,∀x ∈ Ph,i∗
h
, f(x) ≥ f(x∗)− OEh, (OE)

where Ph,i∗
h
is the node on level h in the partition that contains the global optimum x∗.

4

Published in Transactions on Machine Learning Research (05/2023)

Algorithm 1 Optimum-Statistical Collaboration (OSC)
1: Input: partition P, resolution descriptor OEh, uncertainty quantifier SEh,i(T, t), selection policy π(S)
2: Initialize T = {P0,1,P1,1,P1,2}
3: for t = 1 to n do
4: S = {P0,1},Pht,it = P0,1
5: while OEht ≥ SEht,it(T, t) do
6: S = S \ {Pht,it}

⋃
{Pht+1,2it−1,Pht+1,2it}

7: π(S) selects a new node Pht,it from S
8: end while
9: Pull Pht,it and update SEht,it(T, t)
10: if OEht ≥ SEht,it(T, t) and Pht+1,2it /∈ T then
11: T = T

⋃
{Pht+1,2it−1,Pht+1,2it}

12: end if
13: end for

Definition 2. (Uncertainty Quantifier SE). Let SEh,i (T, t) be the uncertainty estimate for the node
Ph,i at time t, which aims to bound the statistical estimation error of f(xh,i), given T pulled values from
this node. Recall that Th,i(t) is the number of pulls for node Ph,i until time t, and let µ̂h,i(t) be the online
estimator of f(xh,i), we expect that SE ensures

∑∞
t=1 P(Act) < C for some constant C, where

At =
{
∀h, i, |µ̂h,i(t)− f(xh,i)| ≤ SEh,i (Th,i(t), t)

}
. (SE)

With a slight abuse of notation, we rewrite SEh,i(Th,i(t), t) as SEh,i(T, t) when no confusion is caused. When
Th,i(t) = 0, SEh,i(T, t) is naturally taken to be +∞ since the node is never pulled. To ensure the above
probability requirement holds, it is reasonable to make SEh,i(T, t + 1) ≥ SEh,i(T, t) because when the
number of pulls T is fixed, the statistical error should not decrease.

Given the above definitions of the resolution descriptor and the uncertainty quantifier at each node, we
introduce the optimum-statistical collaboration algorithm in Algorithm 1 that guides the tree-based optimum
search path, under different settings of OE and SE.

𝒳

Followed path
OE1≥ SE1

OE2≥ SE2

OE3≥ SE3

OE4≥ SE4

OE5≤ SE5

≥
≥

≥
≥

Figure 2: Illustration of the optimum-statistical col-
laboration framework. The node on the fifth level in
the path will be pulled because its OE ≤ SE

The basic logic behind Algorithm 1 is that at each
time t, the selection policy π(S) will continuously
search nodes from the root to leaves, until finding
one node satisfying OEht

< SEht,it(T, t) and then
pull this node.

The end-goal of the optimum-statistical collabora-
tion is that, after pulling enough number of times,
the following relationship holds along the shortest
path from the root to the deepest node that contains
the global maximum (If there are multiple global
maximizers, the process only needs to find one of
them) :

OE1 ≥ SE1 > OE2 ≥ SE2 ≥ · · · ≥ OEh ≥ SEh ≥ · · ·
(2)

with slightly abused notation of SEh to represent
the uncertainty quantifier of the h-th node in the
traverse path (refer to Figure 2). In other words, the
two terms collaborate on the optimization process
so that SE is controlled by OE for each node of the
traverse path, and they both become smaller when
the exploration algorithm goes deeper. Figure 2 illustrate the above dynamic process more clearly with an

5

Published in Transactions on Machine Learning Research (05/2023)

example tree on the standard partition. We remark that Eqn. (2) only needs to be guaranteed on the
traverse path at each time instead of the whole exploration tree to avoid any waste of the budget. For the
same purpose, all the proposed algorithms only require OEh to be slightly larger than or equal to SEh on each
level.

We state the following theorem, which is a general regret upper bound with respect to any choice of SEh,i(T, t)
and OEh, and any design of the selection policy that follows the optimum statistical collaboration framework,
with only a mild condition on the result of the policy in each round.
Theorem 3.1. (General Regret Bound) Suppose that under a sequence of probability events {Et}t=1,2,···,
the policy π(S) ensures that at each time t, the node Pht,it pulled in line 9 in Algorithm 1 satisfies f∗ −
f(xht,it) ≤ a · max{SEht,it(T, t), OEht

}, where a > 0 is an absolute constant. Then for any integer H ∈
[1, H(n)) and any 0 < δ < 1, we have the following bound on the cumulative regret with probability at least
1− δ/(4n2),

Rn ≤
n∑
t=1

I(Ect) +

√
2n log

(
4n2

δ

)
+ 2aC

H∑
h=1

(OEh−1)−d̄
n∑
t=1

max
i:Th,i(t)6=0

SEh,i(T, t)

+ a

H(n)∑
H+1

∑
i:Th,i(t)6=0

n∑
t=1

SEh,i(T, t)

where d̄ > d(a,C, OEh−1), d(a,C, OEh−1) is the near-optimality dimension w.r.t. a,C, and OEh−1.

Notice that in Theorem 3.1, we do not specify the form of OEh, SEh,i(T, t), or the specific selection policy of
the algorithm. Therefore, our result is general and it can be applied to any function and partition that has a
well defined d(a,C, OEh−1) with resolution OEh, and any algorithm that satisfies the algorithmic framework.
The requirement f∗−f(xht,it) ≤ a ·max{SEht,it(T, t), OEht

} is mild and natural in the sense that it indicates
the π(S) selects a “good" node to pull at each time t that is at least close to the optimum relatively with
respect to OE or SE, with probability P(Et). Note that with a good choice of π, Ect can reduce to a subset
of Act , hence

∑n
t=1 I(Ect) is bounded in L1. The terms that involve SE and OE are random due to H(n), but

can still be explicitly bounded when the they are well designed. Specific regret bounds for different choices
of OE and a new SE are provided in the next section.

4 Implementation of Optimum-statistical Collaboration

Provided the optimum-statistical collaboration framework and its analysis, we discuss the some specific forms
of the resolution descriptor and the uncertainty quantifier and elaborate the roles these definitions played in
the optimization process. We then introduce a novel VHCT algorithm based on one variance-adaptive choice
of SE, which is a better quantifier of the statistical uncertainty.

4.1 The Resolution Descriptor (Definition 1)

The resolution descriptor OE is often measured by the global or local smoothness of the objective function
(Azar et al., 2014; Grill et al., 2015). We first discuss the local smoothness assumption used by prior works
and show its limitations, and then introduce a generalized local smoothness condition.

Local Smoothness. Grill et al. (2015) assumed that there exist two constants ν1 > 0, ρ ∈ (0, 1) s.t.

∀h ≥ 0,∀x ∈ Ph,i∗
h
, f(x) ≥ f∗ − ν1ρ

h. (3)

The above equation states that the function f is ν1ρ
h-smooth around the maximum at each level h. It has

been considered in many prior works such as Shang et al. (2019); Bartlett et al. (2019). The resolution
descriptor is naturally taken to be OEh = ν1ρ

h.

However, such a choice of local smoothness is too restrictive as it requires that the function f and the
partition P are both “well-behaved” so that the function value becomes exponentially closer to the optimum

6

Published in Transactions on Machine Learning Research (05/2023)

when as h increases. A simple counter-example is the function g(x) = 1 + 1/(ln x) defined on the domain
[0, 1/e] with g(0) defined to be 0 (as shown in Figure 1(b)). Under the standard binary partition, it is
easily to prove that it doesn’t satisfy Eqn. (3) for any given constants ν0 > 0, ρ0 ∈ (0, 1). It might be
possible to design a particular partition for g(x) such that Eqn. (3) holds. However, such a partition is
defined in hindsight since one have no knowledge of the objective function before the optimization. Beyond
the above example, it is also easy to design other non-monotone difficult-to-optimize functions that cannot
be analyzed by prior works. It thus inspires us to introduce a more general φ(h)-local smoothness condition
for the objective to analyze functions and partitions that have different levels of local smoothness.

General Local Smoothness. Assume that there exists a function φ(h) : N→ (0, 1] s.t.

∀h ≥ 0,∀x ∈ Ph,i∗
h
, f(x) ≥ f(x∗)− φ(h) (GLS)

In the same example g(x) = 1+1/(ln x), it can be shown that g(x) satisfies Condition (GLS) with φ(h) = 2/h.
Therefore, it fits in our framework by setting OEh = 2/h and a valid regret bound can be obtained for g(x)
given a properly chosen SEh,i, since d(2, C, 1/h) < ∞ in this case (refer to details in Subsection 4.4). In
general, we can simply set OEh = φ(h) within the optimum-statistical collaboration framework, and Theorem
3.1 can be utilized to analyze functions and partitions that satisfy Condition (GLS) with any φ(h) such as
φ(h) = 1/hp, for some p > 0 or even φ(h) = 1/(log h + 1), as long as the corresponding near-optimality
dimension d(a,C, φ(h)) is finite for some a,C > 0. Determining the class of smoothness functions φ(h) that
can generate nontrivial regret bounds would be an interesting future direction. Given such a generalized
definition and the general bound in Theorem 3.1, we can provide the convergence analysis for a much larger
class of black-box objectives and partitions, beyond those that satisfy Eqn. (3).

4.2 The Uncertainty Quantifier (Definition 2)

Tracking Statistics. To facilitate the design of SE, we first define the following tracking statistics. Trivially,
the mean estimate µ̂h,i(t) and the variance estimate V̂h,i(t) of the rewards at round t are computed as

µ̂h,i(t) ≡
1

Th,i(t)

Th,i(t)∑
k=1

rk(xh,i), V̂h,i(t) ≡
1

Th,i(t)

Th,i(t)∑
k=1

(
rk(xh,i)− µ̂h,i(t)

)2

The variance estimate is defined to be negative infinity when Th,i(t) = 0 since variance is undefined in such
cases. We now discuss two specific choices of SE.

Nonadaptive Quantifier (in HCT). Azar et al. (2014) proposed the uncertainty quantifier with the following
form in their High Confidence Tree (HCT) algorithm:

SEh,i(T, t) ≡ bc

√
log(∆(t))
Th,i(t)

where b/2 is the bound of the error noise εt, ∆(t) = max{1, 2blog tc+1/(c1δ)} is an increasing function of t,
δ is the confidence level, and c, c1 are two tuning constants. By Hoeffding’s inequality, the above SE is a
high-probability upper bound for the statistical uncertainty. Note that HCT is also a special case of our OSC
framework and its analysis can be done by following Theorem 3.1. In what follows, we propose an better
algorithm with an improved uncertainty quantifier.

Variance Adaptive Quantifier (in VHCT). Based on our framework of the statistical collaboration, a tighter
measure of the statistical uncertainty can boost the performance of the optimization algorithm, as the goal
in Eqn. (2) can be reached faster. Motivated by prior works that use variance to improve the performance
of multi-armed bandit algorithms Audibert et al. (2006; 2009), we propose the following variance adaptive
uncertainty quantifier, and naturally the VHCT algorithm in the next subsection, which is an adaptive variant
of the SE in HCT.

SEh,i(T, t) ≡ c

√
2V̂h,i(t) log(∆(t))

Th,i(t)
+ 3bc2 log(∆(t))

Th,i(t)
(4)

7

Published in Transactions on Machine Learning Research (05/2023)

Algorithm 2 VHCT Algorithm (Short Version)
1: Input: known smoothness function φ(h), partition P.
2: Run Algorithm 1 with partition P and other required inputs as:

OEh := φ(h), SEh,i(T, t) := Eqn. (4), π(S) := argmaxPh,i∈SBh,i(t)

The notations b, c, and ∆(t) are the same as those in HCT. The uniqueness of the above SEh,i(T, t) is that
it utilizes the node-specified variance estimations, instead of a conservative trivial bound b. Therefore, the
algorithm is able to adapt to different noises across nodes, and SEh,i(T, t) ≤ OEh is achieved faster at the
small-noise nodes. This unique property grants VHCT an advantage over all existing non-adaptive algorithms.

4.3 Algorithm Example - VHCT

Based on the proposed optimum-statistical collaboration framework and the novel adaptive SEh,i(T, t), we
propose a new algorithm VHCT as a special case of Algorithm 1 and elaborate its capability to adapt to
different noises. Algorithm 2 provides the short version of the pseudo-code and the complete algorithm is
provided in Appendix B.

The proposed VHCT, similar to HCT, also maintains an upper-bound Uh,i(t) for each node to decide collab-
orative optimism. In particular, for any node Ph,i, the upper-bound Uh,i(t) is computed directly from the
average observed reward for pulling xh,i as

Uh,i(t) ≡ µ̂h,i(t) + OEh + SEh,i(T, t)

with SEh,i(T, t) defined as in Eqn. (4) and OEh tuned by the input. Note that Uh,i(t) = ∞ for unvisited
nodes. To better utilize the tree structure in the algorithm, we also define the tighter upper bounds Bh,i(t).
Since the maximum upper bound of one node cannot be greater than the maximum of its children, Bh,i(t)
is defined to be

Bh,i(t) = min
{
Uh,i(t), max

j=0,1
{Bh+1,2i−j(t)}

}
.

The quantities Uh,i(t) and Bh,i(t) serve a similar role of the upper confidence bound in UCB bandit algorithm
(Bubeck et al., 2011b), and the selection policy π(S) of VHCT is simply selecting the node with the highest
Bh,i(t) in the given set S, which is shown in Algorithm 2. We prove that selection policy guarantees that
f∗ − f(xht,it) ≤ 3 max{SEht,it(T, t), OEht} with high probability in Appendix B, as we required in Theorem
3.1.

Follow the notation of Azar et al. (2014), we define a threshold value τh,i(t) for each node Ph,i to represent
the minimal number of times it has been pulled, such that the algorithm can explore its children nodes, i.e.,

τh,i(t) = inf
T∈N

{
SEh,i(T, t) ≤ OEh

}
.

Only when Tht,it(t) ≥ τht,it(t), we expand the search into Pht,it ’s children. This notation helps to compare
the exploration power of VHCT with HCT. Note that when the variances of the nodes are small, SEh,i(T, t)
of VHCT would be inversely proportional to Th,i(t) and thus smaller than that of HCT. As a consequence,
the thresholds τh,i(t) is smaller in VHCT than in HCT, and thus VHCT explores more efficiently in low noise
regimes.

4.4 Regret Bound Examples

We now provide upper bounds on the expected cumulative regret of VHCT, which serve as instances of our
general Theorem 3.1 when OE and SE are specified. Note that some technical adaptions are made to obtain
a L1 bound for the regret. The regret bounds depend on the upper bound of variance in history across all
the nodes that have been pulled, meaning max{h,i,t|Th,i(t)≥1} V̂h,i(t) ≤ Vmax for a constant Vmax > 0. Since

8

Published in Transactions on Machine Learning Research (05/2023)

the noise εt is bounded, such a notation is always well defined and bounded above. The Vmax represents
our knowledge of the noise variance after searching and exploring the objective function, which can be more
accurate than the trivial choice b2/4, e.g., when the true noise is actually bounded by b′/2 for some unknown
constant b′ < b. We focus on two choices of the local smoothness function in Condition (GLS) and their
corresponding near-optimal dimensions, i.e., φ(h) = ν1ρ

h that matches previous analyses such as Grill et al.
(2015); Shang et al. (2019), and φ(h) = 2/h, which is the local smoothness of the counter example in Figure
1(b). For other choices of φ(h), we believe similar regret upper bounds may be derived using Theorem 3.1.
Theorem 4.1. Assume that the objective function f satisfies Condition (GLS) with φ(h) = ν1ρ

h for two
constants ν1 > 0, ρ ∈ (0, 1). The expected cumulative regret of Algorithm 3 is upper bounded by

E[RVHCT
n] ≤ 2

√
2n log(4n3) + C1V

1
d1+2

max n
d1+1
d1+2 (logn)

1
d1+2 + C2n

2d1+1
2d1+4 logn

where C1 and C2 are two constants and d1 is any constant satisfying d1 > d(3ν1, C, ρ
h).

Theorem 4.2. Assume that the objective function f satisfies Condition (GLS) with φ(h) = 2/h. The
expected cumulative regret of Algorithm 3 is upper bounded by

E[RVHCT
n] ≤ 2

√
2n log(4n3) + C̄1V

1
2d2+3

max n
2d2+2
2d2+3 (logn)

1
2d2+3 + C̄2n

2d2+1
2d2+3 logn

where C̄1 and C̄2 are two constants and d2 is any constant satisfying d2 > d(2, C, 1/h).

The proof of these theorems are provided in Appendix C and Appendix D respectively. We first remark that
the above regret bounds are actually loose because we do not a delicate individual control over the variances
in different nodes. Instead, a much conservative analysis is conducted.

In the literature, Grill et al. (2015); Shang et al. (2019) have proved that the cumulative regret bounds of HOO,
HCT are both O(n(d1+1)/(d1+2)(logn)1/(d1+2)) when the objective function f satisfies Condition (GLS) with
φ(h) = ν1ρ

h, while our regret bound in Theorem 4.1 is of order O(V 1/(d1+2)
max n(d1+1)/(d1+2)(logn)1/(d1+2)) .

Although the two rates are the same with respect to the increasing of n, our result explicitly connects the
variance and the regret, implying a positive relationship between these two. Therefore, we expect the variance
adaptive algorithm VHCT to converge faster than the non-adaptive algorithms such as HOO and HCT, when
there is only low or moderate noise. The theoretical results of prior works rely on the smoothness assumption
φ(h) = ν1ρ

h, thus are not able to deliver a regret analysis for functions and partitions with other φ(h) (e.g.
φ(h) = 2/h in Theorem 4.2). Providing analysis for prior algorithms on functions and partitions with
different smoothness assumptions is another interesting future direction to explore. However, we conjecture
that VHCT should still outperform the non-adaptive algorithms in these cases since its SE is a tighter measure
of the statistical uncertainty. This theoretical observation is also validated in our experiments.

We emphasize that the near-optimality dimensions are defined with respect to different local smoothness
functions in Theorem 4.1 and Theorem 4.2. Specifically, when the objective is ν1ρ

h-smooth, Theorem 4.1
holds even if the number of near-optimal regions increase exponentially when the partition proceeds deeper,
i.e., when d(ν1, C, ρ

h) < ∞. When the function is only 2/h-smooth, Theorem 4.2 holds only when the
number of near-optimal regions grows polynomially, i.e., when d(2, C, 1/h) <∞.

5 Experiments

In this section, we empirically compare the proposed VHCT algorithm with the existing anytime blackbox
optimization algorithms, including T-HOO (the truncated version of HOO), HCT, POO, and PCT (POO + HCT,
(Shang et al., 2019)), and Bayesian Optimization algorithm BO (Frazier, 2018) to validate that the proposed
variance-adaptive uncertainty quantifier can make the convergence of VHCT faster than non-adaptive algo-
rithms. We run every algorithm for 20 independent trials in each experiment and plot the average cumulative
regret with 1-standard deviation error bounds. The experimental details and additional numerical results
on other objectives are provided in Appendix E.

We use a noisy Garland function as the synthetic objective, which is a typical blackbox objective used by
many works such as Shang et al. (2019) and has multiple local minimums and thus very hard to optimize.

9

Published in Transactions on Machine Learning Research (05/2023)

(a) Garland (b) Landmine (c) MNIST

Figure 3: Cumulative regret of different algorithms on evaluating the Garland function and tuning hyperpa-
rameters of training SVM on Landmine data and neural networks on MNIST data.

For the real-life experiments, we use hyperparameter tuning of machine learning algorithms as the blackbox
objectives. We tune the RBF kernel and the L2 regularization parameters when training Support Vector
Machine (SVM) on the Landmine dataset (Liu et al., 2007), and the batch size, the learning rate, and the
weight decay when training neural networks on the MNIST dataset (Deng, 2012). As shown in Figure 3, the
new choice of SE makes VHCT the fastest algorithm among the existing ones. All the experimental results
validate our theoretical claims in Section 4.

6 Conclusions

The proposed optimum-statistical collaboration framework reveals and utilizes the fundamental interplay
of resolution and uncertainty to design more general and efficient black-box optimization algorithms. Our
analysis shows that different regret guarantees can be obtained for functions and partitions with different
local smoothness assumptions, and algorithms that have different uncertainty quantifiers. Based on the
framework, we show that functions that satisfy the general local smoothness property can be optimized and
analyzed, which is a much larger class of functions compared with prior works. Also, we propose a new
algorithm VHCT that can adapt to different noises and analyze its performance under different assumptions
of the smoothness of the function.

There are still some limitations of our work. For example, VHCT still needs the prior knowledge of the
smoothness function φ(h) to achieve its best performance. Also, the analyses in Theorem 4.1 and 4.2 are
smoothness-specific. Therefore, our framework also introduces many interesting future working directions,
for example, (1) whether a unified regret upper bound for different φ(h)-local smooth functions could be
derived for one particular algorithm; (2) whether the regret bound obtained in Theorem 4.2 is minimax-
optimal for those φ(h); (3) whether there exists an algorithm that is truly smoothness-agnostic, i.e., it does
not need the smoothness property of the objective function.

References
Jean-Yves Audibert, Remi Munos, and Csaba Szepesvári. Use of variance estimation in the multi-armed
bandit problem. 01 2006.

Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvári. Exploration-exploitation tradeoff using variance
estimates in multi-armed bandits. Theoretical Computer Science, 410(19):1876–1902, 2009.

Peter Auer, Ronald Ortner, and Csaba Szepesvári. Improved rates for the stochastic continuum-armed
bandit problem. In Nader H. Bshouty and Claudio Gentile (eds.), Conference on Learning Theory, pp.
454–468, 2007.

10

Published in Transactions on Machine Learning Research (05/2023)

Mohammad Gheshlaghi Azar, Alessandro Lazaric, and Emma Brunskill. Online stochastic optimization
under correlated bandit feedback. In International Conference on Machine Learning, pp. 1557–1565.
PMLR, 2014.

Peter L. Bartlett, Victor Gabillon, and Michal Valko. A simple parameter-free and adaptive approach
to optimization under a minimal local smoothness assumption. In 30th International Conference on
Algorithmic Learning Theory, 2019.

Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure exploration in finitely-armed and continuous-armed
bandits. Theoretical Computer Science, 412(19):1832–1852, 2011a.

Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvári. X-armed bandits. Journal of Machine
Learning Research, 12(46):1655–1695, 2011b.

Zhongxiang Dai, Bryan Kian Hsiang Low, and Patrick Jaillet. Federated bayesian optimization via thompson
sampling. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 9687–9699. Curran Associates, Inc., 2020. URL https:
//proceedings.neurips.cc/paper/2020/file/6dfe08eda761bd321f8a9b239f6f4ec3-Paper.pdf.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141–142, 2012.

John C. Duchi, Michael I. Jordan, Martin J. Wainwright, and Andre Wibisono. Optimal rates for zero-order
convex optimization: The power of two function evaluations. IEEE Transactions on Information Theory,
61(5):2788–2806, 2015. doi: 10.1109/TIT.2015.2409256.

Peter I. Frazier. A tutorial on bayesian optimization, 2018. URL https://arxiv.org/abs/1807.02811.

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and D Sculley. Google
vizier: A service for black-box optimization. In Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining, pp. 1487–1495, 2017.

Jean-Bastien Grill, Michal Valko, Remi Munos, and Remi Munos. Black-box optimization of noisy functions
with unknown smoothness. In Advances in Neural Information Processing Systems. Curran Associates,
Inc., 2015.

Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, and Barnabas Poczos. Parallelised bayesian
optimisation via thompson sampling. In Amos Storkey and Fernando Perez-Cruz (eds.), Proceedings of the
Twenty-First International Conference on Artificial Intelligence and Statistics, volume 84 of Proceedings
of Machine Learning Research, pp. 133–142. PMLR, 09–11 Apr 2018.

Kenji Kawaguchi, Yu Maruyama, and Xiaoyu Zheng. Global continuous optimization with error bound and
fast convergence. Journal of Artificial Intelligence Research, 56:153–195, 2016.

Dragan Komljenovic, Darragi Messaoudi, Alain Cote, Mohamed Gaha, Luc Vouligny, Stephane Alarie, and
Olivier Blancke. Asset management in electrical utilities in the context of business and operational com-
plexity. In World Congress on Resilience, Reliability and Asset Management, 07 2019.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband: A
novel bandit-based approach to hyperparameter optimization. Journal of Machine Learning Research, 18
(185):1–52, 2018.

Wenjie Li, Qifan Song, Jean Honorio, and Guang Lin. Federated x-armed bandit, 2022. URL https:
//arxiv.org/abs/2205.15268.

Wenjie Li, Haoze Li, Jean Honorio, and Qifan Song. Pyxab – a python library for X -armed bandit and
online blackbox optimization algorithms, 2023. URL https://arxiv.org/abs/2303.04030.

11

https://proceedings.neurips.cc/paper/2020/file/6dfe08eda761bd321f8a9b239f6f4ec3-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6dfe08eda761bd321f8a9b239f6f4ec3-Paper.pdf
https://arxiv.org/abs/1807.02811
https://arxiv.org/abs/2205.15268
https://arxiv.org/abs/2205.15268
https://arxiv.org/abs/2303.04030

Published in Transactions on Machine Learning Research (05/2023)

Qiuhua Liu, Xuejun Liao, and Lawrence Carin. Semi-supervised multitask learning. In J. Platt,
D. Koller, Y. Singer, and S. Roweis (eds.), Advances in Neural Information Processing Systems, vol-
ume 20. Curran Associates, Inc., 2007. URL https://proceedings.neurips.cc/paper/2007/file/
a34bacf839b923770b2c360eefa26748-Paper.pdf.

Odalric-Ambrym Maillard. Mathematics of statistical sequential decision making. PhD thesis, Université de
Lille, Sciences et Technologies, 2019.

Andreas Maurer and Massimiliano Pontil. Empirical bernstein bounds and sample variance penalization.
arXiv preprint arXiv:0907.3740, 2009.

Rémi Munos. Optimistic optimization of a deterministic function without the knowledge of its smoothness.
In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Q. Weinberger (eds.), Advances in Neural
Information Processing Systems, volume 24. Curran Associates, Inc., 2011.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas. Taking the human out
of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):148–175, 2016.

Ohad Shamir. An optimal algorithm for bandit and zero-order convex optimization with two-point feedback.
Journal of Machine Learning Research, 18, 07 2015.

Xuedong Shang, Emilie Kaufmann, and Michal Valko. General parallel optimization a without metric. In
Algorithmic Learning Theory, pp. 762–788, 2019.

Michal Valko, Alexandra Carpentier, and Rémi Munos. Stochastic simultaneous optimistic optimization.
In Proceedings of the 30th International Conference on Machine Learning, volume 28 of Proceedings of
Machine Learning Research, pp. 19–27. PMLR, 17–19 Jun 2013.

Chi-Hua Wang, Zhanyu Wang, Will Wei Sun, and Guang Cheng. Online regularization for high-dimensional
dynamic pricing algorithms. arXiv preprint arXiv:2007.02470, 2020.

ChiHua Wang, Wenjie Li, Guang Cheng, and Guang Lin. Federated online sparse decision making. ArXiv,
abs/2202.13448, 2022.

12

https://proceedings.neurips.cc/paper/2007/file/a34bacf839b923770b2c360eefa26748-Paper.pdf
https://proceedings.neurips.cc/paper/2007/file/a34bacf839b923770b2c360eefa26748-Paper.pdf

Published in Transactions on Machine Learning Research (05/2023)

A Proof of the General Regret Bound in Theorem 3.1

Proof. We decompose the cumulative regret into two terms that depend on the high probability events
{Et}nt=1. Denote the simple regret at each iteration t to be ∆t = f∗ − rt, then we can perform the following
regret decomposition

Rn =
n∑
t=1

∆t =
(

n∑
t=1

∆tIEt

)
+
(

n∑
t=1

∆tIEc
t

)
= REn +RE

c

n

≤ REn +
n∑
t=1

IEc
t

where we have denoted the first summation term in the second equality
∑n
t=1 ∆tIEt

to be REn and the second
summation term

∑n
t=1 ∆tIEc

t
to be REc

n . The last inequality is because we have that both f∗ and rt are
bounded by [0, 1], and thus |∆t| ≤ 1. Now note that the instantaneous regret ∆t can be written as

∆t = f∗ − rt = f∗ − f (xht,it) + f (xht,it)− rt = ∆ht,it + ∆̂t

where we have denoted ∆ht,it = f∗ − f (xht,it) and ∆̂t = f (xht,it)− rt. It means that the regret under the
events {Et}nt=1 can be decomposed into two terms R̃En and R̂En.

REn =
n∑
t=1

∆ht,itIEt
+

n∑
t=1

∆̂tIEt
≤

n∑
t=1

∆ht,itIEt
+

n∑
t=1

∆̂t = R̃En + R̂En

Note that by the definition of the sequence {∆̂t}nt=1, it is a bounded martingale difference sequence since
E[∆̂t | Ft−1] = 0 and |∆̂t| ≤ 1, where Ft is defined to be the filtration generated up to time t. Therefore by
Azuma’s inequality on this sequence, we get

R̂En ≤

√
2n log

(
4n2

δ

)

with probability 1 − δ/(4n2). A even better bound can be obtained using the fact that |∆̂t| ≤ b
2 if b � 2.

However, R̂En is not a dominating term and using b/2 only improves it in terms of the multiplicative constant.
Now the only term left is R̃En and we bound it as follows.

R̃En =
(

n∑
t=1

∆ht,itIEt

)
≤

H(n)∑
h=1

∑
i:Th,i(t)6=0

n∑
t=1

∆h,iI(ht,it)=(h,i)IEt

≤

H∑
h=1

∑
i:Th,i(t)6=0

n∑
t=1

aSEh,i(T, t) +
H(n)∑
H+1

∑
i:Th,i(t)6=0

n∑
t=1

aSEh,i(T, t)

≤ a
H∑
h=1

∑
i:Th,i(t)6=0

n∑
t=1

SEh,i(T, t)︸ ︷︷ ︸
(I)

+ a

H(n)∑
H+1

∑
i:Th,i(t)6=0

n∑
t=1

SEh,i(T, t)︸ ︷︷ ︸
(II)

where H is a constant between 0 and H(n) to be tuned later. The second inequality is because when we
select Pht,it , we have SEht,it(T, t) ≥ OEht by the Optimum-statistical Collaboration Framework. Also, under

13

Published in Transactions on Machine Learning Research (05/2023)

the event Et, we have ∆ht,it ≤ amax{OEht
, SEht,it(T, t)}. The first term (I) can be bounded as

(I) ≤ a
H∑
h=1

∑
i:Th,i(t)6=0

n∑
t=1

max
i:Th,i(t)6=0

SEh,i(T, t) ≤ a
H∑
h=1
|Ih(n)|

n∑
t=1

max
i:Th,i(t) 6=0

SEh,i(T, t)

≤ a
H∑
h=1

2Nh−1 (aOEh−1)
n∑
t=1

max
i:Th,i(t)6=0

SEh,i(T, t)

≤ 2aC
H∑
h=1

(OEh−1)−d̄
n∑
t=1

max
i:Th,i(t) 6=0

SEh,i(T, t)

where d̄ > d(a,C, OEh−1) and d(a,C, OEh−1) is the near-optimality dimension with respect to (a,C, OEh−1).
The third inequality is because we only expand a node into two children, so |Ih(n)| ≤ 2|I+

h−1(n)| (Note that
we do not have any requirements on the number of children of each node, so the binary tree argument here
can be easily replaced by a K-nary tree with K ≥ 2). Also since we only select a node (h, i) when its parent
is already selected enough number of times such that OE ≥ SE at a particular time t0 ≤ n, we have Php,ip

satisfies f∗ − f(xhp,ip) ≤ aOEhp . By the definition of Nh(ε) in the near-optimality dimension, we have

|Ih(n)| ≤ 2|I+
h−1(n)| ≤ 2Nh−1 (aOEh−1)

and thus the final upper bound for (I). Therefore for any H ∈ [1, H(n)], with probability at least 1 − δ
4n2 ,

the cumulative regret is upper bounded by

Rn =
n∑
t=1

∆t = R̂En +
n∑
t=1

I(Ect) + R̃En

≤
√

2n log(4n2/δ) +
n∑
t=1

I(Ect) + R̃En

≤
√

2n log(4n2/δ) +
n∑
t=1

I(Ect) + 2aC
H∑
h=1

(OEh−1)−d̄
n∑
t=1

max
i:Th,i(t)6=0

SEh,i(T, t)

+ a

H(n)∑
H+1

∑
i:Th,i(t)6=0

n∑
t=1

SEh,i(T, t)

�

B Notations and Useful Lemmas

B.1 Preliminary Notations

The notations here follow those in Shang et al. (2019) and Azar et al. (2014) except for those related to the
node variance. These notations are needed for the proof of the main theorem.

• At each time t, Pht,it denote the node selected by the algorithm where ht is the level and it is the
index.

• Pt denotes the optimal-path selected at each iteration t

• H(t) denotes the maximum depth of the tree at time t.

• ∆(t) = 1/δ̃(t+) with t+ = 2blog tc+1, δ̃(t) = min{1, c1δ/t}

• For any t > 0 and h ∈ [1, H(t)], Ih(t) denotes the set of all nodes at level h at time t.

14

Published in Transactions on Machine Learning Research (05/2023)

• For any t > 0 and h ∈ [1, H(t)], I+
h (t) denotes the subset of Ih(t) that contains only the internal

nodes (no leaves).

• Ch,i := {t ∈ [1, n] | Pht,it = Ph,i} is the set of time steps when Ph,i is selected.

• C+
h,i := Ch+1,2i ∪ Ch+1,2i−1 is the set of time steps when the children of Ph,i are selected.

• t̄h,i := maxt∈Ch,i
t is the last time Ph,i is selected.

• t̃h,i := maxt∈C+
h,i
t is the last time when the children of Ph,i is selected.

• th,i := min {t : Th,i(t) ≥ τh,i} is the time when Ph,i is expanded.

• V̂h,i(t) := 1
Th,i(t)

∑Th,i(t)
s=1 (rs(xh,i)− µ̂h,i) is the estimate of the variance of the Ph,i node at time t.

• Lt denotes all the nodes in the exploration tree at time t

• Vmax is the upper bound on the node variance in the tree.

Note that if the variance of a node is zero, we can always pull one more round to make it non-zero. Therefore,
here we simply assume that the variance Vh,i(t) is larger than a fixed small constant ε for the clarity of proof,
which will not affect our conclusions.

Algorithm 3 VHCT Algorithm (Complete)
1: Input: Smoothness function φ(h), partition P.
2: Initialize: Tt = {P0,1,P1,1,P1,2}, U1,1(t) = U1,2(t) = +∞
3: for t = 1 to n do
4: if t = t+ then
5: for all nodes Ph,i ∈ Tt do
6: Uh,i(t) = µh,i(t) + φ(h) + SEh,i(T, t)
7: end for
8: UpdateBackward(Tt, t)
9: end if
10: Pht,it = PullUpdate(Tt, t)
11: if Tht,it(t) ≥ τht,it(t) and Pht,it is a leaf then
12: Tt = Tt ∪ {Pht+1,2it−1,Pht+1,2it}
13: Uh+1,2i(t) = Uh+1,2i−1(t) = +∞
14: end if
15: end for

B.2 Useful Lemmas for the Proof of Theorem 4.1 and Theorem 4.2

The following lemma improves the results by Azar et al. (2014) and Shang et al. (2019).
Lemma B.1. We introduce the following event Et

Et =

∀Ph,i ∈ Lt,∀Th,i(t) = 1, · · · , t : |µ̂h,i(t)− f (xh,i)| ≤ c

√
2V̂h,i(t) log(1/δ̃(t))

Th,i(t)
+ 3bc2 log(1/δ̃(t))

Th,i(t)

where xh,i ∈ Ph,i is the arm corresponding to node Ph,i. If

c = 3 and δ̃(t) = δ

3t

then for any fixed t, the event Et holds with probability at least 1− δ/t7.

15

Published in Transactions on Machine Learning Research (05/2023)

Algorithm 4 PullUpdate

1: Input: a tree Tt, round t
2: Initialize: (ht, it) = (0, 1);St = P0,1;T0,1(t) = τ0(t) = 1 ;
3: while Pht,it is not a leaf, Tht,it(t) ≥ τht,it(t) do
4: j = argmaxj=0,1{Bht+1,2it−j(t)}
5: (ht, it) = (ht + 1, 2it − j)
6: St = St ∪ {Pht,it}
7: end while
8: Pull xht,it and get reward rt
9: Tht,it(t) = Tht,it(t) + 1
10: Update µ̂ht,it(t), V̂ht,it(t)
11: Uht,it(t) = µ̂ht,it(t) + φ(ht) + SEht,it(T, t)
12: UpdateBackward(St, t)
13: Return Pht,it

Algorithm 5 UpdateBackward

1: Input: a tree T , round t
2: for Ph,i ∈ T backward from each leaf of T do
3: if Ph,i is a leaf of T then
4: Bh,i(t) = Uh,i(t)
5: else
6: Bh,i(t) = min {Uh,i(t),maxj{Bh+1,2i−j(t)}}
7: end if
8: Update the threshold τh,i(t)
9: end for

Proof. Again, Lt denotes all the nodes in the tree. The probability of Ect can be bounded as

P
[
Ec
t

]
≤

∑
Ph,i∈Lt

t∑
Th,i(t)=1

P
[
|µ̂h,i(t)− µh,i| ≥ c

√
2V̂h,i(t) log(1/δ̃(t))

Th,i(t)
+ 3bc2 log(1/δ̃(t))

Th,i(t)

]

≤
∑
Ph,i∈Lt

t∑
Th,i(t)=1

3 exp(−c2 log(1/δ̃(t)))

= 3 exp(−c2 log(1/δ̃(t))) · t · |Lt|

where the second inequality is by taking x = c2 log(1/δ̃(t)) in Lemma B.6, we have

P
(
|µ̂h,i(t)− f (xh,i) | ≥ c

√
2V̂h,i(t) log(1/δ̃(t))

Th,i(t)
+ 3bc2 log(1/δ̃(t))

Th,i(t)

)
≤ 3 exp(−c2 log(1/δ̃(t)))

Now note that the number of nodes in the tree is always (loosely) bounded by t since we need at least one
pull to expand a node, we know that

P
[
Ec
t

]
≤ 3t2δ̃(t)c

2
≤ δ

t7
�

Lemma B.2. Given the parameters c and δ̃(t) as in Lemma B.1, the regret when the events {Et} fail to
hold is bounded as

n∑
t=1

I(Ect) ≤
√
n

with probability at least 1− δ/(6n3)

16

Published in Transactions on Machine Learning Research (05/2023)

Proof. We first split the time horizon n in two phases: the first phase until
√
n and the rest. Thus the

regret bound becomes
n∑
t=1

I(Ect) =

√
n∑

t=1
I(Ect) +

n∑
t=
√
n+1

I(Ect)

The first term can be easily bounded by
√
n. Now we bound the second term by showing that the complement

of the high-probability event hardly ever happens after t =
√
n. By Lemma B.1

P

 n⋃
t=
√
n+1

Ec
t

 ≤ n∑
t=
√
n+1

P [Ec
t] ≤

n∑
√
n+1

δ

t7
≤
∫ +∞

√
n

δ

t7
dt ≤ δ

6n3

Therefore we arrive to the conclusion in the lemma. �

Lemma B.3. At time t under the event Et, for the selected node Pht,it and its parent (hpt , i
p
t), we have the

following set of inequalities for any choice of the local smoothness function φ(h) in Algorithm 3

f∗ − f(xht,it) ≤ 3c

√
2V̂ht,it(t) log(2/δ̃(t))

Tht,it(t)
+ 9bc2 log(2/δ̃(t))

Tht,it(t)

f∗ − f(xhp
t ,i

p
t
) ≤ 3φ(hpt)

Proof. Recall that Pt is the optimal path traversed. Let (h′, i′) ∈ Pt and (h′′, i′′) be the node which
immediately follows (h′, i′) in Pt (i.e., h′′ = h′ + 1). By the definition of B values, we have the following
inequality

Bh′,i′(t) ≤ max (Bh′+1,2i′−1(t);Bh′+1,2i′(t)) = Bh′′,i′′(t)
where the last equality is from the fact that the algorithm selects the child with the larger B value. By
iterating along the inequality until the selected node (ht, it) and its parent (hpt , i

p
t) we obtain

∀ (h′, i′) ∈ Pt, Bh′,i′(t) ≤ Bht,it(t) ≤ Uht,it(t),
∀ (h′, i′) ∈ Pt − (ht, it) , Bh′,i′(t) ≤ Bhp

t ,i
p
t
(t) ≤ Uhp

t ,i
p
t
(t),

Thus for any node Ph,i ∈ Pt, we have that Uht,it(t) ≥ Bh,i(t). Furthermore, since the root node (0, 1) is a
an optimal node in the path Pt. Therefore, there exists at least one node (h∗, i∗) ∈ Pt which includes the
maximizer x∗ and has the the depth h∗ ≤ hpt < ht. Thus

Uht,it(t) ≥ Bh∗,i∗(t), Uhp
t ,i

p
t
(t) ≥ Bh∗,i∗(t)

Note that by the definition of Uht,it(t), under event Et

Uht,it(t) = µ̂ht,it(t) + φ(ht) + c

√
2V̂ht,it(t) log(1/δ̃(t+))

Tht,it(t)
+ 3bc2 log(1/δ̃(t+))

Tht,it(t)

≤ f(xht,it) + φ(ht) + c

√
2V̂ht,it(t) log(1/δ̃(t+))

Tht,it(t)
+ 3bc2 log(1/δ̃(t+))

Tht,it(t)

+ c

√
2V̂ht,it(t) log(1/δ̃(t))

Tht,it(t)
+ 3bc2 log(1/δ̃(t))

Tht,it(t)

≤ f(xht,it) + φ(ht) + 2c

√
2V̂ht,it(t) log(1/δ̃(t+))

Tht,it(t)
+ 6bc2 log(1/δ̃(t+))

Tht,it(t)

(5)

where the first inequality holds by the definition of U and the second one holds by t+ ≥ t. Similarly the
parent node satisfies the above inequality

Uhp
t ,i

p
t
(t) ≤ f(xhp

t ,i
p
t
) + φ(hpt) + 2c

√√√√2V̂hp
t ,i

p
t
(t) log(1/δ̃(t+))
Thp

t ,i
p
t
(t) + 6bc2 log(1/δ̃(t+))

Thp
t ,i

p
t
(t)

17

Published in Transactions on Machine Learning Research (05/2023)

By Lemma B.4, we know Uh∗,i∗(t) ≥ f∗. If (h∗, i∗) is a leaf, then by our definition Bh∗,i∗(t) = Uh∗,i∗(t) ≥ f∗.
Otherwise, there exists a leaf (hx, ix) containing the maximum point which has (h∗, i∗) as its ancestor.
Therefore we know that f∗ ≤ Bhx,ix ≤ Bh∗,i∗ , so Bh∗,i∗ is always an upper bound for f∗. Now we know that

∆ht,it(t) := f∗ − f(xht,it) ≤ φ(ht) + 2c

√
2V̂ht,it(t) log(1/δ̃(t+))

Tht,it(t)
+ 6bc2 log(1/δ̃(t+))

Tht,it(t)

∆hp
t ,i

p
t
(t) := f∗ − f(xhp

t ,i
p
t
) ≤ φ(hpt) + 2c

√√√√2V̂hp
t ,i

p
t
(t) log(1/δ̃(t+))
Thp

t ,i
p
t
(t) + 6bc2 log(1/δ̃(t+))

Thp
t ,i

p
t
(t)

Recall that the algorithm selects a node only when Tht,it(t) < τht,it(t) and thus the statistical uncertainty
is large, i.e., φ(ht) ≤ SEht,it(T, t), and the choice of τht,it(t), we get

∆ht,it(t) ≤ 3c

√
2V̂ht,it(t) log(1/δ̃(t+))

Tht,it(t)
+ 9bc2 log(1/δ̃(t+))

Tht,it(t)

≤ 3c

√
2V̂ht,it(t) log(2/δ̃(t))

Tht,it(t)
+ 9bc2 log(2/δ̃(t))

Tht,it(t)
where we used the fact t+ ≤ 2t for any t. For the parent (hpt , i

p
t), since Thp

t ,i
p
t
(t) ≥ τhp

t ,i
p
t
(t) and thus

φ(hpt) ≥ SEhp
t ,i

p
t
(T, t), we know that

∆hp
t ,i

p
t
(t) ≤ φ(hpt) + 2c

√√√√2V̂hp
t ,i

p
t
(t) log(1/δ̃(t+))
τhp

t ,i
p
t
(t) + 6bc2 log(1/δ̃(t+))

τhp
t ,i

p
t
(t) ≤ 3φ(hpt)

The above inequality implies that the selected node Pht,it must have a 3φ(hpt) optimal parent under Et. �

Lemma B.4. (U Upper Bounds f∗) Under event Et, we have that for any optimal node (h∗, i?) and any
choice of the smoothness function φ(h) in Algorithm 3, Uh∗,i∗(t) is an upper bound on f?

Proof. The proof here is similar to that of Lemma 5 in Shang et al. (2019). Since t+ ≥ t, we have

Uh∗,i∗(t) = µ̂h∗,i∗(t) + φ(h∗) + c

√
2V̂h∗,i∗(t) log(1/δ̃(t+))

Th∗,i∗(t)
+ 3bc2 log(1/δ̃(t+))

Th∗,i∗(t)

≥ µ̂h∗,i∗(t) + φ(h∗) + c

√
2V̂h∗,i∗(t) log(1/δ̃(t))

Th∗,i∗(t)
+ 3bc2 log(1/δ̃(t))

Th∗,i∗(t)
≥ φ(h∗) + f(xh∗,i∗)

where the last inequality is by the event Et,

µ̂h∗,i∗(t) + c

√
2V̂h∗,i∗(t) log(1/δ̃(t))

Th∗,i∗(t)
+ 3bc2 log(1/δ̃(t))

Th∗,i∗(t)
≥ f(xh∗,i∗) �

Lemma B.5. (Details for Solving τ) For any choice of φ(h), the solution τh,i(t) to the equation φ(h) =
SEh,i(T, t) for the proposed VHCT algorithm in Section 4 is

τh,i(t) =
(

1 +
√

1 + 3bφ(h)
V̂h,i(t)/2

)2
c2

2φ(h)2 V̂h,i(t) log(1/δ̃(t+)) (6)

Proof. First, we define the following variables for ease of notatioins
A := φ(h)

B := c

√
2V̂h,i(t) log(1/δ̃(t+))

C := 3bc2 log(1/δ̃(t+))

18

Published in Transactions on Machine Learning Research (05/2023)

Therefore the original equation φ(h) = SEh,i(T, t) can be written as,

A = B · 1√
τh,i(t)

+ C

τh,i(t)

Note that the above is a quadratic equation of τh,i(t), therefore we arrive at the solution

τh,i(t) =
(

1 +
√

1 + 3bA
V̂h,i(t)/2

)2
c2

2A2 V̂h,i(t) log(1/δ̃(t+)) �

B.3 Supporting Lemmas

Lemma B.6. Let X1, . . . , Xt be i.i.d. random variables taking their values in [µ− b
2 , µ+ b

2], where µ = E[Xi].
Let X̄t, Vt be the mean and variance of {Xi}i=1:t. For any t ∈ N and x > 0, with probability at least 1−3e−x,
we have ∣∣X̄t − µ

∣∣ ≤√2Vtx
t

+ 3bx
t

Proof. This lemma follows the results in Lemma B.7. Note that X1, X2, . . . , Xt ∈ [µ − b
2 , µ + b

2], we can
define Yi = Xi − (µ− b

2) then Y1, Y2, . . . , Yt ∈ [0, b] and they are i.i.d variables. Therefore for any t ∈ N and
x > 0, with probability at least 1− 3e−x, we have

∣∣∣∣Ȳt − b

2

∣∣∣∣ ≤
√

2Vt(Y)x
t

+ 3bx
t

Since the variance of Yi is the same as the variance of Xi. Therefore we have

∣∣X̄t − µ
∣∣ ≤√2Vt(X)x

t
+ 3bx

t
�

Lemma B.7. (Bernstein Inequality, Theorem 1 in Audibert et al. (2009)) Let X1, . . . , Xt be i.i.d.
random variables taking their values in [0, b]. Let µ = E [X1] be their common expected value. Consider the
empirical mean X̄t and variance Vt defined respectively by

X̄t =
∑t
i=1Xi

t
and Vt =

∑t
i=1
(
Xi − X̄t

)2
t

Then, for any t ∈ N and x > 0, with probability at least 1− 3e−x

∣∣X̄t − µ
∣∣ ≤√2Vtx

t
+ 3bx

t

Furthermore, introducing

β(x, t) = 3 inf
1<α≤3

(
log t
logα ∧ t

)
e−x/α

where u ∧ v denotes the minimum of u and v, we have for any t ∈ N and x > 0 with probability at least
1− β(x, t) ∣∣X̄s − µ

∣∣ ≤√2Vsx
s

+ 3bx
s

holds simultaneously for s ∈ {1, 2, . . . , t}.

19

Published in Transactions on Machine Learning Research (05/2023)

C Proof of Theorem 4.1

C.1 The choice of τh,i(t).

When φ(h) = ν1ρ
h, we have the following choice of τh,i(t) by Lemma B.5.

τh,i(t) =
(

1 +
√

1 + 3bν1ρh

V̂h,i(t)/2

)2
(c

ν1ρh
)2(V̂h,i(t)/2) · log(1/δ̃(t+))

=
(

2 + 2
√

1 + 3bν1ρh

V̂h,i(t)/2
+ 3bν1ρ

h

V̂h,i(t)/2

)
c2 log

(
1/δ̃ (t+)

)
(V̂h,i(t)/2)

ν2
1

ρ−2h

=
(
V̂h,i(t) +

√
V̂h,i(t)2 + 6bν1ρhV̂h,i(t) + 3bν1ρ

h

)
c2 log

(
1/δ̃ (t+)

)
ν2

1
ρ−2h

(7)

Since variance is non-negative, we have τh,i(t) ≥ 3bc2
ν1
ρ−h. When the variance term V̂h,i(t) is small, the other

two terms are small. We also have the following upper bound for τh,i(t).

τh,i(t) ≤ D2
1
c2 log

(
1/δ̃ (t+)

)
ν2

1
ρ−2h + 3bν1

c2 log
(
1/δ̃ (t+)

)
ν2

1
ρ−h

where we define the constant D2
1 =

(
Vmax + 2

√
V 2

max + 6bVmaxν1

)
= O(Vmax).

C.2 Main proof

This part of the proof follows Theorem 3.1. Let H be an integer that satisfies 1 ≤ H < H(n) to be decided
later.

R̃En =
n∑
t=1

∆ht,itIEt
≤
H(n)∑
h=0

∑
i∈Ih(n)

n∑
t=1

∆h,iI(ht,it)=(h,i)IEt

≤ 2aC
H∑
h=1

(OEh−1)−d̄
n∑
t=1

max
i∈Ih(n)

SEh,i(T, t)︸ ︷︷ ︸
(a)

+a
H(n)∑
H+1

∑
i∈Ih(n)

n∑
t=1

SEh,i(T, t)︸ ︷︷ ︸
(b)

By Lemma B.3, we have a = 3 and thus the following inequality

R̃En ≤
H∑
h=0

2Cρ−d(h−1)

{
6c
√

2(max
i∈Ih(n)

{τh,i(n)})Vmax log(2/δ̃(n)) + 9bc2 log(2/δ̃(n)) log(max
i∈Ih(n)

{τh,i(n)})
}

︸ ︷︷ ︸
(a)

+
H(n)∑
h=H+1

∑
i∈Ih(n)

{
6c
√

2Th,i(n)Vmax log(2/δ̃(t̄h,i)) + 9bc2 log(2/δ̃(t̄h,i)) log Th,i(n)
}

︸ ︷︷ ︸
(b)

Now we bound the two terms (a) and (b) of R̃En separately.

20

Published in Transactions on Machine Learning Research (05/2023)

(a) ≤
H∑
h=0

2Cρ−d(h−1)

{
6c
√

2(max
i∈Ih(n)

{τh,i(n)})Vmax log(2/δ̃(n)) + 9bc2 log(2/δ̃(n)) log(max
i∈Ih(n)

{τh,i(n)})
}

≤
H∑
h=0

2CD1cρ
d log(2/δ̃(n))
ν1

6c
√

2Vmaxρ
−h(d+1) + 2C

√
3bν1cρ

d log(2/δ̃(n))
ν1

6c
√

2Vmaxρ
−h(d+ 1

2)

+ 18Cρ−d(h−1)bc2 log(2/δ̃(n))
(

log
(
log(2/δ̃(n))

)
+ 2 log(D1c

ν1
)− 2h log ρ

)
≤ 12

√
2VmaxCD1c

2ρd log(2/δ̃(n))
ν1(1− ρ) ρ−H(d+1) + 12

√
6bν1VmaxCc

2ρd log(2/δ̃(n))
ν1(1− ρ) ρ−H(d+ 1

2)

+
18Cbc2ρ2d log(2/δ̃(n))

(
log
(
log(2/δ̃(n))

)
+ 2 log(D1c

ν1
)
)

1− ρ ρ−Hd

+ 36Cbc2 log(2/δ̃(n)) log(1
ρ

) 1
(1− ρd)2

(
(ρdH − ρ2dH − ρ2d)ρ−dH + ρ2d

)

where in the second inequality we used the upper bound of τh(t) in Section B. The last inequality is by the
formula for the sum of a geometric sequence and the following result.

H∑
h=0

hρ−d(h−1) = 1
1− ρd

Hρ−d(H−1) −
H−2∑
h=−1

ρ−dh

= 1

(1− ρd)2

(
(ρdH − ρ2dH − ρ2d)ρ−dH + ρ2d

)
≤ 1

(1− ρ)2

(
(ρdH − ρ2dH − ρ2d)ρ−dH + ρ2d

)

Next we bound the second term (b) in the summation. By the Cauchy-Schwarz Inequality,

(b) ≤
H(n)∑
h=H+1

∑
i∈Ih(n)

{
6c
√

2Th,i(n)Vmax log(2/δ̃(t̄h,i)) + 9bc2 log(2/δ̃(t̄h,i)) log Th,i(n)
}

≤

√√√√√n

H(n)∑
h=H+1

∑
i∈Ih(n)

log(2/δ̃(t̄h,i)) +
H(n)∑
h=H+1

∑
i∈Ih(n)

9bc2 log(2/δ̃(t̄h,i)) log Th,i(n)

Recall that our algorithm only selects a node when Th,i(t) ≥ τh,i(t) for its parent, i.e. when the number of
pulls is larger than the threshold and the algorithm finds the node by passing its parent. Therefore we have

Th,i(t̃h,i) ≥ τh,i(t̃h,i),∀h ∈ [0, H(n)− 1], i ∈ Ih(n)+

So we have the following set of inequalities.

21

Published in Transactions on Machine Learning Research (05/2023)

n =
H(n)∑
h=0

∑
i∈Ih(n)

Th,i(n) ≥
H(n)−1∑
h=0

∑
i∈I+

h
(n)

Th,i(n) ≥
H(n)−1∑
h=0

∑
i∈I+

h
(n)

Th,i(t̃h,i) ≥
H(n)−1∑
h=0

∑
i∈I+

h
(n)

τh,i(t̃h,i)

≥
H(n)−1∑
h=H

∑
i∈I+

h
(n)

c2 log
(
1/δ̃ (t+)

)
ε

ν2
1

ρ−2h ≥ c2ρ−2Hε

H(n)−1∑
h=H

∑
i∈I+

h
(n)

log
(

1/δ̃
(
t̃+h,i

))
ν2

1

= c2ρ−2Hε

H(n)−1∑
h=H

∑
i∈I+

h
(n)

log
(
1/δ̃

(
max[t̄h+1,2i−1, t̄h+1,2i]+

))
ν2

1

= c2ρ−2Hε

H(n)−1∑
h=H

∑
i∈I+

h
(n)

max[log
(

1/δ̃
(
t̄+h+1,2i−1

))
, log

(
1/δ̃

(
t̄+h+1,2i

))
]

ν2
1

≥ c2ρ−2Hε

H(n)−1∑
h=H

∑
i∈I+

h
(n)

log
(

1/δ̃
(
t̄+h+1,2i−1

))
+ log

(
1/δ̃

(
t̄+h+1,2i

))
2ν2

1

= c2ρ−2Hε

H(n)∑
h=H+1

∑
i∈I+

h−1(n)

log
(

1/δ̃
(
t̄+h,2i−1

))
+ log

(
1/δ̃

(
t̄+h,2i

))
2ν2

1

= c2ρ−2H

2ν2
1

ε

H(n)∑
h=H+1

∑
i∈Ih(n)

log
(

1/δ̃
(
t̄+h,i

))

Note that in the second equality, we have used the definition of t̃h,i, t̃h,i = max(t̄h,i, t̄h,i). Moreover, the
third equality relies on the following fact

log
(

1/δ̃
(

max
{
t̄h+1,2i−1, t̄h+1,2i

}+
))

= max
{

log
(

1/δ̃
(
t̄+h+1,2i−1

))
, log

(
1/δ̃

(
t̄+h+1,2i

))}
The next equality is just by change of variables h = h + 1. In the last inequality, we used the fact that for
any h > 0, I+

h (n) covers all the internal nodes at level h, so the set of the children of I+
h (n) covers Ih+1(n).

In other words, we have proved that

H(n)∑
h=H+1

∑
i∈Ih(n)

log
(

1/δ̃
(
t̄+h,i

))
≤ 2nν2

1ρ
2H

c2ε

Therefore we have

(b) ≤ 2nν1ρ
H

c
√
ε

+ 18bν2
1ρ

2Hn logn
ε

If we let the dominating terms in (a) and (b) be equal, then

ρH =
(

12
√

2VmaxCD1c
3√ερd log(2/δ̃(n))

2ν2
1n(1− ρ)

) 1
d+2

Substitute the above choice of ρH into the original inequality, then the dominating terms in (a) and (b)
reduce to Õ(C1V

1
d+2

max n
d+1
d+2) because D1 = Θ(

√
Vmax), where C1 is a constant that does not depend on the

variance. The non-dominating terms are all Õ(n
2d+1
2d+4), we get

22

Published in Transactions on Machine Learning Research (05/2023)

R̃En ≤ (a) + (b) ≤ C1V
1

d+2
max n

d+1
d+2 (log n

δ
) 1

d+2 + C2n
2d+1
2d+4 log n

δ
(8)

where C2 is another constant. Finally, combining all the results in Theorem 3.1, Lemma B.2, Eqn. (8), we
can obtain the upper bound

R̃VHCT
n ≤

√
n+

√
2n log(4n2

δ
) + C1V

1
d+2

max n
d+1
d+2 (log n

δ
) 1

d+2 + C2n
2d+1
2d+4 log n

δ

≤ 2
√

2n log(4n2

δ
) + C1V

1
d+2

max n
d+1
d+2 (log n

δ
) 1

d+2 + C2n
2d+1
2d+4 log n

δ

The expectation in the theorem can be shown by directly taking δ = 1/n as in Theorem 3.1. �

D Proof of Theorem 4.2

D.1 Choice of the Threshold

By Lemma B.5, we get that when φ(h) = 1/h, we can solve for τh as follows.

τh,i(t) =
(

1 +
√

1 + 3b/h
V̂h,i(t)(t)/2

)2
c2h2(V̂h,i(t)(t)/2) · log(1/δ̃(t+))

=
(
V̂h,i(t) +

√
V̂h,i(t)2 + 6b/hV̂h,i(t) + 3b/h

)
c2 log

(
1/δ̃

(
t+
))
h2

≤ D2
1c

2 log
(
1/δ̃

(
t+
))
h2 + 3bc2 log

(
1/δ̃

(
t+
))
h

where we again define a new constant D2
1 =

(
Vmax + 2

√
V 2

max + 6bVmax

)
= Θ(Vmax).

D.2 Main Proof

The failing confidence interval part can be easily done as in Section C since Et is also a high-probability
event at each time t. We start from the bound on R̃E . By Theorem 3.1 and similar to what we have done in
Theorem 4.1, we decompose R̃E over different depths. Let 1 ≤ H < H(n) be an integer to be decided later,
then we have

R̃En =
n∑
t=1

∆ht,itIEt ≤
H(n)∑
h=0

∑
i∈Ih(n)

n∑
t=1

∆h,iI(ht,it)=(h,i)IEt

≤ 2aC
H∑
h=1

(OEh−1)−d̄
n∑
t=1

max
i∈Ih(n)

SEh,i(T, t)︸ ︷︷ ︸
(a)

+a
H(n)∑
H+1

∑
i∈Ih(n)

n∑
t=1

SEh,i(T, t)︸ ︷︷ ︸
(b)

Now we bound the two terms (a) and (b) of R̃En separately. By Lemma B.3, we have a = 3.

23

Published in Transactions on Machine Learning Research (05/2023)

(a) ≤
H∑
h=0

2Chd̄
{

6c
√

2 max
i
{τh,i(n)}Vmax log(2/δ̃(n)) + 9bc2 log(2/δ̃(n)) log(max

i∈Ih(n)
{τh,i(n)})

}

≤
H∑
h=0

12CD1c
2hd̄+1

√
2log

(
1/δ̃ (n)

)
Vmax log(2/δ̃(n))

+
H∑
h=0

36bCc2hd̄+ 1
2

√
2log

(
1/δ̃ (n)

)
Vmax log(2/δ̃(n))

+ 18Cbc2hd̄ log(2/δ̃(n)) log
(
D2

1c
2 log

(
2/δ̃ (n)

)
h2)

≤
H∑
h=0

12aCD1c
2hd̄+1 log(2/δ̃(n))

√
2Vmax +

H∑
h=0

36bCc2hd̄+ 1
2 log(2/δ̃(n))

√
2Vmax

+
H∑
h=0

18Cbc2hd̄ log(2/δ̃(n)) log
(
D2

1c
2 log

(
2/δ̃ (n)

)
n2)

≤ 12
√

2VmaxaCD1c
2 log(2/δ̃(n))

H∑
h=0

hd̄+1 + 36bCc2 log(2/δ̃(n))
√

2Vmax

H∑
h=0

hd̄+ 1
2

+ 18Cbc2 log(2/δ̃(n)) log
(
D2

1c
2 log

(
2/δ̃ (n)

)
n2) H∑

h=0
hd̄

≤ 12
√

2VmaxaCD1c
2 log(2/δ̃(n))

 H∑
h=0

h

d̄+1

+ 36bCc2 log(2/δ̃(n))
√

2Vmax

 H∑
h=0

h

d̄+ 1
2

+ 18Cbc2 log(2/δ̃(n)) log
(
D2

1c
2 log

(
2/δ̃ (n)

)
n2) H∑

h=0
h

d̄

≤ 12
√

2VmaxaCD1c
2 log(2/δ̃(n))

(
H(H + 1)

2

)d̄+1

+ 36bCc2 log(2/δ̃(n))
√

2Vmax

(
H(H + 1)

2

)d̄+ 1
2

+ 18Cbc2 log(2/δ̃(n)) log
(
D2

1c
2 log

(
2/δ̃ (n)

)
n2)(H(H + 1)

2

)d̄
Next we bound the second term (b) in the summation. By the Cauchy-Schwarz Inequality,

(b) ≤
H(n)∑
h=H+1

∑
i∈Ih(n)

{
6c
√

2Th,i(n)Vmax log(2/δ̃(t̄h,i)) + 9bc2 log(2/δ̃(t̄h,i)) log Th,i(n)
}

≤

√√√√√n

H(n)∑
h=H+1

∑
i∈Ih(n)

log(2/δ̃(t̄h,i)) +
H(n)∑
h=H+1

∑
i∈Ih(n)

9bc2 log(2/δ̃(t̄h,i)) log Th,i(n)

Recall that our algorithm only selects a node when Th,i(t) ≥ τh,i(t) for its parent, i.e. when the number of
pulls is larger than the threshold and the algorithm finds the node by passing its parent. Therefore we have

Th,i(t̃h,i) ≥ τh,i(t̃h,i),∀h ∈ [0, H(n)− 1], i ∈ Ih(n)+

So we have the following set of inequalities.

24

Published in Transactions on Machine Learning Research (05/2023)

n =
H(n)∑
h=0

∑
i∈Ih(n)

Th,i(n) ≥
H(n)−1∑
h=0

∑
i∈I+

h
(n)

Th,i(n) ≥
H(n)−1∑
h=0

∑
i∈I+

h
(n)

Th,i(t̃h,i) ≥
H(n)−1∑
h=0

∑
i∈I+

h
(n)

τh,i(t̃h,i)

≥
H(n)−1∑
h=H

∑
i∈I+

h
(n)

c2 log
(
1/δ̃

(
t+
))
εh2 ≥ c2H2

ε

H(n)−1∑
h=H

∑
i∈I+

h
(n)

log
(

1/δ̃
(
t̃+h,i

))

= c2H
2
ε

H(n)−1∑
h=H

∑
i∈I+

h
(n)

log
(
1/δ̃

(
max[t̄h+1,2i−1, t̄h+1,2i]+

))

= c2H
2
ε

H(n)−1∑
h=H

∑
i∈I+

h
(n)

max[log
(

1/δ̃
(
t̄+h+1,2i−1

))
, log

(
1/δ̃

(
t̄+h+1,2i

))
]

≥ c2H
2
ε

2

H(n)−1∑
h=H

∑
i∈I+

h
(n)

log
(

1/δ̃
(
t̄+h+1,2i−1

))
+ log

(
1/δ̃

(
t̄+h+1,2i

))

= c2H
2
ε

2

H(n)∑
h=H+1

∑
i∈I+

h−1(n)

log
(

1/δ̃
(
t̄+h,2i−1

))
+ log

(
1/δ̃

(
t̄+h,2i

))

= c2H
2
ε

2 ε

H(n)∑
h=H+1

∑
i∈Ih(n)

log
(

1/δ̃
(
t̄+h,i

))

Note that in the second equality, we have used the definition of t̃h,i = max(t̄h,i, t̄h,i). Moreover, the third
equality relies on the following fact

log
(

1/δ̃
(

max
{
t̄h+1,2i−1, t̄h+1,2i

}+
))

= max
{

log
(

1/δ̃
(
t̄+h+1,2i−1

))
, log

(
1/δ̃

(
t̄+h+1,2i

))}
The next equality is just by change of variables h = h + 1. In the last inequality, we used the fact that for
any h > 0, I+

h (n) covers all the internal nodes at level h, so the set of the children of I+
h (n) covers Ih+1(n).

In other words, we have proved that

H(n)∑
h=H+1

∑
i∈Ih(n)

log
(

1/δ̃
(
t̄+h,i

))
≤ 2n
c2ε

H
−2

Therefore we have the following inequality

(b) ≤ 2n
c
√
ε
H
−1 + 18bn logn

ε
H
−2

If we let the dominating terms in (a) and (b) be equal, then

H
−1 =

(
12
√

2VmaxCD1c
3√ε log(2/δ̃(n))

2n

) 1
2d̄+3

Substitute the above choice of H into the original inequality, then the dominating terms in (a) and (b)
reduce to Õ(C1V

1
2d̄+3

max n
2d̄+2
2d̄+3) because D1 = Θ(

√
Vmax), where C1 is a constant that does not depend on the

variance. The non-dominating terms are all Õ(n
2d̄+1
2d̄+3), we get

25

Published in Transactions on Machine Learning Research (05/2023)

R̃En ≤ (a) + (b) ≤ C1V
1

2d̄+3
max n

2d̄+2
2d̄+3 (log n

δ
)

1
2d̄+3 + C2n

2d̄+1
2d̄+3 log n

δ
(9)

where C2 is another constant. Finally, combining all the results in Theorem 3.1, Lemma B.2, Eqn. (9), we
can obtain the upper bound

R̃VHCT
n ≤

√
n+

√
2n log(4n2

δ
) + C1V

1
4d̄+6

max n
2d̄+2
2d̄+3 (log n

δ
)

1
2d̄+3 + C2n

2d̄+1
2d̄+3 log n

δ

≤ 2
√

2n log(4n2

δ
) + C1V

1
4d̄+6

max n
2d̄+2
2d̄+3 (log n

δ
)

1
2d̄+3 + C2n

2d̄+1
2d̄+3 log n

δ

The expectation in the theorem can be shown by directly taking δ = 1/n as in Theorem 3.1. �

E Experiment Details

In this appendix, we provide more experiment details and additional experiments as a supplement to Section
5. For the implementation of all the algorithms, we utilize the publicly available code of POO and HOO at
the link https://rdrr.io/cran/OOR/man/POO.html and the PyXAB library (Li et al., 2023). For all the
experiments in Section 5 and Appendix E.2, we have used a low-noise setting where εt ∼ Uniform(−0.05, 0.05)
to verify the advantage of VHCT.

E.1 Experimental Settings

Remarks on Bayesian Optimization Algorithm. For the implementation of the Bayesian Optimization
algorithm BO, we have used the publicly available code at https://github.com/SheffieldML/GPyOpt, which
is also recommended by Frazier (2018). For the acquisition function and the prior of BO, we have used the
default choices in the aforementioned package. We emphasize that BO is much more computationally
expensive compared with the other algorithms due to the high computational complexity of Gaussian
Process. The other algorithms in this paper (HOO, HCT, VHCT, etc.) take at most minutes to reach the
endpoint of every experiment, where as BO typically needs a few days to finish. Moreover, the performance
(cumulative regret) of BO is not comparable with our algorithm.

Synthetic Experiments. In Figure 4, we provide the performances of the different algorithms (VHCT,
HCT, T-HOO) that need the smoothness parameters under different parameter settings ρ ∈ {0.25, 0.5, 0.75}.
Here, we choose to plot an equivalent notion, the average regret Rt/t instead of the cumulative regret Rt
because some curves have very large cumulative regrets, so it would be hard to compare them with the
other curves. In general, ρ = 0.75 or ρ = 0.5 are good choices for VHCT and HCT, and ρ = 0.25 is a good
choice for T-HOO. Therefore, we use these parameter settings in the real-life experiments and the additional
experiments in the next subsection. For POO and PCT, we follow Grill et al. (2015) and use ρmax = 0.9. The
unknown bound b is set to be b = 1 for all the algorithms used in the experiments.

Landmine Dataset. The landmine dataset contains 29 landmine fields, with each field consisting of dif-
ferent number of positions. Each position has some features extracted from radar images, and machine
learning models (like SVM) are used to learn the features and detect whether a certain position has land-
mine or not. The dataset is available at http://www.ee.duke.edu/~lcarin/LandmineData.zip. We have
followed the open-source implementation at https://github.com/daizhongxiang/Federated_Bayesian_
Optimization to process the data and train the SVM model. We tune two hyper-parameters when training
SVM, the RBF kernel parameter from [0.01, 10], and the L2 regularization from [1e-4, 10]. The model is
trained on the training set with the selected hyper-parameter and then evaluated on the testing set. The
testing AUC-ROC score is the blackbox objective to be optimized.

MNIST Dataset and Neural Network. The MNIST dataset can be downloaded from http://yann.
lecun.com/exdb/mnist/ and is one of the most famous image classification datasets. We have used stochas-
tic gradient descent (SGD) to train a two-layer feed-forward neural network on the training images, and the

26

https://rdrr.io/cran/OOR/man/POO.html
https://github.com/SheffieldML/GPyOpt
http://www.ee.duke.edu/~lcarin/ LandmineData.zip
https://github.com/daizhongxiang/Federated_Bayesian_Optimization
https://github.com/daizhongxiang/Federated_Bayesian_Optimization
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Published in Transactions on Machine Learning Research (05/2023)

(a) Garland (b) DoubleSine (c) 2D-Rastrigin

Figure 4: Best parameters on the Garland, DoubleSine and Rastrigin function

objective is the validation accuracy on the testing images. We have used ReLU activation and the hidden
layer has 64 units. We tune three different hyper-parameters of SGD to find the best hyper-parameter,
specifically, the mini batch-size from [1, 100], the learning rate from [1e-6, 1], and the weight decay from
[1e-6, 5e-1].

E.2 Additional Experiments

In this subsection, we provide additional experiments on some other nonconvex optimization evaluation
benchmarks. They are used in many optimization researches to evaluate the performance of different op-
timization algorithms, including the convergence rate, the precision and the robustness such as Azar et al.
(2014); Shang et al. (2019); Bartlett et al. (2019). Detailed discussions of these functions can be found at
https://en.wikipedia.org/wiki/Test_functions_for_optimization Although some of these function
values (e.g., the Himmelblau function) are not bounded in [0, 1] on the domain we select, the convergence
rate of different algorithms will not change as long as the function is uniformly bounded over its domain. To
commit a fair comparison (i.e., sharing similar signal/noise ratio), we have re-scaled all the objectives
listed below to be bounded by [−1, 1].

We list the functions used and their mathematical expressions as follows.

• DoubleSine (Figure 5(a)) is (originally) a one dimensional function proposed by Grill et al. (2015)
with multiple sharp local minimums and one global minimum. The results are shown in Figure 1(a).

f(x, y) = 20 exp
[
−0.2

√
0.5 (x2 + y2)

]
+ exp[0.5(cos 2πx+ cos 2πy)]− e− 20.

• The counter example f(x) = 1 + 1/ ln x in 4 decreases too fast around zero and thus its smoothness
cannot be measured by ν1ρ

h for any constants ν1, ρ > 0. However, because it is continuously
differentiable and even monotone, the function is very easy to optimize. The results are shown in
Figure 6(b).

• Himmelbalu (Figure 5(c)) is (originally) a two dimensional function with four flat global minimums.
We use the negative of the original function for maximization, and we restrain x to be in [−5, 5]2 to
include all four global maximums. The results are shown in Figure 6(c).

f(x, y) = −
(
x2 + y − 11

)2 − (x+ y2 − 7
)2
.

• Rastrigin (Figure 5(d)) is a multi-dimensional function with a vast number of sharp local minimums
and one global minimum. We use the negative of the original function for maximization. We run

27

https://en.wikipedia.org/wiki/Test_functions_for_optimization

Published in Transactions on Machine Learning Research (05/2023)

(a) DoubleSine (b) Counter Example (c) Himmelblau (d) 10D-Rastrigin

Figure 5: Plots of all the synthetic objectives used in the experiments. We have used a 10-dimensional
Rastrigin function and the figure in (d) is a two-dimensional one.

(a) DoubleSine (b) Counter Example (c) Himmelblau (d) 10D-Rastrigin

Figure 6: Cumulative regret of different algorithms on the synthetic functions.

all the algorithms on the 10-dimensional space [−1, 1]10. The results are shown in Figure 6(d).

f(x) = −An+
n∑
i=1

[
A cos (2πxi)− x2

i

]
with A = 10.

As can be observed in all the figures, VHCT is one of the fastest algorithms, which validates our claims in the
theoretical analysis. We remark that Himmelblau is very smooth after the normalization by its maximum
absolute value on [−5, 5]2 (890) and thus a relatively easier task compared with functions such as Rastrigin.
DoubleSine contain many local optimums that are very close to the global optimum. Therefore, the regret
differences between VHCT and HCT are expected to be small in these two cases.

E.3 Performance of VHCT in the High-noise Setting

Apart from the low-noise setting, we have also examined the performance of VHCT in the high-noise setting.
In the following experiments, we have set the noise to be εt ∼ Uniform(−0.5, 0.5). Note that the function
values are in [−1, 1], therefore such a noise is very high. As discussed in Section 4.4, it should be expected
that the performance of VHCT is similar to or only marginally better than HCT in this case. As shown in
Figure 7, the performance of VHCT and HCT are similar, which matches our expectation.

28

Published in Transactions on Machine Learning Research (05/2023)

(a) Garland (b) DoubleSine (c) Himmelblau (d) 1D-Rastrigin

Figure 7: Performance of different algorithms on the synthetic functions with high noise

29

	Introduction
	Preliminaries
	Optimum-statistical Collaboration
	Implementation of Optimum-statistical Collaboration
	The Resolution Descriptor (Definition 1)
	The Uncertainty Quantifier (Definition 2)
	Algorithm Example - VHCT
	Regret Bound Examples

	Experiments
	Conclusions
	Proof of the General Regret Bound in Theorem 3.1
	Notations and Useful Lemmas
	Preliminary Notations
	Useful Lemmas for the Proof of Theorem 4.1 and Theorem 4.2
	Supporting Lemmas

	Proof of Theorem 4.1
	The choice of h, i(t).
	Main proof

	Proof of Theorem 4.2
	Choice of the Threshold
	Main Proof

	Experiment Details
	Experimental Settings
	Additional Experiments
	Performance of VHCT in the High-noise Setting

