

ECHO: TOWARD CONTEXTUAL SEQ2SEQ PARADIGMS IN LARGE EEG MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Electroencephalography (EEG), with its broad range of applications, necessitates models that can generalize effectively across various tasks and datasets. Large EEG Models (LEMs) address this by pretraining encoder-centric architectures on large-scale unlabeled data to extract universal representations. While effective, these models lack decoders of comparable capacity, limiting the full utilization of the learned features. To address this issue, we introduce ECHO, a novel decoder-centric LEM paradigm that reformulates EEG modeling as sequence-to-sequence learning. ECHO captures layered relationships among signals, labels, and tasks within sequence space, while incorporating discrete support samples to construct contextual cues. This design equips ECHO with in-context learning, enabling dynamic adaptation to heterogeneous tasks without parameter updates. Extensive experiments across multiple datasets demonstrate that, even with basic model components, ECHO consistently outperforms state-of-the-art single-task LEMs in multi-task settings, showing superior generalization and adaptability.

1 INTRODUCTION

Electroencephalography (EEG), owing to its portability and cost-effectiveness, has become the most widely used neural recording modality. Leveraging these advantages, EEG has been broadly applied to emotion recognition (Liu et al., 2024b), motor imagery (Ding et al., 2025), and diverse cognitive paradigms, which in turn demands models capable of maintaining generalization across heterogeneous tasks. Following the trend of large-scale models, researchers have proposed a series of Large EEG Models (LEMs) that place a pretrained encoder architecture at the core (Zhou et al., 2025a). These models are typically trained on large collections of unlabeled EEG data with self-supervised objectives such as masked reconstruction (Jiang et al., 2024d) or contrastive prediction (Wang et al., 2024a), thereby producing latent representations with strong generalization capacity that have demonstrated remarkable transferability across tasks.

Although these pretrained EEG encoders have been shown to learn high-quality representations, a major limitation remains: *they lack decoders of comparable capacity to transform such representations into usable predictions*. As illustrated in Figure 1 a (top), their decoding paradigm typically relies on a lightweight classifier (orders of magnitude smaller than the pretrained encoder) combined with additional fine-tuning to adapt the representations for downstream tasks. In other words, the model’s success on downstream tasks largely depends on whether the encoder can “bend” its representations during fine-tuning to accommodate a limited-capacity decoder.

Such adaptation to small-scale downstream data is inherently high-risk. On the one hand, the encoder may sacrifice its pretrained general knowledge to meet the fine-tuning demands of the decoder, leading to knowledge forgetting and degraded generalization (Guan et al., 2025). On the other hand, when the decoder itself is insufficient to reliably extract task-discriminative information, reliance on limited labeled data amplifies training uncertainty and makes the model sensitive to noise patterns (Hao et al., 2025). Consequently, **current paradigm remains constrained by decoder bottlenecks, preventing LEMs from realizing their generalization potential.**

While some recent studies have explored incorporating large language models (LLMs) as decoders, this paradigm remains fundamentally constrained: *it does not move beyond the “EEG-to-label” mapping, but merely shifts it into the text embedding space*. As illustrated in Figure 1 a (middle), this approach requires the LEM encoder and the LLM decoder to align by projecting EEG tokens

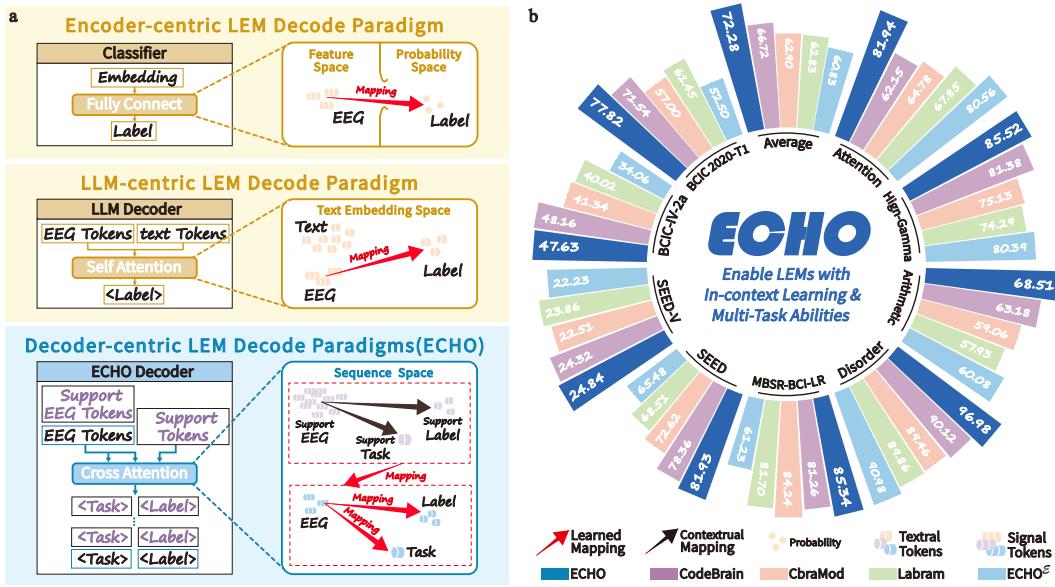


Figure 1: **a**, Top: Encoder-centric LEMs learn a direct mapping from EEG features to labels. Middle: LLM-centric LEMs follow the same scheme but shift it into the text embedding space. Bottom: ECHO extends such mapping by modeling various mappings within the sequence space. **b**, Performance comparison. ECHO^E indicates ECHO that do not adopt a decoder-centric paradigm. Detailed experimental settings and results are provided in Section 4 and Table 2.

and labels into a shared text embedding space, where the mapping is performed under the constraints of textual prompts (e.g., restricting the label types (Jiang et al., 2024c)).

The inductive biases of language models cannot be reliably transferred to time series EEG task (Tan et al., 2024). This stems from fundamental structural differences between EEG and language or vision. EEG relies on the precise localization of critical temporal dynamics, which are inherently misaligned with the static semantic patterns of text or images (Jing et al., 2024; Queen et al., 2023). As a result, projecting EEG directly into the text embedding space often drives models to exploit superficial correlations, such as mapping noise patterns to semantic labels (Wang & Ma, 2025), while diluting or even corrupting task-relevant information in the shared space (Almudévar et al., 2025). Ultimately, **text fails to serve as a genuine semantic bridge across modalities and instead functions merely as a surrogate label space, leaving LEMs without the reasoning and in-context learning (ICL) capabilities expected from LLMs.**

To overcome the limitations of existing paradigms, we propose a decoder-centric sequence-to-sequence (Seq2Seq) approach that enables LEMs to jointly model multi-task EEG representations while leveraging discrete samples as contextual support. As illustrated in Figure 1 a (bottom), the input is structured as a sequence comprising target EEG samples together with supporting EEG instances and their associated task and label tokens. The model performs next-token prediction, establishing associations between support samples and the target based on their mapped relationships. This process guides the generation of an output sequence that integrates both label and task tokens, thereby achieving multi-task learning within a unified framework. In summary, we refer to this new paradigm as **ECHO**: a decoder-centric framework and sequence-based learning method that preserves task-discriminative capacity while equipping LEMs with ICL.

To validate the effectiveness of our approach, we adopt off-the-shelf model components to avoid conflating our paradigm with architectural enhancements. We conduct extensive experiments across multiple EEG datasets, showing that ECHO consistently outperforms the latest single-task LEM baselines, even in multi-task settings (see Figure 1 b). ECHO can infer both the target task and its specific paradigms (e.g., identifying motor imagery and distinguishing its variants) without explicit prompts. Moreover, ECHO demonstrates ICL ability, adapting to new tasks and environments under the guidance of support samples. These results highlight the critical role of ECHO in advancing cross-task generalization and complex scenario modeling, while also providing insights for unlocking the full potential of existing LEMs.

108

2 PRELIMINARY

109

2.1 MULTI-TASK LEARNING FOR LEMs

110 Given heterogeneous EEG datasets, each dataset is represented as $\mathcal{D} = (\mathbf{X}, \mathbf{Y}, t)$, where $\mathbf{X} \in \mathbb{R}^{N \times T \times C}$ denotes the EEG inputs with N samples, each represented by T time steps and C channels; $\mathbf{Y} \in \mathbb{R}^{N \times |\mathcal{Y}_d|}$ denotes the corresponding dataset-specific labels, where $|\mathcal{Y}_d|$ depends on the dataset; and t is a task identifier specifying the experimental paradigm. The objective of LEMs is to learn generalizable representations, while performing conditional mappings $f(\mathbf{X} | t) \rightarrow \mathbf{Y}$. Based on this definition, the proposed decoder-centric paradigm differs from the two existing ones.

111 **Encoder-centric LEMs:** The conditional mapping from EEG to task-specific label is modeled as:

$$112 \quad f(\mathbf{X} | t) = \mathcal{C}(\mathcal{E}(\mathbf{X}; \theta_d); \phi_d) \rightarrow \mathbf{Y}, \quad (1)$$

113 where $\mathcal{E}_{\theta_d}(\cdot; \theta_d)$ and $\mathcal{C}_{\phi_d}(\cdot; \phi_d)$ decoder the encoder and classifier with parameters θ_d, ϕ_d fine-tuned on dataset \mathcal{D} . Consequently, this paradigm fails to generalize across datasets.

114 **LLM-centric LEMs:** The mapping incorporates both EEG and auxiliary textual prompts, with the decoder instantiated as an LLM:

$$115 \quad f(\mathbf{X} | t) = \mathcal{D}_{\text{LLM}}(\mathcal{E}(\mathbf{X}), <|\text{text}|>) \rightarrow <|\text{y}|>, \quad (2)$$

116 where $\mathcal{E}(\mathbf{X})$ encodes the EEG tokens, $<|\text{text}|>$ denotes textual tokens, and $\mathcal{D}_{\text{LLM}}(\cdot)$ is the LLM decoder that operates in the text embedding space. The output $<|\text{y}|>$ is a textual label. Thus, the key distinction from the encoder-centric paradigm lies in shifting the mapping into the text embedding space.

117 **Decoder-centric LEMs:** The proposed paradigm represents both inputs and outputs as structured sequences, guiding LEMs to perform multi-task EEG learning and contextual modeling within a unified decoding framework:

$$118 \quad \mathbf{S}_{\text{in}} = \{<|\text{special}|>, \{\mathcal{E}(\mathbf{X}_s)\}_{s=1}^S, \mathcal{E}(\mathbf{X}), <|\text{support}|>\}, \quad (3)$$

$$119 \quad \mathbf{S}_{\text{out}} = \{<|\text{support}|>, <|\text{task}|>, <|\text{y}|>, <|\text{special}|>\},$$

$$120 \quad f(\mathbf{X} | t) = \mathcal{D}(\mathbf{S}_{\text{in}}) \rightarrow \mathbf{S}_{\text{out}}, \quad (4)$$

121 where $<|\text{special}|>$ denotes special tokens, such as start or delimiter symbols, which provide structural cues for sequence decoding. $\{\mathcal{E}(\mathbf{X}_s)\}_{s=1}^S$ and $\mathcal{E}(\mathbf{X})$ represent the collection of support EEG tokens and the target EEG token. $<|\text{support}|>$ refers to task and label tokens for support samples. Through next-token prediction, $\mathcal{D}(\cdot)$ infers the task token $<|\text{task}|>$ and label token $<|\text{y}|>$ of the target sample by leveraging the mapping relationships established from the support samples. Therefore, under this Seq2Seq learning scheme, the decoder is required to learn mappings beyond label prediction (see Section 3.2 for details).

122

2.2 TECHNICAL CHALLENGES

123 While decoder-centric LEMs hold promise for advancing a new framework for LEMs, their implementation introduces three key technical challenges. We detail these challenges below and present the corresponding technical contributions in Section 3.

124 **C1: Inconsistency of EEG channels.** The number of EEG channels C and their ordering $\pi(C)$ are not standardized across datasets, posing significant challenges for generalization. Existing LEMs attempt to mitigate sensitivity to channel order during training through positional encoding strategies (e.g., asymmetric conditional positional encoding (Wang et al., 2024c)). However, at inference, the model still requires channel configurations to exactly match those seen during training. In multi-dataset settings, particularly in cross-dataset scenarios, encountering unseen channel arrangements disrupts spatial alignment and substantially degrades performance. To address this issue, we adopt a channel alignment preprocessing strategy (see Section 3.1).

125 **C2: Heterogeneity of sequence components.** The input and output sequences often consist of heterogeneous tokens, which creates difficulties for modeling. EEG requires capturing fine-grained temporal evolution, while discrete symbols encode semantic or task-control logic. Directly mixing

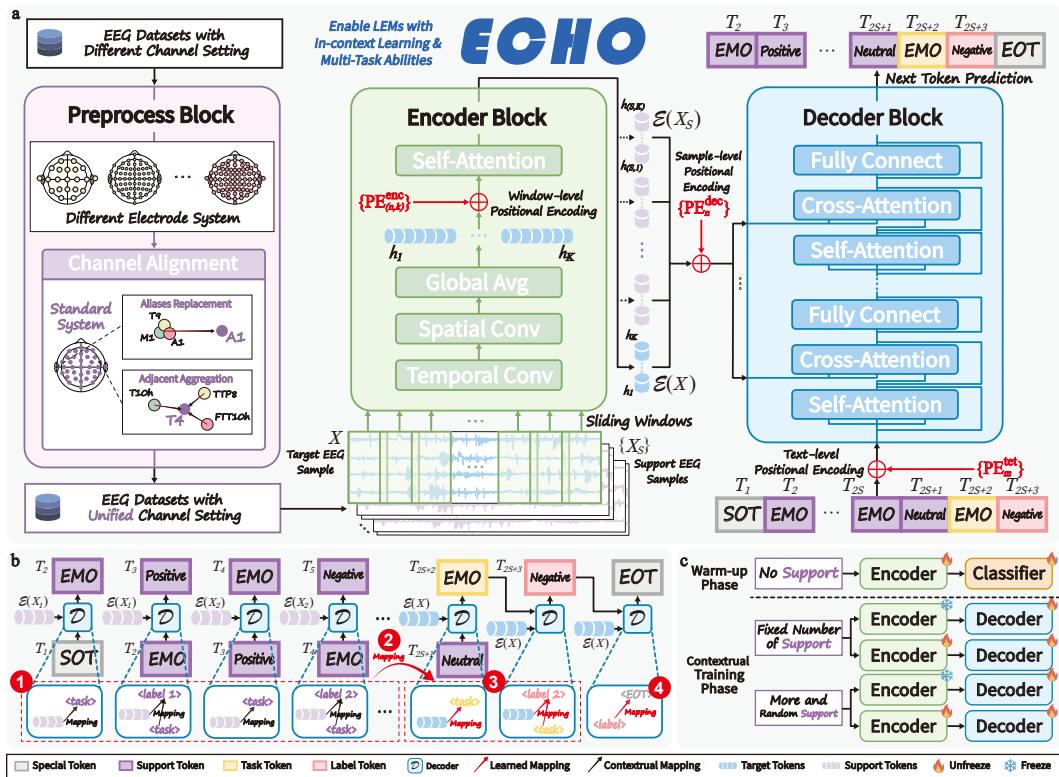


Figure 2: **a**, Overview of the ECHO framework. From left to right: preprocessing, encoder, and decoder blocks. The inputs and outputs are shown at the top-left, bottom-right, and top-right corners, respectively. **b**, Four sequential learning steps within the sequence format enable ECHO to capture diverse mapping relations. **c**, Multi-stage training strategy of ECHO.

these heterogeneous elements makes it difficult to balance continuous and discrete information. Furthermore, EEG samples may serve different functional roles (e.g., context vs. prediction targets), which the model must distinguish despite their homogeneous form. To address this, we propose a hybrid positional encoding mechanism (see Section 3.2).

C3: Absence of symbolic structure in EEG. Unlike language, EEG lacks discrete symbolic structure, making it difficult for LEMs to acquire ICL naturally. In language models, autoregressive pretraining over diverse discrete contexts (e.g., documents, dialogues) enables next-token prediction to act as implicit function fitting, allowing examples to be reused at inference. EEG models, however, are trained on continuous temporal dynamics that require strict temporal coherence, preventing flexible context transfer across tasks or samples. To address this, we propose a Seq2Seq-based in-context training approach (see Section 3.3).

3 METHOD

In this section, we present the methodology of decoder-centric LEMs and the technical contributions that address the aforementioned challenges. Section 3.1 introduces the overall architecture design of ECHO. Section 3.2 explains how ECHO operates under the Seq2Seq formulation. Section 3.3 describes the training objectives and optimization strategies that endow LEMs with ICL. Each section begins with an *Intuition* subsection that outlines the rationale behind the technical design.

3.1 MODEL ARCHITECTURE

Intuition: The design of ECHO follows a core principle that employs simple and established architectural components to highlight the impact of the paradigm shift itself.

(a) For channel unification, we intentionally adopt a straightforward yet general preprocessing block to avoid confounding the core contribution of ECHO (stronger alternatives, such as edge-learning strategies used in GNN-based EEG models (Liu et al., 2024a), can replace it). Because EEG acquisition adheres to standardized electrode systems with recorded channel information, channels can be normalized at the preprocessing stage (Figure 2 a (left)).

(b) For the model components, we build on established networks: the encoder block (Figure 2 a (middle)) is a simplified deep ConvNet (Schirrmeister et al., 2017) with a tokenizer, and the decoder block (Figure 2 a (right)) is a transformer decoder with pre-activation residual blocks (Child et al., 2019). This emphasizes that ECHO is not bound to specific modules but represents a paradigm that can flexibly integrate stronger architectures to further improve performance.

Preprocess Block: To resolve C1, we establish a standardized template channel set based on prior neuroscience knowledge, where the number of channels \bar{C} and their ordering $\pi(\bar{C})$ are predefined and fixed. For each standardized channel \bar{c} , we define a mapping set $\mathcal{M}_{\bar{c}}$, which contains all possible aliases or adjacent variants of that channel under different electrode systems (the template set is provided in Section 4.1). Given an EEG collection \mathbf{X} with channel number C and corresponding channel names, we map each channel name in \mathbf{X} to the appropriate $\mathcal{M}_{\bar{c}}$ following the ordering $\pi(\bar{C})$, yielding the matched channel subset $\mathbf{X}_{\bar{c}} \subseteq \mathbf{X}$. Then, the alignment process is computed as:

$$\bar{\mathbf{X}} = \left\{ \frac{1}{|\mathbf{X}_{\bar{c}}| + 1} \sum_{x \in \mathbf{X}_{\bar{c}}} x \mid \bar{c} \in \pi(\bar{C}) \right\} \in \mathbb{R}^{N \times T \times |\bar{C}|}, \quad (5)$$

where $\bar{\mathbf{X}}$ denotes the aligned EEG with standardized channel configuration. The normalization term $|\mathbf{X}_{\bar{c}}| + 1$ ensures stable averaging. If $|\mathbf{X}_{\bar{c}}| = 0$, the channel is padded with zero.

Encoder Block: The encoder block is designed to transform preprocessed EEG signals $\bar{\mathbf{X}} \in \mathbb{R}^{N \times T \times \bar{C}}$ into tokens. First, $\bar{\mathbf{X}}$ is segmented along the temporal dimension using sliding windows of length L and stride S , yielding a collection of $K = (T - L)/S + 1$ segments denoted as $\{x_1, x_2, \dots, x_K\}$. Each segment is processed by a convolutional head $\mathcal{F}_{\text{conv}}(\cdot)$ based on the deep ConvNet and tokenized into a sequence of vectors:

$$\mathcal{E}(\mathbf{X}) = \{h_1, h_2, \dots, h_K\} = \mathcal{T}(\{h_k\}_{k=1}^K) = \mathcal{T}\left(\bigcup_{k=1}^K \mathcal{F}_{\text{conv}}(\{x_k\})\right), \quad (6)$$

where $\mathcal{E}(\mathbf{X})$ represents the sample-level EEG tokens produced by the encoder. $\mathcal{T}(\cdot)$ represents the tokenization process (including self-attention), which flattens and projects segment features into window-level tokens and arranges them into a sequence. Notably, since the tokenizer operates along the window dimension, we use h_k to denote the window-level tokens and segment features.

Decoder Block: The decoder $\mathcal{D}(\cdot)$ adopts a standard transformer decoder architecture, where self-attention models the dependencies within the textual sequence and cross-attention enables interaction with $\mathcal{E}(\mathbf{X})$:

$$\mathbf{S}_{\text{out}} = \mathcal{D}(\mathbf{S}_{\text{in}}). \quad (7)$$

3.2 SEQ2SEQ FORMULATION

Intuition: The Seq2Seq formulation guides ECHO to perform progressive learning through a fixed serialization scheme.

(a) A fixed sequence corresponds to a consistent “problem-solving strategy.” As illustrated in Figure 2 b, ① the support EEG samples and their tokens serve as worked examples, enabling ECHO to learn mappings between EEG, task and label tokens; ② the model then generalizes these mappings from examples to the target sample; ③ ECHO then conducts stepwise reasoning by first predicting the task token and subsequently deriving the label token conditioned on both the task and EEG tokens; ④ finally, by predicting the end-of-task (EOT) token, ECHO learns to recognize task termination. Through this unified sequence, ECHO acquires both in-context and multi-task learning capabilities, allowing it to autonomously select the most compatible label token from all known labels without requiring an explicit task specification.

(b) To prevent confusion among heterogeneous components, ECHO employs a three-part positional encoding strategy. The first models the temporal structure within each EEG sample, allowing the model to capture the sequential dynamics of neural activity. The second distinguishes support from target samples, clarifying their functional roles in the sequence. The third encodes the semantics of textual markers such as task tokens, label tokens, and the EOT token. Together, these positional cues enable the model to jointly handle the continuous dynamics of EEG and the discrete logic of tasks within a single serialized space.

Sequence Format: During training, the input sequence starts with $\langle | \text{SOT} | \rangle$, followed by multiple $\langle | \text{support} | \rangle$ entries that encode the task and label tokens of the support EEG samples. The $\langle | \text{task} | \rangle$ token then specifies the paradigm of the target EEG (e.g., $\langle | \text{MI} | \rangle$, $\langle | \text{EMO} | \rangle$), and $\langle | \text{y} | \rangle$ denotes its ground-truth label. The output sequence mirrors this structure but ends with $\langle | \text{EOT} | \rangle$ to mark completion. **During inference**, the model receives $\langle | \text{SOT} | \rangle$ followed by the target EEG tokens (optionally with support samples). ECHO then generates only the task token and the predicted label token, and terminates with $\langle | \text{EOT} | \rangle$.

Hybrid Positional Encoding: To solve C2, we propose a hybrid positional encoding. Given an EEG sample \mathbf{X}_n , the window-level tokens $\{h_{(n,1)}, h_{(n,2)}, \dots, h_{(n,K)}\}$ obtained along the temporal dimension are encoded with learnable window-level position encoding:

$$\bigcup_{k=1}^K \left\{ h_{(n,k)} + \text{PE}_{(n,k)}^{\text{enc}} \right\}, \quad (8)$$

where $\text{PE}_{(n,k)}^{\text{enc}}$ denotes the learnable positional encoding assigned to the k -th segment within the EEG sample. As for the decoder input, given a hybrid EEG sample set $\{\mathcal{E}(\mathbf{X}_n)\}_{n=1}^{S+1}$ consisting of the target sample $\mathcal{E}(\mathbf{X})$ and support samples $\{\mathcal{E}(\mathbf{X}_s)\}_{s=1}^S$, a distinct learnable sample-level positional encoding is assigned and uniformly added to all tokens within the same sample:

$$\bigcup_{n=1}^{S+1} \left\{ \mathcal{E}(\mathbf{X}_n) + \text{PE}_n^{\text{dec}} \right\}, \quad (9)$$

where PE_n^{dec} denotes the sample-level positional encoding shared across all tokens of the n -th EEG sample. For the sequence of textual tokens $\{\mathbf{T}_m\}_{m=1}^{2S+3}$, standard learnable positional encodings $\{\text{PE}_m^{\text{txt}}\}_{m=1}^{2S+3}$ are applied:

$$\bigcup_{m=1}^{2S+3} \left\{ \mathbf{T}_m + \text{PE}_m^{\text{txt}} \right\}, \quad (10)$$

3.3 IN-CONTEXT TRAINING

Intuition: Unlike large language models, where ICL often emerges implicitly, LEMs require explicit guidance to acquire this capability. Thus, ECHO is trained with autoregressive next-token prediction under a multi-stage strategy: first, the encoder is initialized to accelerate convergence and yield usable EEG representations; then, the decoder is trained with progressively larger and more diverse support sets to develop multi-task classification and contextual learning capabilities.

Training Strategy: To address C3, ECHO is trained in two phases. As shown in Figure 2c, the Warm-up Phase initializes the encoder by pairing it with a unified classifier across all datasets to obtain stable representations. The Contextual Training Phase then follows, consisting of two rounds: the first uses a fixed number of support samples to stabilize decoder training, and the second randomizes the support size to expose the model to diverse contexts. In both rounds, training starts with the encoder frozen and later jointly optimized with the decoder.

Next-token prediction: During training, given a sequence of textual tokens $\{\mathbf{T}_n\}_{n=1}^{2S+3}$ and EEG sample set $\{\mathcal{E}(\mathbf{X}_\cup)\}$, the decoder \mathcal{D} generates the output sequence step by step. The conditional probability for the i -th output token is modeled as

$$p(s_i | s_{<i}, \{\mathbf{T}_n\}_{n=1}^{2S+3}, \{\mathcal{E}(\mathbf{X}_\cup)\}) = \mathcal{D}(s_{<i}, \{\mathbf{T}_n\}_{n=1}^{2S+3}, \{\mathcal{E}(\mathbf{X}_\cup)\}), \quad (11)$$

where $s_i \in \mathbf{S}_{\text{out}}$ denotes the i -th token to be predicted, and $s_{<i}$ represents the prefix subsequence of previously generated tokens $\{s_1, s_2, \dots, s_{i-1}\}$. The training objective minimizes the cross-entropy loss between predicted distributions and ground-truth tokens.

324

4 EXPERIMENT

325

4.1 EXPERIMENT SETUP

326 **Dataset Setting:** ECHO was trained on 12 publicly available EEG datasets spanning six task categories and 26 classes. (1) All datasets underwent a unified preprocessing pipeline—band-pass filtering, downsampling to 250 Hz, task-specific segmentation, and padding to 10s. (2) Heterogeneous electrode layouts were aligned to a standardized 75-channel system (see Section 3.1). (3) A consistent cross-subject split was applied across all experiments and baselines to ensure fair and generalizable evaluation. Table 1 summarizes the splits, task types, and input formats for the datasets reported in the main text (excluding BCIC 2020-T1 from training), with full details in Appendix A.1.

337 **Table 1: Dataset Configurations**

Dataset	Experimental Paradigms	Train Indices	Validation Indices	Test Indices	Shape
BCIC-IV-2a (Brunner et al., 2008)	Multi-Limb Motor Imagery	0–4	5–6	7–8	22 channels × 4s
High-Gamma (Schirmeister et al., 2017)	Motor Imagery for Decoding	0–7	8–10	11–13	128 channels × 4s
BCIC 2020-T1 (Jeong et al., 2022)	Hand Motor Imagery	0–9	10–14	15–19	62 channels × 4s
SEED-IV (Zheng et al., 2018)	Film-induced Discrete Emotion Classification	0–9	10–11	12–14	62 channels × 4s
SEED (Zheng & Lu, 2015)	Film-induced Emotional Valence Classification	0–9	10–11	12–14	62 channels × 4s
Stieger2021-LR (Stieger et al., 2021)	Continuous 1D Cursor Control (Lateral)	0–39	40–48	49–58	15 channels × 4s
Mumtaz2016 (Mumtaz, 2016)	Major Depressive Disorder Detection	0–43	43–52	52–62	19 channels × 5s
Mental Arithmetic (Zyma et al., 2019)	Workload Assessment	0–25	26–30	31–35	20 channels × 5s
Attention (Shin et al., 2018)	Discrimination/Selection Response	0–15	16–20	21–25	30 channels × 4s

346 **Baseline Selection:** To evaluate ECHO, we compared it with six representative baselines covering 347 diverse representation learning paradigms. EEGNet (Lawhern et al., 2018) employs convolution to 348 extract features from raw signals; BIOT (Yang et al., 2023) uses block-based continuous tokenization; 349 and LaBraM (Jiang et al., 2024d) combines masked reconstruction with vector quantization. 350 EEGPT (Wang et al., 2024a) and CBraMod (Wang et al., 2024c) emphasize masked reconstruction 351 of raw signals, while CodeBrain (Ma et al., 2025) learns by predicting discrete time–frequency 352 tokens. Full baseline details are in Appendix A.2.

354 **Model Setting:** After preprocessing, EEG signals were segmented with a sliding window (length 355 100, stride 90). The encoder comprises 4 convolutional layers and a tokenizer based on multi-head 356 self-attention (8 heads, 4 layers, token dim 256). The decoder adopts a 6-layer Transformer with 357 hidden size 384, 6 heads, and feed-forward dim 1536. Full model details are in Appendix A.3.

358 **Training & Environment Setting:** All training was conducted on 8×NVIDIA A100 (40GB) GPUs. 359 The process had two stages. In the warm-up phase, the encoder was trained for 90 epochs (batch 360 size 64) using Adam with an initial learning rate of 5×10^{-5} , cosine-decayed to 1×10^{-6} , and 361 dropout 0.2 to stabilize EEG feature extraction. In the contextual training phase, the full model was 362 trained for 40 epochs (batch size 48, dropout 0.1) with differential learning rates (5×10^{-5} for the 363 decoder, 5×10^{-6} for the encoder). Training followed a two-round schedule: 10 epochs with a fixed 364 8-shot configuration, followed by randomized support counts (0–12) to expose the model to varied 365 contexts and improve ICL robustness. Additional details are provided in Appendix A.4.

366 **Evaluation Metrics:** We adopt four standard evaluation metrics: Balanced Accuracy, Cohen’s 367 Kappa, Weighted F1 score, and the Area Under the ROC and Precision-Recall Curves (AUROC 368 and AUC-PR). Model selection is based on AUROC performance on the validation set. All 369 experiments and baselines are conducted with five fixed random seeds 0, 1, 2, 3, 4, and we report the mean 370 and standard deviation across runs.

371 **Task Setting:** All baselines are evaluated under a **single-task setting**, where each dataset is 372 fine-tuned separately and tested on its own test set. In contrast, ECHO is evaluated under a strict **multi- 373 task setting**: trained once across all datasets without task-specific fine-tuning and directly tested 374 on all test sets in a single pass. For ICL, 20 instances per subject are randomly sampled from 375 each standardized test set as fixed context and excluded from evaluation. ECHO is given 8 support 376 samples, but no task tokens, and must autonomously infer both the task paradigm and subcategories. 377 The only exception is the Mumtaz2016 dataset, where each subject has a single label; evaluation for it is performed without supports.

378 Table 2: Comparison results of different methods on downstream tasks.
379

380 Methods	381 SEED			382 Stieger2021-LR		
	383 ACC-B	384 ROC AUC	385 PR AUC	386 ACC-B	387 ROC AUC	388 PR AUC
EEGNet	0.7435 \pm 0.0315	0.8631 \pm 0.0235	0.8731 \pm 0.0331	0.8051 \pm 0.0124	0.8839 \pm 0.0123	0.8565 \pm 0.0078
BIOT	0.7234 \pm 0.0215	0.8212 \pm 0.0349	0.8043 \pm 0.0156	0.7753 \pm 0.0052	0.8747 \pm 0.0054	0.8247 \pm 0.0054
EEGPT	0.7085 \pm 0.0350	0.8450 \pm 0.0241	0.8244 \pm 0.0194	0.7943 \pm 0.0043	0.8968 \pm 0.0057	0.8354 \pm 0.0042
LaBraM	0.6851 \pm 0.0431	0.7952 \pm 0.0241	0.8021 \pm 0.0136	0.8170 \pm 0.0037	0.9024 \pm 0.0015	0.8935 \pm 0.0029
CBraMod	0.7262 \pm 0.0235	0.8519 \pm 0.0179	0.8400 \pm 0.0232	0.8424 \pm 0.0044	0.9339 \pm 0.0026	0.9297 \pm 0.0030
CodeBrain	0.7836 \pm 0.0341	0.8755 \pm 0.0248	0.8543 \pm 0.0253	0.8126 \pm 0.0037	0.9123 \pm 0.0024	0.8932 \pm 0.0031
ECHO ^E	0.6548 \pm 0.0272	0.7493 \pm 0.0451	0.7592 \pm 0.0378	0.6123 \pm 0.0242	0.8918 \pm 0.0206	0.9048 \pm 0.0217
ECHO (No Support)	0.7407 \pm 0.0047	0.8488 \pm 0.0108	0.8522 \pm 0.0103	0.8415 \pm 0.0031	0.9245 \pm 0.0021	0.9243 \pm 0.0027
ECHO	0.8193 \pm 0.0025	0.9020 \pm 0.0004	0.8962 \pm 0.0020	0.8534 \pm 0.0014	0.9349 \pm 0.0001	0.9363 \pm 0.0016
389 Methods	390 Mumtaz2016			391 High-Gamma		
	392 ACC-B	393 ROC AUC	394 PR AUC	395 ACC-B	396 ROC AUC	397 PR AUC
EEGNet	0.9113 \pm 0.0104	0.9512 \pm 0.0096	0.9632 \pm 0.0045	0.8320 \pm 0.0289	0.8911 \pm 0.0412	0.9002 \pm 0.0291
BIOT	0.8789 \pm 0.0190	0.9664 \pm 0.0136	0.9744 \pm 0.0083	0.7343 \pm 0.0641	0.7931 \pm 0.0372	0.8198 \pm 0.0274
EEGPT	0.8475 \pm 0.0233	0.9669 \pm 0.0069	0.9695 \pm 0.0076	0.7161 \pm 0.0481	0.8276 \pm 0.0385	0.8249 \pm 0.0632
LaBraM	0.8986 \pm 0.0028	0.9754 \pm 0.0050	0.9791 \pm 0.0041	0.7429 \pm 0.0386	0.8516 \pm 0.0255	0.8454 \pm 0.0246
CBraMod	0.8946 \pm 0.0047	0.9800 \pm 0.0045	0.9765 \pm 0.0061	0.7513 \pm 0.0182	0.8277 \pm 0.0176	0.8335 \pm 0.0146
CodeBrain	0.9012 \pm 0.0021	0.9729 \pm 0.0037	0.9721 \pm 0.0078	0.8138 \pm 0.0217	0.8421 \pm 0.0395	0.8601 \pm 0.0102
ECHO ^E	0.9056 \pm 0.0211	0.9745 \pm 0.0103	0.9748 \pm 0.0058	0.8039 \pm 0.0436	0.8900 \pm 0.0279	0.8889 \pm 0.0314
ECHO (No Support)	0.9698 \pm 0.0012	0.9953 \pm 0.0023	0.9952 \pm 0.0015	0.8438 \pm 0.0023	0.9125 \pm 0.0016	0.9047 \pm 0.0034
ECHO	N/A	N/A	N/A	0.8552 \pm 0.0031	0.9208 \pm 0.0011	0.9125 \pm 0.0041
398 Methods	399 Mental Arithmetic			400 Attention		
	401 ACC-B	402 ROC AUC	403 PR AUC	404 ACC-B	405 ROC AUC	406 PR AUC
EEGNet	0.5138 \pm 0.0471	0.5395 \pm 0.0109	0.5302 \pm 0.0441	0.6004 \pm 0.0123	0.6647 \pm 0.0180	0.6294 \pm 0.0288
BIOT	0.5281 \pm 0.0384	0.5970 \pm 0.0468	0.5567 \pm 0.0249	0.6111 \pm 0.0411	0.7367 \pm 0.0162	0.7273 \pm 0.0132
EEGPT	0.5117 \pm 0.0317	0.5612 \pm 0.0198	0.5041 \pm 0.0384	0.6674 \pm 0.0560	0.8015 \pm 0.0372	0.8103 \pm 0.0303
LaBraM	0.5793 \pm 0.0631	0.5700 \pm 0.0232	0.6341 \pm 0.0422	0.6785 \pm 0.0223	0.7838 \pm 0.0307	0.7994 \pm 0.0198
CBraMod	0.5906 \pm 0.0531	0.5045 \pm 0.0519	0.7047 \pm 0.0428	0.6478 \pm 0.0258	0.7417 \pm 0.0175	0.7468 \pm 0.0198
CodeBrain	0.6318 \pm 0.0845	0.6472 \pm 0.0361	0.7412 \pm 0.0451	0.6215 \pm 0.0358	0.6321 \pm 0.0281	0.7029 \pm 0.0349
ECHO ^E	0.6008 \pm 0.0343	0.6555 \pm 0.0281	0.6416 \pm 0.0337	0.7422 \pm 0.0346	0.7949 \pm 0.0623	0.8021 \pm 0.0278
ECHO (No Support)	0.5442 \pm 0.0023	0.6896 \pm 0.0036	0.6897 \pm 0.0042	0.8056 \pm 0.0021	0.8895 \pm 0.0029	0.8955 \pm 0.0034
ECHO	0.6851 \pm 0.0032	0.7500 \pm 0.0062	0.7530 \pm 0.0015	0.8194 \pm 0.0009	0.8973 \pm 0.0019	0.8952 \pm 0.0027

407 Note: **Bold** indicates the best performance. Cyan highlight marks ECHO.

408 4.2 EXPERIMENT RESULT

409 As shown in Table 2, six representative downstream datasets (different tasks) under a unified experimental setup (differing only in single-task vs. multi-task training) are reported. Complete results 410 are reported in Appendix B.1. ECHO^E denotes the ECHO encoder trained without the Seq2Seq 411 paradigm, while ECHO (No Support) refers to the ECHO model evaluated without any support- 412 sample prompts. The advantages and corresponding limitations of ECHO are as follows: 413

414 (a) Comparison between ECHO and Baselines: 415

416 **ECHO exhibits strong generalization capability.** On cognitive tasks (SEED, Stieger2021-LR, 417 Mental Arithmetic, and Attention), ECHO achieves an average improvement of +0.0602 in 418 Balanced Accuracy, +0.0566 in ROC AUC, and +0.0316 in PR AUC over the strongest baseline. 419 On clinical diagnostic tasks (Mumtaz2016 and High-Gamma), ECHO shows an average gain of 420 +0.0409 in Balanced Accuracy, +0.0225 in ROC AUC, and +0.0142 in PR AUC. ECHO also 421 demonstrates a unique capability: even without any external prompts, it can autonomously 422 identify the corresponding task and its specific paradigm solely from the EEG sample itself. 423424 **ECHO does not surpass SOTA on several tasks.** On tasks such as Stieger2021-UD, BCIC-IV- 425 2a, and SEED-IV, ECHO remains noticeably below encoder-centric models that are explicitly 426 optimized for those domains. This highlights a limitation in ECHO’s generalization–specialization 427 trade-off: while the framework aims for unified cross-task reasoning, its lightweight encoder 428 design is insufficient to model all domain-specific structures required by certain specialized EEG 429 tasks. Detailed results and analysis are provided in Appendix B.1.430 (b) Comparison between ECHO and ECHO^E:431 **Seq2Seq paradigm improves performance.** Across all datasets, ECHO markedly outperforms 432 ECHO^E. Removing the sequential structure consistently leads to substantial drops (e.g., SEED

432 ACC-B: $0.8193 \rightarrow 0.1645$), showing that the full Seq2Seq paradigm is a primary contributor to
 433 ECHO’s gains.

434 **ECHO’s performance ceiling is constrained by encoder quality.** While Seq2Seq offers consistent
 435 gains, their impact is limited when the encoder cannot model the dataset’s structure, as seen
 436 in TUEV and PhysioNet. In these cases, ICL can provide improvements but cannot overcome the
 437 encoder’s representational shortcomings or match encoder-centric SOTA models. Full results are
 438 in Appendix B.1.

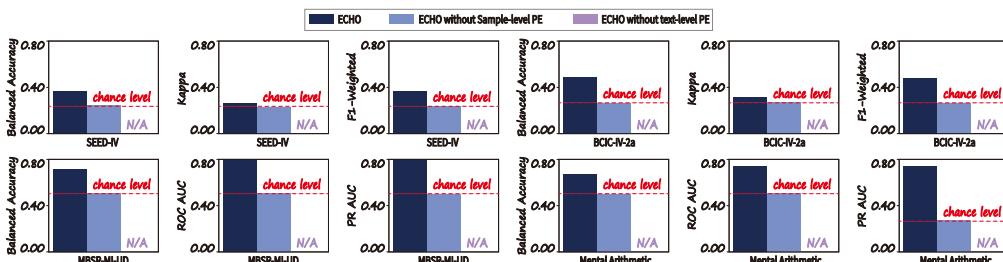
439 **(c) Comparison between ECHO and No Support:**

440 **ICL provides additional gains.** ECHO surpasses its No-Support setting across all benchmarks,
 441 confirming the effectiveness of in-context learning. Without support samples, performance de-
 442 creases notably (e.g., SEED ACC-B: $0.8193 \rightarrow 0.0786$).

443 **The effectiveness of ICL depends strongly on the distributional stability of support samples.**
 444 This works well in datasets with clear structure, such as High-Gamma and SEED. In most EEG
 445 datasets, substantial cross-subject variability and noise make support unstable; few support sam-
 446 ples provide insufficient signal, whereas many support samples introduce accumulated noise and
 447 distribution shifts that reduce performance. Full results are in Appendix D.2.2.

448 **4.3 ABLATION STUDY**

449 We conducted ablation experiments to evaluate the two additional positional encodings introduced
 450 in ECHO. As shown in Figure 3, removing either encoding makes the model ineffective. (1) Remov-
 451 ing the sample-level positional encodings caused performance to drop to chance level, as the model
 452 could no longer distinguish boundaries between EEG samples and instead treated them as a con-
 453 tinuous sequence. (2) Removing the decoder textual positional encodings led to complete structural
 454 collapse, with the model producing disordered symbol sequences and no valid predictions. These
 455 results highlight that both encodings are indispensable: the former ensures functional separation of
 456 EEG samples, while the latter preserves syntactic and semantic coherence in decoding.



460 Figure 3: The result of the ablation study for positional encoding

461 **4.4 ZERO-SHOT EVALUATION**

462 As shown in Table 3, we evaluate ECHO’s zero-shot generalization on two unseen datasets:
 463 Cho2017 and BCIC 2020-T1. On BCIC 2020-T1, ECHO exhibits strong cross-dataset transfer,
 464 applying the mapping strategies learned during multi-task training even without task prompts, while
 465 support samples further enhance performance. On Cho2017, ECHO again surpasses the encoder-
 466 only baseline, indicating that the Seq2Seq formulation provides stable adaptation to new acquisition
 467 settings and task paradigms. Additional generalization experiments are provided in Appendix B.3

468 **Table 3: Result of Zero-Shot Experiment.**

Methods	Cho2017 (Unseen for ECHO)			BCIC 2020-T1 (Unseen for ECHO)		
	ACC-B	ROC AUC	PR AUC	ACC-B	ROC AUC	PR AUC
Cbramod	0.7033 ± 0.0327	0.8081 ± 0.0429	0.7959 ± 0.230	0.5700 ± 0.0185	0.6058 ± 0.0236	0.5371 ± 0.0186
ECHO ^E	0.5640 ± 0.0315	0.6021 ± 0.0498	0.6126 ± 0.0207	0.5250 ± 0.0751	0.6796 ± 0.1459	0.6697 ± 0.0602
ECHO(No Support)	0.5881 ± 0.0023	0.6399 ± 0.0035	0.6267 ± 0.0021	0.7500 ± 0.0024	0.8232 ± 0.0053	0.8153 ± 0.0118
ECHO	0.6044 ± 0.0032	0.6470 ± 0.0053	0.6460 ± 0.0019	0.7782 ± 0.0042	0.8566 ± 0.0028	0.8552 ± 0.0032

469 Note: **Bold** indicates the best performance. Cyan highlight marks ECHO.

486
487488 4.5 EXTRA EXPERIMENT
489490
491
492
493
494
495
496
497
498
499

To evaluate ECHO under more diverse and clinically relevant conditions, we introduce three specialized variants. **The long-sequence variant** in Appendix D.1.1 (ECHO^L) examines whether the Seq2Seq and ICL framework remains effective when all tasks are aligned to 30-second windows, and the results show stable convergence with performance close to sleep-staging baselines despite lacking their extended temporal context. **The motor-imagery variant** in Appendix D.1.2 (ECHO^{MI}) verifies that MI datasets provide complementary information, since removing one dataset only slightly reduces performance on unseen MI data, indicating strong cross-dataset transfer. **The epilepsy-augmented variant** in Appendix D.1.3 (ECHO^{EP}) expands the pre-training corpus with CHB-MIT, and although the lightweight encoder initially trails encoder-centric baselines, the addition of support examples leads to substantial improvements and achieves the strongest PR AUC, demonstrating the effectiveness of ICL in compensating for limited seizure-related modeling capacity.

500
501
502
503
504
505
506
507
508
509
510

To further validate the design choices and framework-level contributions of ECHO, we include several diagnostic studies in the appendix. Appendix D.2.1 evaluates **channel-fusion strategies** and shows that the simple averaging operation used in ECHO is sufficient for maintaining stable performance across heterogeneous electrode layouts. Appendix D.2.2 presents a systematic **support-size sensitivity analysis**, revealing that optimal ICL performance typically emerges at moderate support sizes and that the benefit of support samples is strongly dataset dependent. Appendix D.2.3 verifies the **extensibility of the Seq2Seq paradigm** by demonstrating that introducing the generative decoder improves performance over strong encoder-centric baselines, while Appendix D.2.4 shows that ECHO achieves more stable generalization than **standard multi-task learning** despite using fewer parameters. Collectively, these results provide deeper evidence that ECHO’s improvements stem from the Seq2Seq + ICL framework itself rather than from encoder capacity or task-specific shortcuts.

511
512
513514 5 RELATED WORK
515516
517
518
519
520
521
522
523
524
525
526
527
528

In recent years, research on large models for neural signals has increasingly centered on representation learning, with the primary goal of extracting robust and generalized representations. Existing approaches can be broadly categorized into two directions: reconstruction-based and contrastive-based representation learning. **In reconstruction-based methods**, representations are learned by recovering missing or future signals through masking or autoregression. For example, frequency-domain masking has been applied to enforce temporal-frequency consistency in representations (Wang et al., 2023), while spatiotemporal joint masking has been introduced to model dependencies across both temporal and spatial domains (Dong et al., 2024). Autoregressive frameworks further extend this idea by predicting future signal segments, enabling representations that capture long-range dynamics (Caro et al., 2023). **In contrastive-based methods**, representations are improved by constructing positive and negative pairs to enhance robustness and discriminability. Temporal perturbations and frequency shifts have been used to ensure consistent representations across augmented views (Cai et al., 2023), while cross-modal contrastive learning has been explored to expand the representational space, such as aligning EEG with text to ground neural signals in richer semantic domains (Jiang et al., 2024c).

529
530531 6 CONCLUTION
532533
534
535
536
537
538
539

In this work, we introduced ECHO, a decoder-centric paradigm for LEMs, designed to highlight the untapped potential of decoders in EEG representation learning and task modeling. ECHO adopts a Seq2Seq formulation that jointly models the hierarchical relationships among signals, labels, and tasks within a unified sequence space, while leveraging discrete support samples to enable ICL. This design allows the model to dynamically adapt to diverse tasks without parameter updates. Extensive experiments on multiple public EEG datasets demonstrate that, even with basic architectural components, ECHO consistently outperforms state-of-the-art single-task LEMs in multi-task settings, and further exhibits generalization in zero-shot and cross-dataset evaluations. Overall, these results show that ECHO provides a viable pathway to overcoming the decoder bottleneck in existing LEMs.

540 ETHICS STATEMENT
541

542 All datasets utilized in this study are publicly available and distributed under appropriate usage li-
543 censes. The data are processed and presented exclusively in aggregated, privacy-preserving formats,
544 ensuring that no personally identifiable information is disclosed. We have thoroughly reviewed the
545 possible ethical implications of this research and foresee no risks or adverse outcomes associated
546 with its application.

548 REPRODUCIBILITY
549

550 We are committed to ensuring the reproducibility of all experimental results. The code has been
551 made publicly available via an anonymous GitHub repository:
552 <https://anonymous.4open.science/r/ECHO-F6B2>.

554 USE OF LLMs
555

556 The authors affirm that the core research, methodology, and scientific findings presented in this work
557 were independently conceived and developed by the authors. All figures and tables were created and
558 formatted by the authors themselves. The scientific content, including research ideas, experimental
559 design, and result analysis, was not produced by LLMs. LLMs were employed solely to assist in
560 improving the clarity and readability of the manuscript.

562 REFERENCES
563

564 Antonio Almudévar, José Miguel Hernández-Lobato, Sameer Khurana, Ricard Marxer, and Alfonso
565 Ortega. Aligning multimodal representations through an information bottleneck. In *Forty-second*
566 *International Conference on Machine Learning*, 2025.

567 Clemens Brunner, Robert Leeb, Gernot Müller-Putz, Alois Schlögl, and Gert Pfurtscheller. Bci com-
568 petition 2008–graz data set a. *Institute for knowledge discovery (laboratory of brain-computer*
569 *interfaces)*, Graz University of Technology, 16(1-6):34, 2008.

571 Donghong Cai, Junru Chen, Yang Yang, Teng Liu, and Yafeng Li. Mbrain: A multi-channel self-
572 supervised learning framework for brain signals. In *Proceedings of the 29th ACM SIGKDD Con-*
573 *ference on Knowledge Discovery and Data Mining*, pp. 130–141, 2023.

574 Josue Ortega Caro, Antonio Henrique de Oliveira Fonseca, Syed A Rizvi, Matteo Rosati, Christo-
575 pher Averill, James L Cross, Prateek Mittal, Emanuele Zappala, Rahul Madhav Dhodapkar, Chadi
576 Abdallah, et al. Brainlm: A foundation model for brain activity recordings. In *The Twelfth Inter-*
577 *national Conference on Learning Representations*, 2023.

578 Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
579 transformers. *arXiv preprint arXiv:1904.10509*, 2019.

581 Wenhui Cui, Woojae Jeong, Philipp Thölke, Takfarinas Medani, Karim Jerbi, Anand A Joshi, and
582 Richard M Leahy. Neuro-gpt: Towards a foundation model for eeg. In *2024 IEEE International*
583 *Symposium on Biomedical Imaging (ISBI)*, pp. 1–5. IEEE, 2024.

584 Yi Ding, Yong Li, Hao Sun, Rui Liu, Chengxuan Tong, Chenyu Liu, Xinliang Zhou, and Cuntai
585 Guan. Eeg-deformer: A dense convolutional transformer for brain-computer interfaces. *IEEE*
586 *Journal of Biomedical and Health Informatics*, 2024.

587 Yidan Ding, Chalisa Udompanyawit, Yisha Zhang, and Bin He. Eeg-based brain-computer interface
588 enables real-time robotic hand control at individual finger level. *Nature Communications*, 16(1):
589 1–20, 2025.

591 Zijian Dong, Ruilin Li, Yilei Wu, Thuan Tinh Nguyen, Joanna Chong, Fang Ji, Nathanael Tong,
592 Christopher Chen, and Juan Helen Zhou. Brain-jepa: Brain dynamics foundation model with
593 gradient positioning and spatiotemporal masking. *Advances in Neural Information Processing*
Systems, 37:86048–86073, 2024.

594 Zihan Guan, Mengxuan Hu, Ronghang Zhu, Sheng Li, and Anil Vullikanti. Benign samples matter!
 595 fine-tuning on outlier benign samples severely breaks safety. In *International Conference on*
 596 *Machine Learning*, 2025.

597

598 Inan Guler and Elif Derya Ubeyli. Multiclass support vector machines for eeg-signals classification.
 599 *IEEE transactions on information technology in biomedicine*, 11(2):117–126, 2007.

600 Yifan Hao, Xingyuan Pan, Hanning Zhang, Chenlu Ye, Rui Pan, and Tong Zhang. Understanding
 601 overadaptation in supervised fine-tuning: The role of ensemble methods. In *International*
 602 *Conference on Machine Learning*, 2025.

603

604 Ji-Hoon Jeong, Jeong-Hyun Cho, Young-Eun Lee, Seo-Hyun Lee, Gi-Hwan Shin, Young-Seok
 605 Kweon, José del R Millán, Klaus-Robert Müller, and Seong-Whan Lee. 2020 international brain-
 606 computer interface competition: A review. *Frontiers in human neuroscience*, 16:898300, 2022.

607

608 Muyun Jiang, Yi Ding, Wei Zhang, Kok Ann Colin Teo, LaiGuan Fong, Shuailei Zhang, Zhiwei
 609 Guo, Chenyu Liu, Raghavan Bhuvanakantham, Wei Khang Jeremy Sim, Chuan Huat Vince Foo,
 610 Rong Hui Jonathan Chua, Parasuraman Padmanabhan, Victoria Leong, Jia Lu, Balazs Gulyas,
 611 and Cuntai Guan. Decoding covert speech from eeg using a functional areas spatio-temporal
 612 transformer, 2025. URL <https://arxiv.org/abs/2504.03762>.

613 Wei-Bang Jiang, Yansen Wang, Bao-Liang Lu, and Dongsheng Li. Neurolm: A universal multi-
 614 task foundation model for bridging the gap between language and eeg signals. *arXiv preprint*
 615 *arXiv:2409.00101*, 2024a.

616 Wei-Bang Jiang, Li-Ming Zhao, and Bao-Liang Lu. Large brain model for learning generic repre-
 617 sentations with tremendous eeg data in bci. *arXiv preprint arXiv:2405.18765*, 2024b.

618 Weibang Jiang, Yansen Wang, Bao-liang Lu, and Dongsheng Li. Neurolm: A universal multi-task
 619 foundation model for bridging the gap between language and eeg signals. In *The Thirteenth*
 620 *International Conference on Learning Representations*, 2024c.

621

622 Weibang Jiang, Liming Zhao, and Bao-liang Lu. Large brain model for learning generic repres-
 623 entations with tremendous eeg data in bci. In *The Twelfth International Conference on Learning*
 624 *Representations*, 2024d.

625

626 Baoyu Jing, Shuqi Gu, Tianyu Chen, Zhiyu Yang, Dongsheng Li, Jingrui He, and Kan Ren. Towards
 627 editing time series. *Advances in Neural Information Processing Systems*, 37:37561–37593, 2024.

628

629 Vernon J Lawhern, Amelia J Solon, Nicholas R Waytowich, Stephen M Gordon, Chou P Hung, and
 630 Brent J Lance. Eegnet: a compact convolutional neural network for eeg-based brain–computer
 631 interfaces. *Journal of neural engineering*, 15(5):056013, 2018.

632

633 Min-Ho Lee, O-Yeon Kwon, Yong-Jeong Kim, Hong-Kyung Kim, Young-Eun Lee, John
 634 Williamson, Siamac Fazli, and Seong-Whan Lee. Eeg dataset and openbmi toolbox for three
 635 bci paradigms: An investigation into bci illiteracy. *GigaScience*, 8(5):giz002, 2019.

636

637 Chenyu Liu, Xinliang Zhou, Yihao Wu, Yi Ding, Liming Zhai, Kun Wang, Ziyu Jia, and Yang Liu.
 638 A comprehensive survey on eeg-based emotion recognition: A graph-based perspective. *arXiv*
 639 *preprint arXiv:2408.06027*, 2024a.

640

641 Chenyu Liu, Xinliang Zhou, Zhengri Zhu, Liming Zhai, Ziyu Jia, and Yang Liu. Vbh-gnn: Vari-
 642 ational bayesian heterogeneous graph neural networks for cross-subject emotion recognition. In
 643 *The Twelfth International Conference on Learning Representations*, 2024b.

644

645 Fabien Lotte, Marco Congedo, Anatole Lécuyer, Fabrice Lamarche, and Bruno Arnaldi. A review of
 646 classification algorithms for eeg-based brain–computer interfaces. *Journal of neural engineering*,
 647 4(2):R1, 2007.

648

649 Weiheng Lu, Chunfeng Song, Jiamin Wu, Pengyu Zhu, Yuchen Zhou, Weijian Mai, Qihao Zheng,
 650 and Wanli Ouyang. Unimind: Unleashing the power of llms for unified multi-task brain decoding.
 651 *arXiv preprint arXiv:2506.18962*, 2025.

648 Jingying Ma, Feng Wu, Qika Lin, Yucheng Xing, Chenyu Liu, Ziyu Jia, and Mengling Feng. Code-
 649 brain: Bridging decoupled tokenizer and multi-scale architecture for eeg foundation model. *arXiv*
 650 *preprint arXiv:2506.09110*, 2025.

651 Wajid Mumtaz. Mdd patients and healthy controls eeg data (new). *figshare, Dataset*, 2016.

653 Owen Queen, Tom Hartvigsen, Teddy Koker, Huan He, Theodoros Tsiligkaridis, and Marinka Zit-
 654 nik. Encoding time-series explanations through self-supervised model behavior consistency. *Ad-*
 655 *vances in Neural Information Processing Systems*, 36:32129–32159, 2023.

656 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
 657 Robust speech recognition via large-scale weak supervision, 2022. URL <https://arxiv.org/abs/2212.04356>.

660 Robin Tibor Schirrmeister, Jost Tobias Springenberg, Lukas Dominique Josef Fiederer, Martin
 661 Glasstetter, Katharina Eggensperger, Michael Tangermann, Frank Hutter, Wolfram Burgard, and
 662 Tonio Ball. Deep learning with convolutional neural networks for eeg decoding and visualization.
 663 *Human brain mapping*, 38(11):5391–5420, 2017.

664 Jaeyoung Shin, Alexander Von Lühmann, Do-Won Kim, Jan Mehnert, Han-Jeong Hwang, and
 665 Klaus-Robert Müller. Simultaneous acquisition of eeg and nirs during cognitive tasks for an
 666 open access dataset. *Scientific data*, 5(1):1–16, 2018.

667 James R Stieger, Stephen Engel, Haiteng Jiang, Christopher C Cline, Mary Jo Kreitzer, and Bin He.
 668 Mindfulness improves brain–computer interface performance by increasing control over neural
 669 activity in the alpha band. *Cerebral Cortex*, 31(1):426–438, 2021.

671 Mingtian Tan, Mike Merrill, Vinayak Gupta, Tim Althoff, and Tom Hartvigsen. Are language
 672 models actually useful for time series forecasting? *Advances in Neural Information Processing*
 673 *Systems*, 37:60162–60191, 2024.

674 C Wang, V Subramaniam, A Yaari, G Kreiman, B Katz, I Cases, and A Barbu. Brainbert: Self-
 675 supervised representation learning for intracranial electrodes. In *International Conference on*
 676 *Learning Representations*. ICLR, 2023.

678 Guangyu Wang, Wenchao Liu, Yuhong He, Cong Xu, Lin Ma, and Haifeng Li. Eegpt: Pretrained
 679 transformer for universal and reliable representation of eeg signals. *Advances in Neural Informa-*
 680 *tion Processing Systems*, 37:39249–39280, 2024a.

681 Hanzhang Wang and Qingyuan Ma. Textural or textual: How vision-language models read text in
 682 images. In *Forty-second International Conference on Machine Learning*, 2025.

684 Jiquan Wang, Sha Zhao, Zhiling Luo, Yangxuan Zhou, Haiteng Jiang, Shijian Li, Tao Li, and
 685 Gang Pan. Cbramod: A criss-cross brain foundation model for eeg decoding. *arXiv preprint*
 686 *arXiv:2412.07236*, 2024b.

687 Jiquan Wang, Sha Zhao, Zhiling Luo, Yangxuan Zhou, Haiteng Jiang, Shijian Li, Tao Li, and Gang
 688 Pan. Cbramod: A criss-cross brain foundation model for eeg decoding. In *The Thirteenth Inter-*
 689 *national Conference on Learning Representations*, 2024c.

691 Chaoqi Yang, M Westover, and Jimeng Sun. Biot: Biosignal transformer for cross-data learning in
 692 the wild. *Advances in Neural Information Processing Systems*, 36:78240–78260, 2023.

693 Xiaoqing Zhang, Ang Lv, Yuhang Liu, Flood Sung, Wei Liu, Jian Luan, Shuo Shang, Xiuying Chen,
 694 and Rui Yan. More is not always better? enhancing many-shot in-context learning with differen-
 695 tiated and reweighting objectives. *ACL*, 2025.

696 Wei-Long Zheng and Bao-Liang Lu. Investigating critical frequency bands and channels for eeg-
 697 based emotion recognition with deep neural networks. *IEEE Transactions on autonomous mental*
 698 *development*, 7(3):162–175, 2015.

700 Wei-Long Zheng, Wei Liu, Yifei Lu, Bao-Liang Lu, and Andrzej Cichocki. Emotionmeter: A
 701 multimodal framework for recognizing human emotions. *IEEE transactions on cybernetics*, 49
 (3):1110–1122, 2018.

702 Xinliang Zhou, Chenyu Liu, Ruizhi Yang, Liangwei Zhang, Liming Zhai, Ziyu Jia, and Yang Liu.
703 Learning robust global-local representation from eeg for neural epilepsy detection. *IEEE Trans-*
704 *actions on Artificial Intelligence*, 5(11):5720–5732, 2024.

705
706 Xinliang Zhou, Chenyu Liu, Zhisheng Chen, Kun Wang, Yi Ding, Ziyu Jia, and Qingsong Wen.
707 Brain foundation models: A survey on advancements in neural signal processing and brain dis-
708 covery. *arXiv preprint arXiv:2503.00580*, 2025a.

709 Yuchen Zhou, Jiamin Wu, Zichen Ren, Zhouheng Yao, Weiheng Lu, Kunyu Peng, Qihaio Zheng,
710 Chunfeng Song, Wanli Ouyang, and Chao Gou. Csbrain: A cross-scale spatiotemporal brain
711 foundation model for eeg decoding. *arXiv preprint arXiv:2506.23075*, 2025b.

712 Igor Zyma, Sergii Tukaev, Ivan Seleznev, Ken Kiyono, Anton Popov, Mariia Chernykh, and Oleksii
713 Shpenkov. Electroencephalograms during mental arithmetic task performance. *Data*, 4(1):14,
714 2019.

716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

APPENDIX

A EXPERIMENT SETUP DETAIL

A.1 DATASET SETTING

For the pre-training phase of ECHO, a comprehensive corpus of 12 public datasets was aggregated, spanning six distinct Brain-Computer Interface (BCI) tasks. These include Emotion Recognition, Motor Imagery, Major Depressive Disorder (MDD) detection, workload assessment, event type classification, and attention monitoring. This multi-task, multi-dataset approach is designed to expose the model to a wide variety of EEG signal characteristics, thereby fostering the development of robust and generalizable representations. All signals were uniformly resampled to 250 Hz to ensure consistency across the corpus. A summary of the detailed information for each dataset is shown in Table 4. The detailed introductions for each task are listed below (includes datasets used by all ECHO variants):

Table 4: Detailed Information of Datasets Used for Pre-training.

Task	Dataset	#Subjects	#Channels	Duration	Sampling Rate	#Classes
Emotion Recognition	SEED-IV	15	62	4s	250 Hz	4
	SEED-V	16	62	1s	250 Hz	5
	SEED	15	62	4s	250 Hz	2
Motor Imagery	BCI IV 2a	9	22	4s	250 Hz	4
	High-Gamma	14	128	4s	250 Hz	2
	Stieger2021-LR	64	15	4s	250 Hz	2
	Stieger2021-UD	64	15	4s	250 Hz	2
	PhysioNet	109	64	10s	250 Hz	4
MDD Detection	KoreaU	54	62	4s	250 Hz	2
	Mumtaz	119	19	5s	250 Hz	2
	Workload Assessment	36	20	5s	250 Hz	2
	Event Type Classification	370	16	5s	250 Hz	6
	Attention Monitoring	26	30	4s	250 Hz	2
	Sleep Staging	100	6	30s	250 Hz	5
	ISRIC S1	10	6	30s	250 Hz	5
	ISRIC S3	22	23	10s	256 Hz	2
	Seizure Detection	CHB-MIT				

A.1.1 EMOTION RECOGNITION

This task aims to identify human emotional states from EEG signals. The datasets used involve recordings of subjects exposed to stimuli designed to elicit specific emotions.

- **SEED-V:** The SEED-V dataset focuses on the recognition of five distinct emotional categories: **happy**, **sad**, **neutral**, **disgust**, and **fear**. It features **62-channel** electroencephalogram (EEG) recordings acquired from 16 participants. For analytical purposes, these signals are segmented into 1-second windows. It should be noted that data corruption necessitated the exclusion of subject 7, leaving 15 subjects in the SEED-V dataset, which is then partitioned into a 5:5:5 split for training, validation, and testing.
- **SEED-IV:** SEED-IV focuses on the recognition of **four emotional states**: happiness, sadness, fear, and neutrality. Data were collected from **15 subjects** who participated in **3 sessions**, watching a total of 72 film clips chosen to induce these emotions. The data were segmented into **4-second nonoverlapping segments** for analysis. Key features extracted include Power Spectral Density (PSD) and Differential Entropy (DE) across five distinct frequency bands: delta, theta, alpha, beta, and gamma
- **SEED:** SEED originally owns 3 labels, Positive, Neutral and Negative. To align with the settings in baseline, we remove Neutral EEG data and transform it into a binary classification task. Data is segmented into **4-second nonoverlapping segments**.

A.1.2 MOTOR IMAGERY (MI)

Motor Imagery (MI) is the mental rehearsal of a motor action without any overt physical movement. In the context of EEG-based Brain-Computer Interfaces (BCIs), this task involves classifying dif-

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

ferent imagined movements—such as those of the left hand, right hand, or feet—from the user’s brain signals. These imagined actions elicit distinct patterns of neural activity, particularly within the sensorimotor cortex, which can be decoded to control external devices.

- **BCI IV 2a:** This dataset contains recordings from **9 subjects** performing a cue-based motor imagery task. The task involves four distinct classes: imagined movements of the **left hand, right hand, feet, and tongue**. EEG data was recorded from **22 channels** at a sampling rate of **250 Hz**, with each MI trial lasting for **4 seconds**.
- **High Gamma:** This dataset contains EEG recordings from **14 subjects** performing executed, rather than imagined, motor tasks, with a focus on capturing high-frequency components of brain activity. The paradigm includes four classes: sequential finger-tapping of the **left hand**, finger-tapping of the **right hand**, repetitive toe clenching representing **both feet**, and a **rest** condition. Signals were recorded from **128 channels** and subsequently downsampled to **250 Hz**, with each trial lasting for **4 seconds**.
- **Stieger2021 (LR):** Part of a study investigating the effects of Mindfulness-Based Stress Reduction (MBSR) on BCI skill acquisition, this dataset involves **64 subjects** performing a horizontal cursor control task. The paradigm consists of two classes: motor imagery of the **left hand** (to move left) and the **right hand** (to move right). Data was recorded from **15 channels** at **250 Hz** and segmented into **4-second** trials.
- **Stieger2021 (UD):** Sourced from the same subject pool, this dataset focuses on a vertical cursor control task. It includes two classes: motor imagery of **both hands** (to move up) and **voluntary rest** (to move down). The recording setup and trial segmentation are identical to the LR dataset.
- **PhysioNet:** This dataset provides motor imagery EEG recordings from **109 subjects**. The paradigm consists of four classes: imagined movements of the **left fist, right fist, both fists, and both feet**. Data was recorded from **64 channels** with a sampling rate of **250 Hz**, and trials are segmented into **10-second** windows.
- **KoreaU:** This dataset features EEG recordings from 54 subjects performing a binary-class motor imagery task. The paradigm involves two classes: imagined movements of the left hand and the right hand. Signals were recorded from 62 channels at a sampling rate of 1000 Hz, with each MI trial lasting for 4 seconds.

A.1.3 MAJOR DEPRESSIVE DISORDER (MDD) DETECTION

This task focuses on identifying biomarkers for Major Depressive Disorder from EEG signals, typically differentiating between patients with MDD and healthy controls.

- **Mumtaz:** This dataset is designed for MDD detection, containing EEG recordings from **34 patients with MDD** and **30 healthy controls** during eyes-open and eyes-closed resting states. Signals were recorded from **19 channels** following the 10-20 system and were subsequently downsampled to **250 Hz**. For analysis, the data is segmented into **5-second windows**.

A.1.4 WORKLOAD ASSESSMENT

This task, often framed as mental stress detection, aims to quantify a subject’s cognitive load or stress level based on their EEG signals.

- **Mental Arithmetic:** This dataset supports mental stress detection by recording EEG from 36 subjects under two conditions: a resting state (“no stress”) and an active mental arithmetic task (“stress”). The signals were acquired using 20 electrodes and segmented into 5-second windows.

A.1.5 EVENT TYPE CLASSIFICATION

This task involves the classification of various event types from clinically annotated EEG recordings, which is crucial for automated analysis and diagnosis.

864
 865
 866
 867
 868
 869
 870 • **TUEV (Events):** This clinically annotated corpus is used for multi-class event type clas-
 871 sification, including six categories such as spike and sharp wave (SPSW), eye movements
 872 (EYEM), and artifacts (ARTF). Signals were recorded using 16 bipolar montage channels
 873 and segmented into 5-second windows.

874
 875 **Table 5: Hyperparameters for Model Architecture.**

876 Component	877 Hyperparameter	878 Setting
879 EEG Sample	880 Channels	881 75
	882 Time points	883 2500
	884 Patch dimension	885 256
	886 Sequence length	887 10
888 CNN	889 Window size	890 100
	891 Step	892 90
	893 Input dimensions	894 {1, 64, 64, 128}
	895 Output dimensions	896 {64, 64, 128, 256}
	897 Kernel sizes	898 {(1, 5), (75, 1), (1, 5), (1, 5)}
	899 Strides	900 {(1, 1), (1, 1), (1, 1), (1, 1)}
	901 Paddings	902 {(0, 2), (0, 0), (0, 2), (0, 2)}
903 Transformer	904 FFN Hidden Size	905 512
	906 Head Number	907 8
	908 Token Dimension Size	909 256
910 Decoder	911 Layers	912 4
	913 Hidden dimension	914 384
	915 Attention Heads	916 6
	917 Feed-forward dimension	918 1536
919 Connector	920 Input dimension	921 256
	922 Output dimension	923 384
	924 Activation Function	925 GELU

900
 901

A.1.6 ATTENTION MONITORING

902
 903 This task aims to distinguish between states of attention and inattention using EEG signals.

904
 905 • **Attention:** This dataset was collected from **26 subjects** performing a Discrimina-
 906 tion/Selection Response (DSR) task to assess cognitive attention. Each subject participated
 907 in **three sessions**, with each session consisting of alternating **40-second attention periods**
 908 and **20-second rest periods**. To create a balanced binary classification problem (attention
 909 vs. inattention), the first **20 seconds** of each attention period were used. The data was then
 910 segmented into **4-second windows** with no overlap.

911
 912

A.1.7 SLEEP STAGING

913
 914 This task aims to automatically classify a subject’s sleep stage by analyzing their EEG signals. The
 915 objective is to assign labels such as Wake, REM, and non-REM (N1, N2, N3) to sequential epochs
 916 of EEG data, which is essential for analyzing sleep patterns and quality.

917
 918 • **ISRU C S1:** This dataset is a subset of the ISRU C-Sleep collection, designed for sleep
 919 stage classification. It contains polysomnographic (PSG) recordings from **100 subjects**,
 920 including both healthy individuals and patients with sleep disorders. Each recording was
 921 visually scored by two human experts, providing labels for different sleep stages. The data
 922 includes various electrophysiological signals crucial for sleep analysis.

923
 924 • **ISRU C S3:** Derived from the same ISRU C-Sleep collection, this dataset shares the same
 925 data acquisition and scoring protocols as ISRU C S1. It comprises recordings from **10**
 926 **subjects**, maintaining consistent signal types and label standards.

927
 928

A.1.8 SEIZURE DETECTION

929
 930 This task focuses on identifying seizure events from long-term scalp EEG recordings. The goal
 931 is to distinguish ictal segments from interictal background activity, which is essential for epilepsy
 932 diagnosis and continuous monitoring in clinical and home settings.

918

- 919 • **CHB-MIT**: This dataset is part of the PhysioNet EEG collections and contains pediatric
- 920 scalp EEG recordings from 22 subjects monitored at Boston Children’s Hospital. Each
- 921 subject includes multiple continuous sessions sampled at 256 Hz using the international
- 922 10–20 system, with approximately 23 to 26 EEG channels. A total of 198 seizure events
- 923 are annotated by clinical experts, providing detailed temporal boundaries for ictal activity.
- 924 The dataset is widely used for benchmarking seizure detection and event prediction models.

925

926 **Table 6: Hyperparameters for Training Process.**

927 Phase	928 Hyperparameter	929 Setting
930 Warm-up	Epochs	90
	Batch size	64
	Dropout	0.2
	Optimizer	Adam
	Learning rate	5e-5
	Adam β	(0.9, 0.999)
	Adam ϵ	1e-8
933 In-context Training	Scheduler	Custom Cosine Schedule
	Minimal learning rate	1e-6
935	Epochs	40
	Batch size	48
	Dropout	0.1
	Optimizer	Adam
	Learning rate	5e-5 (Decoder/Connector), 5e-6 (Encoder)
	Adam β	(0.9, 0.999)
	Adam ϵ	1e-8
	Scheduler	Custom Cosine Decay (via LambdaLR)
	Cosine cycle epochs	100
	Minimal learning rate factor	0.5
	ICL Support Samples (Stage 1)	8 (fixed)
	ICL Support Samples (Stage 2)	Random (0-12)
941	First Stage epochs	20
	EEG Sample Length	30 seconds

946 **A.2 BASELINE SELECTION**

948 We introduce the baseline for comparative experiment in this section. Our baseline includes traditional CNN network, Transformer architecture models as well as recent self-supervised Large EEG

949 Models.

950

951 **EEGNet** (Lawhern et al., 2018): A compact Convolutional Neural Network that introduced depth-952 wise and separable convolutions to create an efficient architecture for EEG classification. It is de-953 signed to generalize effectively across diverse BCI paradigms, demonstrating robust performance

954 even with limited training data.

955

956 **BIOT** (Yang et al., 2023): A Transformer architecture engineered for robust cross-dataset EEG

957 classification. It improves generalization across different subjects and recording settings by employing

958 contrastive learning and a domain-invariant attention mechanism to mitigate domain shift effects.

959

960 **LaBraM** (Jiang et al., 2024d): A scalable Transformer framework for learning general-purpose

961 EEG representations from extensive datasets. It is pretrained on a diverse collection of recordings to

962 capture features that are broadly applicable to downstream BCI tasks, utilizing efficient self-attention

963 and task-specific adapters to facilitate fine-tuning.

964

965 **EEGPT** (Wang et al., 2024a): Utilizes a dual self-supervised pretraining approach that combines

966 masked autoencoding with spatio-temporal representation alignment. Its hierarchical design decou-967 ples spatial and temporal feature extraction for greater computational efficiency and adaptability

968 across different BCI applications.

969

970 **CBraMod** (Wang et al., 2024c): An EEG foundation model designed to handle the complex de-971 pendingencies in brain signals. It features a criss-cross Transformer architecture with parallel attention

972 mechanisms that independently model spatial and temporal relationships within the data.

973

974 **CodeBrain** (Ma et al., 2025): An efficient two-stage EEG foundation model. It first employs a

975 novel TFDual-Tokenizer to generate discrete representations by independently processing temporal

972 and frequency components. Subsequently, its EEGSSM architecture, which integrates structured
 973 global convolutions with a sliding window attention mechanism, is trained via masked prediction to
 974 efficiently capture the multi-scale dependencies inherent in brain signals.
 975

976 **A.3 MODEL SETTING**
 977

978 To ensure the reproducibility of our work, this section provides a complete and detailed specification
 979 of our model’s architecture. We initialize ECHO’s decoder block with (Radford et al., 2022).
 980 The following Table 5 enumerates the specific hyperparameter settings for every component of the
 981 model pipeline, beginning with the initial EEG sample processing, through the feature extraction
 982 and encoding stages (Jiang et al., 2025), and concluding with the Connector and Decoder modules.
 983

984 **A.4 TRAINING & ENVIRONMENT SETTING**
 985

986 Our model is trained in two distinct phases, each with a unique set of hyperparameters as specified in
 987 Table 6. The process begins with an **Encoder Warm-up** phase to stabilize the feature extractor. This
 988 is followed by the main **Contextual Training Phase** phase, which itself includes staged settings for
 989 in context learning. The table details the optimizer configurations, learning rate schedules, and other
 990 crucial settings for both phases. The entire training pipeline was executed in a PyTorch Lightning¹
 991 environment on NVIDIA A100 40G GPUs. For better illustration, here is the pseudo code 1 for the
 992 whole training and inference process:
 993

994 **Algorithm 1** Contextual Training Phase of ECHO

995 **Input:** query_eeg, support_pairs, query_text (for training only)

996 1: **function** PREPROCESS(raw_eeg) ▷ Unify channels, filter, etc.
 997 2: **return** processed_eeg
 998
 999 3: **function** ENCODER(processed_eeg) ▷ Convert EEG to a sequence of tokens
 1000 4: **return** eeg_tokens
 1001
 1002 **Step 1: Encode all EEG samples into a unified context**
 1003 5: all_eegs \leftarrow [s.eeg for s in support_pairs] + [query_eeg]
 1004 6: eeg_tokens \leftarrow [encoder(preprocess(eeg)) for eeg in all_eegs]
 1005 7: eeg_context \leftarrow concat(eeg_tokens)
 1006
 1007 **Step 2: Prepare the initial text sequence**
 1008 8: support_texts \leftarrow [s.text for s in support_pairs]
 1009 9: text_sequence \leftarrow tokenize(concat(start_token, support_texts, query_token))
 1010
 1011 **Step 3: Decoder performs autoregressive prediction**
 1012 10: logits \leftarrow decoder(input_tokens=text_sequence, cross_attention_context=eeg_context)
 1013
 1014 **Step 4: Execute task based on the mode**
 1015 11: **if** training **then** ▷ Update model parameters by calculating loss
 1016 12: target_tokens \leftarrow tokenize(concat(support_texts, query_text, end_token))
 1017 13: loss \leftarrow loss_function(logits, target_tokens)
 1018 14: backpropagate(loss)
 1019
 1020 15: **else** (inference) ▷ Obtain the final result via autoregressive generation
 1021 16: result \leftarrow autoregressive_generate(logits)
 1022 17: **return** result
 1023
 1024
 1025

¹<https://lightning.ai/pytorch-lightning>

1026 **B EXPERIMENT RESULT DETAIL**
10271028 **B.1 RESULT OF ALL DATASETS**
1029

1030 As shown in Table 7, ECHO performs slightly below the strongest baseline, CBraMod, on the SEED-
1031 IV dataset. A key factor behind this result lies in the label overlap between SEED-IV and SEED-V,
1032 which share the same four categories. Within the multi-task unified training framework, ECHO
1033 must first infer which paradigm a given EEG sample belongs to before performing classification.
1034 In scenarios with highly overlapping label spaces, the model is prone to misinterpreting SEED-IV
1035 samples as belonging to the SEED-V label set, thereby introducing classification errors. Never-
1036 theless, it is worth noting that ECHO still achieves performance comparable to, or in some cases
1037 better than, other baselines. For instance, ECHO reaches near-best results in the Weighted F1 score,
1038 demonstrating a degree of robustness. This suggests that even under conditions of significant label
1039 overlap across tasks, ECHO maintains strong generalization and resilience.

1040 **Table 7: Results on the SEED-IV.**
1041

1042 Methods	1043 ACC-B	1044 Kappa	1045 F1-Weighted
1046 EEGNet	0.3684 \pm 0.0312	0.1945 \pm 0.0258	0.3251 \pm 0.0390
1047 BIOT	0.3165 \pm 0.0388	0.1623 \pm 0.0183	0.3255 \pm 0.0371
1048 EEGPT	0.3520 \pm 0.0437	0.1322 \pm 0.0254	0.3154 \pm 0.0220
1049 LaBraM	0.2647 \pm 0.0219	0.1652 \pm 0.0308	0.3572 \pm 0.0243
1050 CBraMod	0.4146 \pm 0.0228	0.2088 \pm 0.0344	0.3744 \pm 0.0454
1051 CodeBrain	0.3641 \pm 0.0328	0.1685 \pm 0.0300	0.3341 \pm 0.0249
1052 ECHO	0.3747 \pm 0.0121	0.1595 \pm 0.0029	0.3601 \pm 0.0037

1053 Note: **Bold** indicates the best performance. Cyan highlight marks ECHO.

1054 As shown in Table 8, ECHO achieves the overall best performance on the SEED-V dataset, outper-
1055 forming all baselines across ACC-B, Kappa, and F1-Weighted. Compared to SEED-IV, SEED-V
1056 has less overlap in label space with other tasks, which reduces ambiguity in paradigm identifica-
1057 tion and allows the model to better exploit its unified modeling capacity. In this setting, ECHO
1058 avoids the classification errors caused by label interference and demonstrates strong ability to cap-
1059 ture task-specific representations under the multi-task framework. These results indicate that when
1060 task paradigms are more clearly separated, ECHO can fully realize its potential and consistently
1061 surpass state-of-the-art baselines.

1062 **Table 8: Results on the SEED-V.**
1063

1064 Methods	1065 ACC-B	1066 Kappa	1067 F1-Weighted
1068 EEGNet	0.2413 \pm 0.0021	0.0592 \pm 0.0054	0.2317 \pm 0.0017
1069 BIOT	0.2245 \pm 0.0061	0.0432 \pm 0.0010	0.2153 \pm 0.0038
1070 EEGPT	0.2202 \pm 0.0044	0.0496 \pm 0.0036	0.2301 \pm 0.0096
1071 LaBraM	0.2372 \pm 0.0053	0.0562 \pm 0.0028	0.2237 \pm 0.0078
1072 CBraMod	0.2432 \pm 0.0046	0.0586 \pm 0.0059	0.2452 \pm 0.0043
1073 CodeBrain	0.2447 \pm 0.0044	0.0610 \pm 0.0032	0.2411 \pm 0.0037
1074 ECHO	0.2484 \pm 0.0021	0.0640 \pm 0.0008	0.2456 \pm 0.0010

1075 Note: **Bold** indicates the best performance. Cyan highlight marks ECHO.

1076 As shown in Table 9, ECHO achieves performance comparable to the strongest baselines, while
1077 obtaining the best result on the F1-Weighted metric. This indicates that, in motor imagery tasks,
1078 ECHO demonstrates an advantage in capturing discriminative features under class imbalance. How-
1079 ever, in terms of Balanced Accuracy and Cohen’s Kappa, ECHO falls slightly behind CBraMod,
1080 suggesting that distinguishing between complex categories such as left-right hand and upper-lower
1081 limb imagery remains challenging under the cross-subject multi-task setting. Overall, ECHO main-
1082 tains competitive performance and shows robustness on metrics emphasizing intra-class consistency,
1083 underscoring its adaptability to motor imagery EEG within the Seq2Seq framework.

1080

1081

Table 9: Results on the BCIC-IV-2a.

1082

1083

Methods	ACC-B	Kappa	F1-Weighted
EEGNet	0.4583 ± 0.0281	0.2937 ± 0.0612	0.4265 ± 0.0498
BIOT	0.4421 ± 0.0415	0.2768 ± 0.0387	0.4180 ± 0.0634
EEGPT	0.4676 ± 0.0304	0.2889 ± 0.0529	0.4312 ± 0.0391
LaBraM	0.4538 ± 0.0468	0.3011 ± 0.0432	0.4147 ± 0.0587
CBraMod	0.4816 ± 0.0355	0.3088 ± 0.0473	0.4571 ± 0.0543
CodeBrain	0.4721 ± 0.0341	0.2984 ± 0.0471	0.4478 ± 0.0480
ECHO	0.4763 ± 0.0011	0.3015 ± 0.0012	0.4632 ± 0.0002

1091

Note: **Bold** indicates the best performance. Cyan highlight marks ECHO.

1092

1093

On the Stieger2021-UD dataset (Table 10), ECHO delivers performance largely comparable to other strong baselines. Specifically, it achieves a Balanced Accuracy of 0.7311, which is close to LaBraM and CodeBrain but still falls short of the best-performing CBraMod. For ROC AUC and PR AUC, ECHO does not surpass CBraMod; however, it maintains stable results, with a PR AUC of 0.8258 that is competitive with the top baseline. These findings indicate that while ECHO preserves cross-subject generalization in upper- and lower-limb motor imagery tasks, its discriminative capacity is somewhat constrained under the more challenging multi-task setting.

1100

1101

Table 10: Results on the Stieger2021-UD.

1102

1103

Methods	ACC-B	ROC AUC	PR AUC
EEGNet	0.6952 ± 0.0125	0.8113 ± 0.0068	0.7741 ± 0.0097
BIOT	0.7035 ± 0.0098	0.8237 ± 0.0042	0.7895 ± 0.0112
EEGPT	0.7189 ± 0.0153	0.8378 ± 0.0056	0.8032 ± 0.0075
LaBraM	0.7274 ± 0.0087	0.8421 ± 0.0091	0.8126 ± 0.0051
CBraMod	0.7598 ± 0.0079	0.8622 ± 0.0037	0.8524 ± 0.0039
CodeBrain	0.7304 ± 0.0201	0.8143 ± 0.0078	0.8121 ± 0.0061
ECHO	0.7311 ± 0.0001	0.8242 ± 0.0013	0.8258 ± 0.0001

1112

Note: **Bold** indicates the best performance. Cyan highlight marks ECHO.

1113

On the TUEV dataset (Table 11), ECHO achieves a Balanced Accuracy of 0.5322, notably outperforming its encoder-only counterpart ($ECHO^E$, 0.4816). While the absolute performance does not match state-of-the-art models like CodeBrain, this comparison reveals a crucial insight: the lightweight encoder inherently limits the model’s capacity to resolve complex clinical events. However, the proposed ECHO paradigm successfully uplifts this baseline, demonstrating that the generative pre-training strategy effectively enhances representation quality even when the underlying architecture is constrained.

1121

1122

1123

1124

1125

1126

1127

Similar observations apply to the PhysioNet dataset (Table 12). ECHO achieves a Balanced Accuracy of 0.5667, showing a clear improvement over the encoder-only baseline ($ECHO^E$, 0.5253). Although it trails behind specialized methods like CBraMod, the consistent gain over $ECHO^E$ validates the efficacy of the methodology. This suggests that while the base encoder struggles with the specific frequency-spatial patterns of this task, the ECHO framework extracts significantly richer features than supervised training alone, proving the value of the paradigm despite architectural limitations.

1128

1129

1130

1131

1132

1133

The extended experimental results in the appendix reveal that ECHO’s performance varies across tasks and datasets. For SEED-IV and SEED-V emotion recognition tasks, the substantial label overlap within the SEED family makes it difficult for ECHO to disentangle paradigms and sub-class categories in a multi-task setting, which in turn leads to relatively weaker performance compared to some single-task baselines. Nevertheless, ECHO is still able to achieve results close to or even surpassing the strongest baselines on certain metrics (e.g., F1-Weighted), highlighting its robustness. On the BCIC-IV-2a dataset, ECHO performs comparably to the strongest baseline and achieves

1134

1135

Table 11: Results on the TUEV dataset.

1136

1137

Methods	ACC-B	Kappa	F1-Weighted
EEGNet	0.3876 ± 0.0143	0.3577 ± 0.0155	0.6539 ± 0.0120
BIOT	0.5281 ± 0.0225	0.5273 ± 0.0249	0.7492 ± 0.0082
EEGPT	0.6232 ± 0.0114	0.6351 ± 0.0134	0.8187 ± 0.0063
LaBraM	0.6409 ± 0.0065	0.6637 ± 0.0093	0.8312 ± 0.0052
CBraMod	0.6671 ± 0.0107	0.6772 ± 0.0096	0.8342 ± 0.0064
CodeBrain	0.6428 ± 0.0062	0.6912 ± 0.0101	0.8362 ± 0.0048
$ECHO^E$	0.4816 ± 0.0152	0.4921 ± 0.0118	0.7406 ± 0.0094
ECHO	0.5322 ± 0.0045	0.4973 ± 0.0032	0.7442 ± 0.0058

1146

Note: **Bold** indicates the best performance. Cyan highlight marks ECHO methods.
 $ECHO^E$ denotes the encoder-only baseline.

1147

1148

1149

the best score on F1-Weighted, demonstrating its ability to maintain cross-subject generalization in classical motor imagery tasks. For Stieger2021-UD, while ECHO does not surpass the best baseline in terms of Balanced Accuracy and AUC, it delivers stable performance overall, indicating its robustness in more complex upper- and lower-limb motor imagery scenarios. In summary, these extended results suggest that while ECHO may encounter performance bottlenecks in multi-task and cross-dataset contexts with overlapping task labels, it nevertheless exhibits strong robustness and generalization. This further validates the applicability and potential advantages of its decoder-centric, Seq2Seq design for neural representation learning.

1150

1151

1152

1153

1154

1155

1156

1157

B.2 VALIDATION OF SEQ2SEQ PARADIGM

1158

1159

As shown in Table 13, we systematically compares the performance of two configurations across multiple downstream tasks to validate the performance of the Seq2Seq paradigm:

1160

1161

1162

1163

1164

1165

No Support: ECHO performs inference without any samples (ICL = 0, and no task sample), relying solely on sample modeling and the decoder’s intrinsic capacity for prediction. *Encoder Only*: A conventional paradigm using only the encoder with a lightweight classification head.

1166

1167

1168

1169

1170

1171

1172

1173

Representative Comparisons and Quantitative Differences:

1174

1175

1176

1177

Table 12: Results on the PhysioNet dataset.

Methods	ACC-B	Kappa	F1-Weighted
EEGNet	0.5814 ± 0.0125	0.4468 ± 0.0199	0.5796 ± 0.0115
EEGConformer	0.6049 ± 0.0104	0.4736 ± 0.0171	0.6062 ± 0.0095
ST-Transformer	0.6035 ± 0.0081	0.4712 ± 0.0199	0.6053 ± 0.0075
BIOT	0.6153 ± 0.0154	0.4875 ± 0.0272	0.6158 ± 0.0197
LaBraM	0.6173 ± 0.0122	0.4912 ± 0.0192	0.6177 ± 0.0141
CBraMod	0.6417 ± 0.0091	0.5222 ± 0.0169	0.6427 ± 0.0100
$ECHO^E$	0.5253 ± 0.0110	0.3619 ± 0.0145	0.5177 ± 0.0089
ECHO	0.5667 ± 0.0121	0.4214 ± 0.0185	0.5604 ± 0.0109

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Note: **Bold** indicates the best performance. Cyan highlight marks ECHO methods.

1188

1189

Table 13: Comparison results of No Support and Encoder Only methods on downstream tasks.

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Methods	SEED-IV			SEED-V			SEED		
	ACC-B	Kappa	FI-W	ACC-B	Kappa	FI-W	ACC-B	ROC AUC	PR AUC
No Support	0.3398	0.1174	0.3400	0.2353	0.0466	0.2353	0.7407	0.8488	0.8522
Encoder Only	0.3740	0.1609	0.3684	0.2223	0.0284	0.2196	0.6548	0.7493	0.7592
Methods	BCI IV 2a			High-Gamma			Stieger2021-LR		
	ACC-B	Kappa	FI-W	ACC-B	ROC AUC	PR AUC	ACC-B	ROC AUC	PR AUC
No Support	0.4627	0.2836	0.4432	0.8438	0.9125	0.9047	0.8534	0.9349	0.9363
Encoder Only	0.3406	0.1242	0.2339	0.8039	0.8900	0.8889	0.6123	0.8918	0.9048
Methods	Stieger2021-UD			PhysioNet			Mental Arithmetic		
	ACC-B	ROC AUC	PR AUC	ACC-B	Kappa	FI-W	ACC-B	ROC AUC	PR AUC
No Support	0.6924	0.8112	0.8117	0.5437	0.3918	0.5318	0.5442	0.6896	0.6897
Encoder Only	0.6058	0.7759	0.7858	0.5253	0.3619	0.5177	0.6008	0.6555	0.6416
Methods	Mumtaz			TUEV (Events)			Attention		
	ACC-B	ROC AUC	PR AUC	ACC-B	Kappa	FI-W	ACC-B	ROC AUC	PR AUC
No Support	0.9056	0.9745	0.9748	0.5214	0.5085	0.7489	0.8056	0.8895	0.8955
Encoder Only	0.9698	0.9953	0.9952	0.4816	0.4921	0.7406	0.6472	0.7329	0.7367

Note: **Bold** indicates the best performance between the two methods for each metric.

Motor Imagery: On datasets such as BCI IV 2a, Stieger2021-LR/UD, and SEED, *No Support* achieves consistent superiority across all metrics. For example, in BCI IV 2a, Balanced Accuracy rises from 0.3406 (*Encoder Only*) to 0.4627 (*No Support*), a substantial improvement; in Stieger2021-LR, the gains in ROC AUC (0.9349 vs. 0.8918) and PR AUC (0.9363 vs. 0.9048) are particularly notable, underscoring stronger ranking ability and robustness to class imbalance.

Event Detection: On TUEV (Events), *No Support* consistently outperforms *Encoder Only* across all metrics, indicating that sequential decoding is particularly effective for modeling context dependencies in event-based labeling. Notably, even though the lightweight encoder performs poorly on this dataset—near random—the seq2seq paradigm itself remains effective, demonstrating that the decoding framework can compensate for weak encoder representations.

Clinical Depression: On the Mumtaz dataset, *Encoder Only* clearly dominates across all metrics (e.g., balanced accuracy 0.9698 vs. 0.9056), suggesting that in highly homogeneous, binary clinical datasets with relatively sharp decision boundaries, an encoder-classifier paradigm tailored to the task can more easily reach performance ceilings.

Emotion Recognition: On the SEED family dataset, *No Support* demonstrates clear advantages on SEED and remains competitive on SEED-V, yet it is surpassed by *Encoder Only* on SEED-IV. This discrepancy is likely due to overlapping label spaces and paradigms within the SEED family, which introduce ambiguity in paradigm determination. Without support samples, the decoder must simultaneously infer the task paradigm and predict labels; the heavy overlap between SEED-IV and SEED-V can induce “paradigm boundary confusion,” weakening the advantage of *No Support*.

Workload Assessment: On Mental Arithmetic, *No Support* performs better on AUC metrics (0.6896/0.6897 vs. 0.6555/0.6416), but lags slightly in Balanced Accuracy (0.5442 vs. 0.6008). This reflects a divergence between ranking quality and thresholded accuracy: while *No Support* offers better probability calibration and ranking, its fixed-threshold accuracy does not dominate. With post-processing or threshold tuning, the gap in Balanced Accuracy may be further reduced.

In most datasets and evaluation metrics, *No Support* significantly outperforms *Encoder Only*. The underlying reason is that ECHO’s sequence-to-sequence decoding paradigm enables it to jointly model the hierarchical relationships among signals, tasks, and labels within a unified symbolic space. Even without support samples, ECHO can rely on the pattern-matching mechanisms acquired during training to perform cross-task and cross-paradigm reasoning. This not only enhances the model’s

robustness but also allows it to maintain strong generalization performance in scenarios where task boundaries are ambiguous or data distributions differ.

By contrast, *Encoder Only* relies on a conventional discriminative classification head, which is more suitable for single-paradigm or structurally simpler tasks but struggles with generalization and flexibility in complex, heterogeneous multi-task settings. Thus, ECHO’s superior performance demonstrates that it can autonomously infer task paradigms and predict labels without task-specific prompts while effectively integrating knowledge from diverse datasets through unified modeling. This capability is a key piece of evidence for ECHO’s success, showing that it overcomes the limitations of traditional LEMs and achieves stronger adaptability and generalization in multi-task and cross-dataset scenarios.

B.3 ZERO-SHOT PERFORMANCE

As shown in Table 14, we evaluated the model performance on the SEED-IV dataset. It is noted that $\text{ECHO}^{\mathcal{E}}$ and the No Support variant included this dataset during the training phase. Conversely, ECHO w/o SEED-IV operated under a zero-shot setting where SEED-IV was excluded from the training corpus. Experimental results indicate that while ECHO w/o SEED-IV yields slightly lower metrics compared to CBraMod, the performance gap remains marginal. This suggests that the model retains competitive capability despite the absence of domain-specific training data, reflecting positive generalization potential.

Table 14: Results on SEED-IV Dataset.(Unseen for ECHO)

Methods	ACC-B	Kappa	F1-Weighted
Cbramod	0.4146 \pm 0.0228	0.2088 \pm 0.0344	0.3744 \pm 0.0454
$\text{ECHO}^{\mathcal{E}}$	0.3740 \pm 0.0152	0.1609 \pm 0.0085	0.3684 \pm 0.0110
ECHO (No Support)	0.3398 \pm 0.0134	0.1174 \pm 0.0062	0.3400 \pm 0.0125
ECHO w/o SEED-IV	0.3491 \pm 0.0141	0.1283 \pm 0.0078	0.3357 \pm 0.0119

Note: **Bold** indicates the best performance. Cyan highlight marks ECHO variants.

B.4 TRAINING LOSS

Figure 4 illustrates the pretraining loss curve for the Contextual Training Phase of our model, ECHO. The loss exhibits a rapid initial convergence during the first few epochs, followed by a gradual and steady decline. A minor spike is observed at the transition between the two stages of this phase. We attribute this transient increase to the shift from a fixed to a variable number of support samples and the introduction of random EEG data. Notably, the magnitude of this spike is minimal, suggesting that the ECHO decoder had already acquired robust sequence prediction capabilities during Stage 1. Therefore, Stage 2 serves to refine this ability, prompting the model to focus more on the nuanced sequential relationships among the EEG samples.

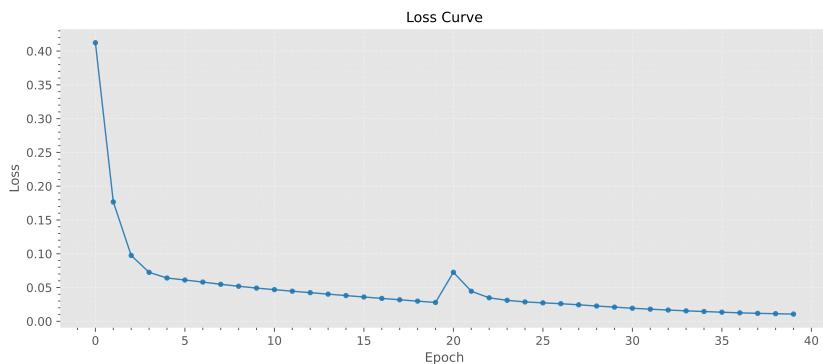


Figure 4: The loss curve of ECHO Contextual Training Phase

1296 C RELATED WORK DETAIL
1297

1298 Traditional EEG decoding pipelines were primarily based on domain-specific feature extraction
1299 methods, such as common spatial patterns (CSP), in combination with shallow classifiers, including
1300 linear discriminant analysis (LDA) and support vector machines (SVMs) (Lotte et al., 2007;
1301 Guler & Ubeyli, 2007). Although computationally efficient, these approaches were constrained by
1302 their reliance on prior assumptions about neural dynamics and exhibited limited generalizability
1303 across heterogeneous settings. The introduction of deep learning marked a critical turning point.
1304 CNN-based methods enabled the direct learning of spatiotemporal features from raw EEG signals
1305 (Zhou et al., 2024; Ding et al., 2024), while RNNs, including LSTMs architectures, provided tools
1306 for modeling sequential neural dependencies. Despite their effectiveness in task-specific scenarios,
1307 these architectures often exhibited poor transferability, primarily due to variations in electrode
1308 configurations, sampling rates, and task paradigms across datasets. This limitation motivated the
1309 transition toward LEMs, also referred to as EEG Foundation Models (Zhou et al., 2025a), which
1310 aim to learn universal representations from extensive collections of unlabeled EEG data.

1311 Current research on LEMs emphasizes self-supervised pretraining strategies that can be broadly
1312 categorized into two classes: reconstruction-based and contrastive-based methods. Reconstruction-
1313 based approaches encourage models to learn temporal and spatial dependencies by predicting
1314 masked or future signal segments. For instance, EEGPT (Wang et al., 2024a), which employs a
1315 dual-masking strategy to reconstruct both raw signals and their spatiotemporal representations, and
1316 LaBraM (Jiang et al., 2024b) and CodeBrain (Ma et al., 2025), which tokenize EEG into discrete
1317 neural codes and learns by reconstructing masked tokens. Further innovations are seen in models
1318 like CSBrain (Zhou et al., 2025b), which uses cross-scale tokenization to handle the multi-resolution
1319 characteristics of EEG, and CBraMod (Wang et al., 2024b), which introduces a criss-cross trans-
1320 former to model complex spatial and temporal dependencies. In contrast, contrastive-based methods
1321 enhance robustness and discriminability by constructing positive and negative pairs. Models such
1322 as BIOT (Yang et al., 2023) and NeuroGPT (Cui et al., 2024) have explored contrastive objectives
1323 alongside masked modeling to improve representation quality and improve generalization between
1324 subjects and recording conditions while mitigating domain shift.

1325 While existing LEMs have demonstrated the capacity to produce powerful encoders, their de-
1326 coding paradigm remains a critical bottleneck. Typically, high-capacity encoders are paired with
1327 lightweight classifiers, leading to a mismatch restricting the full exploitation of pretrained repre-
1328 sentations. This limitation has led to only using LLMs as encoders, where EEG embeddings are
1329 aligned with text embeddings and decoded via instruction-based prompting. Models such as Neu-
1330 roLM (Jiang et al., 2024a) and UniMind (Lu et al., 2025) exemplify this paradigm by unifying EEG
1331 and language representations. However, recent work has highlighted that such LLM encoder-centric
1332 approaches remain fundamentally limited, as they shift the EEG-to-label mapping into text space
1333 without resolving the inductive bias mismatch between static semantic structures in language and
1334 the dynamic temporal patterns inherent to EEG signals.

1335 To overcome these limitations, the ECHO framework introduces a decoder-centric Seq2Seq
1336 paradigm. Unlike encoder- or LLM-centric methods, ECHO structures both support and target
1337 EEG samples as serialized sequences, thereby enabling ICL directly in the EEG modality. This
1338 design equips LEMs with the ability to dynamically adapt to new tasks without parameter updates,
1339 while preserving task-discriminative capacity and cross-task generalization. By reframing EEG de-
1340 coding as contextual sequence modeling, ECHO advances the field beyond prior encoder-focused
1341 paradigms and provides a principled pathway to unlock the full potential of EEG foundation models.

1350 **D EXTRA EXPERIMENT**
13511352 **D.1 TASK EXPANSION**
13531354 **D.1.1 SLEEP STAGING**
13551356
1357 To evaluate ECHO in long-sequence scenarios, we designed a long-sequence variant and incorpo-
1358 rated the ISRUC-S1 sleep staging dataset, which is called ECHO^L. Unlike conventional tasks, sleep
1359 staging requires classification of complete 30-second segments, placing higher demands on tem-
1360 poral modeling and cross-segment consistency. For the following two reasons, we did not place it
1361 as the main result in the main text, but placed it in the appendix for reference as a law and result
1362 exploration.1363 **ECHO^L includes fewer datasets.** In the multi-task training setup, all tasks must be aligned to
1364 the 30s window length of ISRUC-S1. For datasets originally segmented into shorter clips (e.g., 1s
1365 for emotion recognition), this required padding to 30s, inflating their size by up to 30x. Combined
1366 with the additional support samples required for ICL, this drastically increased sequence length and
1367 computational overhead. To keep training feasible, the long-sequence version of ECHO was trained
1368 only on a reduced set of six datasets (Mumtaz2016, SEED-V, ISRUC-S1, High-Gamma, BCIC-IV-
1369 2a, and Mental Arithmetic). As a result, this version is reported in the appendix rather than as the
1370 main ECHO model in the paper.1371 **ECHO^L applies a 30s sleep staging paradigm.** Baseline methods in sleep staging commonly
1372 exploit 10-minute temporal context (20x30s consecutive segments), which provides a significant
1373 advantage by modeling long-range dependencies. Extending this setup to ECHO, however, would
1374 result in nearly 1-hour equivalent sequences per forward pass once the serialized Seq2Seq struc-
1375 ture and ICL support tokens are included. With the simplified DeepConvNet encoder and limited
1376 computational resources, this was not feasible. Therefore, ECHO was evaluated under a stricter set-
1377 ting, relying solely on the current 30s segment without additional temporal context, making its task
1378 substantially harder than that of the baselines (baselines: 10min continuous context; ECHO: 30s +
1379 discrete support tokens).1380 As shown in Table 15, ECHO achieved ACC-B 0.7311, Kappa 0.6878, and F1-Weighted 0.7580.
1381 Compared to the strongest baselines CBraMod (ACC-B 0.7865, Kappa 0.7442, F1-Weighted
1382 0.8011) and CodeBrain (Kappa 0.7476, F1-Weighted 0.8020), ECHO lags by only 0.055, 0.056,
1383 and 0.043, respectively. Given that ECHO does not benefit from 10min temporal context and si-
1384 multaneously handles the extra sequence load from ICL, these gaps are both expected and relatively
1385 small. Furthermore, ECHO exhibits extremely low variance (e.g., ACC-B ± 0.0012 , Kappa ± 0.0032 ,
1386 F1-Weighted ± 0.0022), demonstrating strong training stability and robust inference consistency.
1387 Overall, despite operating under much stricter conditions, ECHO delivers performance that is still
1388 comparable to state-of-the-art baselines, validating the feasibility of its decoder-centric Seq2Seq +
1389 ICL framework for long-sequence sleep staging.1390
1391
1392 **Table 15: Results on the ISRUC-S1.**

1393 Methods	1394 ACC-B	1395 Kappa	1396 F1-Weighted
1397 EEGNet	0.6238 ± 0.0142	0.5921 ± 0.0142	0.7032 ± 0.0309
1398 BIOT	0.7527 ± 0.0121	0.7192 ± 0.0231	0.7790 ± 0.0146
1399 LaBraM	0.7633 ± 0.0102	0.7231 ± 0.0182	0.7810 ± 0.0133
1400 EEGPT	0.4012 ± 0.0177	0.2223 ± 0.0227	0.3111 ± 0.0110
1401 CBraMod	0.7865 ± 0.0110	0.7442 ± 0.0152	0.8011 ± 0.0099
1402 CodeBrain	0.7835 ± 0.0033	0.7476 ± 0.0040	0.8020 ± 0.0018
1403 ECHO ^L	0.7838 ± 0.0012	0.7303 ± 0.0032	0.7893 ± 0.0022

1404 Note: **Bold** indicates the best performance. Cyan highlight marks ECHO.

1404
1405 D.1.2 MOTOR IMAGERY

1406 In this study, we further designed a task-specialized version of ECHO, denoted as $\text{ECHO}^{\mathcal{M}\mathcal{I}}$, which
 1407 was trained exclusively on motor imagery (MI) datasets. The primary motivation was to investigate
 1408 whether datasets of the same task type are complementary and to assess the contribution of individual
 1409 datasets within this domain. To this end, we trained a full $\text{ECHO}^{\mathcal{M}\mathcal{I}}$ model with all MI datasets
 1410 and a reduced version, $\text{ECHO}^{\mathcal{M}\mathcal{I}}$ (no KoreaU), in which the KoreaU([Lee et al., 2019](#)) dataset was
 1411 excluded. By evaluating performance on KoreaU, which was unseen during training in the reduced
 1412 model, we can examine whether removing one dataset significantly undermines generalization. The
 1413 results show that although excluding KoreaU leads to a slight drop in performance (e.g., ACC-B
 1414 decreases from around 64% to 62%), $\text{ECHO}^{\mathcal{M}\mathcal{I}}$ (no KoreaU) still generalizes effectively to this
 1415 unseen dataset. This demonstrates that the model captures transferable representations across MI
 1416 datasets rather than overfitting to any single dataset, thereby highlighting the robustness and cross-
 1417 dataset generalization capacity of ECHO in task-specialized scenarios.

1418
1419
1420 Table 16: Results on the KoreaU.

Methods	ACC-B	Kappa	F1-Weighted
$\text{ECHO}^{\mathcal{M}\mathcal{I}}$ (no KoreaU)	0.6235 ± 0.0118	0.4012 ± 0.0125	0.6154 ± 0.0142
$\text{ECHO}^{\mathcal{M}\mathcal{I}}$	0.6412 ± 0.0123	0.4289 ± 0.0107	0.6335 ± 0.0131

1421 Note: Cyan highlight marks MI-specialized versions of ECHO.
 1422
 1423
 1424

1425
1426 D.1.3 SEIZURE DETECTION
1427

1428 We extend the original ECHO pre-training corpus by incorporating the CHB-MIT epilepsy dataset,
 1429 yielding the $\text{ECHO}^{\mathcal{E}\mathcal{P}}$ variant. This addition enables the model to acquire characteristic high-
 1430 frequency and transient seizure patterns prior to downstream evaluation, addressing the limited clin-
 1431 ical coverage of the original pre-training setup.

1432 As shown in Table 17, encoder-centric baselines such as CBraMod and CodeBrain achieve the
 1433 strongest performance (ACC-B and ROC AUC), reflecting the advantage of their large-capacity en-
 1434 coders in modeling epileptic dynamics. In contrast, $\text{ECHO}^{\mathcal{E}\mathcal{P}}$ without support examples underper-
 1435 forms these extensively pretrained models. However, once support samples are provided, $\text{ECHO}^{\mathcal{E}\mathcal{P}}$
 1436 exhibits substantial improvements across all metrics (ACC-B +0.053, ROC AUC +0.047, PR AUC
 1437 +0.111), ultimately achieving the highest PR AUC among all methods. This sharp gain surpasses
 1438 all encoder-centric SOTA baselines and highlights the effectiveness of the ICL mechanism in lever-
 1439 aging a few support examples to compensate for gaps in seizure-related time–frequency modeling.
 1440 Overall, although $\text{ECHO}^{\mathcal{E}\mathcal{P}}$ (No Support) trails existing SOTA models in the multi-task pre-training
 1441 setting, the addition of ICL successfully compensates for the limitations of the lightweight encoder,
 1442 enabling $\text{ECHO}^{\mathcal{E}\mathcal{P}}$ to deliver competitive performance.

1443
1444
1445
1446
1447 Table 17: Results on the CHB-MIT.

Methods	ACC-B	ROC AUC	PR AUC
BIOT	0.7068 ± 0.0457	0.8761 ± 0.0284	0.3277 ± 0.0460
LaBraM	0.7075 ± 0.0358	0.8679 ± 0.0199	0.3287 ± 0.0402
EEGPT	0.5481 ± 0.0151	0.8892 ± 0.0066	0.3073 ± 0.0641
CBraMod	0.7398 ± 0.0284	0.8892 ± 0.0154	0.3689 ± 0.0382
CodeBrain	0.7273 ± 0.0240	0.8961 ± 0.0174	0.4377 ± 0.0288
$\text{ECHO}^{\mathcal{E}\mathcal{P}}$ (No Support)	0.5671 ± 0.0078	0.8290 ± 0.0052	0.3872 ± 0.0049
$\text{ECHO}^{\mathcal{E}\mathcal{P}}$	0.6199 ± 0.0040	0.8762 ± 0.0077	0.4985 ± 0.0032

1448 Note: **Bold** indicates the best performance. Cyan highlight marks ECHO.
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

1458 D.2 COMPONENT VERIFICATION
14591460 D.2.1 CHANNEL FUSION STRATEGIES COMPARISON
1461

1462 The primary goal of the this comparison is to validate the channel-fusion method of ECHO, which
1463 employs a simple averaging strategy to handle channel alignment to stress the contribution of the
1464 paradigm itself. We compared this approach with two alternative strategies to assess its effectiveness.
1465 The first alternative is the Full Channel strategy, which utilizes all available electrodes without
1466 reduction. The second is the Channel Deletion strategy, which selects channels (the same with Average
1467 method) by priority and deletes directly to eliminate phase misalignment caused by averaging.

1468 Table 18 presents the performance comparison on the KoreaU and High-Gamma datasets. The
1469 results indicate that the averaging strategy maintains stable performance. On the High-Gamma
1470 dataset, the averaging method outperforms the Full Channel baseline. On the KoreaU dataset, the
1471 performance gap between the averaging strategy and the Full Channel approach remains small.
1472 These findings verify that the averaging operation is a sufficient and effective design choice for
1473 handling channel heterogeneity.

1474
1475
1476 Table 18: Performance comparison of channel fusion strategies on KoreaU and High-Gamma
1477 datasets.

Methods	KoreaU (62 Channels)			High-Gamma (128 Channels)		
	ACC	ROC AUC	PR AUC	ACC	ROC AUC	PR AUC
Full Channel	0.7217	0.8138	0.8079	0.6780	0.7956	0.8209
Average (Ours)	0.7031	0.7806	0.7790	0.6911	0.8418	0.8049
Channel Deletion	0.6983	0.7808	0.7759	0.6476	0.7710	0.8134

1487 D.2.2 SUPPORT SIZE SCALING ANALYSIS
1488

1489 To systematically evaluate how ECHO’s in-context learning behaves under different support sample
1490 sizes, we conduct a support-scaling sensitivity analysis across downstream tasks. Because datasets
1491 differ widely in raw performance ranges, we first apply min-max normalization to each dataset’s
1492 curve, enabling fair comparison in a unified coordinate space. This allows us to focus on the trend
1493 itself rather than absolute accuracy.

1494 As shown in Figure 5, from the overall trend (black averaged curve), increasing the number of
1495 support samples does not lead to a strictly monotonic improvement. Instead, performance typically
1496 peaks around $k = 8$, after which further increases produce diminishing or even negative returns.
1497 This phenomenon is partly attributable to pretraining effects that the decoder may inherently favor
1498 shorter sequences and partly reflects a core property of ICL: the model does not always benefit from
1499 more examples [Zhang et al. \(2025\)](#). When k becomes too large, cross-subject variability, trial-level
1500 fluctuations, and distributional noise can accumulate, making it harder for the model to construct a
1501 stable label-space mapping and ultimately causing performance drop-off.

1502 At the same time, we observe a second class of datasets where performance improves steadily as
1503 more support samples are added, as shown in Figure 6. These datasets generally have cleaner dis-
1504 tributions, higher class separability, and more stable mappings. In such cases, ECHO can exploit
1505 additional support samples more effectively, resulting in nearly monotonic gains. This indicates that
1506 the usefulness of support samples is highly dependent on the intrinsic characteristics of the task:
1507 for well-structured datasets with clear decision boundaries, support examples strongly reinforce la-
1508 bel semantics; for noisier or more heterogeneous datasets, too many support samples may instead
1509 introduce disruptive variance.

1510 In summary, the optimal number of support samples is not universal but closely tied to dataset
1511 complexity. For many EEG tasks, a moderate support size (around $k = 8$) provides the strongest ICL
effect, while several cleaner and more separable datasets benefit from larger support sets.

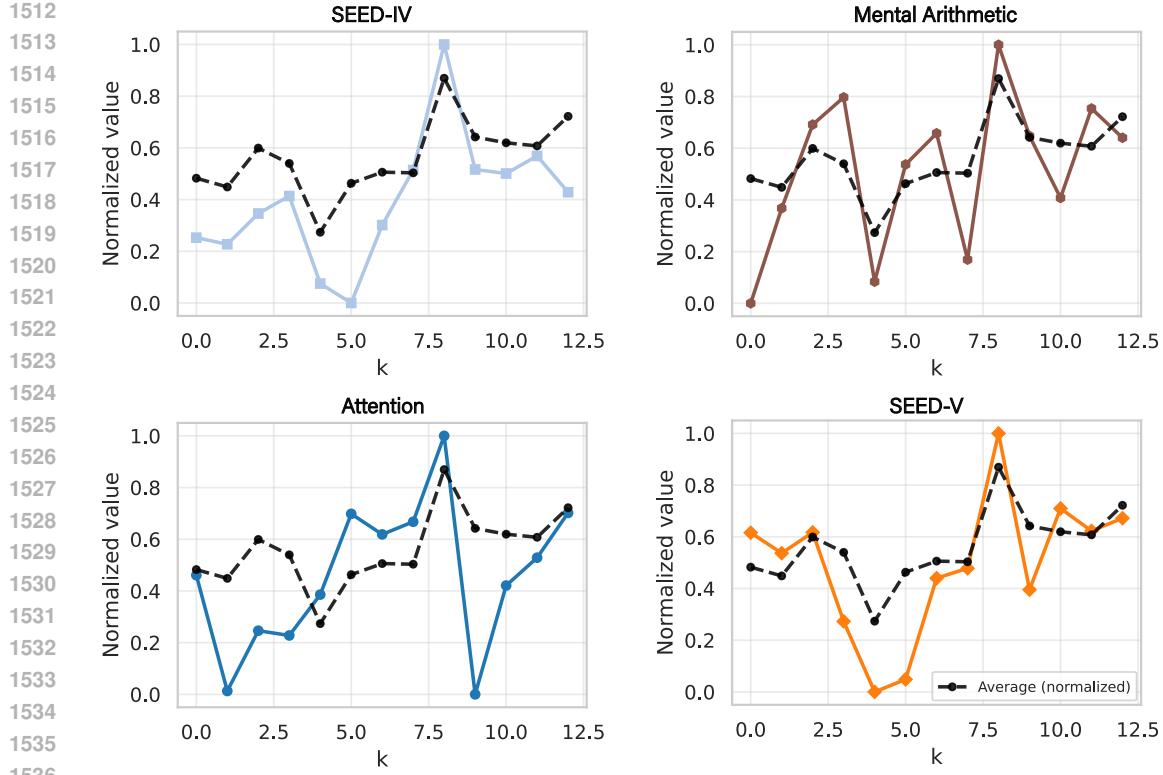


Figure 5: Variation of balanced accuracy with respect to the number of support samples. Each subplot displays the curve for an individual dataset, and the black line indicates the average performance across all datasets. The balanced accuracy values are normalized using min-max scaling to visualize the trends.

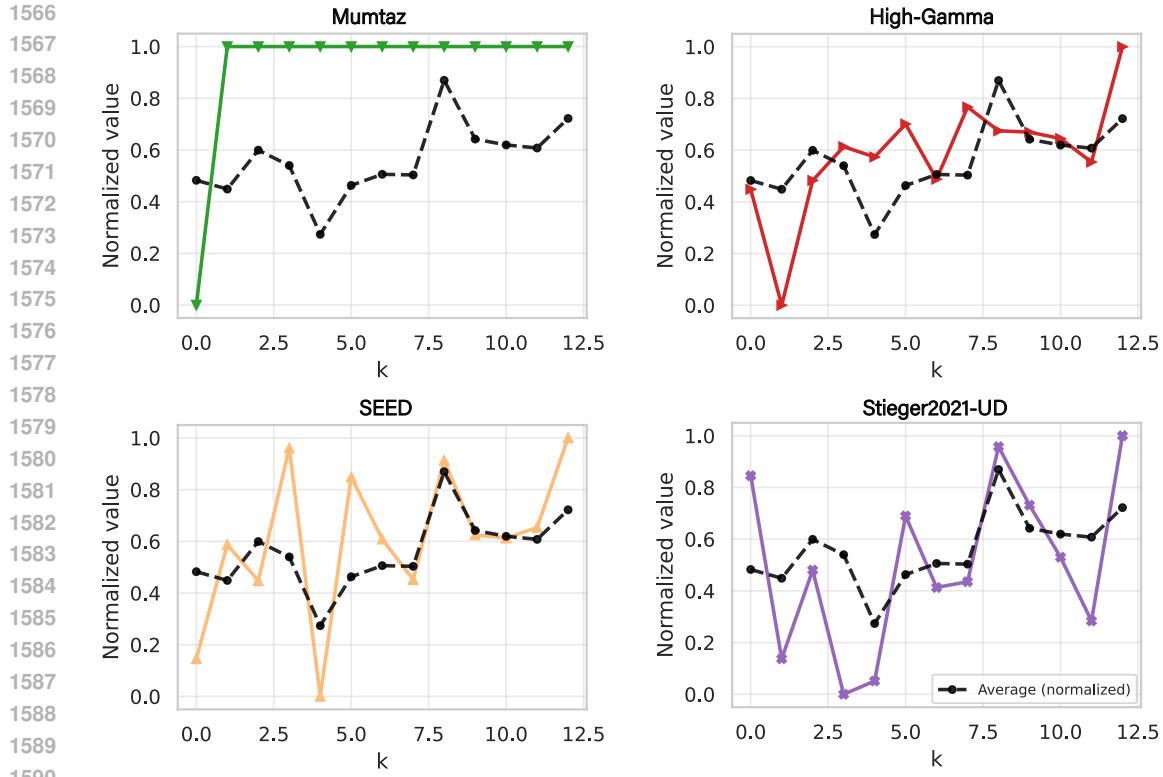
Table 19: Results comparison between Seq2Seq paradigm with encoder-centric baselines.

Method	PhysioNet			Mumtaz2016			Stieger2021.LR		
	ACC-B	Kappa	F1-W	ACC-B	ROC AUC	PR AUC	ACC-B	ROC AUC	PR AUC
CBraMod	0.6257	0.5009	0.6264	0.8946	0.9800	0.9765	0.8424	0.9339	0.9297
ECHO-CBraMod	0.5236	0.3650	0.5234	0.9035	0.9773	0.9809	0.8370	0.9234	0.9241
ECHO ^E	0.5253	0.3619	0.5177	0.9698	0.9953	0.9952	0.6123	0.8918	0.9048
ECHO	0.5667	0.4214	0.5604	0.9056	0.9745	0.9748	0.8534	0.9349	0.9363
Method	Attention			High-Gamma			ISURC S3		
	ACC-B	ROC AUC	PR AUC	ACC-B	ROC AUC	PR AUC	ACC-B	Kappa	F1-W
CBraMod	0.6478	0.7417	0.7468	0.7478	0.8292	0.8314	0.6784	0.5730	0.6716
ECHO-CBraMod	0.7222	0.8100	0.8056	0.7499	0.8481	0.8363	0.6490	0.4974	0.5914
ECHO ^E	0.6472	0.7329	0.7367	0.8039	0.8900	0.8889	0.6868	0.5950	0.6823
ECHO	0.8194	0.8973	0.8952	0.8552	0.9208	0.9125	0.7283	0.6560	0.7031

Note: **Bold** indicates the best performance between the two methods for each metric. Cyan highlight marks ECHO.

D.2.3 SEQ2SEQ PARADIGM EXTENSIBILITY VALIDATION

We include an additional set of experiments to further validate the extensibility and robustness of the proposed Seq2Seq paradigm. The goal is to determine whether the performance of ECHO originates from the Seq2Seq and ICL modeling framework itself, rather than from factors such as encoder capacity or task-specific pretraining bias. To this end, we replaced the lightweight encoder in ECHO with a stronger pretrained encoder, CBraMod, and named this hybrid variant ECHO-CBraMod. This configuration allows us to assess whether the Seq2Seq decoding mechanism remains effective



1591
1592 Figure 6: Variation of balanced accuracy with respect to the number of support samples for datasets
1593 that benefit monotonically from larger support sets
1594
1595

1596 when the representational power of the encoder is substantially enhanced. We compare this variant
1597 against the original CBraMod baseline to evaluate the contribution of the Seq2Seq paradigm at the
1598 framework level.

1599 Results shown in Table 19 indicate the effectiveness of the Seq2Seq paradigm. In the comparison
1600 between CBraMod and ECHO-CBraMod, the introduction of the generative decoder leads to per-
1601 formance gains on datasets such as Attention and High-Gamma. Specifically, ECHO-CBraMod
1602 achieves higher accuracy and ROC AUC scores on these tasks compared to the encoder-only
1603 CBraMod. Furthermore, when observing the native implementation, the full ECHO model consis-
1604 tently outperforms its encoder-only counterpart ECHO^E across the majority of datasets, including
1605 PhysioNet, Stieger2021, and ISURC S3. These observations suggest that the proposed generative
1606 framework effectively utilizes learned representations and provides positive improvements indepen-
1607 dent of the specific encoder architecture.

1608 1609 D.2.4 MULTI-TASK LEANING COMPARISON

1610 To compare the performance of the Seq2Seq paradigm with the standard multi-task paradigm, we
1611 equipped the CBraMod with multiple task-specific classification heads, utilizing it as a shared fea-
1612 ture extractor for joint training. Under this configuration, the total parameter count of CBraMod-MH
1613 is approximately twice that of ECHO with only six datasets. As shown in Table 20, ECHO achieves
1614 leading performance on the majority of tasks. Specifically, on the ISURC S3 and Attention datasets,
1615 ECHO maintains stable performance, whereas CBraMod-MH exhibits a substantial decline and pre-
1616 dictions randomly. These results suggest that the sequence generation approach adopted by ECHO
1617 effectively handles the heterogeneity across tasks, achieving superior generalization with fewer pa-
1618 rameters.
1619

1620

1621

Table 20: Results comparison between the Multi-Task baseline and ECHO.

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

Note: **Bold** indicates the best performance between the two methods for each metric.

D.3 OTHER ANALYSIS

D.3.1 MODEL COMPUTATIONAL COST ANALYSIS

To evaluate model complexity and efficiency, we compare ECHO with baseline methods in terms of parameter size and computational cost, as shown in Table 21. For fairness, the parameter counts of all baseline models include their classification heads. Since classifier dimensions vary across datasets, we report the average classifier size to ensure consistent comparison.

Structurally, ECHO consists of a CNN-Transformer encoder, a fully connected projection layer, and a standard Transformer decoder, resulting in a total of 41.98M parameters. Despite this capacity, ECHO exhibits competitive computational efficiency, requiring only 2.91G MACs and 5.81G FLOPs, which is lower than CodeBrain at 4.37G MACs and EEGPT at 4.89G MACs. Overall, these results show that ECHO reduces inference-time computational overhead while retaining sufficient modeling capacity through its decoder architecture.

1647

1648

Table 21: Model performance comparison on MACs, Parameters, and FLOPs.

1649

Model	MACs	Params	FLOPs
BENDR	12.51G	959.84M	25.02G
BIOT	0.255G	3.20M	0.510G
LaBraM	0.67G	6.02M	1.34G
CBraMod	4.21G	4.03M	6.29G
EEGPT	4.89G	25.24M	9.79G
CodeBrain	4.37G	15.17M	8.74G
ECHO	2.91G	41.98M	5.81G

1659

1660

1661

Note: The MACs and FLOPs are calculated based on a 1-second input and a single-token output.

D.3.2 DECODER SIZE ANALYSIS

To systematically evaluate how model architecture and scale influence ECHO’s downstream performance, we conducted a comparative study between two decoder configurations: the standard ECHO with 41M parameters and the larger ECHO-Large with 66M parameters. This experiment aims to address three key questions: (1) Does the Seq2Seq paradigm provide clear advantages over a pure encoder design? (2) Do support samples reliably improve cross-subject generalization? (3) Can enlarging the decoder further enhance model performance? As shown in Table 22, we have the following conclusions:

1670

1671

1672

1673

The Seq2Seq paradigm substantially enhances encoder performance. Across all datasets, the encoder trained without the Seq2Seq objective (ECHO^E) lags notably behind both ECHO and ECHO-Large. This confirms that Seq2Seq training encourages the model to learn richer and more structured internal mappings, resulting in consistently stronger representations.

1674

1675

Table 22: Comparison of ICL capabilities of ECHO molecules of different sizes.

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

Methods	SEED-IV			SEED-V			SEED		
	ACC-B	Kappa	F1-W	ACC-B	Kappa	F1-W	ACC-B	ROC AUC	PR AUC
ECHO ^E	0.3740	0.1609	0.3684	0.2223	0.0284	0.2196	0.6548	0.7493	0.7592
ECHO (No Support)	0.3398	0.1174	0.3400	0.2353	0.0466	0.2353	0.7407	0.8488	0.8522
ECHO	0.3747	0.1595	0.3601	0.2484	0.0640	0.2456	0.8193	0.9020	0.8962
ECHO-Large (No Support)	0.3447	0.1234	0.3455	0.2422	0.0545	0.2420	0.6778	0.7874	0.7986
ECHO-Large	0.3647	0.1477	0.3599	0.2474	0.0603	0.2474	0.7583	0.8467	0.8479
Methods	BCI IV 2a			High-Gamma			Stieger2021-LR		
	ACC-B	Kappa	F1-W	ACC-B	ROC AUC	PR AUC	ACC-B	ROC AUC	PR AUC
ECHO ^E	0.3406	0.1242	0.2339	0.8039	0.8900	0.8889	0.6123	0.8918	0.9048
ECHO (No Support)	0.4627	0.2836	0.4432	0.8438	0.9125	0.9047	0.8534	0.9349	0.9363
ECHO	0.4763	0.3015	0.4632	0.8552	0.9208	0.9125	0.8534	0.9349	0.9363
ECHO-Large (No Support)	0.3950	0.1933	0.3838	0.8368	0.9042	0.8956	0.8494	0.9283	0.9293
ECHO-Large	0.4376	0.2499	0.4353	0.8667	0.9292	0.9220	0.8499	0.9322	0.9336
Methods	Stieger2021-UD			PhysioNet			Mental Arithmetic		
	ACC-B	ROC AUC	PR AUC	ACC-B	Kappa	F1-W	ACC-B	ROC AUC	PR AUC
ECHO ^E	0.6058	0.7759	0.7858	0.5253	0.3619	0.5177	0.6008	0.6555	0.6416
ECHO (No Support)	0.6924	0.8112	0.8117	0.5437	0.3918	0.5318	0.5442	0.6896	0.6897
ECHO	0.7311	0.8242	0.8258	0.5667	0.4214	0.5604	0.6851	0.7500	0.7530
ECHO-Large (No Support)	0.6794	0.8213	0.8187	0.5398	0.3866	0.5319	0.5617	0.7124	0.6886
ECHO-Large	0.7185	0.8259	0.8254	0.5982	0.4039	0.5461	0.5986	0.7796	0.7377
Methods	Muntaz			TUEV (Events)			Attention		
	ACC-B	ROC AUC	PR AUC	ACC-B	Kappa	F1-W	ACC-B	ROC AUC	PR AUC
ECHO ^E	0.9698	0.9953	0.9952	0.4816	0.4921	0.7406	0.6472	0.7329	0.7367
ECHO (No Support)	0.9056	0.9745	0.9748	0.5214	0.5085	0.7489	0.8056	0.8895	0.8955
ECHO	N/A	N/A	N/A	0.5322	0.5973	0.7442	0.8194	0.8973	0.8952
ECHO-Large (No Support)	0.8813	0.9844	0.9846	0.4626	0.4391	0.7142	0.7962	0.8795	0.8883
ECHO-Large	N/A	N/A	N/A	0.5008	0.4906	0.7398	0.8042	0.8864	0.8879

Note: **Bold** indicates the best performance between the two methods for each metric.

ICL training provides stable and meaningful performance gains. Comparing each method with its (No Support) counterpart shows that adding support examples yields consistent improvements across almost all datasets. This demonstrates that ICL enables the model to exploit the relationship between support and query samples, thereby improving prediction quality.

Increasing decoder size does not yield significant performance benefits. ECHO-Large does not outperform the standard ECHO on most tasks, indicating that ECHO’s performance ceiling is not constrained by decoder capacity. Instead, the limiting factor lies in the encoder’s EEG representations. Since the encoder remains relatively lightweight, with limited ability to capture inter-subject variability, multi-band structure, and long-range dependencies, simply enlarging the decoder cannot compensate for the encoder’s representational bottleneck.

1728 **E STANDARDIZED CHANNEL SYSTEM**
 1729

1730 To unify channels settings in different datasets, we use a channel map to map all sorts of channels
 1731 to standard channels. Details are shown in Table 23.
 1732

1733 Table 23: Detail channels mapping of ECHO. **Center** refers to the target channel, and **Included**
 1734 **Channels** refers to channels originally from the source datasets.
 1735

Center	Included Channels	Center	Included Channels
A1	T9, M1, A1	Fp1	Fp1, AFp7h, AFp5h, AFp3h, Fp1h, AFp5, AFp3
A2	T10, M2, A2	Fp2	Fp2, AFp6h, AFp8h, Fp2h, AFp4, AFp6
AF3	AF3, AFF5h, AFF3h, AF5h, AF3h	Fpz	Fpz, AFp1h, AFp2h, AFp1, AFp2
AF4	AF2, AF4, AFp4h, AFF4h, AF4h, AF6h	FT10	FT10, FFT10, FTT10
AF7	AF7, AF5, AFp9h, AFF7h, AF9h, AF7h, AFp9, AFp7, AFF7	FT7	FT7, FFT9h, FTT7h, FFT7
AF8	AF6, AF8, AFp10h, AFF8h, AF8h, AF10h, AFp8, AFp10, AFF8	FT8	FT8, FFT10h, FFT8h, FT8h, FT10h, FFT8, FTT8
AFz	AF1, AFz, AFF1h, AF1h, AF2h, AFpz, AFFz	FT9	FT9, FFT9h, FT9h, FFT9, FTT9
C1	C1, FCC1h, C3h, CCP1	Fz	Fz, FFC1h, F1h
C2	C2, CCP2h, C2h, C4h, CCP2	O1	O1, POO7h, POO5h, OI1h, O1h, I1h, POO7, POO5, OI1
C3	C3, FCC3h, C5h, FCC3, CCP3	O2	O2, POO6h, POO8h, OI2h, I2h, POO6, POO8, OI2
C4	C4, C6h, CCP4	Oz	Oz, Iz, POO1h, POO2h, O2h, POO1, POOz, POO2, OIz
C5	C5, FCC5h, T7h, FCC5, CCP5	P1	P1, CPP3h, CPP1, PPO1
C6	C6, FCC6h, CCP6	P10	P10, TPP10h, PPO10
CP1	CP1, CCP1h	P2	P2, CPP2h, P2h, CPP2, PPO2
CP2	CP2, CP2h, CP4h	P3	P3, P5h, P3h, CPP3, PPO3
CP3	CP3, CCP3h, CP5h, CP3h	P4	P4, CPP4h, PPO4h, P4h, P6h, CPP4, PPO4
CP4	CP4, CCP4h	P5	P5, CPP5h, P7h, CPP5
CP5	CP5, CCP5h	P6	P6, CPP6h, PPO6
CP6	CP6, CCP6h, CP6h, TP8h, CPP6	P9	P9, TPP9h
CPz	CPz, CP1h	PO10	PO10, I2, PPO10h, POO10, CB2
Cz	Cz, C1h, CCPz	PO3	PO3, PPO3h, POO3h, PO3h, POO3
F1	F1, FCC3h, AFF1, FFC1	PO4	PO2, PO4, POO4h, PO4h, POO4
F10	AF10, F10, AFF10	PO5	PO5, PPO5h, PO7h, PO5h, PO5
F2	F2, AFF2h, FFC4h, F2h, F4h, AFF2	PO6	PO6, PPO6h, PO6h
F3	F3, F5h, F3h, AFF3, FFC3	PO7	PO7, PPO7h, POO9h, PO9h, PPO7
F4	F4, AFF6h, F6h, AFF4, FFC4	PO8	PO8, PPO8h, POO10h, PO8h, PO10h, PPO8
F5	F5, FCC5h, F7h, AFF5, FFC5	PO9	PO9, I1, POO9h, PPO9, POO9, CB1
F6	F6, FCC6h, F8h, AFF6, FCC6	POz	PO1, POz, PPO1h, PPO2h, PO1h, PO2h, PPOz
F7	F7, AFF9h, FFT7h	Pz	Pz, CPP1h, P1h, CPPz
F8	F8, AFF10h, FFT8h, F10h	T3	T7, T9h, FTT7, T3
F9	AF9, F9, F9h, AFF9	T4	T8, FFT10h, T8h, T10h, TTP8, T4
FC1	FC1, FCC1	T5	T5, TPP7h, P9h, TPP7, T5
FC2	FC2, FCC2h, FCC4h, FC2h, FC4h, FCC2, FCC2	T6	T6, TPP8h, P8h, P10h, T6
FC3	FC3, FC3h	TP10	TP10, TPP10h, TPP10, TPP10
FC4	FC4, FC6h, FCC4	TP7	TP7, TPP7h, P9h, TPP7, TTP7
FC5	FC5, FT7h, FC5h	TP8	TP8, TPP8h, TPP10h, TPP8
FC6	FC6, FCC6	TP9	TP9, TPP9h, TPP9, TPP9
FCz	FCz, FCC2h, FC1h, FFCz, FCCz		

1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781