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ABSTRACT

Electroencephalography (EEG), with its broad range of applications, necessitates
models that can generalize effectively across various tasks and datasets. Large
EEG Models (LEMs) address this by pretraining encoder-centric architectures on
large-scale unlabeled data to extract universal representations. While effective,
these models lack decoders of comparable capacity, limiting the full utilization of
the learned features. To address this issue, we introduce ECHO, a novel decoder-
centric LEM paradigm that reformulates EEG modeling as sequence-to-sequence
learning. ECHO captures layered relationships among signals, labels, and tasks
within sequence space, while incorporating discrete support samples to construct
contextual cues. This design equips ECHO with in-context learning, enabling
dynamic adaptation to heterogeneous tasks without parameter updates. Exten-
sive experiments across multiple datasets demonstrate that, even with basic model
components, ECHO consistently outperforms state-of-the-art single-task LEMs in
multi-task settings, showing superior generalization and adaptability.

1 INTRODUCTION

Electroencephalography (EEG), owing to its portability and cost-effectiveness, has become the most
widely used neural recording modality. Leveraging these advantages, EEG has been broadly ap-
plied to emotion recognition (Liu et al., 2024b), motor imagery (Ding et al., 2025), and diverse
cognitive paradigms, which in turn demands models capable of maintaining generalization across
heterogeneous tasks. Following the trend of large-scale models, researchers have proposed a se-
ries of Large EEG Models (LEMs) that place a pretrained encoder architecture at the core (Zhou
et al., 2025a). These models are typically trained on large collections of unlabeled EEG data with
self-supervised objectives such as masked reconstruction (Jiang et al., 2024d) or contrastive pre-
diction (Wang et al., 2024a), thereby producing latent representations with strong generalization
capacity that have demonstrated remarkable transferability across tasks.

Although these pretrained EEG encoders have been shown to learn high-quality representations, a
major limitation remains: they lack decoders of comparable capacity to transform such represen-
tations into usable predictions. As illustrated in Figure 1 a (top), their decoding paradigm typically
relies on a lightweight classifier (orders of magnitude smaller than the pretrained encoder) com-
bined with additional fine-tuning to adapt the representations for downstream tasks. In other words,
the model’s success on downstream tasks largely depends on whether the encoder can “bend” its
representations during fine-tuning to accommodate a limited-capacity decoder.

Such adaptation to small-scale downstream data is inherently high-risk. On the one hand, the en-
coder may sacrifice its pretrained general knowledge to meet the fine-tuning demands of the de-
coder, leading to knowledge forgetting and degraded generalization (Guan et al., 2025). On the
other hand, when the decoder itself is insufficient to reliably extract task-discriminative informa-
tion, reliance on limited labeled data amplifies training uncertainty and makes the model sensitive
to noise patterns (Hao et al., 2025). Consequently, current paradigm remains constrained by
decoder bottlenecks, preventing LEMs from realizing their generalization potential.

While some recent studies have explored incorporating large language models (LLMs) as decoders,
this paradigm remains fundamentally constrained: it does not move beyond the “EEG-to-label”
mapping, but merely shifts it into the text embedding space. As illustrated in Figure 1 a (middle),
this approach requires the LEM encoder and the LLM decoder to align by projecting EEG tokens
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Figure 1: a, Top: Encoder-centric LEMs learn a direct mapping from EEG features to labels. Mid-
dle: LLM-centric LEMs follow the same scheme but shift it into the text embedding space. Bottom:
ECHO extends such mapping by modeling various mappings within the sequence space. b, Perfor-
mance comparison. ECHOE indicates ECHO that do not adopt a decoder-centric paradigm. Detailed
experimental settings and results are provided in Section 4 and Table 2.

and labels into a shared text embedding space, where the mapping is performed under the constraints
of textual prompts (e.g., restricting the label types (Jiang et al., 2024c)).

The inductive biases of language models cannot be reliably transferred to time series EEG task (Tan
et al., 2024). This stems from fundamental structural differences between EEG and language or
vision. EEG relies on the precise localization of critical temporal dynamics, which are inherently
misaligned with the static semantic patterns of text or images (Jing et al., 2024; Queen et al., 2023).
As a result, projecting EEG directly into the text embedding space often drives models to exploit su-
perficial correlations, such as mapping noise patterns to semantic labels (Wang & Ma, 2025), while
diluting or even corrupting task-relevant information in the shared space (Almudévar et al., 2025).
Ultimately, text fails to serve as a genuine semantic bridge across modalities and instead func-
tions merely as a surrogate label space, leaving LEMs without the reasoning and in-context
learning (ICL) capabilities expected from LLMs.

To overcome the limitations of existing paradigms, we propose a decoder-centric sequence-to-
sequence (Seq2Seq) approach that enables LEMs to jointly model multi-task EEG representations
while leveraging discrete samples as contextual support. As illustrated in Figure 1 a (bottom), the
input is structured as a sequence comprising target EEG samples together with supporting EEG
instances and their associated task and label tokens. The model performs next-token prediction,
establishing associations between support samples and the target based on their mapped relation-
ships. This process guides the generation of an output sequence that integrates both label and task
tokens, thereby achieving multi-task learning within a unified framework. In summary, we refer to
this new paradigm as ECHO: a decoder-centric framework and sequence-based learning method
that preserves task-discriminative capacity while equipping LEMs with ICL.

To validate the effectiveness of our approach, we adopt off-the-shelf model components to avoid
conflating our paradigm with architectural enhancements. We conduct extensive experiments across
multiple EEG datasets, showing that ECHO consistently outperforms the latest single-task LEM
baselines, even in multi-task settings (see Figure 1 b). ECHO can infer both the target task and
its specific paradigms (e.g., identifying motor imagery and distinguishing its variants) without ex-
plicit prompts. Moreover, ECHO demonstrates ICL ability, adapting to new tasks and environments
under the guidance of support samples. These results highlight the critical role of ECHO in ad-
vancing cross-task generalization and complex scenario modeling, while also providing insights for
unlocking the full potential of existing LEMs.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 PRELIMINARY

2.1 MULTI-TASK LEARNING FOR LEMS

Given heterogeneous EEG datasets, each dataset is represented as D = (X,Y , t), where X ∈
RN×T×C denotes the EEG inputs with N samples, each represented by T time steps and C chan-
nels; Y ∈ RN×|Yd| denotes the corresponding dataset-specific labels, where |Yd| depends on the
dataset; and t is a task identifier specifying the experimental paradigm. The objective of LEMs is to
learn generalizable representations, while performing conditional mappings f(X | t)→ Y . Based
on this definition, the proposed decoder-centric paradigm differs from the two existing ones.

Encoder-centric LEMs: The conditional mapping from EEG to task-specific label is modeled as:

f(X | t) = C( E(X; θd) ;ϕd ) → Y , (1)

where Eθd( · ; θd ) and Cϕd
( · ;ϕd ) decoder the encoder and classifier with parameters θd, ϕd fine-

tuned on dataset D. Consequently, this paradigm fails to generalize across datasets.

LLM-centric LEMs: The mapping incorporates both EEG and auxiliary textual prompts, with the
decoder instantiated as an LLM:

f(X | t) = DLLM
(
E(X),<|text|>

)
→ <|y|>, (2)

where E(X) encodes the EEG tokens, <|text|> denotes textual tokens, and DLLM(·) is the LLM
decoder that operates in the text embedding space. The output <|y|> is a textual label. Thus,
the key distinction from the encoder-centric paradigm lies in shifting the mapping into the text
embedding space.

Decoder-centric LEMs: The proposed paradigm represents both inputs and outputs as structured
sequences, guiding LEMs to perform multi-task EEG learning and contextual modeling within a
unified decoding framework:

Sin = {<|special|>, {E(Xs)}Ss=1, E(X),<|support|>},
Sout = {<|support|>,<|task|>,<|y|>,<|special|>},

(3)

f(X | t) = D
(
Sin

)
→ Sout, (4)

where <|special|> denotes special tokens, such as start or delimiter symbols, which provide
structural cues for sequence decoding. {E(Xs)}Ss=1 and E(X) represent the collection of support
EEG tokens and the target EEG token. <|support|> refers to task and label tokens for support
samples. Through next-token prediction, D(·) infers the task token <|task|> and label token
<|y|> of the target sample by leveraging the mapping relationships established from the support
samples. Therefore, under this Seq2Seq learning scheme, the decoder is required to learn mappings
beyond label prediction (see Section 3.2 for details).

2.2 TECHNICAL CHALLENGES

While decoder-centric LEMs hold promise for advancing a new framework for LEMs, their imple-
mentation introduces three key technical challenges. We detail these challenges below and present
the corresponding technical contributions in Section 3.

C1: Inconsistency of EEG channels. The number of EEG channels C and their ordering π(C) are
not standardized across datasets, posing significant challenges for generalization. Existing LEMs
attempt to mitigate sensitivity to channel order during training through positional encoding strategies
(e.g., asymmetric conditional positional encoding (Wang et al., 2024c)). However, at inference, the
model still requires channel configurations to exactly match those seen during training. In multi-
dataset settings, particularly in cross-dataset scenarios, encountering unseen channel arrangements
disrupts spatial alignment and substantially degrades performance. To address this issue, we adopt
a channel alignment preprocessing strategy (see Section 3.1).

C2: Heterogeneity of sequence components. The input and output sequences often consist of
heterogeneous tokens, which creates difficulties for modeling. EEG requires capturing fine-grained
temporal evolution, while discrete symbols encode semantic or task-control logic. Directly mixing

3
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Figure 2: a, Overview of the ECHO framework. From left to right: preprocessing, encoder, and
decoder blocks. The inputs and outputs are shown at the top-left, bottom-right, and top-right corners,
respectively. b, Four sequential learning steps within the sequence format enable ECHO to capture
diverse mapping relations. c, Multi-stage training strategy of ECHO.

these heterogeneous elements makes it difficult to balance continuous and discrete information.
Furthermore, EEG samples may serve different functional roles (e.g., context vs. prediction targets),
which the model must distinguish despite their homogeneous form. To address this, we propose a
hybrid positional encoding mechanism (see Section 3.2).

C3: Absence of symbolic structure in EEG. Unlike language, EEG lacks discrete symbolic struc-
ture, making it difficult for LEMs to acquire ICL naturally. In language models, autoregressive
pretraining over diverse discrete contexts (e.g., documents, dialogues) enables next-token prediction
to act as implicit function fitting, allowing examples to be reused at inference. EEG models, how-
ever, are trained on continuous temporal dynamics that require strict temporal coherence, preventing
flexible context transfer across tasks or samples. To address this, we propose a Seq2Seq-based
in-context training approach (see Section 3.3).

3 METHOD

In this section, we present the methodology of decoder-centric LEMs and the technical contributions
that address the aforementioned challenges. Section 3.1 introduces the overall architecture design of
ECHO. Section 3.2 explains how ECHO operates under the Seq2Seq formulation. Section 3.3 de-
scribes the training objectives and optimization strategies that endow LEMs with ICL. Each section
begins with an Intuition subsection that outlines the rationale behind the technical design.

3.1 MODEL ARCHITECTURE

Intuition: The design of ECHO follows a core principle that employs simple and established archi-
tectural components to highlight the impact of the paradigm shift itself.
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(a) For channel unification, we intentionally adopt a straightforward yet general preprocessing
block to avoid confounding the core contribution of ECHO (stronger alternatives, such as edge-
learning strategies used in GNN-based EEG models (Liu et al., 2024a), can replace it). Because
EEG acquisition adheres to standardized electrode systems with recorded channel information,
channels can be normalized at the preprocessing stage (Figure 2 a (left)).

(b) For the model components, we build on established networks: the encoder block (Figure 2 a
(middle)) is a simplified deep ConvNet (Schirrmeister et al., 2017) with a tokenizer, and the de-
coder block (Figure 2 a (right)) is a transformer decoder with pre-activation residual blocks (Child
et al., 2019). This emphasizes that ECHO is not bound to specific modules but represents a
paradigm that can flexibly integrate stronger architectures to further improve performance.

Preprocess Block: To resolve C1, we establish a standardized template channel set based on prior
neuroscience knowledge, where the number of channels C and their ordering π(C) are predefined and
fixed. For each standardized channel c, we define a mapping setMc, which contains all possible
aliases or adjacent variants of that channel under different electrode systems (the template set is
provided in Section 4.1). Given an EEG collection X with channel number C and corresponding
channel names, we map each channel name in X to the appropriate Mc following the ordering
π(C), yielding the matched channel subset Xc ⊆X . Then, the alignment process is computed as:

X =

{
1

|Xc|+ 1

∑
x∈Xc

x

∣∣∣∣∣ c ∈ π(C)

}
∈ RN×T×|C|, (5)

where X denotes the aligned EEG with standardized channel configuration. The normalization term
|Xc|+ 1 ensures stable averaging. If |Xc| = 0, the channel is padded with zero.

Encoder Block: The encoder block is designed to transform preprocessed EEG signals X ∈
RN×T×C into tokens. First, X is segmented along the temporal dimension using sliding win-
dows of length L and stride S, yielding a collection of K = (T − L)/S + 1 segments denoted
as {x1, x2, . . . , xK}. Each segment is processed by a convolutional head Fconv(·) based on the deep
ConvNet and tokenized into a sequence of vectors:

E(X) = {h1, h2, · · ·, hK} = T
(
{hk}Kk=1

)
= T

( K⋃
k=1

Fconv({xk})
)
, (6)

where E(X) represents the sample-level EEG tokens produced by the encoder. T (·) represents
the tokenization process (including self-attention), which flattens and projects segment features into
window-level tokens and arranges them into a sequence. Notably, since the tokenizer operates along
the window dimension, we use hk to denote the window-level tokens and segment features.

Decoder Block: The decoder D(·) adopts a standard transformer decoder architecture, where self-
attention models the dependencies within the textual sequence and cross-attention enables interac-
tion with E(X):

Sout = D
(
Sin

)
. (7)

3.2 SEQ2SEQ FORMULATION

Intuition: The Seq2Seq formulation guides ECHO to perform progressive learning through a fixed
serialization scheme.

(a) A fixed sequence corresponds to a consistent “problem-solving strategy.” As illustrated in
Figure 2 b, ① the support EEG samples and their tokens serve as worked examples, enabling
ECHO to learn mappings between EEG, task and label tokens; ② the model then generalizes
these mappings from examples to the target sample; ③ ECHO then conducts stepwise reasoning
by first predicting the task token and subsequently deriving the label token conditioned on both
the task and EEG tokens; ④ finally, by predicting the end-of-task (EOT) token, ECHO learns
to recognize task termination. Through this unified sequence, ECHO acquires both in-context
and multi-task learning capabilities, allowing it to autonomously select the most compatible label
token from all known labels without requiring an explicit task specification.

5
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(b) To prevent confusion among heterogeneous components, ECHO employs a three-part posi-
tional encoding strategy. The first models the temporal structure within each EEG sample, al-
lowing the model to capture the sequential dynamics of neural activity. The second distinguishes
support from target samples, clarifying their functional roles in the sequence. The third encodes
the semantics of textual markers such as task tokens, label tokens, and the EOT token. Together,
these positional cues enable the model to jointly handle the continuous dynamics of EEG and the
discrete logic of tasks within a single serialized space.

Sequence Format: During training, the input sequence starts with <|SOT|>, followed by multi-
ple <|support|> entries that encode the task and label tokens of the support EEG samples. The
<|task|> token then specifies the paradigm of the target EEG (e.g., <|MI|>, <|EMO|>), and
<|y|> denotes its ground-truth label. The output sequence mirrors this structure but ends with
<|EOT|> to mark completion. During inference, the model receives <|SOT|> followed by the
target EEG tokens (optionally with support samples). ECHO then generates only the task token and
the predicted label token, and terminates with <|EOT|>.

Hybrid Positional Encoding: To solve C2, we propose a hybrid positional encoding. Given an
EEG sample Xn, the window-level tokens {h(n,1), h(n,2), . . . , h(n,K)} obtained along the temporal
dimension are encoded with learnable window-level position encoding:

K⋃
k=1

{
h(n,k) + PEenc

(n,k)

}
, (8)

where PEenc
(n,k) denotes the learnable positional encoding assigned to the k-th segment within the

EEG sample. As for the decoder input, given a hybrid EEG sample set {E(Xn)}S+1
n=1 consisting of

the target sample E(X) and support samples {E(Xs)}Ss=1, a distinct learnable sample-level posi-
tional encoding is assigned and uniformly added to all tokens within the same sample:

S+1⋃
n=1

{
E(Xn) + PEdec

n

}
, (9)

where PEdec
n denotes the sample-level positional encoding shared across all tokens of the n-th EEG

sample. For the sequence of textual tokens {Tm}2S+3
m=1 , standard learnable positional encodings

{PEtxt
m}2S+3

m=1 are applied:
2S+3⋃
m=1

{
Tm + PEtxt

m

}
, (10)

3.3 IN-CONTEXT TRAINING

Intuition: Unlike large language models, where ICL often emerges implicitly, LEMs require explicit
guidance to acquire this capability. Thus, ECHO is trained with autoregressive next-token prediction
under a multi-stage strategy: first, the encoder is initialized to accelerate convergence and yield
usable EEG representations; then, the decoder is trained with progressively larger and more diverse
support sets to develop multi-task classification and contextual learning capabilities.

Training Strategy: To address C3, ECHO is trained in two phases. As shown in Figure 2c, the
Warm-up Phase initializes the encoder by pairing it with a unified classifier across all datasets to ob-
tain stable representations. The Contextual Training Phase then follows, consisting of two rounds:
the first uses a fixed number of support samples to stabilize decoder training, and the second ran-
domizes the support size to expose the model to diverse contexts. In both rounds, training starts with
the encoder frozen and later jointly optimized with the decoder.

Next-token prediction: During training, given a sequence of textual tokens {Tn}2S+3
n=1 and EEG

sample set {E(X∪)}, the decoder D generates the output sequence step by step. The conditional
probability for the i-th output token is modeled as

p(si | s<i, {Tn}2S+3
n=1 , {E(X∪)}) = D(s<i, {Tn}2S+3

n=1 , {E(X∪)}), (11)
where si ∈ Sout denotes the i-th token to be predicted, and s<i represents the prefix subsequence of
previously generated tokens {s1, s2, . . . , si−1}. The training objective minimizes the cross-entropy
loss between predicted distributions and ground-truth tokens.
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4 EXPERIMENT

4.1 EXPERIMENT SETUP

Dataset Setting: ECHO was trained on 12 publicly available EEG datasets spanning six task cat-
egories and 26 classes. (1) All datasets underwent a unified preprocessing pipeline—band-pass
filtering, downsampling to 250 Hz, task-specific segmentation, and padding to 10s. (2) Heteroge-
neous electrode layouts were aligned to a standardized 75-channel system (see Section 3.1). (3) A
consistent cross-subject split was applied across all experiments and baselines to ensure fair and gen-
eralizable evaluation. Table 1 summarizes the splits, task types, and input formats for the datasets
reported in the main text (excluding BCIC 2020-T1 from training), with full details in Appendix A.1.

Table 1: Dataset Configurations
Dataset Experimental Paradigms Train Indices Validation Indices Test Indices Shape

BCIC-IV-2a (Brunner et al., 2008) Multi-Limb Motor Imagery 0–4 5–6 7–8 22 channels × 4s
High-Gamma (Schirrmeister et al., 2017) Motor Imagery for Decoding 0–7 8–10 11–13 128 channels × 4s
BCIC 2020-T1 (Jeong et al., 2022) Hand Motor Imagery 0–9 10–14 15–19 62 channels × 4s
SEED-IV (Zheng et al., 2018) Film-induced Discrete Emotion Classification 0–9 10–11 12–14 62 channels × 4s
SEED (Zheng & Lu, 2015) Film-induced Emotional Valence Classification 0–9 10–11 12–14 62 channels × 4s
Stieger2021-LR (Stieger et al., 2021) Continuous 1D Cursor Control (Lateral) 0–39 40–48 49–58 15 channels × 4s
Mumtaz2016 (Mumtaz, 2016) Major Depressive Disorder Detection 0–43 43–52 52–62 19 channels ×5s
Mental Arithmetic (Zyma et al., 2019) Workload Assessment 0–25 26–30 31–35 20 channels × 5s
Attention (Shin et al., 2018) Discrimination/Selection Response 0–15 16–20 21–25 30 channels × 4s

Baseline Selection: To evaluate ECHO, we compared it with six representative baselines covering
diverse representation learning paradigms. EEGNet (Lawhern et al., 2018) employs convolution to
extract features from raw signals; BIOT (Yang et al., 2023) uses block-based continuous tokeniza-
tion; and LaBraM (Jiang et al., 2024d) combines masked reconstruction with vector quantization.
EEGPT (Wang et al., 2024a) and CBraMod (Wang et al., 2024c) emphasize masked reconstruc-
tion of raw signals, while CodeBrain (Ma et al., 2025) learns by predicting discrete time–frequency
tokens. Full baseline details are in Appendix A.2.

Model Setting: After preprocessing, EEG signals were segmented with a sliding window (length
100, stride 90). The encoder comprises 4 convolutional layers and a tokenizer based on multi-head
self-attention (8 heads, 4 layers, token dim 256). The decoder adopts a 6-layer Transformer with
hidden size 384, 6 heads, and feed-forward dim 1536. Full model details are in Appendix A.3.

Training & Environment Setting: All training was conducted on 8×NVIDIA A100 (40GB) GPUs.
The process had two stages. In the warm-up phase, the encoder was trained for 90 epochs (batch
size 64) using Adam with an initial learning rate of 5 × 10−5, cosine-decayed to 1 × 10−6, and
dropout 0.2 to stabilize EEG feature extraction. In the contextual training phase, the full model was
trained for 40 epochs (batch size 48, dropout 0.1) with differential learning rates (5 × 10−5 for the
decoder, 5×10−6 for the encoder). Training followed a two-round schedule: 10 epochs with a fixed
8-shot configuration, followed by randomized support counts (0–12) to expose the model to varied
contexts and improve ICL robustness. Additional details are provided in Appendix A.4.

Evaluation Metrics: We adopt four standard evaluation metrics: Balanced Accuracy, Cohen’s
Kappa, Weighted F1 score, and the Area Under the ROC and Precision-Recall Curves (AUROC
and AUC-PR). Model selection is based on AUROC performance on the validation set. All experi-
ments and baselines are conducted with five fixed random seeds 0, 1, 2, 3, 4, and we report the mean
and standard deviation across runs.

Task Setting: All baselines are evaluated under a single-task setting, where each dataset is fine-
tuned separately and tested on its own test set. In contrast, ECHO is evaluated under a strict multi-
task setting: trained once across all datasets without task-specific fine-tuning and directly tested
on all test sets in a single pass. For ICL, 20 instances per subject are randomly sampled from
each standardized test set as fixed context and excluded from evaluation. ECHO is given 8 support
samples, but no task tokens, and must autonomously infer both the task paradigm and subcategories.
The only exception is the Mumtaz2016 dataset, where each subject has a single label; evaluation for
it is performed without supports.
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Table 2: Comparison results of different methods on downstream tasks.

Methods
SEED Stieger2021-LR

ACC-B ROC AUC PR AUC ACC-B ROC AUC PR AUC

EEGNet 0.7435 ± 0.0315 0.8631 ± 0.0235 0.8731 ± 0.0331 0.8051 ± 0.0124 0.8839 ± 0.0123 0.8565 ± 0.0078
BIOT 0.7234 ± 0.0215 0.8212 ± 0.0349 0.8043 ± 0.0156 0.7753 ± 0.0052 0.8747 ± 0.0054 0.8247 ± 0.0054
EEGPT 0.7085 ± 0.0350 0.8450 ± 0.0241 0.8244 ± 0.0194 0.7943 ± 0.0043 0.8968 ± 0.0057 0.8354 ± 0.0042
LaBraM 0.6851 ± 0.0431 0.7952 ± 0.0241 0.8021 ± 0.0136 0.8170 ± 0.0037 0.9024 ± 0.0015 0.8935 ± 0.0029
CBraMod 0.7262 ± 0.0235 0.8519 ± 0.0179 0.8400 ± 0.0232 0.8424 ± 0.0044 0.9339 ± 0.0026 0.9297 ± 0.0030
CodeBrain 0.7836 ± 0.0341 0.8755 ± 0.0248 0.8543 ± 0.0253 0.8126 ± 0.0037 0.9123 ± 0.0024 0.8932 ± 0.0031
ECHOE 0.6548 ± 0.0272 0.7493 ± 0.0451 0.7592 ± 0.0378 0.6123 ± 0.0242 0.8918 ± 0.0206 0.9048 ± 0.0217
ECHO (No Support) 0.7407 ± 0.0047 0.8488 ± 0.0108 0.8522 ± 0.0103 0.8415 ± 0.0031 0.9245 ± 0.0021 0.9243 ± 0.0027
ECHO 0.8193 ± 0.0025 0.9020 ± 0.0004 0.8962 ± 0.0020 0.8534 ± 0.0014 0.9349 ± 0.0001 0.9363 ± 0.0016

Methods
Mumtaz2016 High-Gamma

ACC-B ROC AUC PR AUC ACC-B ROC AUC PR AUC

EEGNet 0.9113 ± 0.0104 0.9512 ± 0.0096 0.9632 ± 0.0045 0.8320 ± 0.0289 0.8911 ± 0.0412 0.9002 ± 0.0291
BIOT 0.8789 ± 0.0190 0.9664 ± 0.0136 0.9744 ± 0.0083 0.7343 ± 0.0641 0.7931 ± 0.0372 0.8198 ± 0.0274
EEGPT 0.8475 ± 0.0233 0.9669 ± 0.0069 0.9695 ± 0.0076 0.7161 ± 0.0481 0.8276 ± 0.0385 0.8249 ± 0.0632
LaBraM 0.8986 ± 0.0028 0.9754 ± 0.0050 0.9791 ± 0.0041 0.7429 ± 0.0386 0.8516 ± 0.0255 0.8454 ± 0.0246
CBraMod 0.8946 ± 0.0047 0.9800 ± 0.0045 0.9765 ± 0.0061 0.7513 ± 0.0182 0.8277 ± 0.0176 0.8335 ± 0.0146
CodeBrain 0.9012 ± 0.0021 0.9729 ± 0.0037 0.9721 ± 0.0078 0.8138 ± 0.0217 0.8421 ± 0.0395 0.8601 ± 0.0102
ECHOE 0.9056 ± 0.0211 0.9745 ± 0.0103 0.9748 ± 0.0058 0.8039 ± 0.0436 0.8900 ± 0.0279 0.8889 ± 0.0314
ECHO (No Support) 0.9698 ± 0.0012 0.9953 ± 0.0023 0.9952 ± 0.0015 0.8438 ± 0.0023 0.9125 ± 0.0016 0.9047 ± 0.0034
ECHO N/A N/A N/A 0.8552 ± 0.0031 0.9208 ± 0.0011 0.9125 ± 0.0041

Methods
Mental Arithmetic Attention

ACC-B ROC AUC PR AUC ACC-B ROC AUC PR AUC

EEGNet 0.5138 ± 0.0471 0.5395 ± 0.0109 0.5302 ± 0.0441 0.6004 ± 0.0123 0.6647 ± 0.0180 0.6294 ± 0.0288
BIOT 0.5281 ± 0.0384 0.5970 ± 0.0468 0.5567 ± 0.0249 0.6111 ± 0.0411 0.7367 ± 0.0162 0.7273 ± 0.0132
EEGPT 0.5117 ± 0.0317 0.5612 ± 0.0198 0.5041 ± 0.0384 0.6674 ± 0.0560 0.8015 ± 0.0372 0.8103 ± 0.0303
LaBraM 0.5793 ± 0.0631 0.5700 ± 0.0232 0.6341 ± 0.0422 0.6785 ± 0.0223 0.7838 ± 0.0307 0.7994 ± 0.0198
CBraMod 0.5906 ± 0.0531 0.5045 ± 0.0519 0.7047 ± 0.0428 0.6478 ± 0.0258 0.7417 ± 0.0175 0.7468 ± 0.0198
CodeBrain 0.6318 ± 0.0845 0.6472 ± 0.0361 0.7412 ± 0.0451 0.6215 ± 0.0358 0.6321 ± 0.0281 0.7029 ± 0.0349
ECHOE 0.6008 ± 0.0343 0.6555 ± 0.0281 0.6416 ± 0.0337 0.7422 ± 0.0346 0.7949 ± 0.0623 0.8021 ± 0.0278
ECHO (No Support) 0.5442 ± 0.0023 0.6896 ± 0.0036 0.6897 ± 0.0042 0.8056 ± 0.0021 0.8895 ± 0.0029 0.8955 ± 0.0034
ECHO 0.6851 ± 0.0032 0.7500 ± 0.0062 0.7530 ± 0.0015 0.8194 ± 0.0009 0.8973 ± 0.0019 0.8952 ± 0.0027

Note: Bold indicates the best performance. Cyan highlight marks ECHO.

4.2 EXPERIMENT RESULT

As shown in Table 2, six representative downstream datasets (different tasks) under a unified exper-
imental setup (differing only in single-task vs. multi-task training) are reported. Complete results
are reported in Appendix B.1. ECHOE denotes the ECHO encoder trained without the Seq2Seq
paradigm, while ECHO (No Support) refers to the ECHO model evaluated without any support-
sample prompts. The advantages and corresponding limitations of ECHO are as follows:

(a) Comparison between ECHO and Baselines:

ECHO exhibits strong generalization capability. On cognitive tasks (SEED, Stieger2021-LR,
Mental Arithmetic, and Attention), ECHO achieves an average improvement of +0.0602 in Bal-
anced Accuracy, +0.0566 in ROC AUC, and +0.0316 in PR AUC over the strongest baseline.
On clinical diagnostic tasks (Mumtaz2016 and High-Gamma), ECHO shows an average gain of
+0.0409 in Balanced Accuracy, +0.0225 in ROC AUC, and +0.0142 in PR AUC. ECHO also
demonstrates a unique capability: even without any external prompts, it can autonomously iden-
tify the corresponding task and its specific paradigm solely from the EEG sample itself.

ECHO does not surpass SOTA on several tasks. On tasks such as Stieger2021-UD, BCIC-IV-
2a, and SEED-IV, ECHO remains noticeably below encoder-centric models that are explicitly op-
timized for those domains. This highlights a limitation in ECHO’s generalization–specialization
trade-off: while the framework aims for unified cross-task reasoning, its lightweight encoder de-
sign is insufficient to model all domain-specific structures required by certain specialized EEG
tasks. Detailed results and analysis are provided in Appendix B.1.

(b) Comparison between ECHO and ECHOE :

Seq2Seq paradigm improves performance. Across all datasets, ECHO markedly outperforms
ECHOE . Removing the sequential structure consistently leads to substantial drops (e.g., SEED
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ACC-B: 0.8193→ 0.1645), showing that the full Seq2Seq paradigm is a primary contributor to
ECHO’s gains.

ECHO’s performance ceiling is constrained by encoder quality. While Seq2Seq offers consis-
tent gains, their impact is limited when the encoder cannot model the dataset’s structure, as seen
in TUEV and PhysioNet. In these cases, ICL can provide improvements but cannot overcome the
encoder’s representational shortcomings or match encoder-centric SOTA models. Full results are
in Appendix B.1.

(c) Comparison between ECHO and No Support:

ICL provides additional gains. ECHO surpasses its No-Support setting across all benchmarks,
confirming the effectiveness of in-context learning. Without support samples, performance de-
creases notably (e.g., SEED ACC-B: 0.8193→ 0.0786).

The effectiveness of ICL depends strongly on the distributional stability of support samples.
This works well in datasets with clear structure, such as High-Gamma and SEED. In most EEG
datasets, substantial cross-subject variability and noise make support unstable; few support sam-
ples provide insufficient signal, whereas many support samples introduce accumulated noise and
distribution shifts that reduce performance. Full results are in Appendix D.2.2.

4.3 ABLATION STUDY

We conducted ablation experiments to evaluate the two additional positional encodings introduced
in ECHO. As shown in Figure 3, removing either encoding makes the model ineffective. (1) Remov-
ing the sample-level positional encodings caused performance to drop to chance level, as the model
could no longer distinguish boundaries between EEG samples and instead treated them as a contin-
uous sequence. (2) Removing the decoder textual positional encodings led to complete structural
collapse, with the model producing disordered symbol sequences and no valid predictions. These
results highlight that both encodings are indispensable: the former ensures functional separation of
EEG samples, while the latter preserves syntactic and semantic coherence in decoding.
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Figure 3: The result of the ablation study for positional encoding

4.4 ZERO-SHOT EVALUATION

As shown in Table 3, we evaluate ECHO’s zero-shot generalization on two unseen datasets:
Cho2017 and BCIC 2020-T1. On BCIC 2020-T1, ECHO exhibits strong cross-dataset transfer,
applying the mapping strategies learned during multi-task training even without task prompts, while
support samples further enhance performance. On Cho2017, ECHO again surpasses the encoder-
only baseline, indicating that the Seq2Seq formulation provides stable adaptation to new acquisition
settings and task paradigms. Additional generalization experiments are provided in Appendix B.3

Table 3: Result of Zero-Shot Experiment.

Methods Cho2017 (Unseen for ECHO) BCIC 2020-T1 (Unseen for ECHO)

ACC-B ROC AUC PR AUC ACC-B ROC AUC PR AUC

Cbramod 0.7033 ± 0.0327 0.8081 ± 0.0429 0.7959 ± 0.230 0.5700 ± 0.0185 0.6058 ± 0.0236 0.5371 ± 0.0186
ECHOE 0.5640 ± 0.0315 0.6021 ± 0.0498 0.6126 ± 0.0207 0.5250 ± 0.0751 0.6796 ± 0.1459 0.6697 ± 0.0602
ECHO(No Support) 0.5881 ± 0.0023 0.6399 ± 0.0035 0.6267 ± 0.0021 0.7500 ± 0.0024 0.8232 ± 0.0053 0.8153 ± 0.0118
ECHO 0.6044 ± 0.0032 0.6470 ± 0.0053 0.6460 ± 0.0019 0.7782 ± 0.0042 0.8566 ± 0.0028 0.8552 ± 0.0032

Note: Bold indicates the best performance. Cyan highlight marks ECHO.
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4.5 EXTRA EXPERIMENT

To evaluate ECHO under more diverse and clinically relevant conditions, we introduce three spe-
cialized variants. The long-sequence variant in Appendix D.1.1 (ECHOL) examines whether the
Seq2Seq and ICL framework remains effective when all tasks are aligned to 30-second windows, and
the results show stable convergence with performance close to sleep-staging baselines despite lack-
ing their extended temporal context. The motor-imagery variant in Appendix D.1.2 (ECHOMI)
verifies that MI datasets provide complementary information, since removing one dataset only
slightly reduces performance on unseen MI data, indicating strong cross-dataset transfer. The
epilepsy-augmented variant in Appendix D.1.3 (ECHOEP ) expands the pre-training corpus with
CHB-MIT, and although the lightweight encoder initially trails encoder-centric baselines, the ad-
dition of support examples leads to substantial improvements and achieves the strongest PR AUC,
demonstrating the effectiveness of ICL in compensating for limited seizure-related modeling capac-
ity.

To further validate the design choices and framework-level contributions of ECHO, we include sev-
eral diagnostic studies in the appendix. Appendix D.2.1 evaluates channel-fusion strategies and
shows that the simple averaging operation used in ECHO is sufficient for maintaining stable perfor-
mance across heterogeneous electrode layouts. Appendix D.2.2 presents a systematic support-size
sensitivity analysis, revealing that optimal ICL performance typically emerges at moderate support
sizes and that the benefit of support samples is strongly dataset dependent. Appendix D.2.3 veri-
fies the extensibility of the Seq2Seq paradigm by demonstrating that introducing the generative
decoder improves performance over strong encoder-centric baselines, while Appendix D.2.4 shows
that ECHO achieves more stable generalization than standard multi-task learning despite using
fewer parameters. Collectively, these results provide deeper evidence that ECHO’s improvements
stem from the Seq2Seq + ICL framework itself rather than from encoder capacity or task-specific
shortcuts.

5 RELATED WORK

In recent years, research on large models for neural signals has increasingly centered on rep-
resentation learning, with the primary goal of extracting robust and generalized representations.
Existing approaches can be broadly categorized into two directions: reconstruction-based and
contrastive-based representation learning. In reconstruction-based methods, representations are
learned by recovering missing or future signals through masking or autoregression. For example,
frequency-domain masking has been applied to enforce temporal-frequency consistency in repre-
sentations (Wang et al., 2023), while spatiotemporal joint masking has been introduced to model
dependencies across both temporal and spatial domains (Dong et al., 2024). Autoregressive frame-
works further extend this idea by predicting future signal segments, enabling representations that
capture long-range dynamics (Caro et al., 2023). In contrastive-based methods, representations
are improved by constructing positive and negative pairs to enhance robustness and discriminabil-
ity. Temporal perturbations and frequency shifts have been used to ensure consistent representations
across augmented views (Cai et al., 2023), while cross-modal contrastive learning has been explored
to expand the representational space, such as aligning EEG with text to ground neural signals in
richer semantic domains (Jiang et al., 2024c).

6 CONCLUTION

In this work, we introduced ECHO, a decoder-centric paradigm for LEMs, designed to highlight the
untapped potential of decoders in EEG representation learning and task modeling. ECHO adopts
a Seq2Seq formulation that jointly models the hierarchical relationships among signals, labels, and
tasks within a unified sequence space, while leveraging discrete support samples to enable ICL. This
design allows the model to dynamically adapt to diverse tasks without parameter updates. Extensive
experiments on multiple public EEG datasets demonstrate that, even with basic architectural com-
ponents, ECHO consistently outperforms state-of-the-art single-task LEMs in multi-task settings,
and further exhibits generalization in zero-shot and cross-dataset evaluations. Overall, these results
show that ECHO provides a viable pathway to overcoming the decoder bottleneck in existing LEMs.
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APPENDIX

A EXPERIMENT SETUP DETAIL

A.1 DATASET SETTING

For the pre-training phase of ECHO, a comprehensive corpus of 12 public datasets was aggregated,
spanning six distinct Brain-Computer Interface (BCI) tasks. These include Emotion Recognition,
Motor Imagery, Major Depressive Disorder (MDD) detection, workload assessment, event type clas-
sification, and attention monitoring. This multi-task, multi-dataset approach is designed to expose
the model to a wide variety of EEG signal characteristics, thereby fostering the development of ro-
bust and generalizable representations. All signals were uniformly resampled to 250 Hz to ensure
consistency across the corpus. A summary of the detailed information for each dataset is shown
in Table 4. The detailed introductions for each task are listed below (includes datasets used by all
ECHO variants):

Table 4: Detailed Information of Datasets Used for Pre-training.
Task Dataset #Subjects #Channels Duration Sampling Rate #Classes

Emotion Recognition
SEED-IV 15 62 4s 250 Hz 4
SEED-V 16 62 1s 250 Hz 5
SEED 15 62 4s 250 Hz 2

Motor Imagery

BCI IV 2a 9 22 4s 250 Hz 4
High-Gamma 14 128 4s 250 Hz 2
Stieger2021-LR 64 15 4s 250 Hz 2
Stieger2021-UD 64 15 4s 250 Hz 2
PhysioNet 109 64 10s 250 Hz 4
KoreaU 54 62 4s 250 Hz 2

MDD Detection Mumtaz 119 19 5s 250 Hz 2

Workload Assessment Mental Arithmetic 36 20 5s 250 Hz 2

Event Type Classification TUEV (Events) 370 16 5s 250 Hz 6

Attention Monitoring Attention 26 30 4s 250 Hz 2

Sleep Staging ISRUC S1 100 6 30s 250 Hz 5
ISRUC S3 10 6 30s 250 Hz 5

Seizure Detection CHB-MIT 22 23 10s 256 Hz 2

A.1.1 EMOTION RECOGNITION

This task aims to identify human emotional states from EEG signals. The datasets used involve
recordings of subjects exposed to stimuli designed to elicit specific emotions.

• SEED-V: The SEED-V dataset focuses on the recognition of five distinct emotional cate-
gories: happy, sad, neutral, disgust, and fear. It features 62-channel electroencephalo-
gram (EEG) recordings acquired from 16 participants. For analytical purposes, these sig-
nals are segmented into 1-second windows. It should be noted that data corruption neces-
sitated the exclusion of subject 7, leaving 15 subjects in the SEED-V dataset, which is then
partitioned into a 5:5:5 split for training, validation, and testing.

• SEED-IV: SEED-IV focuses on the recognition of four emotional states: happiness, sad-
ness, fear, and neutrality. Data were collected from 15 subjects who participated in 3
sessions, watching a total of 72 film clips chosen to induce these emotions. The data were
segmented into 4-second nonoverlapping segments for analysis. Key features extracted
include Power Spectral Density (PSD) and Differential Entropy (DE) across five distinct
frequency bands: delta, theta, alpha, beta, and gamma

• SEED: SEED originally owns 3 labels, Positive, Neutral and Negative. To align with the
settings in baseline, we remove Neutral EEG data and transform it into a binary classifica-
tion task. Data is segmented into 4-second nonoverlapping segments.

A.1.2 MOTOR IMAGERY (MI)

Motor Imagery (MI) is the mental rehearsal of a motor action without any overt physical movement.
In the context of EEG-based Brain-Computer Interfaces (BCIs), this task involves classifying dif-
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ferent imagined movements—such as those of the left hand, right hand, or feet—from the user’s
brain signals. These imagined actions elicit distinct patterns of neural activity, particularly within
the sensorimotor cortex, which can be decoded to control external devices.

• BCI IV 2a: This dataset contains recordings from 9 subjects performing a cue-based motor
imagery task. The task involves four distinct classes: imagined movements of the left hand,
right hand, feet, and tongue. EEG data was recorded from 22 channels at a sampling rate
of 250 Hz, with each MI trial lasting for 4 seconds.

• High Gamma: This dataset contains EEG recordings from 14 subjects performing exe-
cuted, rather than imagined, motor tasks, with a focus on capturing high-frequency com-
ponents of brain activity. The paradigm includes four classes: sequential finger-tapping of
the left hand, finger-tapping of the right hand, repetitive toe clenching representing both
feet, and a rest condition. Signals were recorded from 128 channels and subsequently
downsampled to 250 Hz, with each trial lasting for 4 seconds.

• Stieger2021 (LR): Part of a study investigating the effects of Mindfulness-Based Stress
Reduction (MBSR) on BCI skill acquisition, this dataset involves 64 subjects performing
a horizontal cursor control task. The paradigm consists of two classes: motor imagery of
the left hand (to move left) and the right hand (to move right). Data was recorded from
15 channels at 250 Hz and segmented into 4-second trials.

• Stieger2021 (UD): Sourced from the same subject pool, this dataset focuses on a vertical
cursor control task. It includes two classes: motor imagery of both hands (to move up) and
voluntary rest (to move down). The recording setup and trial segmentation are identical
to the LR dataset.

• PhysioNet: This dataset provides motor imagery EEG recordings from 109 subjects. The
paradigm consists of four classes: imagined movements of the left fist, right fist, both
fists, and both feet. Data was recorded from 64 channels with a sampling rate of 250 Hz,
and trials are segmented into 10-second windows.

• KoreaU: This dataset features EEG recordings from 54 subjects performing a binary-class
motor imagery task. The paradigm involves two classes: imagined movements of the left
hand and the right hand. Signals were recorded from 62 channels at a sampling rate of 1000
Hz, with each MI trial lasting for 4 seconds.

A.1.3 MAJOR DEPRESSIVE DISORDER (MDD) DETECTION

This task focuses on identifying biomarkers for Major Depressive Disorder from EEG signals, typi-
cally differentiating between patients with MDD and healthy controls.

• Mumtaz: This dataset is designed for MDD detection, containing EEG recordings from
34 patients with MDD and 30 healthy controls during eyes-open and eyes-closed resting
states. Signals were recorded from 19 channels following the 10-20 system and were
subsequently downsampled to 250 Hz. For analysis, the data is segmented into 5-second
windows.

A.1.4 WORKLOAD ASSESSMENT

This task, often framed as mental stress detection, aims to quantify a subject’s cognitive load or
stress level based on their EEG signals.

• Mental Arithmetic: This dataset supports mental stress detection by recording EEG from
36 subjects under two conditions: a resting state (”no stress”) and an active mental arith-
metic task (”stress”). The signals were acquired using 20 electrodes and segmented into
5-second windows.

A.1.5 EVENT TYPE CLASSIFICATION

This task involves the classification of various event types from clinically annotated EEG recordings,
which is crucial for automated analysis and diagnosis.
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• TUEV (Events): This clinically annotated corpus is used for multi-class event type clas-
sification, including six categories such as spike and sharp wave (SPSW), eye movements
(EYEM), and artifacts (ARTF). Signals were recorded using 16 bipolar montage channels
and segmented into 5-second windows.

Table 5: Hyperparameters for Model Architecture.
Component Hyperparameter Setting

EEG Sample

Channels 75
Time points 2500
Patch dimension 256
Sequence length 10

CNN

Window size 100
Step 90
Input dimensions {1, 64, 64, 128}
Output dimensions {64, 64, 128, 256}
Kernel sizes {(1, 5), (75, 1), (1, 5), (1, 5)}
Strides {(1, 1), (1, 1), (1, 1), (1, 1)}
Paddings {(0, 2), (0, 0), (0, 2), (0, 2)}

Transformer
FFN Hidden Size 512
Head Number 8
Token Dimension Size 256

Decoder

Layers 4
Hidden dimension 384
Attention Heads 6
Feed-forward dimension 1536

Connector
Input dimension 256
Output dimension 384
Activation Function GELU

A.1.6 ATTENTION MONITORING

This task aims to distinguish between states of attention and inattention using EEG signals.

• Attention: This dataset was collected from 26 subjects performing a Discrimina-
tion/Selection Response (DSR) task to assess cognitive attention. Each subject participated
in three sessions, with each session consisting of alternating 40-second attention periods
and 20-second rest periods. To create a balanced binary classification problem (attention
vs. inattention), the first 20 seconds of each attention period were used. The data was then
segmented into 4-second windows with no overlap.

A.1.7 SLEEP STAGING

This task aims to automatically classify a subject’s sleep stage by analyzing their EEG signals. The
objective is to assign labels such as Wake, REM, and non-REM (N1, N2, N3) to sequential epochs
of EEG data, which is essential for analyzing sleep patterns and quality.

• ISRUC S1: This dataset is a subset of the ISRUC-Sleep collection, designed for sleep
stage classification. It contains polysomnographic (PSG) recordings from 100 subjects,
including both healthy individuals and patients with sleep disorders. Each recording was
visually scored by two human experts, providing labels for different sleep stages. The data
includes various electrophysiological signals crucial for sleep analysis.

• ISRUC S3: Derived from the same ISRUC-Sleep collection, this dataset shares the same
data acquisition and scoring protocols as ISRUC S1. It comprises recordings from 10
subjects, maintaining consistent signal types and label standards.

A.1.8 SEIZURE DETECTION

This task focuses on identifying seizure events from long-term scalp EEG recordings. The goal
is to distinguish ictal segments from interictal background activity, which is essential for epilepsy
diagnosis and continuous monitoring in clinical and home settings.
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• CHB-MIT: This dataset is part of the PhysioNet EEG collections and contains pediatric
scalp EEG recordings from 22 subjects monitored at Boston Children’s Hospital. Each
subject includes multiple continuous sessions sampled at 256 Hz using the international
10–20 system, with approximately 23 to 26 EEG channels. A total of 198 seizure events
are annotated by clinical experts, providing detailed temporal boundaries for ictal activity.
The dataset is widely used for benchmarking seizure detection and event prediction models.

Table 6: Hyperparameters for Training Process.
Phase Hyperparameter Setting

Warm-up

Epochs 90
Batch size 64
Dropout 0.2
Optimizer Adam
Learning rate 5e-5
Adam β (0.9, 0.999)
Adam ϵ 1e-8
Scheduler Custom Cosine Schedule
Minimal learning rate 1e-6

In-context Training

Epochs 40
Batch size 48
Dropout 0.1
Optimizer Adam
Learning rate 5e-5 (Decoder/Connector), 5e-6 (Encoder)
Adam β (0.9, 0.999)
Adam ϵ 1e-8
Scheduler Custom Cosine Decay (via LambdaLR)
Cosine cycle epochs 100
Minimal learning rate factor 0.5
ICL Support Samples (Stage 1) 8 (fixed)
ICL Support Samples (Stage 2) Random (0-12)
First Stage epochs 20
EEG Sample Length 30 seconds

A.2 BASELINE SELECTION

We introduce the baseline for comparative experiment in this section. Our baseline includes tradi-
tional CNN network, Transformer architecture models as well as recent self-supervised Large EEG
Models.

EEGNet (Lawhern et al., 2018): A compact Convolutional Neural Network that introduced depth-
wise and separable convolutions to create an efficient architecture for EEG classification. It is de-
signed to generalize effectively across diverse BCI paradigms, demonstrating robust performance
even with limited training data.

BIOT (Yang et al., 2023): A Transformer architecture engineered for robust cross-dataset EEG clas-
sification. It improves generalization across different subjects and recording settings by employing
contrastive learning and a domain-invariant attention mechanism to mitigate domain shift effects.

LaBraM (Jiang et al., 2024d): A scalable Transformer framework for learning general-purpose
EEG representations from extensive datasets. It is pretrained on a diverse collection of recordings to
capture features that are broadly applicable to downstream BCI tasks, utilizing efficient self-attention
and task-specific adapters to facilitate fine-tuning.

EEGPT (Wang et al., 2024a): Utilizes a dual self-supervised pretraining approach that combines
masked autoencoding with spatio-temporal representation alignment. Its hierarchical design decou-
ples spatial and temporal feature extraction for greater computational efficiency and adaptability
across different BCI applications.

CBraMod (Wang et al., 2024c): An EEG foundation model designed to handle the complex de-
pendencies in brain signals. It features a criss-cross Transformer architecture with parallel attention
mechanisms that independently model spatial and temporal relationships within the data.

CodeBrain (Ma et al., 2025): An efficient two-stage EEG foundation model. It first employs a
novel TFDual-Tokenizer to generate discrete representations by independently processing temporal
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and frequency components. Subsequently, its EEGSSM architecture, which integrates structured
global convolutions with a sliding window attention mechanism, is trained via masked prediction to
efficiently capture the multi-scale dependencies inherent in brain signals.

A.3 MODEL SETTING

To ensure the reproducibility of our work, this section provides a complete and detailed specifica-
tion of our model’s architecture. We initialize ECHO’s decoder block with (Radford et al., 2022).
The following Table 5 enumerates the specific hyperparameter settings for every component of the
model pipeline, beginning with the initial EEG sample processing, through the feature extraction
and encoding stages (Jiang et al., 2025), and concluding with the Connector and Decoder modules.

A.4 TRAINING & ENVIRONMENT SETTING

Our model is trained in two distinct phases, each with a unique set of hyperparameters as specified in
Table 6. The process begins with an Encoder Warm-up phase to stabilize the feature extractor. This
is followed by the main Contextual Training Phase phase, which itself includes staged settings for
in context learning. The table details the optimizer configurations, learning rate schedules, and other
crucial settings for both phases. The entire training pipeline was executed in a PyTorch Lightning1

environment on NVIDIA A100 40G GPUs. For better illustration, here is the pseudo code 1 for the
whole training and inference process:

Algorithm 1 Contextual Training Phase of ECHO
Input: query eeg, support pairs, query text (for training only)

1: function PREPROCESS(raw eeg) ▷ Unify channels, filter, etc.
2: return processed eeg

3: function ENCODER(processed eeg) ▷ Convert EEG to a sequence of tokens
4: return eeg tokens

Step 1: Encode all EEG samples into a unified context
5: all eegs← [s.eeg for s in support pairs] + [query eeg]
6: eeg tokens← [encoder(preprocess(eeg)) for eeg in all eegs]
7: eeg context← concat(eeg tokens)

Step 2: Prepare the initial text sequence
8: support texts← [s.text for s in support pairs]
9: text sequence← tokenize(concat(start token, support texts, query token))

Step 3: Decoder performs autoregressive prediction
10: logits← decoder(input tokens=text sequence, cross attention context=eeg context)

Step 4: Execute task based on the mode
11: if training then ▷ Update model parameters by calculating loss
12: target tokens← tokenize(concat(support texts, query text, end token))
13: loss← loss function(logits, target tokens)
14: backpropagate(loss)

15: else (inference) ▷ Obtain the final result via autoregressive generation
16: result← autoregressive generate(logits)
17: return result

1https://lightning.ai/pytorch-lightning
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B EXPERIMENT RESULT DETAIL

B.1 RESULT OF ALL DATASETS

As shown in Table 7, ECHO performs slightly below the strongest baseline, CBraMod, on the SEED-
IV dataset. A key factor behind this result lies in the label overlap between SEED-IV and SEED-V,
which share the same four categories. Within the multi-task unified training framework, ECHO
must first infer which paradigm a given EEG sample belongs to before performing classification.
In scenarios with highly overlapping label spaces, the model is prone to misinterpreting SEED-IV
samples as belonging to the SEED-V label set, thereby introducing classification errors. Never-
theless, it is worth noting that ECHO still achieves performance comparable to, or in some cases
better than, other baselines. For instance, ECHO reaches near-best results in the Weighted F1 score,
demonstrating a degree of robustness. This suggests that even under conditions of significant label
overlap across tasks, ECHO maintains strong generalization and resilience.

Table 7: Results on the SEED-IV.
Methods ACC-B Kappa F1-Weighted

EEGNet 0.3684 ± 0.0312 0.1945 ± 0.0258 0.3251 ± 0.0390
BIOT 0.3165 ± 0.0388 0.1623 ± 0.0183 0.3255 ± 0.0371
EEGPT 0.3520 ± 0.0437 0.1322 ± 0.0254 0.3154 ± 0.0220
LaBraM 0.2647 ± 0.0219 0.1652 ± 0.0308 0.3572 ± 0.0243
CBraMod 0.4146 ± 0.0228 0.2088 ± 0.0344 0.3744 ± 0.0454
CodeBrain 0.3641 ± 0.0328 0.1685 ± 0.0300 0.3341 ± 0.0249
ECHO 0.3747 ± 0.0121 0.1595 ± 0.0029 0.3601 ± 0.0037

Note: Bold indicates the best performance. Cyan highlight marks ECHO.

As shown in Table 8, ECHO achieves the overall best performance on the SEED-V dataset, outper-
forming all baselines across ACC-B, Kappa, and F1-Weighted. Compared to SEED-IV, SEED-V
has less overlap in label space with other tasks, which reduces ambiguity in paradigm identifica-
tion and allows the model to better exploit its unified modeling capacity. In this setting, ECHO
avoids the classification errors caused by label interference and demonstrates strong ability to cap-
ture task-specific representations under the multi-task framework. These results indicate that when
task paradigms are more clearly separated, ECHO can fully realize its potential and consistently
surpass state-of-the-art baselines.

Table 8: Results on the SEED-V.
Methods ACC-B Kappa F1-Weighted

EEGNet 0.2413 ± 0.0021 0.0592 ± 0.0054 0.2317 ± 0.0017
BIOT 0.2245 ± 0.0061 0.0432 ± 0.0010 0.2153 ± 0.0038
EEGPT 0.2202 ± 0.0044 0.0496 ± 0.0036 0.2301 ± 0.0096
LaBraM 0.2372 ± 0.0053 0.0562 ± 0.0028 0.2237 ± 0.0078
CBraMod 0.2432 ± 0.0046 0.0586 ± 0.0059 0.2452 ± 0.0043
CodeBrain 0.2447 ± 0.0044 0.0610 ± 0.0032 0.2411 ± 0.0037
ECHO 0.2484 ± 0.0021 0.0640 ± 0.0008 0.2456 ± 0.0010

Note: Bold indicates the best performance. Cyan highlight marks ECHO.

As shown in Table 9, ECHO achieves performance comparable to the strongest baselines, while
obtaining the best result on the F1-Weighted metric. This indicates that, in motor imagery tasks,
ECHO demonstrates an advantage in capturing discriminative features under class imbalance. How-
ever, in terms of Balanced Accuracy and Cohen’s Kappa, ECHO falls slightly behind CBraMod,
suggesting that distinguishing between complex categories such as left–right hand and upper–lower
limb imagery remains challenging under the cross-subject multi-task setting. Overall, ECHO main-
tains competitive performance and shows robustness on metrics emphasizing intra-class consistency,
underscoring its adaptability to motor imagery EEG within the Seq2Seq framework.
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Table 9: Results on the BCIC-IV-2a.
Methods ACC-B Kappa F1-Weighted

EEGNet 0.4583 ± 0.0281 0.2937 ± 0.0612 0.4265 ± 0.0498
BIOT 0.4421 ± 0.0415 0.2768 ± 0.0387 0.4180 ± 0.0634
EEGPT 0.4676 ± 0.0304 0.2889 ± 0.0529 0.4312 ± 0.0391
LaBraM 0.4538 ± 0.0468 0.3011 ± 0.0432 0.4147 ± 0.0587
CBraMod 0.4816 ± 0.0355 0.3088 ± 0.0473 0.4571 ± 0.0543
CodeBrain 0.4721 ± 0.0341 0.2984 ± 0.0471 0.4478 ± 0.0480
ECHO 0.4763 ± 0.0011 0.3015 ± 0.0012 0.4632 ± 0.0002

Note: Bold indicates the best performance. Cyan highlight marks ECHO.

On the Stieger2021-UD dataset (Table 10), ECHO delivers performance largely comparable to other
strong baselines. Specifically, it achieves a Balanced Accuracy of 0.7311, which is close to LaBraM
and CodeBrain but still falls short of the best-performing CBraMod. For ROC AUC and PR AUC,
ECHO does not surpass CBraMod; however, it maintains stable results, with a PR AUC of 0.8258
that is competitive with the top baseline. These findings indicate that while ECHO preserves cross-
subject generalization in upper- and lower-limb motor imagery tasks, its discriminative capacity is
somewhat constrained under the more challenging multi-task setting.

Table 10: Results on the Stieger2021-UD.

Methods ACC-B ROC AUC PR AUC

EEGNet 0.6952 ± 0.0125 0.8113 ± 0.0068 0.7741 ± 0.0097
BIOT 0.7035 ± 0.0098 0.8237 ± 0.0042 0.7895 ± 0.0112
EEGPT 0.7189 ± 0.0153 0.8378 ± 0.0056 0.8032 ± 0.0075
LaBraM 0.7274 ± 0.0087 0.8421 ± 0.0091 0.8126 ± 0.0051
CBraMod 0.7598 ± 0.0079 0.8622 ± 0.0037 0.8524 ± 0.0039
CodeBrain 0.7304 ± 0.0201 0.8143 ± 0.0078 0.8121 ± 0.0061
ECHO 0.7311 ± 0.0001 0.8242 ± 0.0013 0.8258 ± 0.0001

Note: Bold indicates the best performance. Cyan highlight marks ECHO.

On the TUEV dataset (Table 11), ECHO achieves a Balanced Accuracy of 0.5322, notably out-
performing its encoder-only counterpart (ECHOE , 0.4816). While the absolute performance does
not match state-of-the-art models like CodeBrain, this comparison reveals a crucial insight: the
lightweight encoder inherently limits the model’s capacity to resolve complex clinical events. How-
ever, the proposed ECHO paradigm successfully uplifts this baseline, demonstrating that the gen-
erative pre-training strategy effectively enhances representation quality even when the underlying
architecture is constrained.

Similar observations apply to the PhysioNet dataset (Table 12). ECHO achieves a Balanced Ac-
curacy of 0.5667, showing a clear improvement over the encoder-only baseline (ECHOE , 0.5253).
Although it trails behind specialized methods like CBraMod, the consistent gain over ECHOE vali-
dates the efficacy of the methodology. This suggests that while the base encoder struggles with the
specific frequency-spatial patterns of this task, the ECHO framework extracts significantly richer
features than supervised training alone, proving the value of the paradigm despite architectural lim-
itations.

The extended experimental results in the appendix reveal that ECHO’s performance varies across
tasks and datasets. For SEED-IV and SEED-V emotion recognition tasks, the substantial label over-
lap within the SEED family makes it difficult for ECHO to disentangle paradigms and sub-class
categories in a multi-task setting, which in turn leads to relatively weaker performance compared to
some single-task baselines. Nevertheless, ECHO is still able to achieve results close to or even sur-
passing the strongest baselines on certain metrics (e.g., F1-Weighted), highlighting its robustness.
On the BCIC-IV-2a dataset, ECHO performs comparably to the strongest baseline and achieves
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Table 11: Results on the TUEV dataset.
Methods ACC-B Kappa F1-Weighted

EEGNet 0.3876 ± 0.0143 0.3577 ± 0.0155 0.6539 ± 0.0120
BIOT 0.5281 ± 0.0225 0.5273 ± 0.0249 0.7492 ± 0.0082
EEGPT 0.6232 ± 0.0114 0.6351 ± 0.0134 0.8187 ± 0.0063
LaBraM 0.6409 ± 0.0065 0.6637 ± 0.0093 0.8312 ± 0.0052
CBraMod 0.6671 ± 0.0107 0.6772 ± 0.0096 0.8342 ± 0.0064
CodeBrain 0.6428 ± 0.0062 0.6912 ± 0.0101 0.8362 ± 0.0048
ECHOE 0.4816 ± 0.0152 0.4921 ± 0.0118 0.7406 ± 0.0094
ECHO 0.5322 ± 0.0045 0.4973 ± 0.0032 0.7442 ± 0.0058

Note: Bold indicates the best performance. Cyan highlight marks ECHO methods.
ECHOE denotes the encoder-only baseline.

the best score on F1-Weighted, demonstrating its ability to maintain cross-subject generalization in
classical motor imagery tasks. For Stieger2021-UD, while ECHO does not surpass the best base-
line in terms of Balanced Accuracy and AUC, it delivers stable performance overall, indicating its
robustness in more complex upper- and lower-limb motor imagery scenarios. In summary, these
extended results suggest that while ECHO may encounter performance bottlenecks in multi-task
and cross-dataset contexts with overlapping task labels, it nevertheless exhibits strong robustness
and generalization. This further validates the applicability and potential advantages of its decoder-
centric, Seq2Seq design for neural representation learning.

B.2 VALIDATION OF SEQ2SEQ PARADIGM

As shown in Table 13, we systematically compares the performance of two configurations across
multiple downstream tasks to validate the performance of the Seq2Seq paradigm:

No Support: ECHO performs inference without any samples (ICL = 0, and no task sample),
relying solely on sample modeling and the decoder’s intrinsic capacity for prediction. Encoder
Only: A conventional paradigm using only the encoder with a lightweight classification head.

Both configurations share identical data splits and evaluation protocols, differing only in whether
decoder-centric Seq2Seq prediction and contextual support are employed. Across 12 datasets and 3
evaluation metrics (36 comparisons in total), No Support outperforms Encoder Only in 29 out of 36
cases and achieves overall superiority on 10 out of 12 datasets. The only exceptions are SEED-IV
and Mumtaz, where Encoder Only consistently leads, and Mental Arithmetic, where Encoder Only
is stronger in Balanced Accuracy but No Support surpasses it in ROC AUC and PR AUC. This trend
suggests that even without access to support samples, decoder-centric sequential modeling provides
significant and stable gains, rather than relying solely on ICL-based retrieval for improvement.

Representative Comparisons and Quantitative Differences:

Table 12: Results on the PhysioNet dataset.

Methods ACC-B Kappa F1-Weighted

EEGNet 0.5814 ± 0.0125 0.4468 ± 0.0199 0.5796 ± 0.0115
EEGConformer 0.6049 ± 0.0104 0.4736 ± 0.0171 0.6062 ± 0.0095
ST-Transformer 0.6035 ± 0.0081 0.4712 ± 0.0199 0.6053 ± 0.0075
BIOT 0.6153 ± 0.0154 0.4875 ± 0.0272 0.6158 ± 0.0197
LaBraM 0.6173 ± 0.0122 0.4912 ± 0.0192 0.6177 ± 0.0141
CBraMod 0.6417 ± 0.0091 0.5222 ± 0.0169 0.6427 ± 0.0100
ECHOE 0.5253 ± 0.0110 0.3619 ± 0.0145 0.5177 ± 0.0089
ECHO 0.5667 ± 0.0121 0.4214 ± 0.0185 0.5604 ± 0.0109

Note: Bold indicates the best performance. Cyan highlight marks ECHO methods.
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Table 13: Comparison results of No Support and Encoder Only methods on downstream tasks.

Methods
SEED-IV SEED-V SEED

ACC-B Kappa F1-W ACC-B Kappa F1-W ACC-B ROC AUC PR AUC

No Support 0.3398 0.1174 0.3400 0.2353 0.0466 0.2353 0.7407 0.8488 0.8522
Encoder Only 0.3740 0.1609 0.3684 0.2223 0.0284 0.2196 0.6548 0.7493 0.7592

Methods
BCI IV 2a High-Gamma Stieger2021-LR

ACC-B Kappa F1-W ACC-B ROC AUC PR AUC ACC-B ROC AUC PR AUC

No Support 0.4627 0.2836 0.4432 0.8438 0.9125 0.9047 0.8534 0.9349 0.9363
Encoder Only 0.3406 0.1242 0.2339 0.8039 0.8900 0.8889 0.6123 0.8918 0.9048

Methods
Stieger2021-UD PhysioNet Mental Arithmetic

ACC-B ROC AUC PR AUC ACC-B Kappa F1-W ACC-B ROC AUC PR AUC

No Support 0.6924 0.8112 0.8117 0.5437 0.3918 0.5318 0.5442 0.6896 0.6897
Encoder Only 0.6058 0.7759 0.7858 0.5253 0.3619 0.5177 0.6008 0.6555 0.6416

Methods
Mumtaz TUEV (Events) Attention

ACC-B ROC AUC PR AUC ACC-B Kappa F1-W ACC-B ROC AUC PR AUC

No Support 0.9056 0.9745 0.9748 0.5214 0.5085 0.7489 0.8056 0.8895 0.8955
Encoder Only 0.9698 0.9953 0.9952 0.4816 0.4921 0.7406 0.6472 0.7329 0.7367

Note: Bold indicates the best performance between the two methods for each metric.

Motor Imagery: On datasets such as BCI IV 2a, Stieger2021-LR/UD, and SEED, No Support
achieves consistent superiority across all metrics. For example, in BCI IV 2a, Balanced Accu-
racy rises from 0.3406 (Encoder Only) to 0.4627 (No Support), a substantial improvement; in
Stieger2021-LR, the gains in ROC AUC (0.9349 vs. 0.8918) and PR AUC (0.9363 vs. 0.9048)
are particularly notable, underscoring stronger ranking ability and robustness to class imbalance.

Event Detection: On TUEV (Events), No Support consistently outperforms Encoder Only across
all metrics, indicating that sequential decoding is particularly effective for modeling context
dependencies in event-based labeling. Notably, even though the lightweight encoder performs
poorly on this dataset—near random—the seq2seq paradigm itself remains effective, demonstrat-
ing that the decoding framework can compensate for weak encoder representations.

Clinical Depression: On the Mumtaz dataset, Encoder Only clearly dominates across all metrics
(e.g., balanced accuracy 0.9698 vs. 0.9056), suggesting that in highly homogeneous, binary clin-
ical datasets with relatively sharp decision boundaries, an encoder-classifier paradigm tailored to
the task can more easily reach performance ceilings.

Emotion Recognition: On the SEED family dataset, No Support demonstrates clear advantages
on SEED and remains competitive on SEED-V, yet it is surpassed by Encoder Only on SEED-IV.
This discrepancy is likely due to overlapping label spaces and paradigms within the SEED family,
which introduce ambiguity in paradigm determination. Without support samples, the decoder
must simultaneously infer the task paradigm and predict labels; the heavy overlap between SEED-
IV and SEED-V can induce “paradigm boundary confusion,” weakening the advantage of No
Support.

Workload Assessment: On Mental Arithmetic, No Support performs better on AUC metrics
(0.6896/0.6897 vs. 0.6555/0.6416), but lags slightly in Balanced Accuracy (0.5442 vs. 0.6008).
This reflects a divergence between ranking quality and thresholded accuracy: while No Support
offers better probability calibration and ranking, its fixed-threshold accuracy does not dominate.
With post-processing or threshold tuning, the gap in Balanced Accuracy may be further reduced.

In most datasets and evaluation metrics, No Support significantly outperforms Encoder Only. The
underlying reason is that ECHO’s sequence-to-sequence decoding paradigm enables it to jointly
model the hierarchical relationships among signals, tasks, and labels within a unified symbolic space.
Even without support samples, ECHO can rely on the pattern-matching mechanisms acquired during
training to perform cross-task and cross-paradigm reasoning. This not only enhances the model’s
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robustness but also allows it to maintain strong generalization performance in scenarios where task
boundaries are ambiguous or data distributions differ.

By contrast, Encoder Only relies on a conventional discriminative classification head, which is more
suitable for single-paradigm or structurally simpler tasks but struggles with generalization and flex-
ibility in complex, heterogeneous multi-task settings. Thus, ECHO’s superior performance demon-
strates that it can autonomously infer task paradigms and predict labels without task-specific prompts
while effectively integrating knowledge from diverse datasets through unified modeling. This ca-
pability is a key piece of evidence for ECHO’s success, showing that it overcomes the limitations
of traditional LEMs and achieves stronger adaptability and generalization in multi-task and cross-
dataset scenarios.

B.3 ZERO-SHOT PERFORMANCE

As shown in Table 14, we evaluated the model performance on the SEED-IV dataset. It is noted
that ECHOE and the No Support variant included this dataset during the training phase. Conversely,
ECHO w/o SEED-IV operated under a zero-shot setting where SEED-IV was excluded from the
training corpus. Experimental results indicate that while ECHO w/o SEED-IV yields slightly lower
metrics compared to CBraMod, the performance gap remains marginal. This suggests that the model
retains competitive capability despite the absence of domain-specific training data, reflecting posi-
tive generalization potential.

Table 14: Results on SEED-IV Dataset.(Unseen for ECHO)
Methods ACC-B Kappa F1-Weighted

Cbramod 0.4146 ± 0.0228 0.2088 ± 0.0344 0.3744 ± 0.0454
ECHOE 0.3740 ± 0.0152 0.1609 ± 0.0085 0.3684 ± 0.0110
ECHO (No Support) 0.3398 ± 0.0134 0.1174 ± 0.0062 0.3400 ± 0.0125
ECHO w/o SEED-IV 0.3491 ± 0.0141 0.1283 ± 0.0078 0.3357 ± 0.0119

Note: Bold indicates the best performance. Cyan highlight marks ECHO variants.

B.4 TRAINING LOSS

Figure 4 illustrates the pretraining loss curve for the Contextual Training Phase of our model, ECHO.
The loss exhibits a rapid initial convergence during the first few epochs, followed by a gradual and
steady decline. A minor spike is observed at the transition between the two stages of this phase. We
attribute this transient increase to the shift from a fixed to a variable number of support samples and
the introduction of random EEG data. Notably, the magnitude of this spike is minimal, suggesting
that the ECHO decoder had already acquired robust sequence prediction capabilities during Stage 1.
Therefore, Stage 2 serves to refine this ability, prompting the model to focus more on the nuanced
sequential relationships among the EEG samples.
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Figure 4: The loss curve of ECHO Contextual Training Phase
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C RELATED WORK DETAIL

Traditional EEG decoding pipelines were primarily based on domain-specific feature extraction
methods, such as common spatial patterns (CSP), in combination with shallow classifiers, includ-
ing linear discriminant analysis (LDA) and support vector machines (SVMs) (Lotte et al., 2007;
Guler & Ubeyli, 2007). Although computationally efficient, these approaches were constrained by
their reliance on prior assumptions about neural dynamics and exhibited limited generalizability
across heterogeneous settings. The introduction of deep learning marked a critical turning point.
CNN-based methods enabled the direct learning of spatiotemporal features from raw EEG signals
(Zhou et al., 2024; Ding et al., 2024), while RNNs, including LSTMs architectures, provided tools
for modeling sequential neural dependencies. Despite their effectiveness in task-specific scenar-
ios, these architectures often exhibited poor transferability, primarily due to variations in electrode
configurations, sampling rates, and task paradigms across datasets. This limitation motivated the
transition toward LEMs, also referred to as EEG Foundation Models (Zhou et al., 2025a), which
aim to learn universal representations from extensive collections of unlabeled EEG data.

Current research on LEMs emphasizes self-supervised pretraining strategies that can be broadly
categorized into two classes: reconstruction-based and contrastive-based methods. Reconstruction-
based approaches encourage models to learn temporal and spatial dependencies by predicting
masked or future signal segments. For instance, EEGPT (Wang et al., 2024a), which employs a
dual-masking strategy to reconstruct both raw signals and their spatiotemporal representations, and
LaBraM (Jiang et al., 2024b) and CodeBrain (Ma et al., 2025), which tokenize EEG into discrete
neural codes and learns by reconstructing masked tokens. Further innovations are seen in models
like CSBrain (Zhou et al., 2025b), which uses cross-scale tokenization to handle the multi-resolution
characteristics of EEG, and CBraMod (Wang et al., 2024b), which introduces a criss-cross trans-
former to model complex spatial and temporal dependencies. In contrast, contrastive-based methods
enhance robustness and discriminability by constructing positive and negative pairs. Models such
as BIOT (Yang et al., 2023) and NeuroGPT (Cui et al., 2024) have explored contrastive objectives
alongside masked modeling to improve representation quality and improve generalization between
subjects and recording conditions while mitigating domain shift.

While existing LEMs have demonstrated the capacity to produce powerful encoders, their de-
coding paradigm remains a critical bottleneck. Typically, high-capacity encoders are paired with
lightweight classifiers, leading to a mismatch restricting the full exploitation of pretrained repre-
sentations. This limitation has led to only using LLMs as encoders, where EEG embeddings are
aligned with text embeddings and decoded via instruction-based prompting. Models such as Neu-
roLM (Jiang et al., 2024a) and UniMind (Lu et al., 2025) exemplify this paradigm by unifying EEG
and language representations. However, recent work has highlighted that such LLM encoder-centric
approaches remain fundamentally limited, as they shift the EEG-to-label mapping into text space
without resolving the inductive bias mismatch between static semantic structures in language and
the dynamic temporal patterns inherent to EEG signals.

To overcome these limitations, the ECHO framework introduces a decoder-centric Seq2Seq
paradigm. Unlike encoder- or LLM-centric methods, ECHO structures both support and target
EEG samples as serialized sequences, thereby enabling ICL directly in the EEG modality. This
design equips LEMs with the ability to dynamically adapt to new tasks without parameter updates,
while preserving task-discriminative capacity and cross-task generalization. By reframing EEG de-
coding as contextual sequence modeling, ECHO advances the field beyond prior encoder-focused
paradigms and provides a principled pathway to unlock the full potential of EEG foundation models.
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D EXTRA EXPERIMENT

D.1 TASK EXPANSION

D.1.1 SLEEP STAGING

To evaluate ECHO in long-sequence scenarios, we designed a long-sequence variant and incorpo-
rated the ISRUC-S1 sleep staging dataset, which is called ECHOL. Unlike conventional tasks, sleep
staging requires classification of complete 30-second segments, placing higher demands on tem-
poral modeling and cross-segment consistency. For the following two reasons, we did not place it
as the main result in the main text, but placed it in the appendix for reference as a law and result
exploration.

ECHOL includes fewer datasets. In the multi-task training setup, all tasks must be aligned to
the 30s window length of ISRUC-S1. For datasets originally segmented into shorter clips (e.g., 1s
for emotion recognition), this required padding to 30s, inflating their size by up to 30×. Combined
with the additional support samples required for ICL, this drastically increased sequence length and
computational overhead. To keep training feasible, the long-sequence version of ECHO was trained
only on a reduced set of six datasets (Mumtaz2016, SEED-V, ISRUC-S1, High-Gamma, BCIC-IV-
2a, and Mental Arithmetic). As a result, this version is reported in the appendix rather than as the
main ECHO model in the paper.

ECHOL applies a 30s sleep staging paradigm. Baseline methods in sleep staging commonly
exploit 10-minute temporal context (20×30s consecutive segments), which provides a significant
advantage by modeling long-range dependencies. Extending this setup to ECHO, however, would
result in nearly 1-hour equivalent sequences per forward pass once the serialized Seq2Seq struc-
ture and ICL support tokens are included. With the simplified DeepConvNet encoder and limited
computational resources, this was not feasible. Therefore, ECHO was evaluated under a stricter set-
ting, relying solely on the current 30s segment without additional temporal context, making its task
substantially harder than that of the baselines (baselines: 10min continuous context; ECHO: 30s +
discrete support tokens).

As shown in Table 15, ECHO achieved ACC-B 0.7311, Kappa 0.6878, and F1-Weighted 0.7580.
Compared to the strongest baselines CBraMod (ACC-B 0.7865, Kappa 0.7442, F1-Weighted
0.8011) and CodeBrain (Kappa 0.7476, F1-Weighted 0.8020), ECHO lags by only 0.055, 0.056,
and 0.043, respectively. Given that ECHO does not benefit from 10min temporal context and si-
multaneously handles the extra sequence load from ICL, these gaps are both expected and relatively
small. Furthermore, ECHO exhibits extremely low variance (e.g., ACC-B ±0.0012, Kappa ±0.0032,
F1-Weighted ±0.0022), demonstrating strong training stability and robust inference consistency.
Overall, despite operating under much stricter conditions, ECHO delivers performance that is still
comparable to state-of-the-art baselines, validating the feasibility of its decoder-centric Seq2Seq +
ICL framework for long-sequence sleep staging.

Table 15: Results on the ISRUC-S1.
Methods ACC-B Kappa F1-Weighted

EEGNet 0.6238 ± 0.0142 0.5921 ± 0.0142 0.7032 ± 0.0309
BIOT 0.7527 ± 0.0121 0.7192 ± 0.0231 0.7790 ± 0.0146
LaBraM 0.7633 ± 0.0102 0.7231 ± 0.0182 0.7810 ± 0.0133
EEGPT 0.4012 ± 0.0177 0.2223 ± 0.0227 0.3111 ± 0.0110
CBraMod 0.7865 ± 0.0110 0.7442 ± 0.0152 0.8011 ± 0.0099
CodeBrain 0.7835 ± 0.0033 0.7476 ± 0.0040 0.8020 ± 0.0018
ECHOL 0.7838 ± 0.0012 0.7303 ± 0.0032 0.7893 ± 0.0022

Note: Bold indicates the best performance. Cyan highlight marks ECHO.
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D.1.2 MOTOR IMAGERY

In this study, we further designed a task-specialized version of ECHO, denoted as ECHOMI , which
was trained exclusively on motor imagery (MI) datasets. The primary motivation was to investigate
whether datasets of the same task type are complementary and to assess the contribution of individual
datasets within this domain. To this end, we trained a full ECHOMI model with all MI datasets
and a reduced version, ECHOMI (no KoreaU), in which the KoreaU(Lee et al., 2019) dataset was
excluded. By evaluating performance on KoreaU, which was unseen during training in the reduced
model, we can examine whether removing one dataset significantly undermines generalization. The
results show that although excluding KoreaU leads to a slight drop in performance (e.g., ACC-B
decreases from around 64% to 62%), ECHOMI (no KoreaU) still generalizes effectively to this
unseen dataset. This demonstrates that the model captures transferable representations across MI
datasets rather than overfitting to any single dataset, thereby highlighting the robustness and cross-
dataset generalization capacity of ECHO in task-specialized scenarios.

Table 16: Results on the KoreaU.
Methods ACC-B Kappa F1-Weighted

ECHOMI (no KoreaU) 0.6235 ± 0.0118 0.4012 ± 0.0125 0.6154 ± 0.0142
ECHOMI 0.6412 ± 0.0123 0.4289 ± 0.0107 0.6335 ± 0.0131

Note: Cyan highlight marks MI-specialized versions of ECHO.

D.1.3 SEIZURE DETECTION

We extend the original ECHO pre-training corpus by incorporating the CHB-MIT epilepsy dataset,
yielding the ECHOEP variant. This addition enables the model to acquire characteristic high-
frequency and transient seizure patterns prior to downstream evaluation, addressing the limited clin-
ical coverage of the original pre-training setup.

As shown in Table 17, encoder-centric baselines such as CBraMod and CodeBrain achieve the
strongest performance (ACC-B and ROC AUC), reflecting the advantage of their large-capacity en-
coders in modeling epileptic dynamics. In contrast, ECHOEP without support examples underper-
forms these extensively pretrained models. However, once support samples are provided, ECHOEP

exhibits substantial improvements across all metrics (ACC-B +0.053, ROC AUC +0.047, PR AUC
+0.111), ultimately achieving the highest PR AUC among all methods. This sharp gain surpasses
all encoder-centric SOTA baselines and highlights the effectiveness of the ICL mechanism in lever-
aging a few support examples to compensate for gaps in seizure-related time–frequency modeling.
Overall, although ECHOEP (No Support) trails existing SOTA models in the multi-task pre-training
setting, the addition of ICL successfully compensates for the limitations of the lightweight encoder,
enabling ECHOEP to deliver competitive performance.

Table 17: Results on the CHB-MIT.
Methods ACC-B ROC AUC PR AUC

BIOT 0.7068 ± 0.0457 0.8761 ± 0.0284 0.3277 ± 0.0460
LaBraM 0.7075 ± 0.0358 0.8679 ± 0.0199 0.3287 ± 0.0402
EEGPT 0.5481 ± 0.0151 0.8892 ± 0.0066 0.3073 ± 0.0641
CBraMod 0.7398 ± 0.0284 0.8892 ± 0.0154 0.3689 ± 0.0382
CodeBrain 0.7273 ± 0.0240 0.8961 ± 0.0174 0.4377 ± 0.0288
ECHOEP (No Support) 0.5671 ± 0.0078 0.8290 ± 0.0052 0.3872 ± 0.0049
ECHOEP 0.6199 ± 0.0040 0.8762 ± 0.0077 0.4985 ± 0.0032

Note: Bold indicates the best performance. Cyan highlight marks ECHO.
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D.2 COMPONENT VERIFICATION

D.2.1 CHANNEL FUSION STRATEGIES COMPARISON

The primary goal of the this comparison is to validate the channel-fusion method of ECHO, which
employs a simple averaging strategy to handle channel alignment to stress the contribution of the
paradigm itself. We compared this approach with two alternative strategies to assess its effective-
ness. The first alternative is the Full Channel strategy, which utilizes all available electrodes without
reduction. The second is the Channel Deletion strategy, which selects channels (the same with Av-
erage method) by priority and deletes directly to eliminate phase misalignment caused by averaging.

Table 18 presents the performance comparison on the KoreaU and High-Gamma datasets. The
results indicate that the averaging strategy maintains stable performance. On the High-Gamma
dataset, the averaging method outperforms the Full Channel baseline. On the KoreaU dataset, the
performance gap between the averaging strategy and the Full Channel approach remains small.
These findings verify that the averaging operation is a sufficient and effective design choice for
handling channel heterogeneity.

Table 18: Performance comparison of channel fusion strategies on KoreaU and High-Gamma
datasets.

Methods
KoreaU (62 Channels) High-Gamma (128 Channels)

ACC ROC AUC PR AUC ACC ROC AUC PR AUC

Full Channel 0.7217 0.8138 0.8079 0.6780 0.7956 0.8209
Average (Ours) 0.7031 0.7806 0.7790 0.6911 0.8418 0.8049
Channel Deletion 0.6983 0.7808 0.7759 0.6476 0.7710 0.8134

D.2.2 SUPPORT SIZE SCALING ANALYSIS

To systematically evaluate how ECHO’s in-context learning behaves under different support sample
sizes, we conduct a support-scaling sensitivity analysis across downstream tasks. Because datasets
differ widely in raw performance ranges, we first apply min-max normalization to each dataset’s
curve, enabling fair comparison in a unified coordinate space. This allows us to focus on the trend
itself rather than absolute accuracy.

As shown in Figure 5, from the overall trend (black averaged curve), increasing the number of
support samples does not lead to a strictly monotonic improvement. Instead, performance typically
peaks around k = 8, after which further increases produce diminishing or even negative returns.
This phenomenon is partly attributable to pretraining effects that the decoder may inherently favor
shorter sequences and partly reflects a core property of ICL: the model does not always benefit from
more examples Zhang et al. (2025). When k becomes too large, cross-subject variability, trial-level
fluctuations, and distributional noise can accumulate, making it harder for the model to construct a
stable label-space mapping and ultimately causing performance drop-off.

At the same time, we observe a second class of datasets where performance improves steadily as
more support samples are added, as shown in Figure 6. These datasets generally have cleaner dis-
tributions, higher class separability, and more stable mappings. In such cases, ECHO can exploit
additional support samples more effectively, resulting in nearly monotonic gains. This indicates that
the usefulness of support samples is highly dependent on the intrinsic characteristics of the task:
for well-structured datasets with clear decision boundaries, support examples strongly reinforce la-
bel semantics; for noisier or more heterogeneous datasets, too many support samples may instead
introduce disruptive variance.

In summary, the optimal number of support samples is not universal but closely tied to dataset
complexity. For many EEG tasks, a moderate support size (around k = 8) provides the strongest ICL
effect, while several cleaner and more separable datasets benefit from larger support sets.
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Figure 5: Variation of balanced accuracy with respect to the number of support samples. Each sub-
plot displays the curve for an individual dataset, and the black line indicates the average performance
across all datasets. The balanced accuracy values are normalized using min-max scaling to visualize
the trends.

Table 19: Results comparison between Seq2Seq paradigm with encoder-centric baselines.

Method
PhysioNet Mumtaz2016 Stieger2021 LR

ACC-B Kappa F1-W ACC-B ROC AUC PR AUC ACC-B ROC AUC PR AUC

CBraMod 0.6257 0.5009 0.6264 0.8946 0.9800 0.9765 0.8424 0.9339 0.9297
ECHO-CBraMod 0.5236 0.3650 0.5234 0.9035 0.9773 0.9809 0.8370 0.9234 0.9241

ECHOE 0.5253 0.3619 0.5177 0.9698 0.9953 0.9952 0.6123 0.8918 0.9048
ECHO 0.5667 0.4214 0.5604 0.9056 0.9745 0.9748 0.8534 0.9349 0.9363

Method
Attention High-Gamma ISURC S3

ACC-B ROC AUC PR AUC ACC-B ROC AUC PR AUC ACC-B Kappa F1-W

CBraMod 0.6478 0.7417 0.7468 0.7478 0.8292 0.8314 0.6784 0.5730 0.6716
ECHO-CBraMod 0.7222 0.8100 0.8056 0.7499 0.8481 0.8363 0.6490 0.4974 0.5914

ECHOE 0.6472 0.7329 0.7367 0.8039 0.8900 0.8889 0.6868 0.5950 0.6823
ECHO 0.8194 0.8973 0.8952 0.8552 0.9208 0.9125 0.7283 0.6560 0.7031

Note: Bold indicates the best performance between the two methods for each metric. Cyan highlight marks ECHO.

D.2.3 SEQ2SEQ PARADIGM EXTENSIBILITY VALIDATION

We include an additional set of experiments to further validate the extensibility and robustness of the
proposed Seq2Seq paradigm. The goal is to determine whether the performance of ECHO originates
from the Seq2Seq and ICL modeling framework itself, rather than from factors such as encoder
capacity or task-specific pretraining bias. To this end, we replaced the lightweight encoder in ECHO
with a stronger pretrained encoder, CBraMod, and named this hybrid variant ECHO-CBraMod.
This configuration allows us to assess whether the Seq2Seq decoding mechanism remains effective
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Figure 6: Variation of balanced accuracy with respect to the number of support samples for datasets
that benefit monotonically from larger support sets

when the representational power of the encoder is substantially enhanced. We compare this variant
against the original CBraMod baseline to evaluate the contribution of the Seq2Seq paradigm at the
framework level.

Results shown in Table 19 indicate the effectiveness of the Seq2Seq paradigm. In the comparison
between CBraMod and ECHO-CBraMod, the introduction of the generative decoder leads to per-
formance gains on datasets such as Attention and High-Gamma. Specifically, ECHO-CBraMod
achieves higher accuracy and ROC AUC scores on these tasks compared to the encoder-only
CBraMod. Furthermore, when observing the native implementation, the full ECHO model consis-
tently outperforms its encoder-only counterpart ECHOE across the majority of datasets, including
PhysioNet, Stieger2021, and ISURC S3. These observations suggest that the proposed generative
framework effectively utilizes learned representations and provides positive improvements indepen-
dent of the specific encoder architecture.

D.2.4 MULTI-TASK LEANING COMPARISON

To compare the performance of the Seq2Seq paradigm with the standard multi-task paradigm, we
equipped the CBraMod with multiple task-specific classification heads, utilizing it as a shared fea-
ture extractor for joint training. Under this configuration, the total parameter count of CBraMod-MH
is approximately twice that of ECHO with only six datasets. As shown in Table 20, ECHO achieves
leading performance on the majority of tasks. Specifically, on the ISRUC S3 and Attention datasets,
ECHO maintains stable performance, whereas CBraMod-MH exhibits a substantial decline and pre-
dicts randomly. These results suggest that the sequence generation approach adopted by ECHO
effectively handles the heterogeneity across tasks, achieving superior generalization with fewer pa-
rameters.
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Table 20: Results comparison between the Multi-Task baseline and ECHO.

Method
PhysioNet Mumtaz2016 Stieger2021 LR

ACC-B Kappa F1-W ACC-B ROC AUC PR AUC ACC-B ROC AUC PR AUC

CBraMod-MH 0.6340 0.5119 0.6345 0.8542 0.9507 0.9622 0.8374 0.9286 0.9331
ECHO 0.5667 0.4214 0.5604 0.9056 0.9745 0.9748 0.8534 0.9349 0.9363

Method
Attention High-Gamma ISURC S3

ACC-B ROC AUC PR AUC ACC-B ROC AUC PR AUC ACC-B Kappa F1-W

CBraMod-MH 0.5000 0.4593 0.4654 0.7519 0.8426 0.8375 0.2039 0.0005 0.2004
ECHO 0.8194 0.8973 0.8952 0.8552 0.9208 0.9125 0.7283 0.6560 0.7031

Note: Bold indicates the best performance between the two methods for each metric.

D.3 OTHER ANALYSIS

D.3.1 MODEL COMPUTATIONAL COST ANALYSIS

To evaluate model complexity and efficiency, we compare ECHO with baseline methods in terms
of parameter size and computational cost, as shown in Table 21. For fairness, the parameter counts
of all baseline models include their classification heads. Since classifier dimensions vary across
datasets, we report the average classifier size to ensure consistent comparison.

Structurally, ECHO consists of a CNN–Transformer encoder, a fully connected projection layer,
and a standard Transformer decoder, resulting in a total of 41.98M parameters. Despite this capac-
ity, ECHO exhibits competitive computational efficiency, requiring only 2.91G MACs and 5.81G
FLOPs, which is lower than CodeBrain at 4.37G MACs and EEGPT at 4.89G MACs. Overall, these
results show that ECHO reduces inference-time computational overhead while retaining sufficient
modeling capacity through its decoder architecture.

Table 21: Model performance comparison on MACs, Parameters, and FLOPs.

Model MACs Params FLOPs

BENDR 12.51G 959.84M 25.02G
BIOT 0.255G 3.20M 0.510G
LaBraM 0.67G 6.02M 1.34G
CBraMod 4.21G 4.03M 6.29G
EEGPT 4.89G 25.24M 9.79G
CodeBrain 4.37G 15.17M 8.74G
ECHO 2.91G 41.98M 5.81G

Note: The MACs and FLOPs are calculated based
on a 1-second input and a single-token output.

D.3.2 DECODER SIZE ANALYSIS

To systematically evaluate how model architecture and scale influence ECHO’s downstream perfor-
mance, we conducted a comparative study between two decoder configurations: the standard ECHO
with 41M parameters and the larger ECHO-Large with 66M parameters. This experiment aims to
address three key questions: (1) Does the Seq2Seq paradigm provide clear advantages over a pure
encoder design? (2) Do support samples reliably improve cross-subject generalization? (3) Can
enlarging the decoder further enhance model performance? As shown in Table 22, we have the
following conclusions:

The Seq2Seq paradigm substantially enhances encoder performance. Across all datasets, the
encoder trained without the Seq2Seq objective (ECHOE ) lags notably behind both ECHO and
ECHO-Large. This confirms that Seq2Seq training encourages the model to learn richer and more
structured internal mappings, resulting in consistently stronger representations.
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Table 22: Comparison of ICL capabilities of ECHO molecules of different sizes.

Methods
SEED-IV SEED-V SEED

ACC-B Kappa F1-W ACC-B Kappa F1-W ACC-B ROC AUC PR AUC

ECHOE 0.3740 0.1609 0.3684 0.2223 0.0284 0.2196 0.6548 0.7493 0.7592
ECHO (No Support) 0.3398 0.1174 0.3400 0.2353 0.0466 0.2353 0.7407 0.8488 0.8522
ECHO 0.3747 0.1595 0.3601 0.2484 0.0640 0.2456 0.8193 0.9020 0.8962
ECHO-Large (No Support) 0.3447 0.1234 0.3455 0.2422 0.0545 0.2420 0.6778 0.7874 0.7986
ECHO-Large 0.3647 0.1477 0.3599 0.2474 0.0603 0.2474 0.7583 0.8467 0.8479

Methods
BCI IV 2a High-Gamma Stieger2021-LR

ACC-B Kappa F1-W ACC-B ROC AUC PR AUC ACC-B ROC AUC PR AUC

ECHOE 0.3406 0.1242 0.2339 0.8039 0.8900 0.8889 0.6123 0.8918 0.9048
ECHO (No Support) 0.4627 0.2836 0.4432 0.8438 0.9125 0.9047 0.8534 0.9349 0.9363
ECHO 0.4763 0.3015 0.4632 0.8552 0.9208 0.9125 0.8534 0.9349 0.9363
ECHO-Large (No Support) 0.3950 0.1933 0.3838 0.8368 0.9042 0.8956 0.8494 0.9283 0.9293
ECHO-Large 0.4376 0.2499 0.4353 0.8667 0.9292 0.9220 0.8499 0.9322 0.9336

Methods
Stieger2021-UD PhysioNet Mental Arithmetic

ACC-B ROC AUC PR AUC ACC-B Kappa F1-W ACC-B ROC AUC PR AUC

ECHOE 0.6058 0.7759 0.7858 0.5253 0.3619 0.5177 0.6008 0.6555 0.6416
ECHO (No Support) 0.6924 0.8112 0.8117 0.5437 0.3918 0.5318 0.5442 0.6896 0.6897
ECHO 0.7311 0.8242 0.8258 0.5667 0.4214 0.5604 0.6851 0.7500 0.7530
ECHO-Large (No Support) 0.6794 0.8213 0.8187 0.5398 0.3866 0.5319 0.5617 0.7124 0.6886
ECHO-Large 0.7185 0.8259 0.8254 0.5982 0.4039 0.5461 0.5986 0.7796 0.7377

Methods
Mumtaz TUEV (Events) Attention

ACC-B ROC AUC PR AUC ACC-B Kappa F1-W ACC-B ROC AUC PR AUC

ECHOE 0.9698 0.9953 0.9952 0.4816 0.4921 0.7406 0.6472 0.7329 0.7367
ECHO (No Support) 0.9056 0.9745 0.9748 0.5214 0.5085 0.7489 0.8056 0.8895 0.8955
ECHO N/A N/A N/A 0.5322 0.5973 0.7442 0.8194 0.8973 0.8952
ECHO-Large (No Support) 0.8813 0.9844 0.9846 0.4626 0.4391 0.7142 0.7962 0.8795 0.8883
ECHO-Large N/A N/A N/A 0.5008 0.4906 0.7398 0.8042 0.8864 0.8879

Note: Bold indicates the best performance between
the two methods for each metric.

ICL training provides stable and meaningful performance gains. Comparing each method with
its (No Support) counterpart shows that adding support examples yields consistent improvements
across almost all datasets. This demonstrates that ICL enables the model to exploit the relationship
between support and query samples, thereby improving prediction quality.

Increasing decoder size does not yield significant performance benefits. ECHO-Large does not
outperform the standard ECHO on most tasks, indicating that ECHO’s performance ceiling is not
constrained by decoder capacity. Instead, the limiting factor lies in the encoder’s EEG representa-
tions. Since the encoder remains relatively lightweight, with limited ability to capture inter-subject
variability, multi-band structure, and long-range dependencies, simply enlarging the decoder cannot
compensate for the encoder’s representational bottleneck.
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E STANDARDIZED CHANNEL SYSTEM

To unify channels settings in different datasets, we use a channel map to map all sorts of channels
to standard channels. Details are shown in Table 23.

Table 23: Detail channels mapping of ECHO. Center refers to the target channel, and Included
Channels refers to channels originally from the source datasets.

Center Included Channels Center Included Channels
A1 T9, M1, A1 Fp1 Fp1, AFp7h, AFp5h, AFp3h, Fp1h, AFp5, AFp3
A2 T10, M2, A2 Fp2 Fp2, AFp6h, AFp8h, Fp2h, AFp4, AFp6
AF3 AF3, AFF5h, AFF3h, AF5h, AF3h Fpz Fpz, AFp1h, AFp2h, AFp1, AFp2
AF4 AF2, AF4, AFp4h, AFF4h, AF4h, AF6h FT10 FT10, FFT10, FTT10
AF7 AF7, AF5, AFp9h, AFF7h, AF9h, AF7h, AFp9, AFp7, AFF7 FT7 FT7, FTT9h, FTT7h, FFT7
AF8 AF6, AF8, AFp10h, AFF8h, AF8h, AF10h, AFp8, AFp10, AFF8 FT8 FT8, FFT10h, FTT8h, FT8h, FT10h, FFT8, FTT8
AFz AF1, AFz, AFF1h, AF1h, AF2h, AFpz, AFFz FT9 FT9, FFT9h, FT9h, FFT9, FTT9
C1 C1, FCC1h, C3h, CCP1 Fz Fz, FFC1h, F1h
C2 C2, CCP2h, C2h, C4h, CCP2 O1 O1, POO7h, POO5h, OI1h, O1h, I1h, POO7, POO5, OI1
C3 C3, FCC3h, C5h, FCC3, CCP3 O2 O2, POO6h, POO8h, OI2h, I2h, POO6, POO8, OI2
C4 C4, C6h, CCP4 Oz Oz, Iz, POO1h, POO2h, O2h, POO1, POOz, POO2, OIz
C5 C5, FCC5h, T7h, FCC5, CCP5 P1 P1, CPP3h, CPP1, PPO1
C6 C6, FCC6h, CCP6 P10 P10, TPP10h, PPO10
CP1 CP1, CCP1h P2 P2, CPP2h, P2h, CPP2, PPO2
CP2 CP2, CP2h, CP4h P3 P3, P5h, P3h, CPP3, PPO3
CP3 CP3, CCP3h, CP5h, CP3h P4 P4, CPP4h, PPO4h, P4h, P6h, CPP4, PPO4
CP4 CP4, CCP4h P5 P5, CPP5h, P7h, CPP5
CP5 CP5, CCP5h P6 P6, CPP6h, PPO6
CP6 CP6, CCP6h, CP6h, TP8h, CPP6 P9 P9, TPP9h
CPz CPz, CP1h PO10 PO10, I2, PPO10h, POO10, CB2
Cz Cz, C1h, CCPz PO3 PO3, PPO3h, POO3h, PO3h, POO3
F1 F1, FFC3h, AFF1, FFC1 PO4 PO2, PO4, POO4h, PO4h, POO4
F10 AF10, F10, AFF10 PO5 PO5, PPO5h, PO7h, PO5h, PPO5
F2 F2, AFF2h, FFC4h, F2h, F4h, AFF2 PO6 PO6, PPO6h, PO6h
F3 F3, F5h, F3h, AFF3, FFC3 PO7 PO7, PPO7h, POO9h, PO9h, PPO7
F4 F4, AFF6h, F6h, AFF4, FFC4 PO8 PO8, PPO8h, POO10h, PO8h, PO10h, PPO8
F5 F5, FFC5h, F7h, AFF5, FFC5 PO9 PO9, I1, PPO9h, PPO9, POO9, CB1
F6 F6, FFC6h, F8h, AFF6, FFC6 POz PO1, POz, PPO1h, PPO2h, PO1h, PO2h, PPOz
F7 F7, AFF9h, FFT7h Pz Pz, CPP1h, P1h, CPPz
F8 F8, AFF10h, FFT8h, F10h T3 T7, T9h, FTT7, T3
F9 AF9, F9, F9h, AFF9 T4 T8, FTT10h, T8h, T10h, TTP8, T4
FC1 FC1, FCC1 T5 P7, TPP7h, P9h, TPP7, T5
FC2 FC2, FFC2h, FCC4h, FC2h, FC4h, FFC2, FCC2 T6 P8, TPP8h, P8h, P10h, T6
FC3 FC3, FC3h TP10 TP10, TTP10h, TTP10, TPP10
FC4 FC4, FC6h, FCC4 TP7 TP7, TTP7h, TP9h, TP7h, TTP7
FC5 FC5, FT7h, FC5h TP8 TP8, TTP8h, TP10h, TPP8
FC6 FC6, FCC6 TP9 TP9, TTP9h, TTP9, TPP9
FCz FCz, FCC2h, FC1h, FFCz, FCCz
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