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Abstract

Through pretraining on a corpus with various
sources, Large Language Models (LLMs) have
gained impressive performance. However, the
impact of each component of the pretraining
corpus remains opaque. As a result, the organi-
zation of the pretraining corpus is still empirical
and may deviate from the optimal. To address
this issue, we systematically analyze the im-
pact of 48 datasets from 5 major categories of
pretraining data of LLMs and measure their im-
pacts on LLMs using benchmarks about nine
major categories of model capabilities. Our
analyses provide empirical results about the
contribution of multiple corpora on the perfor-
mances of LLMs, along with their joint impact
patterns, including complementary, orthogonal,
and correlational relationships. We also iden-
tify a set of “high-impact data” such as Books
that is significantly related to a set of model
capabilities. These findings provide insights
into the organization of data to support more
efficient pretraining of LLMs.

1 Introduction

Under the data-driven paradigm, Large Language
Models (LLMs) have demonstrated promising per-
formance and showcased immense potential in fur-
ther promotion (OpenAl et al., 2023; Touvron et al.,
2023b; Du et al., 2021; Bai et al., 2023a). Previ-
ous analyses have suggested that the composition
of the pretraining corpus may exert a significant
impact upon the performance of LLMs (Longpre
et al., 2023; Shen et al., 2023a). However, how
different sources and types of pertaining corpora
influence the knowledge and reasoning ability of
LLMs largely remains opaque, or stays at the quali-
tative level. As a result, it still heavily relies on the
experiences of trainers to organize the pre-training
corpus. Such experiences may deviate from the
optimal, and hence limit the efficiency and effec-
tiveness of model training.

In this paper, we propose to quantify how com-
ponents with different sources and types in the pre-
training corpus contribute to the performance of
LLMs. Previous literature refers to such analyses
as Data Influence Analysis (DIA) (Akyiirek et al.,
2022). However, due to the limitations of previous
DIA methods, the DIA of LLMs remains challeng-
ing. Primary DIA methods can be mainly cate-
gorized into two lines: the retraining-based meth-
ods and gradient-based methods. Retraining-based
methods work by removing specific data from the
training corpus and retraining the model, then com-
paring changes in model performance. Considering
the prohibitive training cost of LLMs, retraining-
based methods would be impractical (Nguyen et al.,
2023). While the gradient-based methods may not
be applicable in analyzing the source of the com-
plex reasoning ability of LLMSs, as they assume
that the performance upon a test instance is deter-
mined by several independent training instances.
However, such an assumption may not hold for
LLMs, especially for the ability to complete rea-
soning tasks, as it may originate from groups of
correlated instances that jointly contribute to the
performance of LLMs. For example, solving math
problems requires understanding a knowledge tax-
onomy, and the taxonomy is described by a set of
interdependent instances holistically. Missing one
component would lead to the collapse of the whole
taxonomy. Hence, the gradient-based methods may
fail to trace the influence of such a whole corpus,
which is of vital importance (Grosse et al., 2023).

To address these issues, we resort to another
strand of method, Machine Unlearning. Prior re-
search (Eldan and Russinovich, 2023; Jang et al.,
2022) suggests that Machine Unlearning can se-
lectively erase specific knowledge from a model
through gradient ascent on corresponding instances.
This enables us to investigate the influence of a cer-
tain pretraining corpus on an LL.Ms by “Unlearn-
ing” instances from it, and then compare the perfor-
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Figure 1: The impact of Unlearning different types of
corpus on different abilities of the llama2-7B model.

mance of the “forgotten” LLMs with the original
LLMs. Meanwhile, different from previous Ma-
chine Unlearning methods, to avoid unintended im-
pacts on non-targeted samples, we incorporate ad-
ditional regularization by retraining samples from
non-targeted domains during the Unlearning pro-
cess. Experiments demonstrate that our method
can effectively remove information contained in
the target samples, without significantly affecting
other unrelated samples.

Based on our customized Machine Unlearning
method, we systematically investigated the quanti-
tative contribution of multiple important resources
and types of training corpora on the performance
of LLMs. We covered widely adopted high-quality
corpora GitHub, Wikipedia, ArXiv, Books, Stack-
Exchange and C4, and conducted an in-depth analy-
sis of their contributions to the model performance
by segmenting them into subsets based on the
type of knowledge. From the content dimension,
the abovementioned corpora covered text, com-
monsense knowledge, domain-specific knowledge,
math, and coding. Additionally, to investigate the
source of the reasoning abilities of LLMs, we ana-
lyzed the impact of over ten kinds of programming
languages with different coding paradigms, and
17 kinds of common algorithms such as Dynamic
Programming. Programming paradigms essentially
represent different abstractions of real-world prob-
lems, and an algorithm corresponds to a common
solution for a particular type of reasoning problems.
To comprehensively assess the impact of these cor-
pora, we evaluated the “forgotten” LLMs across
various downstream tasks as illustrated in Figure 1
and detailed illustrated in Figure 4.

With our proposed gradient ascent-based Ma-

chine Unlearning method, we identify a range of
corpora that have a significant impact on the capa-
bilities of LL.Ms, and reveal previously unreported
influences of certain corpus (such as algorithms)
on model capabilities. Furthermore, we discov-
ered the interaction among corpora which jointly
affects the capabilities of LLMs, and the existence
of “high-energy” corpus like Books in the data.
Our research underscores the importance of further
studying the impact of pre-training data, to provide
foundations for future research on the optimization
of pre-training datasets to support more efficient
pre-training process.

2 Methodology and Validity Analysis

2.1 Machine Unlearning Based Data Influence
Analysis

Following Eldan and Russinovich (2023) and Jang
et al. (2022), we devise our approach based on
the Machine Unlearning to eliminate certain kinds
of information from LLMs.. Formally, given an
LLMs M and a sample set D, we analyze the
influence of D upon M by making M “unlearn’
the information of D to derive a model MY, and
then compare the performance between M and M.
For clarity, we call M7} as the forgotten model,
Dr as the targeted corpus, and the rest parts of
the whole pretraining corpora as the non-targeted
corpora.

The key of Machine Unlearning-based data in-
fluence analysis lies in that: (1) Effectiveness: How
to unlearn D7 to make that M has never been
trained upon Dr. (2) Precision: Do not incur unin-
tentional impacts upon the non-targeted parts of
the training corpus. To this end, we devise an
GRadient AsCent-based Machine Unlearning with
rE-training (GRACE). In the following sections,
we describe the mechanism of GRACE and show
the effectiveness and precision of GRACE.

>

2.2 Gradient-based Machine Unlearning with
Retraining

During the training process, LLMs learn knowl-
edge by maximize the likelihood of training cor-
pora through gradient descent. Hence, in line with
Eldan and Russinovich (2023); Jang et al. (2022),
the information within a targeted corpus Dt could
be unlearned by reverting the learning process
through gradient ascent on Dp. Formally, the ob-
jective function of the Unlearning algorithm is to
minimize the log-likelihood upon Dr.



However, there remains the risk that the per-
formances on non-target domains are unintention-
ally impacted. To avoid this problem, GRACE
introduces an additional retraining regularization.
Specifically, the information within a non-targeted
corpus Dy could be revised through gradient de-
scent upon Dyy.

Hence, the whole algorithm runs in the following
manner. Before starting, we first divide the non-
target corpus Dy into a 9:1 split as a retraining set
and a dev set. Then during the Unlearning process,
if the model M’s Perplexity (PPL) on the dev set
is higher than that before Unlearning, a retraining
is started until the PPL of M on the dev set restore
to the original level on the dev set. At this time
the Unlearning process would restart. In this way,
the Unlearning and retraining alternate until the
PPL on the target corpus Dr, reaches the endpoint
(which is described below), the GRACE algorithm
would be ended.

In practice, the retraining set is constructed by
randomly sampling instances from the rest of Red-
Pajama dataset (Computer, 2023) after excluding
the target corpus. For instance, if we aim to un-
learn the C language, the retraining set is set to
be a random subset of the remainder of the RedPa-
jama dataset after excluding the C language portion.
Note that, to increase the diversity of the retraining
dataset and prevent model performance degradation
on unrelated domains, at each round of retraining,
we would resample 30, 000 new instances.

Endpoint of the Unlearning Process A criti-
cal issue of the Machine Unlearning algorithm is
when to stop the Unlearning process, so that the
forgotten model M can approximate the state as
if the original model M has never seen the target
corpus Dr. Prior methods achieve this by case
study (Eldan and Russinovich, 2023) or manually
selecting certain corpus Dg that is highly similar
to D, whereas M has never been trained on it. So
that the performance of M on the unlearned dataset
Dg can be taken as the endpoint of Unlearning on
Dr. However, since the data filtering process of
LLMs is opaque, it is hard to find a specific corpus
that the model has not been trained on for each kind
of target corpus.

To address this issue, we propose a randomized
text-based method. Specifically, given an instance
from Dr, we tokenize it and randomly split the
tokens into pieces with a length range from 1 to n,
and then we shuffle their order and paste the shuf-
fled pieces into a randomized text. The endpoint of
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Figure 2: Comparative Analysis of Model Unlearning
Effects between the target,,q:n, and non-target,qin.

Name Mathematics  Physics Chemistry
Before 5.60 5.48 5.47
After 28.14 10.64 7.75
Name Biology Economics History
Before 5.66 5.51 5.41
After 6.97 6.66 6.06
Name Psychology Law Linguistics
Before 6.15 4.69 5.85
After 7.05 5.08 5.97
Table 1: Perplexity of LLama on subsets of the

Wikipedia corpus after Unlearning the Math subset of
Wikipedia.

the Unlearning process is defined to be the point
that the M}’s PPL on Dt equals M’s PPL on the
randomized text.

This is because: (1) Through randomizing,
the knowledge, semantic, and logical relationship
within Dr are disrupted, hence, if the PPL of M
on Dr is close to the PPL of M on the correspond-
ing randomized text, it suggests that M7 has com-
pletely forgotten Dr; (2) Compared to Dr, the ran-
domized text shares a similar lexical distribution,
which would eliminate the influence of domain-
specific vocabulary distribution.

2.3 Validity Analysis of GRACE

Previous analyses demonstrate the effectiveness of
gradient ascent-based Machine Unlearning meth-
ods in eliminating certain knowledge of LLMs (EI-
dan and Russinovich, 2023). We conduct further
analyses to show the effectiveness of GRACE in
Unlearning certain domains of knowledge and cer-
tain kinds of reasoning abilities, and the precision
of not incurring unwanted impacts.
Experimental Settings To validate the preci-
sion and effectiveness of our methodology in selec-
tively Unlearning certain domains of knowledge,
we conduct Machine Unlearning using GRACE
and take the mathematical subset of the Wikipedia
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Figure 3: The overall framework of the experiment.

corpus (Computer, 2023) as the target corpus Dpath.
For the non-target dataset, we randomly select
samples from the rest part of Redpajama corpus
(Computer, 2023) which explicitly excluded Dyaeh.
To analyze the impact of GRACE, we not only
evaluate the performance on the targeted domain
math, but also include potentially related domains
physics, chemistry, and biology and unrelated
domains: economics history, psychology, law
andlinguistics. Experiments are conducted with
Llama-2-7B (Touvron et al., 2023b), more details
are provided in Appendix A.

Analyses We demonstrate the loss curve on the
target corpus and the non-target corpora in Figure 2,
and the final PPL of the forgotten model M,, on
each domain in Table 1. It can be observed that the
loss of the model on Dy, continuously increases
during the Unlearning process. In contrast, due to
the additional retraining process of GRACE, there
is no significant increase in the loss for the non-
target data. This suggests that GRACE would not
incur unintentional model performance on the non-
target domains. Moreover, as shown in Table 1, af-
ter the Unlearning process, the performances on the
physics, chemistry, biology and economics
domains, demonstrate a degradation, while the
model performance upon history, psychology,
law and linguistics, remain unaffected. Inter-
estingly, the extent of performance degradation in
these domains is consistent with human cognition
about the relevance of these domains with math:

physics and mathematics are rather closely re-
lated; chemistry, biology, and economics share
certain common grounds with mathematics. In
contrast, the correlation between historical, psy-
chological, legal, and linguistic knowledge with
mathematical knowledge is quite limited. These
observations suggest that GRACE can eliminate
certain domains of knowledge from LL.Ms without
involving unwanted impacts, indicating the effec-
tiveness and precision of our proposed method. In
the Appendix B, we provide more evidences about
the validity of our analysis method.

3 Main Analysis

After the validity analysis, we employ GRACE to
investigate the impact of various corpora on the
performance of LLMs. Specifically, Section 3.1
introduces the experimental settings. Section 3.2
explains how different types of data affect model
performance individually. Section 3.3 discusses the
joint impact of various types of data on the abilities
of LLMs.

3.1 Experimental Settings
3.1.1 Target Corpora

Since the ultimate goal of data influence analy-
sis is to provide empirical guidance for optimiz-
ing the organization of the pretraining corpus of
LLMs, among various open-sourced datasets, we
focus our study on various subsets of the Redpa-
jama dataset (Computer, 2023), a replication ver-



sion of the pretraining corpus of Llama (Touvron
et al., 2023a; Chen et al., 2023; Fu et al., 2024).
Moreover, considering the importance of complex
reasoning ability, to further investigate the source
of such ability, we include a set of programming al-
gorithmics, as they can be viewed as an abstraction
of thought patterns. As shown in Table 3, these
datasets have been further divided into subsets, a
total of 48 distinct datasets are chosen as target
corpora. Specifically:

* All subsets of RedPajama (Computer, 2023),
including: C4, Github, Books, ArXiv, Wikipedia,
StackExchange. These corpora play pivotal roles
in the pretraining corpus of various LLMs (Ren
et al., 2023; Zhang et al., 2024).

* The ArXivs contains eight subsets of the Arxiv
dataset, as listed in Figure 3

* The StackExchanges dataset is obtained by di-
viding the StackExchange portion of the Redpa-
jama.This subsets into two subsets based on the
number of “likes” each Q&A pair has received.
Intuitively, the more likes an answer receives, the
more likely it is to be a high-quality answer.

* Codeyjgorithm contains 17 kinds of important
leetcode algorithm problems (Hartford, 2023).

* The Codepanguage dataset is derived from the
GitHub corpus, encompassing 15 types of pro-
gramming language, spanning a variety of pro-
gramming paradigms including Object-Oriented
and Procedure-oriented languages, Declarative lan-
guages, Scripting languages, Front-end languages,
as well as unctional language.

We provide more details about the target corpora
in the Appendix D.

3.1.2 Evaluation Benchmarks

To comprehensively evaluate the influence of target
corpora on LLMs’ performance, following Contrib-
utors (2023); Gao et al. (2023), as shown in Figure
3, we select a totally of 31 benchmarks covering
9 major ability of tasks and 21 sub-categories of
capabilities. Details about these datasets and the
experimental settings are provided in Appendix C.

3.1.3 Model for Analysis

We conducted all experiments using the widely
adopted open-source decoder-based generative
LLMs Llama-2-7B. The reasons lie in that: (1)
llama2-7B is large and powerful enough to repre-
sent LLMs; (2) The training process of the llama?2-
7B is typical; and (3) The existence of the Scaling
Law (Kaplan et al., 2020) allows us to infer the

impact of various types of data on larger models by
examining their effects on the Llama2 model.

3.2 Impact of Individual Corpus on Model
Capabilities

Analysis Method As the difficulty of benchmarks
is different, to make the performance changes on
these benchmarks comparable, we first normal-
ize them to the performance degradation ratio,
which is defined as v, ., = L

AY . A© .
W] J u
G0, where A, is

the model’s performance on task 7 after unlearning
the target-data,, and Ag represents the performance
of the original model on task j. In the below, we
measure the impact brought by Machine Unlearn-
ing using the performance degradation ratio.
Analysis Results Figure 4 lists the Top and Bot-
tom 5 datasets that have the most and the least
impact on each type of model capability. From
which we can observe that:
¢ Language Modeling As a fundamental of LLMs,
the language modeling ability is seldom signifi-
cantly impacted by a specific type of corpus alone.
As an (approximate) multi-lingual parallel corpus,
the Wikipedia corpus may play a critical role in
aligning different languages for an LLMs, and in-
fluence the multilingual ability of LLMs.
* Textual Understanding One prominent phe-
nomenon is that programming language corpora
have a high impact on the textual understanding
ability of LLMs. Heuristically, codes are abstrac-
tions of relationships between real-world objec-
tions and could be helpful for understanding the se-
mantic and logical relationships among text. More-
over, knowledge-rich corpora such as books and
Arxiv, and corpora with high diversity such as
books and C4 profoundly influence the textual un-
derstanding ability of LLMs. Hence, corpora with
diversity, rich commonsense knowledge and code
corpus may constitute three foundations for the
textual understanding ability of LLMs.
» Textual Inference Text inference tasks depend
on a wide range of corpora. Notably, besides
commonsense-related corpora, text reasoning tasks
also extensively rely on various types of code cor-
pora, algorithm corpora, and mathematical corpora.
For example, tasks like Big Bench Hard (Suzgun
et al., 2022) significantly depend on high-quality
StackExchange content and algorithms such as
breadth-first search. This demonstrates the im-
portance of symbolic reasoning capabilities repre-
sented by mathematics and code in understanding
the deep logical relationships within texts.



/ Language Modeling M Knowledge v Textual Inference \
' Top Bottom Top Bottom Top Bottom " Top Bottom v Top Bottom Top Bottom Top Bottom
—— i !
I ' ' n ' ' |
N
DoWmL ooowlsers  owL | COTPUr Lsexiasw | Wikipedia 2141% SEqslower ! Books  22404103% R | | SEashigher (726%(541%|  Java |  TeX  [1285W204%| HTML | SEqshigherBLosWiaie|  HTML |
| ML 000%|697% OWL | Tscience "
| | 1 ‘ e ' ' !
" |
! Quantitat ! | " N i | Breadtn-first i
| QUANIAtIVE 030 s60%  sQL | Wikipedia 291% 1%  C4 | TeX 33699 SEqshigher |, SE  z0m1-1gs% EleCtrical I I SEqslower |627% 430% Wikipedia |  Books  (12.59%174% Mathematics | BreRdtherirstls ygy o aze| Electrical
Finance \ H ! Eng ' \ | search Engineering |
I "
| 1 ' nl ' ' '
1 ' " I ' ' !
! Physics 032%507%  PMP |  TeX  291%145% Github | Books 3077%1406%  soL || Github 1955%238% Economics ||  ASP  [388%[320%  SE |  sShell pLeswioon R | G4 |400%.012% Mathematics |
! | 1 " N ' ' |
' "
, I ' ! ' ' ' 1
aaaaaaa 1
Binary Search o5 412%  C++ | Statistics 291%(000%  Arxiv | Shell  2582%1393%  Prolo Shell  1690%:2.30% QUantitative | | Books  |385%301%| Javascript | Wikipedia (1056%051%  Prolog |  Tree  |3se%l020%  css |
e H T & Jovaseript | s H
1 nance | |
! I ' " " ' ' '
' 1
! ! . 11 Quantitative H 0, H |
|SEqslower 042%(380% R | SQL  291%000% €SS |  Github 2538%1260% owL Il C  asm%2s9%  Proloc 359%295%  SQL | SE  [106%03s%  Dyna | SEaslower |361%020%  Java |
9 11 Finance Progra:
' H rogr:
' 1 1 " ' ' 1
' " " ' ' '
! .
Coreference Resolution Multi-language Question Answering,'|  Knowledge Question Answering 1 1 Textual Entailment Commor Complex Textual Reasoning |
\ 2 \
_____________________________________ PP
________________________________________________ L SSIIII IS IIIII 1
’ TTextual Understanding vy Safety v :
' 1 1
| Top Bottom Top Bottom Top Bottom 0" Top Bottom " Top Bottom Top Bottom Top Bottom I
' ' ' H " ' ' 1
uantitative '
1O Sygeios  asp | shel  4eMs0i oo | Books 13774100% Seashiner 1] Pobo  [4ewo7rs  shen 11 shel  zassis ca | ose @uoow v | oBooks  (so@nons seasiower |
' ' !
H | I N o ' ' |
1 ! ! i 11 dynamic ! ! '
| ook MMesn  polg | Books  J0SNO SEqshgner | Gihub  52swosi Stasiower || SEqsioner (1740208 munon || MO lodiulason|Quanttatve | o lassiz pmysics | Python Esaensa st as hgher |
' 1 1 K ' '
1 1
H ' ' " H ! ' ' \
» e ' " I Electrical ¢ 1 | Quantitative | Computer
1o msMao seosiower)  C BANLIN  HTML | SE SemOIE  HTML 1) gheeoicel liamizes| v N 458%/100% Mathematics | Binary Tree |7.51% a0 uantiative | Compute 83%21.01 s !
H ' 1 h 'I ' 1 |
H 1 1 1l 'I ' 1 |
| Ginb sl R | Gtb 2easasw R | sumoww R i sEasmonerfosmzem| cer 11 4599 0505 | DEPEFrst ) Binry Searchle ol oo athematics | Statstics [92u70an R |
' ' N ' " ' '
! ' ' N " ' ' !
H ! ' n t ! Depth-First ! .
| Av 2617%648%  PHP java  2087%215%  PHP javaScript -3.71%(0.03%  Prolo R fooofezsn| Prolog  |4.09%(0.50%| Economics P 6.08% 6.47%|  statistics Shell  [2924%1008% Greedy |
| 1 Pt a0y " I " Search ! d
! 1 1 n ' ' !
| 1 1
\_ _ Reading Comprehension Content Summary Content Analysis LR Discrete Reasoning Multi hop inference J
________________________________ W mmemmma—o - -
' Mathematical Reasoning T4 Long Context v \ 1.00
! Top Bottom Top Bottom Top Bottom Yy Top Bottom !
, N | 1
\ _Top Bottom Top Bottom
' H I " " | os
| Binary Tree 3310%553% Wikipedia |  Github 4% Widpedia | ISEqshigher 27584825%  so |1 sE Prolog | Github [17.77%060%| Depthrst |
N ' ' e
! ! " n i H 050
i " '
1Binary Searcha; 71M322% o4 ISE gs higher 0w  sou |} SE 2e2mram  owl y, Python (SEER020% wikipedia | € [1112023%|Breadth First 1
1 I earch 02
\ H " 1 : I H
I 1 " 'I' " Divide ! 1
| Sorting  3228M049% Javascript | C  3103%065% R || Wikipedia 1521%513%  pup !l an R | Books [950%001% Binary Tree | 0.00
| H I i1 Conduer " !
I | ] ! 1 ~0.25
Dynamic I N " '
Lororamming SIS 165% SEqsiower | Groph  2088%427%  OWL || Gtwb 13084a18%  Poog | PHP 1| Wikipedia (946%014% Prolog |
1 1
1 1 1 " : 1 H o0
! | Quantitative " " 1} Quantitat 1
itative 20.20%.020%  pr SE qs lower 10.74% 3.46% 1 Heay nttative g ekl 010%  Tree
h 1 Blaoay Poiog 1 15¢ WML 1 P Books 1 1 Viegy T H os
1
' " ' I
N ! a0
" " 1 2

Figure 4: The Top and Bottom 5 datasets that have the mos

* Knowledge Reasoning Datasets such as Books,
and are invaluable for solving real-world knowl-
edge problems. Programming languages, as an
integral part of the global knowledge system, sig-
nificantly influence the model’s knowledge capa-
bilities. The ArXivs dataset, due to its complexity
and deviation from common world knowledge, has
a lesser impact.

* Mathematical Reasoning The source of LLMs’
math reasoning capabilities has drawn great atten-
tion from researchers, as it could be an indicator
of the complex reasoning ability of LLMs (Ernest,
2023). From the results in Figure 4, high-quality
mathematical texts and code corpora (especially
algorithms) have a significant impact on LLMs’
math reasoning abilities. This demonstrates: (1)
There is a close relationship between mathematical
and coding abilities (Soldaini et al., 2024; Shen
et al., 2023b). To some extent, both math and
code problems are abstractions of real-world prob-
lems, and involve complex symbolic reasoning pro-
cesses to solve them. Hence, model performances
demonstrate high sensitivity upon the algorithmic.
(2) High-quality mathematical texts are key to the
model learning of mathematical abilities.

* Code Generation Compared to text-based tasks,
the range of knowledge for code generation tasks
is relatively narrow, only limited to mathematics
and code-related corpora Shen et al. (2023a). This

t and the least impact on each type of model capability.

again demonstrates the close relationship between
mathematics and coding. Overall, forgetting al-
gorithmic knowledge has a greater impact on the
model’s coding ability than specific programming
languages. This suggests that the model’s under-
standing of algorithms does not depend on specific
program languages. In other words, LLMs could
understand the logic of algorithms, instead of mem-
ory algorithmic knowledge depending on certain
programming languages.

* Long Text GitHub, Wikipedia, Books, and
“High-liked” StackExchanges significantly impact
the model’s long text capabilities, as these cor-
pora are composed of long texts, entailing complex
logical relationships and abundant common sense
knowledge.

¢ Examination Completing exam questions re-
quires extensive knowledge and strong reasoning
abilities. Hence, code, commonsense, mathemat-
ics, and books corpora all form the foundation of
an LLMs’s examination capabilities.

» Safety Interestingly, the model’s security is en-
hanced after forgetting the code corpora. This
might be due to the absence of emotional factors
in the code corpora and its straightforward logic,
thus making the generated results more crude and
aggressive.

More detailed experimental data and results can be
found in Appendix E.
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performance across 19 capabilities after experiencing
data Unlearning. Among them,“Algorithm” is the aver-
age value of all Algorithm.

3.2.1 Corpus with Broad Influences

We calculate corpora that can influence multiple ca-
pabilities. Since they may lead to a broad influence
on model capabilities, these datasets may serve as
the foundation of the training corpus.

Analysis Method In the target-data, certain
datasets significantly influence numerous capabil-
ities of the model. We adopted the same method
for data processing as described in Section 3.2.
Furthermore,We define a dataset as “High-impact
data” if its removal leads to a performance decline
in over 70% of capabilities, which exceeds the av-
erage decline observed across all datasets.

Analysis Results Among the selected
target-data, four categories—Books, Shell and
Github meet the criteria for High-impact data.
Unlearning Books datasets result in a decline
in 16 capabilities beyond the average, whereas
Unlearning Shell and Github leads to a decline in
14 capabilities beyond the average. These datasets
significantly impact multiple model capabilities,
and play a crucial role in model training.

3.3 Joint Impact of Multiple Corpora on
Model Capabilities

Previous research indicates that LLMs can com-
bine information from multiple kinds of corpora,
and generalize it to new tasks. Hence, during the
pretraining stage, multiple corpora may perform
joint impact upon LLMs. In this section, we ex-
plore measuring the joint contribution of multiple
datasets upon the LLMs.

3.3.1 Interrelationships Among Data

Analysis Method To explore the relationships be-
tween datasets from different domains, we calcu-
lated the Pearson correlation coefficient between
any two target corpus 1Ty and T, based on the
model’s performance degradation ratio upon 19
capabilities after Unlearning 74 and 7. Within
each category of abilities, each subtype was given
an equal weight. When a subtype included multi-
ple datasets, we averaged the performance changes
across these datasets to calculate the coefficients.
These coefficients form a correlation matrix. If
the correlation coefficient between two datasets is
positive, it indicates that the impact of these two
datasets on downstream tasks is similar, and vice
versa. Subsequently, we conducted hierarchical
clustering on the correlation matrix to categorize
datasets. Figure 5 displays the correlation matrix
rearranged according to the categories defined by
the hierarchical clustering.

Analysis Results As shown in Figure 5, accord-
ing to their relationships, the corpora could be cat-
egorized into three types, which we name as “Cor-
related Corpora”, “Complementary Corpora”, and
“Orthogonal Corpora”, respectively. Specifically:

* Correlated Corpora refers to corpora that the
model has similar performance changes after Un-
learning them. In other words, they have a simi-
lar influence on LLMs. For instance, the correla-
tion coefficients among Economics, Quantitative
Finance, and Statistics are all greater than 0.95.
Hence, to some extent, the correlated corpora can
substitute for each other in the training corpus,
leading to redundancy in the training corpus and a
waste of computation resources. Hence, it would
be necessary to reorganize these corpora to enhance
pre-training efficiency.

* Complementary Corpora refers to corpora that
the model performance alternations are different
after Unlearning them. Interestingly, our analyses
suggest that there may exist certain corpora that
have a complementary influence on the model’s
performance. For example, the Wikipedia cor-
pus and SE gs lower corpus have a negative cor-
relation coefficient -0.58. As detailed illustrated
in Appendix E, this negative correlation is be-
cause of both Wikipedia and SE gs lower have
impacts on multiple capabilities, while the capa-
bilities influenced by these two datasets seldom
overlap. Thus, these two corpora could act simulta-
neously as a critical composition of the pretraining



corpus. In general, the math corpora (e.g., StackEx-
change) have a complementary relationship with
commonsense-related corpora such as Books or
Wikipedia. Note that our results also suggest the
existence of an extreme case that the inclusion of
one dataset can cause a decline in the performance
of another dataset. This situation requires further
verification. If it indeed exists, then in organiz-
ing the pre-training data, a trade-off must be made
between the two datasets.

* Orthogonal Corpora refers to two corpora hav-
ing a correlation coefficient near zero. For example,
the correlation coefficient between Wikipedia and
ArXiv is -0.07. This suggests that these corpora
independently contribute to the model’s different
capabilities with low redundancy. Hence, when
optimizing the organization of the pretraining cor-
pus, each of the orthogonal corpora should not be
recklessly excluded to avoid impairing the compre-
hensiveness of the pre-training dataset.

Moreover, according to the correlation matrix,
there seems to be several groups of data: (1) Math-
related group composed of StackExchange related
corpora; (2) Knowledge-related group including
the subsets of Arxivs (e.g., Statistics / Economic).
Note that, the group (1) and (2) seems to be comple-
mentary; (3) The intermediate group between (1)
and (2) composed of C, python, prolog etc., which
bridges (1) and (2).

Additionally, employing a similar methodology,
we analyze the relationship patterns between model
abilities. Owing to space constraints, the results
are presented in Figure 11 of the Appendix. In
summary, we observe that abilities can be both
positively correlated (synergistic) and negatively
related (antagonistic), indicating that there are in-
herent conflicts between certain capabilities, ne-
cessitating a trade-off. Such conflict also indicates
that the term “scaling law” refers to the scaling law
under the same data composition.

4 RELATED WORK

The Data Influence Analysis (DIA) task aims at
finding how each training data contributes to a
model’s performance. DIA methods can be mainly
classified into two categories (Hammoudeh and
Lowd, 2022). The first category, the Retraining-
Based approach (Jia et al., 2021; Kandpal et al.,
2022; Ghorbani and Zou, 2019), assesses the influ-
ence of certain instances by comparing the model
performance with and without these instances.

However, due to the prohibitive training costs, these
methods have only been extensively applied in the
‘small” models (Jia et al., 2021; Ghorbani and Zou,
2019; Kandpal et al., 2022; Nguyen et al., 2023).

The second category Gradient-Based methods
(Koh and Liang, 2017; Koh et al., 2019; Pruthi
et al., 2020; Hara et al., 2019) discover training
samples with greater influence by comparing gradi-
ent similarities between training and test instances.
These methods demonstrate efficacy in finding in-
stances contributing to knowledge memorization of
models. However, they may fail to find instances
related to the reasoning abilities of models, which
is especially important for LLMs, as it may origi-
nate from groups of correlated instances that jointly
contribute to the performance of LLMs. Consider-
ing the limitations of these methods, we propose a
Machine Unlearning-based DIA approach to inves-
tigate the impact of corpora upon LL.Ms.

Machine Unlearning is devised to erase certain
knowledge from a model. Prior research (Jang
et al., 2022; Graves et al., 2021; Gupta et al., 2021;
Sekhari et al., 2021) suggests that machine unlearn-
ing can selectively erase specific knowledge from
a model through gradient ascent on correspond-
ing instances. Eldan and Russinovich (2023) has
shown that gradient ascent methods would still be
effective in LLLMs, and can accurately unlearn tar-
geted samples. In this paper, we further extend the
gradient ascent-based machine unlearning methods
by involving an additional retraining process and a
random text-based stop criterion.

5 Conclusion

In this study, we employed a Machine-Unlearning-
based data influence analysis method GRACE to
investigate the complex effects of diverse types
of pretraining data on the performance of Large
LLMs. We gained empirical analysis results about
how specific components of the pretraining corpus
influence LLMs capabilities, and how they jointly
contribute to multiple capabilities of LLMs. Our
findings suggest the nuanced impact of data selec-
tion and organization in LLMs development. The
identification of high-impact data and the delin-
eation of complementary, antagonistic, and orthog-
onal data relationships offer guidance for optimiz-
ing pre-training data organization. In future work,
we consider adapting our analysis methodology to
other parts of LLMs training such as supervised
fine-tuning.



6 Limitations

This study systematically investigated the impact
of various pre-training datasets on the capabilities
of LLMs using the GRACE method. While our
findings offer valuable insights into the subtle re-
lationship between pre-training data and model ca-
pabilities, it is crucial to acknowledge the inherent
limitations of our approach.

6.1 Data Limitations

There remains a still remains space for exploration
in the domain of data. In terms of breadth, our
study primarily focused on the Redpajama dataset
and its subsets. However, there are other datasets
for LLMs, and Redpajama may not include all the
corpora encountered during the training process
of LLMs. In terms of depth, some important data
domains may still possess ample subdivision space.
For example, Books datasets can be segmented by
books type, which could limit the comprehensive-
ness of our analysis.

6.2 Limitations of Evaluation Metrics

The existing evaluation systems might not ade-
quately unearth the deeper capabilities of mod-
els, potentially overlooking subtle variations and
thereby missing valuable insights.

6.3 Future Research Directions

Addressing these limitations provides opportuni-
ties for future research. Using a broader variety
of data and applying our analytical framework to
other models are key steps toward a more compre-
hensive understanding of the relationship between
pre-training data and LLMs capabilities. These
efforts will contribute to the ongoing discussions
about optimizing pre-training strategies to enhance
model performance and efficiency.
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Figure 6: The performance of the model on an unaltered Python statement after selectively Unlearning programming
languages, including Python, C, Shell, C++, HTML, and SQL.

A Experiment details

All experiments were conducted on an A100-SXM4-80GB cluster, with all models utilizing the bf16 pre-
cision format.For each target corpora, a subset with 2000 instances is randomly sampled the “Unlearning
set”

B Example Appendix

Analysis Method As illustrated in Figure 6, we evaluate the performance of the model on an unaltered
Python statement after selectively Unlearning programming languages, including Python, C, Shell, C++,
HTML, and SQL. The darker the color, the greater the increase in token loss compared to the original
model.

Analysis Results Notably, the most significant loss increase is observed after the model unlearns Python,
indicating a profound impact on its ability to interpret Python statements. Furthermore, when Unlearning
other languages, the changes in model loss predominantly occur in comments and certain keywords,
which are syntactically or semantically shared across these languages. Languages like C++, C, and
Shell, which structurally resemble Python to some extent, exhibit substantial loss variations. Conversely,
HTML and SQL, being more distinct from Python, result in minimal changes in the model’s performance
on Python statements after being forgotten. Additionally, we observe that due to the object-oriented
features of Shell and C++, Unlearning these languages leads to a notable increase in the loss associated
with the “class” token. In contrast, given C’s procedural nature, the loss related to “class” does not
show significant variation. This analysis underscores the intertwined nature of programming language
knowledge within the model and highlights the differential impact of Unlearning specific languages on
the model’s comprehension of Python code.

Analysis Method As illustrated in Figure 7, we evaluate the model’s performance on Breadth-First
search statements written in C++ after selectively applying Unlearning algorithms, including depth-first
and graph algorithms. The darker the color, the greater the increase in token loss compared to the original
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Figure 7: The performance of the model on an unaltered BFS statement after selectively Unlearning programming
languages, including DFS and Graph.

model Analysis Results As illustrated in Figure 7, the performance of the model post-omission of the
Depth-First Search (DFS) algorithm on Breath First Search (BFS) data is depicted at the right, while the
performance post-omission of the Graph algorithm on BFS data is shown at the left. It is observable that
there is a significant increase in loss for both cases in terms of variable definitions and certain key terms.
However, during the execution phase of the BFS algorithm, the loss in the model after omitting the Graph
algorithm is substantially greater than that after omitting the DFS algorithm.

C Test DaseSet

In Table 2, we integrate the frameworks (Contributors, 2023; Gao et al., 2023) to construct a comprehensive
evaluation system for large models.

Language Modeling. The average performance on WiC (Pilehvar and Camacho-Collados, 2019), WSC
(Levesque et al., 2012), and TyDiQa (Clark et al., 2020) is reported. These test sets are all evaluated with
0-shot results.

Knowledge. The average performance is reported using BoolQ (Clark et al., 2019), CommonSenseQA
(Talmor et al., 2018), and NaturalQuestions (Kwiatkowski et al., 2019). We report 8-shot results for
CommonSenseQA and 0-shot results for all other benchmarks.

Textual Inference. The average performance is reported using AX; (Wang et al., 2020), AX, (Wang
et al., 2020), RTE (Wang et al., 2020), COPA (Roemmele et al., 2011), ReCoRD (Zhang et al., 2018),
HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2019), SIQA (Sap et al., 2019), BBH (Suzgun et al.,
2022), LogiQA (Liu et al., 2020), DROP (Dua et al., 2019), and Qasc (Khot et al., 2020). We report 3-shot
results for BBH, 2-shot results for DROP, and 0-shot results for all other benchmarks. Notably, AXj,
AXy, and RTE are used for Textual Entailment tasks; COPA, ReCoRD, HellaSwag, PIQA, and SIQA for
Commonsense Reasoning tasks; BBH for Complex Textual Reasoning; LogiQA for Logical Reasoning;
DROP for Discrete Reasoning; and Qasc for Multi-hop Inference.

Mathematical Reasoning. The average performance is reported using GSM8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021c). GSMS8K represents Base Mathematical Reasoning, while MATH
represents Advanced Mathematical Reasoning. These test sets are all evaluated with 4-shot results.

Textual Understanding. The average performance is reported using RACE (Middle and High) (Lai et al.,
2017), OpenbookQA (Mihaylov et al., 2018), Xsum (Narayan et al., 2018), and LAMBADA (Paperno
et al., 2016). RACE (Middle and high) and OpenbookQA are used for Reading Comprehension tasks,
Xsum for Content Summary tasks, and LAMBADA for Content Analysis tasks. These test sets are all
evaluated with 0-shot results.

Long Context. The model’s ability in long text understanding and reasoning is represented using
English datasets within Longbench (Bai et al., 2023b).

Code Generation. We report the average pass@1 scores of models on HumanEval (Chen et al., 2021)
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Ability Test DaseSet
Word Definition WiC (0- shot)

Language Modeling Coreference Resolution WSC (0- shot)
Multi-language Question Answering TyDiQa (0- shot)
BoolQ (0- shot)
Knowledge Knowledge Question Answering CommonSenseQA (8- shot)

NaturalQuestions (0- shot)
AXjy (0- shot)

Textual Entailmen AX, (0- shot)

RTE (0- shot)

COPA (0- shot)
ReCoRD (0- shot)
HellaSwag (0- shot)

PIQA (0- shot)

SIQA (0- shot)
Complex Textual Reasoning BBH (3- shot)

Commonsense Reasonin,
Textual Inference &

Logical Reasoning
Discrete Reasoning
Multi hop inference

LogiQA (0- shot)
DROP (2- shot)
Qasc (0- shot)

GSMSK (4- shot)
MATH (4- shot)
RACE (0- shot)

OpenbookQA (0- shot)
Xsum (0- shot)
LAMBADA (0- shot)

Longbench

MBPP (1- shot)
HumanEval (0- shot)
ARC (0- shot)

Base Mathematical Reasoning

Mathematical Reasoning Advanced Mathematical Reasoning

Reading Comprehension

Textual Understanding Content Summary

Content Analysis
Long Context Understanding
Long Context Reasoning

Long Context

Code Generation Code Generation

Junior High, High School, University,

Examination fossional o MMLU (5- shot)
Professional Examinations AGIEval (0- shot)
Safety Safety Truthful QA (0- shot)

Table 2: Classification of the Test Data.

and MBPP (Austin et al., 2021). MBPP is evaluated with 1-shot results, while HumanEval is evaluated
with 0-shot results.

Examination. The average performance is reported using ARC (easy and challenge) (Clark et al., 2018),
MMLU (Hendrycks et al., 2021b,a), and AGIEval (Zhong et al., 2023). We report 5-shot results for
MMLU and 0-shot results for all other benchmarks. It is worth noting that for AGIEval, we only selected
English datasets.

Safety. Performance is represented using TruthfulQA, evaluated with O-shot results.

D Target DaseSet

The Codeajgorithm corpus contains building on the leetcode dataset created by Hartford (2023), selected
17 of the most important algorithms. Following the methodology of Wang et al. (2022), for algorithm
types with not enough size, we utilized GPT-4 OpenAl et al. (2023) for data augmentation to ensure
a minimum of 2, 000 samples per algorithm. Furthermore, to ensure the model’s Unlearning pertains
to the algorithms themselves and not to a specific programming language, each algorithm problem was
represented in five language formats: C++, Python, Java, JavaScript, and pseudocode.

The Codey,anguage dataset is derived from the GitHub portion of the Redpajama dataset Computer
(2023). In terms of language selection, based on the characteristics of programming languages, this study
chose 15 types, including Object-Oriented, Procedure-oriented, Declarative programming, Scripting,
frontend and other common languages. It is specifically filtered to include data where a single language
proportion for more than 99.99% of the content and the total length is in excess of 2000 bytes, aiming to
isolate target data for a specific language. From this filtered data, 2000 samples are randomly selected for
each language to constitute the Codey anguage dataset.

The Arxivs dataset is constructed based on the Arxiv part of the Redpajama dataset Computer (2023),
which is further divided into eight main categories. Randomly select 2000 samples from each category to
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Target Data name
Redpajama C4 Github Books
ArXiv Wikipedia StackExchange
C C++ CSS
HTML Java Python
Codepanguage PHP JavaScript Shell
R Web Ontology Language SQL
TeX ASP Prolog
Backtracking Binary Search Binary Search Tree
Binary Tree BreadthFirst Search DepthFirst Search
Coderr Divide and Conquer Dynamic Programming Graph
Algorithm Greedy Heap (Priority Queue) Ordered Set
Recursion Sorting Stack
Tree Two Pointers
Physics Mathematics Computer Science
ArXiv Quantitative Biology Quantitative Finance Statistics
Electrical Engineering
StackExchanges StackExchange quality StackExchange quality

score lower

score higer

Table 3: Classification of the Target-Data.

form the Arxiv dataset.

The StackExchanges dataset is constructed from the StackExchanges segment of the Redpajama
dataset Computer (2023), comprising Q&A pairs that have garnered more than 5 “likes”. Subsequently, it
is segregated into two tiers based on the count of “likes”. The underlying rationale is that the number of
“likes” is indicative of an answer’s quality and popularity. Consequently, these five subsets encompass

samples ranging in quality and popularity from the lowest to the highest.

E Experimental Result and Joint Impact of Multiple Ability on Model Capabilities
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w/o WIO w/o wio w/o Depth ‘.V/.O w/o
Llama-2-7B wlo Binar Binary Bi Breadth FirSE Divide D .
. y inary . ir, ynamic
Backtracking S h Search T FirSE g h and P .
earc Tree ree Search earc Conauer rogramming
q
WiC 49.53 50.78 50.31 49.69 49.84 50.31 50.16 50.16 50.31
WSC 66.35 65.38 64.42 64.42 64.42 64.42 64.42 64.42 64.42
TyDiQa 23.74 22.73 22.37 22.55 22.33 22.68 22.24 223 23.07
BoolQ 70.67 68.96 68.72 68.47 68.2 68.84 68.99 68.47 69.24
CommonSenseQA 66.67 63.96 64.7 64.37 64.7 63.8 64.21 64.21 64.37
NaturalQuestions ~ 19.2 16.84 16.76 16.26 16.43 16.37 16.15 16.62 17.51
AXp 53.53 519 53.17 51.54 51.18 52.08 51.63 53.35 53.08
AX, 55.34 53.09 51.97 51.12 53.37 51.69 514 52.53 51.12
RTE 49.82 55.23 53.43 50.9 50.9 53.43 52.71 55.6 54.51
COPA 67.0 68.0 68.0 64.0 65.0 67.0 65.0 66.0 68.0
ReCoRD 32.65 24.53 25.03 23.58 23.79 24.36 23.52 23.69 27.44
HellaSwag 74.0 73.4 73.66 73.51 73.64 734 73.51 73.37 73.77
PIQA 78.18 7791 71.75 77.42 77.58 77.97 77.69 7137 78.4
SIQA 48.46 45.75 45.04 45.14 45.85 46.93 46.93 44.63 46.67
BBH 39.18 38.18 38.83 38.34 38.21 37.55 37.98 38.58 38.14
LogiQA 30.11 29.34 29.03 29.49 29.95 29.95 30.26 29.65 28.57
DROP 30.75 3041 29.93 28.7 28.44 29.38 28.88 29.21 31.06
Qasc 18.47 14.58 14.9 14.15 14.15 15.12 14.36 14.58 14.69
GSMBK 16.45 11.9 11.3 11.07 10.99 12.13 12.13 11.9 11.22
MATH 3.28 2.62 242 2.54 2.44 2.44 254 2.36 2.7
RACE iddie 40.39 29.04 29.32 30.36 30.29 31.96 30.85 28.83 32.24
RACEign 37.31 28.87 28.56 29.99 30.39 31.1 30.62 279 31.68
OpenbookQA 57.2 51.0 50.8 53.0 54.2 51.8 53.2 49.8 52.6
Xsum 18.16 15.04 14.83 15.05 15.06 14.76 14.71 14.89 15.02
LAMBADA 733 71.74 72.11 71.88 72.21 72.23 71.86 719 71.86
LongBench 30.09 29.17 29.12 29.02 28.91 29.71 28.82 28.7 29.45
MBPP 17.0 8.6 9.0 10.0 9.8 8.0 7.8 6.2 7.8
HumanEval 12.8 0.0 2.44 5.49 6.1 2.44 244 0.0 3.05
ARC. 58.73 59.26 58.91 59.26 60.85 61.02 61.38 58.2 60.85
ARC, 41.69 39.32 3797 42.37 42.03 42.37 42.71 37.97 40.34
MMLU 45.89 45.15 45.39 45.66 45.84 45.67 45.58 45.06 45.08
AGIEval 26.94 25.96 26.04 25.61 25.73 25.92 26.12 25.65 26.24
Truthful QA 31.33 32.19 32.44 33.17 32.68 32.44 32.93 33.05 31.95
w/o Heap w/o
wlo who (Priority Ordered Wlo. W/.O wlo Stack  w/o Tree WIFT' Two
Graph Greedy Recursion Sorting Pointers
Queue) Set
WiC 50.31 50.47 50.78 50.47 50.31 50.47 49.84 49.84 50.16
WSC 64.42 64.42 64.42 64.42 64.42 64.42 64.42 64.42 64.42
TyDiQa 2245 22.88 22.63 22.62 22.61 22.6 224 22.35 22.56
BoolQ 69.05 69.05 68.96 69.3 68.99 68.5 69.14 68.26 68.5
CommonSenseQA 63.88 65.6 64.78 65.11 64.7 64.7 65.11 64.54 64.78
NaturalQuestions  17.15 17.73 16.12 17.53 17.15 15.87 16.87 16.29 16.98
AX, 519 54.62 52.72 53.26 53.17 54.89 53.35 51.27 53.26
AX, 52.25 52.53 51.97 51.69 53.65 54.21 53.93 52.53 55.06
RTE 5343 5343 54.51 54.51 54.51 54.15 5343 52.35 5343
COPA 68.0 68.0 68.0 67.0 68.0 66.0 68.0 64.0 65.0
ReCoRD 24.01 25.78 24.35 24.84 25.71 21.6 2542 23.54 24.79
HellaSwag 7345 73.99 73.88 73.81 73.76 73.42 73.93 73.59 73.74
PIQA 77.97 78.07 77.75 78.02 77.31 77.64 77.8 77.53 77.48
SIQA 46.32 46.11 45.34 45.65 45.04 44.88 45.19 45.75 44.63
BBH 37.81 39.09 38.34 38.66 38.86 39.0 38.87 37.74 38.92
LogiQA 29.65 29.65 29.8 29.34 29.8 29.49 29.49 30.11 29.49
DROP 29.39 30.26 30.85 30.27 30.5 29.56 30.5 29.0 29.52
Qasc 15.12 15.87 149 15.23 14.58 15.87 14.47 1447 14.69
GSMBK 135 12.43 11.37 11.75 12.28 11.14 12.36 11.6 12.05
MATH 2.3 2.8 2.56 2.8 2.58 2.36 2.56 242 2.5
RACE . iddie 33.08 31.82 30.57 30.99 289 30.5 29.25 30.36 28.69
RACEign 31.93 3145 29.93 30.36 28.85 29.33 28.85 29.99 28.16
OpenbookQA 52.0 51.8 52.6 51.2 51.0 524 514 53.2 50.6
Xsum 15.24 14.81 14.7 14.65 14.95 14.57 14.93 14.77 14.87
LAMBADA 71.78 72.37 72.15 71.8 724 72.31 72.17 72.0 72.11
LongBench 29.67 29.34 29.09 29.03 29.05 28.81 29.04 28.79 28.83
MBPP 7.4 9.6 8.8 9.8 9.0 8.4 9.6 9.4 8.4
HumanEval 3.66 4.88 0.0 1.22 0.0 2.44 0.0 4.27 0.61
ARC, 60.85 60.67 59.79 59.61 59.61 59.61 58.55 59.96 58.2
ARC. 40.68 38.64 41.36 38.31 38.98 39.66 38.64 42.37 38.31
MMLU 45.25 45.85 45.38 45.58 45.53 45.64 45.46 45.59 45.46
AGIEval 2643 25.84 26.12 25.73 26.0 25.53 25.8 26.0 26.0
Truthful QA 31.82 32.44 33.05 32.07 33.17 32.19 32.93 33.05 33.17

Figure 8: The first part of results for Unlearning different types of datasets
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w/o w/o

WIO. w/o Books wio C wlo C++ w/o C4 Computer  w/o CSS wlo . Electrical
ArXiv . Economics . .
Science Engineering
WiC 50.0 49.84 50.0 51.57 50.47 49.84 50.78 50.0 50.0
WSC 66.35 65.38 67.31 65.38 67.31 63.46 66.35 64.42 64.42
TyDiQa 24.31 16.43 21.38 2431 22.07 22.49 22.96 24.57 23.62
BoolQ 69.97 67.58 63.88 65.75 61.77 70.92 064.71 71.01 71.28
CommonSenseQA 64.13 46.68 62.16 65.19 57.41 63.55 63.88 63.96 63.47
NaturalQuestions 13.19 7.15 5.9 13.19 18.28 17.45 8.73 17.84 18.84
AXy 55.62 48.55 50.0 55.16 52.08 54.08 54.62 53.62 54.44
AXy 49.16 49.16 56.46 51.12 47.75 50.56 50.0 52.25 51.4
RTE 50.9 54.87 53.43 55.96 54.87 51.62 53.07 54.51 52.35
COPA 67.0 62.0 68.0 68.0 66.0 68.0 64.0 65.0 68.0
ReCoRD 32.19 0.03 1.59 4.96 6.71 24.68 5.2 29.69 26.65
HellaSwag 73.97 72.81 74.47 74.36 72.17 73.91 74.58 74.08 74.01
PIQA 76.17 73.01 76.55 77.48 77.26 74.27 76.55 76.01 76.17
SIQA 43.86 433 41.4 44.37 44,11 45.14 45.65 45.34 45.09
BBH 38.67 38.44 38.95 38.7 37.61 38.81 39.1 38.5 39.35
LogiQA 29.49 28.88 28.88 290.19 30.57 290.34 29.95 30.26 29.49
DROP 34.81 31.58 29.06 31.39 23.11 31.14 30.62 31.26 31.65
Qasc 13.07 12.74 15.33 13.82 13.39 12.96 15.23 13.17 13.17
GSMS8K 12.36 13.87 13.42 16.98 15.77 13.42 13.42 13.72 13.04
MATH 2.56 2.46 2.26 2.96 2.8 2.5 3.1 2.5 2.7
RACE,iddie 33.5 25.14 20.32 29.25 30.5 29.39 33.7 33.91 30.36
RACE#igh 34.73 26.42 28.93 26.9 28.62 29.62 32.22 33.08 30.39
OpenbookQA 360.8 37.2 434 52.8 40.6 41.8 49.6 45.2 46.6
Xsum 16.97 12.61 15.97 13.54 17.04 16.99 15.19 17.05 16.68
LAMBADA 72.48 63.21 70.29 71.36 72.6 72.13 72.06 72.33 72.4
LongBench 30.24 28.98 29.66 30.68 27.93 30.37 30.05 30.5 30.28
MBPP 134 16.8 1.8 11.2 18.0 14.2 16.0 12.6 14.6
HumanEval 11.59 13.41 9.76 13.41 9.76 12.2 13.41 14.02 13.41
ARC. 52.73 47.97 48.5 54.14 54.85 55.38 53.26 55.56 56.26
ARC, 38.31 33.56 33.56 36.95 39.66 36.61 40.34 38.64 38.64
MMLU 45.2 42.44 43.78 44.22 43.53 44.75 44.75 45.06 4497
AGIEval 25.45 28.4 24.55 25.49 26.98 26.24 25.29 26.67 26.47
Truthful QA 31.46 31.95 33.29 33.66 31.82 31.7 32.44 31.7 30.97
wlo w/o wlo w/o w/oSEqs w/oSEqs wio
Github HTML wlo Java JavaScript Mathematics lowcrcl hight:r':l wlo ASP Prolog
WiC 50.63 49.53 49.84 50.0 50.0 49.74 49.85 50.0 50.47
WSC 67.31 66.35 66.35 66.35 64.42 66.35 66.03 66.35 66.35
TyDiQa 17.71 25.65 22.61 21.47 2474 28.82 28.27 25.16 27.04
BoolQ 62.2 68.1 64.4 66.85 70.49 68.57 67.92 64.13 66.21
CommonSenseQA 62.74 66.58 64.54 64.54 65.77 63.97 54.52 65.52 65.19
NaturalQuestions 1.0 17.26 154 4.85 16.15 18.6 18.93 20.08 21.08
AXp 53.26 56.88 57.07 50.36 51.36 45.11 43.24 52.08 53.08
AX, 50.84 52.25 50.28 55.34 53.09 49.72 49.81 48.31 514
RTE 56.68 54.15 59.93 57.76 54.15 53.91 54.15 51.99 53.43
COPA 66.0 70.0 65.0 65.0 69.0 64.67 05.67 67.0 67.0
ReCoRD 2.76 33.12 10.18 1.56 35.24 2.04 0.19 19.36 30.72
HellaSwag 74.34 74.58 74.59 74.68 74.11 73.84 74.25 74.38 74.48
PIQA 77.37 78.62 78.51 77.31 77.91 78.44 77.88 77.97 77.91
SIQA 390.76 46.78 44.32 42.27 458 45.38 43.98 479 48.36
BBH 38.0 39.73 39.1 38.43 39.13 37.77 27.02 38.67 38.8
LogiQA 29.03 29.49 28.88 28.73 3041 29.85 30.06 20.49 28.88
DROP 30.41 32.01 29.88 29.28 33.15 31.43 30.44 31.32 32.29
Qasc 13.61 15.66 13.07 13.07 15.01 23.47 22.43 15.66 15.12
GSM8K 12.59 14.71 12.66 16.53 13.12 16.17 13.83 14.03 15.31
MATH 1.08 3.12 2.74 2.62 2.56 2.87 1.28 3.0 3.14
RACE,iddle 31.34 33.22 27.92 32.38 37.74 42.87 41.99 44,92 4248
RACEigh 29.73 31.05 27.82 32.7 36.56 38.57 37.59 42.85 41.14
OpenbookQA 40.2 50.6 478 472 49.6 51.47 43.93 58.6 58.6
Xsum 13.78 17.96 14.37 17.36 17.72 17.6 18.11 17.3 19.07
LAMBADA 66.52 73.41 71.76 70.58 72.23 73.9 74.03 73.26 73.28
LongBench 26.16 31.13 28.97 28.63 30.19 26.86 21.79 28.77 31.35
MBPP 144 0.8 12.2 14.6 17.0 13.8 7.33 15.2 18.8
HumanEval 1.22 14.63 12.2 13.41 9.76 2.03 5.69 13.41 14.63
ARC, 43.39 59.26 53.09 51.5 57.14 53.38 51.61 60.32 61.55
ARC. 34.58 41.36 36.95 33.9 41.36 40.45 39.89 41.69 40.68
MMLU 40.86 4547 44.73 44.87 453 45.79 44.38 45.98 45.62
AGIEval 21.92 25.41 26.04 26.59 26.08 24.93 25.03 25.57 25.96
Truthful QA 32.31 31.33 33.78 33.17 31.95 30.97 31.17 31.7 29.87

Figure 9: The second part of results for Unlearning different types of datasets
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HumanEval 12.8 12.2 0.61 12.2 13.41 14.63 10.37 12.2 0.0
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Qasc 13.07 13.5 13.17 14.79
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LAMBADA 72.46 73.28 72.75 71.34
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Figure 10: The third part of results for Unlearning different types of datasets
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Figure 11: A correlation matrix based on the model’s performance across 48 Unlearning tasks after experiencing
data Unlearning.
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