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Abstract

Through pretraining on a corpus with various001
sources, Large Language Models (LLMs) have002
gained impressive performance. However, the003
impact of each component of the pretraining004
corpus remains opaque. As a result, the organi-005
zation of the pretraining corpus is still empirical006
and may deviate from the optimal. To address007
this issue, we systematically analyze the im-008
pact of 48 datasets from 5 major categories of009
pretraining data of LLMs and measure their im-010
pacts on LLMs using benchmarks about nine011
major categories of model capabilities. Our012
analyses provide empirical results about the013
contribution of multiple corpora on the perfor-014
mances of LLMs, along with their joint impact015
patterns, including complementary, orthogonal,016
and correlational relationships. We also iden-017
tify a set of “high-impact data” such as Books018
that is significantly related to a set of model019
capabilities. These findings provide insights020
into the organization of data to support more021
efficient pretraining of LLMs.022

1 Introduction023

Under the data-driven paradigm, Large Language024

Models (LLMs) have demonstrated promising per-025

formance and showcased immense potential in fur-026

ther promotion (OpenAI et al., 2023; Touvron et al.,027

2023b; Du et al., 2021; Bai et al., 2023a). Previ-028

ous analyses have suggested that the composition029

of the pretraining corpus may exert a significant030

impact upon the performance of LLMs (Longpre031

et al., 2023; Shen et al., 2023a). However, how032

different sources and types of pertaining corpora033

influence the knowledge and reasoning ability of034

LLMs largely remains opaque, or stays at the quali-035

tative level. As a result, it still heavily relies on the036

experiences of trainers to organize the pre-training037

corpus. Such experiences may deviate from the038

optimal, and hence limit the efficiency and effec-039

tiveness of model training.040

In this paper, we propose to quantify how com- 041

ponents with different sources and types in the pre- 042

training corpus contribute to the performance of 043

LLMs. Previous literature refers to such analyses 044

as Data Influence Analysis (DIA) (Akyürek et al., 045

2022). However, due to the limitations of previous 046

DIA methods, the DIA of LLMs remains challeng- 047

ing. Primary DIA methods can be mainly cate- 048

gorized into two lines: the retraining-based meth- 049

ods and gradient-based methods. Retraining-based 050

methods work by removing specific data from the 051

training corpus and retraining the model, then com- 052

paring changes in model performance. Considering 053

the prohibitive training cost of LLMs, retraining- 054

based methods would be impractical (Nguyen et al., 055

2023). While the gradient-based methods may not 056

be applicable in analyzing the source of the com- 057

plex reasoning ability of LLMs, as they assume 058

that the performance upon a test instance is deter- 059

mined by several independent training instances. 060

However, such an assumption may not hold for 061

LLMs, especially for the ability to complete rea- 062

soning tasks, as it may originate from groups of 063

correlated instances that jointly contribute to the 064

performance of LLMs. For example, solving math 065

problems requires understanding a knowledge tax- 066

onomy, and the taxonomy is described by a set of 067

interdependent instances holistically. Missing one 068

component would lead to the collapse of the whole 069

taxonomy. Hence, the gradient-based methods may 070

fail to trace the influence of such a whole corpus, 071

which is of vital importance (Grosse et al., 2023). 072

To address these issues, we resort to another 073

strand of method, Machine Unlearning. Prior re- 074

search (Eldan and Russinovich, 2023; Jang et al., 075

2022) suggests that Machine Unlearning can se- 076

lectively erase specific knowledge from a model 077

through gradient ascent on corresponding instances. 078

This enables us to investigate the influence of a cer- 079

tain pretraining corpus on an LLMs by “Unlearn- 080

ing” instances from it, and then compare the perfor- 081
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Figure 1: The impact of Unlearning different types of
corpus on different abilities of the llama2-7B model.

mance of the “forgotten” LLMs with the original082

LLMs. Meanwhile, different from previous Ma-083

chine Unlearning methods, to avoid unintended im-084

pacts on non-targeted samples, we incorporate ad-085

ditional regularization by retraining samples from086

non-targeted domains during the Unlearning pro-087

cess. Experiments demonstrate that our method088

can effectively remove information contained in089

the target samples, without significantly affecting090

other unrelated samples.091

Based on our customized Machine Unlearning092

method, we systematically investigated the quanti-093

tative contribution of multiple important resources094

and types of training corpora on the performance095

of LLMs. We covered widely adopted high-quality096

corpora GitHub, Wikipedia, ArXiv, Books, Stack-097

Exchange and C4, and conducted an in-depth analy-098

sis of their contributions to the model performance099

by segmenting them into subsets based on the100

type of knowledge. From the content dimension,101

the abovementioned corpora covered text, com-102

monsense knowledge, domain-specific knowledge,103

math, and coding. Additionally, to investigate the104

source of the reasoning abilities of LLMs, we ana-105

lyzed the impact of over ten kinds of programming106

languages with different coding paradigms, and107

17 kinds of common algorithms such as Dynamic108

Programming. Programming paradigms essentially109

represent different abstractions of real-world prob-110

lems, and an algorithm corresponds to a common111

solution for a particular type of reasoning problems.112

To comprehensively assess the impact of these cor-113

pora, we evaluated the “forgotten” LLMs across114

various downstream tasks as illustrated in Figure 1115

and detailed illustrated in Figure 4.116

With our proposed gradient ascent-based Ma-117

chine Unlearning method, we identify a range of 118

corpora that have a significant impact on the capa- 119

bilities of LLMs, and reveal previously unreported 120

influences of certain corpus (such as algorithms) 121

on model capabilities. Furthermore, we discov- 122

ered the interaction among corpora which jointly 123

affects the capabilities of LLMs, and the existence 124

of “high-energy” corpus like Books in the data. 125

Our research underscores the importance of further 126

studying the impact of pre-training data, to provide 127

foundations for future research on the optimization 128

of pre-training datasets to support more efficient 129

pre-training process. 130

2 Methodology and Validity Analysis 131

2.1 Machine Unlearning Based Data Influence 132

Analysis 133

Following Eldan and Russinovich (2023) and Jang 134

et al. (2022), we devise our approach based on 135

the Machine Unlearning to eliminate certain kinds 136

of information from LLMs.. Formally, given an 137

LLMs M and a sample set DT , we analyze the 138

influence of DT upon M by making M “unlearn” 139

the information of DT to derive a model Mu
T , and 140

then compare the performance between M and Mu
T . 141

For clarity, we call Mu
T as the forgotten model, 142

DT as the targeted corpus, and the rest parts of 143

the whole pretraining corpora as the non-targeted 144

corpora. 145

The key of Machine Unlearning-based data in- 146

fluence analysis lies in that: (1) Effectiveness: How 147

to unlearn DT to make that M has never been 148

trained upon DT . (2) Precision: Do not incur unin- 149

tentional impacts upon the non-targeted parts of 150

the training corpus. To this end, we devise an 151

GRadient AsCent-based Machine Unlearning with 152

rE-training (GRACE). In the following sections, 153

we describe the mechanism of GRACE and show 154

the effectiveness and precision of GRACE. 155

2.2 Gradient-based Machine Unlearning with 156

Retraining 157

During the training process, LLMs learn knowl- 158

edge by maximize the likelihood of training cor- 159

pora through gradient descent. Hence, in line with 160

Eldan and Russinovich (2023); Jang et al. (2022), 161

the information within a targeted corpus DT could 162

be unlearned by reverting the learning process 163

through gradient ascent on DT . Formally, the ob- 164

jective function of the Unlearning algorithm is to 165

minimize the log-likelihood upon DT . 166
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However, there remains the risk that the per-167

formances on non-target domains are unintention-168

ally impacted. To avoid this problem, GRACE169

introduces an additional retraining regularization.170

Specifically, the information within a non-targeted171

corpus DN could be revised through gradient de-172

scent upon DN .173

Hence, the whole algorithm runs in the following174

manner. Before starting, we first divide the non-175

target corpus DN into a 9:1 split as a retraining set176

and a dev set. Then during the Unlearning process,177

if the model M ’s Perplexity (PPL) on the dev set178

is higher than that before Unlearning, a retraining179

is started until the PPL of M on the dev set restore180

to the original level on the dev set. At this time181

the Unlearning process would restart. In this way,182

the Unlearning and retraining alternate until the183

PPL on the target corpus DT , reaches the endpoint184

(which is described below), the GRACE algorithm185

would be ended.186

In practice, the retraining set is constructed by187

randomly sampling instances from the rest of Red-188

Pajama dataset (Computer, 2023) after excluding189

the target corpus. For instance, if we aim to un-190

learn the C language, the retraining set is set to191

be a random subset of the remainder of the RedPa-192

jama dataset after excluding the C language portion.193

Note that, to increase the diversity of the retraining194

dataset and prevent model performance degradation195

on unrelated domains, at each round of retraining,196

we would resample 30, 000 new instances.197

Endpoint of the Unlearning Process A criti-198

cal issue of the Machine Unlearning algorithm is199

when to stop the Unlearning process, so that the200

forgotten model MT
u can approximate the state as201

if the original model M has never seen the target202

corpus DT . Prior methods achieve this by case203

study (Eldan and Russinovich, 2023) or manually204

selecting certain corpus DS that is highly similar205

to DT , whereas M has never been trained on it. So206

that the performance of M on the unlearned dataset207

DS can be taken as the endpoint of Unlearning on208

DT . However, since the data filtering process of209

LLMs is opaque, it is hard to find a specific corpus210

that the model has not been trained on for each kind211

of target corpus.212

To address this issue, we propose a randomized213

text-based method. Specifically, given an instance214

from DT , we tokenize it and randomly split the215

tokens into pieces with a length range from 1 to n,216

and then we shuffle their order and paste the shuf-217

fled pieces into a randomized text. The endpoint of218
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Figure 2: Comparative Analysis of Model Unlearning
Effects between the targetmath and non-targetmath.

Name Mathematics Physics Chemistry
Before 5.60 5.48 5.47
After 28.14 10.64 7.75
Name Biology Economics History
Before 5.66 5.51 5.41
After 6.97 6.66 6.06
Name Psychology Law Linguistics
Before 6.15 4.69 5.85
After 7.05 5.08 5.97

Table 1: Perplexity of LLama on subsets of the
Wikipedia corpus after Unlearning the Math subset of
Wikipedia.

the Unlearning process is defined to be the point 219

that the Mu
T ’s PPL on DT equals M ’s PPL on the 220

randomized text. 221

This is because: (1) Through randomizing, 222

the knowledge, semantic, and logical relationship 223

within DT are disrupted, hence, if the PPL of Mu
T 224

on DT is close to the PPL of M on the correspond- 225

ing randomized text, it suggests that Mu
T has com- 226

pletely forgotten DT ; (2) Compared to DT , the ran- 227

domized text shares a similar lexical distribution, 228

which would eliminate the influence of domain- 229

specific vocabulary distribution. 230

2.3 Validity Analysis of GRACE 231

Previous analyses demonstrate the effectiveness of 232

gradient ascent-based Machine Unlearning meth- 233

ods in eliminating certain knowledge of LLMs (El- 234

dan and Russinovich, 2023). We conduct further 235

analyses to show the effectiveness of GRACE in 236

Unlearning certain domains of knowledge and cer- 237

tain kinds of reasoning abilities, and the precision 238

of not incurring unwanted impacts. 239

Experimental Settings To validate the preci- 240

sion and effectiveness of our methodology in selec- 241

tively Unlearning certain domains of knowledge, 242

we conduct Machine Unlearning using GRACE 243

and take the mathematical subset of the Wikipedia 244
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Figure 3: The overall framework of the experiment.

corpus (Computer, 2023) as the target corpus Dmath.245

For the non-target dataset, we randomly select246

samples from the rest part of Redpajama corpus247

(Computer, 2023) which explicitly excluded Dmath.248

To analyze the impact of GRACE, we not only249

evaluate the performance on the targeted domain250

math, but also include potentially related domains251

physics, chemistry, and biology and unrelated252

domains: economics history, psychology, law253

andlinguistics. Experiments are conducted with254

Llama-2-7B (Touvron et al., 2023b), more details255

are provided in Appendix A.256

Analyses We demonstrate the loss curve on the257

target corpus and the non-target corpora in Figure 2,258

and the final PPL of the forgotten model Mu on259

each domain in Table 1. It can be observed that the260

loss of the model on Dmath continuously increases261

during the Unlearning process. In contrast, due to262

the additional retraining process of GRACE, there263

is no significant increase in the loss for the non-264

target data. This suggests that GRACE would not265

incur unintentional model performance on the non-266

target domains. Moreover, as shown in Table 1, af-267

ter the Unlearning process, the performances on the268

physics, chemistry, biology and economics269

domains, demonstrate a degradation, while the270

model performance upon history, psychology,271

law and linguistics, remain unaffected. Inter-272

estingly, the extent of performance degradation in273

these domains is consistent with human cognition274

about the relevance of these domains with math:275

physics and mathematics are rather closely re- 276

lated; chemistry, biology, and economics share 277

certain common grounds with mathematics. In 278

contrast, the correlation between historical, psy- 279

chological, legal, and linguistic knowledge with 280

mathematical knowledge is quite limited. These 281

observations suggest that GRACE can eliminate 282

certain domains of knowledge from LLMs without 283

involving unwanted impacts, indicating the effec- 284

tiveness and precision of our proposed method. In 285

the Appendix B, we provide more evidences about 286

the validity of our analysis method. 287

3 Main Analysis 288

After the validity analysis, we employ GRACE to 289

investigate the impact of various corpora on the 290

performance of LLMs. Specifically, Section 3.1 291

introduces the experimental settings. Section 3.2 292

explains how different types of data affect model 293

performance individually. Section 3.3 discusses the 294

joint impact of various types of data on the abilities 295

of LLMs. 296

3.1 Experimental Settings 297

3.1.1 Target Corpora 298

Since the ultimate goal of data influence analy- 299

sis is to provide empirical guidance for optimiz- 300

ing the organization of the pretraining corpus of 301

LLMs, among various open-sourced datasets, we 302

focus our study on various subsets of the Redpa- 303

jama dataset (Computer, 2023), a replication ver- 304

4



sion of the pretraining corpus of Llama (Touvron305

et al., 2023a; Chen et al., 2023; Fu et al., 2024).306

Moreover, considering the importance of complex307

reasoning ability, to further investigate the source308

of such ability, we include a set of programming al-309

gorithmics, as they can be viewed as an abstraction310

of thought patterns. As shown in Table 3, these311

datasets have been further divided into subsets, a312

total of 48 distinct datasets are chosen as target313

corpora. Specifically:314

• All subsets of RedPajama (Computer, 2023),315

including: C4, Github, Books, ArXiv, Wikipedia,316

StackExchange. These corpora play pivotal roles317

in the pretraining corpus of various LLMs (Ren318

et al., 2023; Zhang et al., 2024).319

• The ArXivs contains eight subsets of the Arxiv320

dataset, as listed in Figure 3321

• The StackExchanges dataset is obtained by di-322

viding the StackExchange portion of the Redpa-323

jama.This subsets into two subsets based on the324

number of “likes” each Q&A pair has received.325

Intuitively, the more likes an answer receives, the326

more likely it is to be a high-quality answer.327

• CodeAlgorithm contains 17 kinds of important328

leetcode algorithm problems (Hartford, 2023).329

• The CodeLanguage dataset is derived from the330

GitHub corpus, encompassing 15 types of pro-331

gramming language, spanning a variety of pro-332

gramming paradigms including Object-Oriented333

and Procedure-oriented languages, Declarative lan-334

guages, Scripting languages, Front-end languages,335

as well as unctional language.336

We provide more details about the target corpora337

in the Appendix D.338

3.1.2 Evaluation Benchmarks339

To comprehensively evaluate the influence of target340

corpora on LLMs’ performance, following Contrib-341

utors (2023); Gao et al. (2023), as shown in Figure342

3, we select a totally of 31 benchmarks covering343

9 major ability of tasks and 21 sub-categories of344

capabilities. Details about these datasets and the345

experimental settings are provided in Appendix C.346

3.1.3 Model for Analysis347

We conducted all experiments using the widely348

adopted open-source decoder-based generative349

LLMs Llama-2-7B. The reasons lie in that: (1)350

llama2-7B is large and powerful enough to repre-351

sent LLMs; (2) The training process of the llama2-352

7B is typical; and (3) The existence of the Scaling353

Law (Kaplan et al., 2020) allows us to infer the354

impact of various types of data on larger models by 355

examining their effects on the Llama2 model. 356

3.2 Impact of Individual Corpus on Model 357

Capabilities 358

Analysis Method As the difficulty of benchmarks 359

is different, to make the performance changes on 360

these benchmarks comparable, we first normal- 361

ize them to the performance degradation ratio, 362

which is defined as γi,u =
Au

i,j−Ao
j

Ao
j

, where Au
i,j is 363

the model’s performance on task j after unlearning 364

the target-datai, and Ao
j represents the performance 365

of the original model on task j. In the below, we 366

measure the impact brought by Machine Unlearn- 367

ing using the performance degradation ratio. 368

Analysis Results Figure 4 lists the Top and Bot- 369

tom 5 datasets that have the most and the least 370

impact on each type of model capability. From 371

which we can observe that: 372

• Language Modeling As a fundamental of LLMs, 373

the language modeling ability is seldom signifi- 374

cantly impacted by a specific type of corpus alone. 375

As an (approximate) multi-lingual parallel corpus, 376

the Wikipedia corpus may play a critical role in 377

aligning different languages for an LLMs, and in- 378

fluence the multilingual ability of LLMs. 379

• Textual Understanding One prominent phe- 380

nomenon is that programming language corpora 381

have a high impact on the textual understanding 382

ability of LLMs. Heuristically, codes are abstrac- 383

tions of relationships between real-world objec- 384

tions and could be helpful for understanding the se- 385

mantic and logical relationships among text. More- 386

over, knowledge-rich corpora such as books and 387

Arxiv, and corpora with high diversity such as 388

books and C4 profoundly influence the textual un- 389

derstanding ability of LLMs. Hence, corpora with 390

diversity, rich commonsense knowledge and code 391

corpus may constitute three foundations for the 392

textual understanding ability of LLMs. 393

• Textual Inference Text inference tasks depend 394

on a wide range of corpora. Notably, besides 395

commonsense-related corpora, text reasoning tasks 396

also extensively rely on various types of code cor- 397

pora, algorithm corpora, and mathematical corpora. 398

For example, tasks like Big Bench Hard (Suzgun 399

et al., 2022) significantly depend on high-quality 400

StackExchange content and algorithms such as 401

breadth-first search. This demonstrates the im- 402

portance of symbolic reasoning capabilities repre- 403

sented by mathematics and code in understanding 404

the deep logical relationships within texts. 405
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Figure 4: The Top and Bottom 5 datasets that have the most and the least impact on each type of model capability.

• Knowledge Reasoning Datasets such as Books,406

and are invaluable for solving real-world knowl-407

edge problems. Programming languages, as an408

integral part of the global knowledge system, sig-409

nificantly influence the model’s knowledge capa-410

bilities. The ArXivs dataset, due to its complexity411

and deviation from common world knowledge, has412

a lesser impact.413

• Mathematical Reasoning The source of LLMs’414

math reasoning capabilities has drawn great atten-415

tion from researchers, as it could be an indicator416

of the complex reasoning ability of LLMs (Ernest,417

2023). From the results in Figure 4, high-quality418

mathematical texts and code corpora (especially419

algorithms) have a significant impact on LLMs’420

math reasoning abilities. This demonstrates: (1)421

There is a close relationship between mathematical422

and coding abilities (Soldaini et al., 2024; Shen423

et al., 2023b). To some extent, both math and424

code problems are abstractions of real-world prob-425

lems, and involve complex symbolic reasoning pro-426

cesses to solve them. Hence, model performances427

demonstrate high sensitivity upon the algorithmic.428

(2) High-quality mathematical texts are key to the429

model learning of mathematical abilities.430

• Code Generation Compared to text-based tasks,431

the range of knowledge for code generation tasks432

is relatively narrow, only limited to mathematics433

and code-related corpora Shen et al. (2023a). This434

again demonstrates the close relationship between 435

mathematics and coding. Overall, forgetting al- 436

gorithmic knowledge has a greater impact on the 437

model’s coding ability than specific programming 438

languages. This suggests that the model’s under- 439

standing of algorithms does not depend on specific 440

program languages. In other words, LLMs could 441

understand the logic of algorithms, instead of mem- 442

ory algorithmic knowledge depending on certain 443

programming languages. 444

• Long Text GitHub, Wikipedia, Books, and 445

“High-liked” StackExchanges significantly impact 446

the model’s long text capabilities, as these cor- 447

pora are composed of long texts, entailing complex 448

logical relationships and abundant common sense 449

knowledge. 450

• Examination Completing exam questions re- 451

quires extensive knowledge and strong reasoning 452

abilities. Hence, code, commonsense, mathemat- 453

ics, and books corpora all form the foundation of 454

an LLMs’s examination capabilities. 455

• Safety Interestingly, the model’s security is en- 456

hanced after forgetting the code corpora. This 457

might be due to the absence of emotional factors 458

in the code corpora and its straightforward logic, 459

thus making the generated results more crude and 460

aggressive. 461

More detailed experimental data and results can be 462

found in Appendix E. 463
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Figure 5: A correlation matrix based on the model’s
performance across 19 capabilities after experiencing
data Unlearning.Among them,“Algorithm” is the aver-
age value of all Algorithm.

3.2.1 Corpus with Broad Influences464

We calculate corpora that can influence multiple ca-465

pabilities. Since they may lead to a broad influence466

on model capabilities, these datasets may serve as467

the foundation of the training corpus.468

Analysis Method In the target-data, certain469

datasets significantly influence numerous capabil-470

ities of the model. We adopted the same method471

for data processing as described in Section 3.2.472

Furthermore,We define a dataset as “High-impact473

data” if its removal leads to a performance decline474

in over 70% of capabilities, which exceeds the av-475

erage decline observed across all datasets.476

Analysis Results Among the selected477

target-data, four categories—Books, Shell and478

Github meet the criteria for High-impact data.479

Unlearning Books datasets result in a decline480

in 16 capabilities beyond the average, whereas481

Unlearning Shell and Github leads to a decline in482

14 capabilities beyond the average. These datasets483

significantly impact multiple model capabilities,484

and play a crucial role in model training.485

3.3 Joint Impact of Multiple Corpora on486

Model Capabilities487

Previous research indicates that LLMs can com-488

bine information from multiple kinds of corpora,489

and generalize it to new tasks. Hence, during the490

pretraining stage, multiple corpora may perform491

joint impact upon LLMs. In this section, we ex-492

plore measuring the joint contribution of multiple493

datasets upon the LLMs.494

3.3.1 Interrelationships Among Data 495

Analysis Method To explore the relationships be- 496

tween datasets from different domains, we calcu- 497

lated the Pearson correlation coefficient between 498

any two target corpus TA and TB , based on the 499

model’s performance degradation ratio upon 19 500

capabilities after Unlearning TA and TB . Within 501

each category of abilities, each subtype was given 502

an equal weight. When a subtype included multi- 503

ple datasets, we averaged the performance changes 504

across these datasets to calculate the coefficients. 505

These coefficients form a correlation matrix. If 506

the correlation coefficient between two datasets is 507

positive, it indicates that the impact of these two 508

datasets on downstream tasks is similar, and vice 509

versa. Subsequently, we conducted hierarchical 510

clustering on the correlation matrix to categorize 511

datasets. Figure 5 displays the correlation matrix 512

rearranged according to the categories defined by 513

the hierarchical clustering. 514

Analysis Results As shown in Figure 5, accord- 515

ing to their relationships, the corpora could be cat- 516

egorized into three types, which we name as “Cor- 517

related Corpora”, “Complementary Corpora”, and 518

“Orthogonal Corpora”, respectively. Specifically: 519

• Correlated Corpora refers to corpora that the 520

model has similar performance changes after Un- 521

learning them. In other words, they have a simi- 522

lar influence on LLMs. For instance, the correla- 523

tion coefficients among Economics, Quantitative 524

Finance, and Statistics are all greater than 0.95. 525

Hence, to some extent, the correlated corpora can 526

substitute for each other in the training corpus, 527

leading to redundancy in the training corpus and a 528

waste of computation resources. Hence, it would 529

be necessary to reorganize these corpora to enhance 530

pre-training efficiency. 531

• Complementary Corpora refers to corpora that 532

the model performance alternations are different 533

after Unlearning them. Interestingly, our analyses 534

suggest that there may exist certain corpora that 535

have a complementary influence on the model’s 536

performance. For example, the Wikipedia cor- 537

pus and SE qs lower corpus have a negative cor- 538

relation coefficient -0.58. As detailed illustrated 539

in Appendix E, this negative correlation is be- 540

cause of both Wikipedia and SE qs lower have 541

impacts on multiple capabilities, while the capa- 542

bilities influenced by these two datasets seldom 543

overlap. Thus, these two corpora could act simulta- 544

neously as a critical composition of the pretraining 545
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corpus. In general, the math corpora (e.g., StackEx-546

change) have a complementary relationship with547

commonsense-related corpora such as Books or548

Wikipedia. Note that our results also suggest the549

existence of an extreme case that the inclusion of550

one dataset can cause a decline in the performance551

of another dataset. This situation requires further552

verification. If it indeed exists, then in organiz-553

ing the pre-training data, a trade-off must be made554

between the two datasets.555

• Orthogonal Corpora refers to two corpora hav-556

ing a correlation coefficient near zero. For example,557

the correlation coefficient between Wikipedia and558

ArXiv is -0.07. This suggests that these corpora559

independently contribute to the model’s different560

capabilities with low redundancy. Hence, when561

optimizing the organization of the pretraining cor-562

pus, each of the orthogonal corpora should not be563

recklessly excluded to avoid impairing the compre-564

hensiveness of the pre-training dataset.565

Moreover, according to the correlation matrix,566

there seems to be several groups of data: (1) Math-567

related group composed of StackExchange related568

corpora; (2) Knowledge-related group including569

the subsets of Arxivs (e.g., Statistics / Economic).570

Note that, the group (1) and (2) seems to be comple-571

mentary; (3) The intermediate group between (1)572

and (2) composed of C, python, prolog etc., which573

bridges (1) and (2).574

Additionally, employing a similar methodology,575

we analyze the relationship patterns between model576

abilities. Owing to space constraints, the results577

are presented in Figure 11 of the Appendix. In578

summary, we observe that abilities can be both579

positively correlated (synergistic) and negatively580

related (antagonistic), indicating that there are in-581

herent conflicts between certain capabilities, ne-582

cessitating a trade-off. Such conflict also indicates583

that the term “scaling law” refers to the scaling law584

under the same data composition.585

4 RELATED WORK586

The Data Influence Analysis (DIA) task aims at587

finding how each training data contributes to a588

model’s performance. DIA methods can be mainly589

classified into two categories (Hammoudeh and590

Lowd, 2022). The first category, the Retraining-591

Based approach (Jia et al., 2021; Kandpal et al.,592

2022; Ghorbani and Zou, 2019), assesses the influ-593

ence of certain instances by comparing the model594

performance with and without these instances.595

However, due to the prohibitive training costs, these 596

methods have only been extensively applied in the 597

‘small” models (Jia et al., 2021; Ghorbani and Zou, 598

2019; Kandpal et al., 2022; Nguyen et al., 2023). 599

The second category Gradient-Based methods 600

(Koh and Liang, 2017; Koh et al., 2019; Pruthi 601

et al., 2020; Hara et al., 2019) discover training 602

samples with greater influence by comparing gradi- 603

ent similarities between training and test instances. 604

These methods demonstrate efficacy in finding in- 605

stances contributing to knowledge memorization of 606

models. However, they may fail to find instances 607

related to the reasoning abilities of models, which 608

is especially important for LLMs, as it may origi- 609

nate from groups of correlated instances that jointly 610

contribute to the performance of LLMs. Consider- 611

ing the limitations of these methods, we propose a 612

Machine Unlearning-based DIA approach to inves- 613

tigate the impact of corpora upon LLMs. 614

Machine Unlearning is devised to erase certain 615

knowledge from a model. Prior research (Jang 616

et al., 2022; Graves et al., 2021; Gupta et al., 2021; 617

Sekhari et al., 2021) suggests that machine unlearn- 618

ing can selectively erase specific knowledge from 619

a model through gradient ascent on correspond- 620

ing instances. Eldan and Russinovich (2023) has 621

shown that gradient ascent methods would still be 622

effective in LLMs, and can accurately unlearn tar- 623

geted samples. In this paper, we further extend the 624

gradient ascent-based machine unlearning methods 625

by involving an additional retraining process and a 626

random text-based stop criterion. 627

5 Conclusion 628

In this study, we employed a Machine-Unlearning- 629

based data influence analysis method GRACE to 630

investigate the complex effects of diverse types 631

of pretraining data on the performance of Large 632

LLMs. We gained empirical analysis results about 633

how specific components of the pretraining corpus 634

influence LLMs capabilities, and how they jointly 635

contribute to multiple capabilities of LLMs. Our 636

findings suggest the nuanced impact of data selec- 637

tion and organization in LLMs development. The 638

identification of high-impact data and the delin- 639

eation of complementary, antagonistic, and orthog- 640

onal data relationships offer guidance for optimiz- 641

ing pre-training data organization. In future work, 642

we consider adapting our analysis methodology to 643

other parts of LLMs training such as supervised 644

fine-tuning. 645
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6 Limitations646

This study systematically investigated the impact647

of various pre-training datasets on the capabilities648

of LLMs using the GRACE method. While our649

findings offer valuable insights into the subtle re-650

lationship between pre-training data and model ca-651

pabilities, it is crucial to acknowledge the inherent652

limitations of our approach.653

6.1 Data Limitations654

There remains a still remains space for exploration655

in the domain of data. In terms of breadth, our656

study primarily focused on the Redpajama dataset657

and its subsets. However, there are other datasets658

for LLMs, and Redpajama may not include all the659

corpora encountered during the training process660

of LLMs. In terms of depth, some important data661

domains may still possess ample subdivision space.662

For example, Books datasets can be segmented by663

books type, which could limit the comprehensive-664

ness of our analysis.665

6.2 Limitations of Evaluation Metrics666

The existing evaluation systems might not ade-667

quately unearth the deeper capabilities of mod-668

els, potentially overlooking subtle variations and669

thereby missing valuable insights.670

6.3 Future Research Directions671

Addressing these limitations provides opportuni-672

ties for future research. Using a broader variety673

of data and applying our analytical framework to674

other models are key steps toward a more compre-675

hensive understanding of the relationship between676

pre-training data and LLMs capabilities. These677

efforts will contribute to the ongoing discussions678

about optimizing pre-training strategies to enhance679

model performance and efficiency.680
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Unlearning Python Unlearning C

Unlearning Shell Unlearning C++

Unlearning HTML Unlearning SQL

Figure 6: The performance of the model on an unaltered Python statement after selectively Unlearning programming
languages, including Python, C, Shell, C++, HTML, and SQL.

A Experiment details 995

All experiments were conducted on an A100-SXM4-80GB cluster, with all models utilizing the bf16 pre- 996

cision format.For each target corpora, a subset with 2000 instances is randomly sampled the “Unlearning 997

set” 998

B Example Appendix 999

Analysis Method As illustrated in Figure 6, we evaluate the performance of the model on an unaltered 1000

Python statement after selectively Unlearning programming languages, including Python, C, Shell, C++, 1001

HTML, and SQL. The darker the color, the greater the increase in token loss compared to the original 1002

model. 1003

Analysis Results Notably, the most significant loss increase is observed after the model unlearns Python, 1004

indicating a profound impact on its ability to interpret Python statements. Furthermore, when Unlearning 1005

other languages, the changes in model loss predominantly occur in comments and certain keywords, 1006

which are syntactically or semantically shared across these languages. Languages like C++, C, and 1007

Shell, which structurally resemble Python to some extent, exhibit substantial loss variations. Conversely, 1008

HTML and SQL, being more distinct from Python, result in minimal changes in the model’s performance 1009

on Python statements after being forgotten. Additionally, we observe that due to the object-oriented 1010

features of Shell and C++, Unlearning these languages leads to a notable increase in the loss associated 1011

with the “class” token. In contrast, given C’s procedural nature, the loss related to “class” does not 1012

show significant variation. This analysis underscores the intertwined nature of programming language 1013

knowledge within the model and highlights the differential impact of Unlearning specific languages on 1014

the model’s comprehension of Python code. 1015

Analysis Method As illustrated in Figure 7, we evaluate the model’s performance on Breadth-First 1016

search statements written in C++ after selectively applying Unlearning algorithms, including depth-first 1017

and graph algorithms. The darker the color, the greater the increase in token loss compared to the original 1018
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Figure 7: The performance of the model on an unaltered BFS statement after selectively Unlearning programming
languages, including DFS and Graph.

model Analysis Results As illustrated in Figure 7, the performance of the model post-omission of the1019

Depth-First Search (DFS) algorithm on Breath First Search (BFS) data is depicted at the right, while the1020

performance post-omission of the Graph algorithm on BFS data is shown at the left. It is observable that1021

there is a significant increase in loss for both cases in terms of variable definitions and certain key terms.1022

However, during the execution phase of the BFS algorithm, the loss in the model after omitting the Graph1023

algorithm is substantially greater than that after omitting the DFS algorithm.1024

C Test DaseSet1025

In Table 2, we integrate the frameworks (Contributors, 2023; Gao et al., 2023) to construct a comprehensive1026

evaluation system for large models.1027

Language Modeling. The average performance on WiC (Pilehvar and Camacho-Collados, 2019), WSC1028

(Levesque et al., 2012), and TyDiQa (Clark et al., 2020) is reported. These test sets are all evaluated with1029

0-shot results.1030

Knowledge. The average performance is reported using BooIQ (Clark et al., 2019), CommonSenseQA1031

(Talmor et al., 2018), and NaturalQuestions (Kwiatkowski et al., 2019). We report 8-shot results for1032

CommonSenseQA and 0-shot results for all other benchmarks.1033

Textual Inference. The average performance is reported using AXb (Wang et al., 2020), AXg (Wang1034

et al., 2020), RTE (Wang et al., 2020), COPA (Roemmele et al., 2011), ReCoRD (Zhang et al., 2018),1035

HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2019), SIQA (Sap et al., 2019), BBH (Suzgun et al.,1036

2022), LogiQA (Liu et al., 2020), DROP (Dua et al., 2019), and Qasc (Khot et al., 2020). We report 3-shot1037

results for BBH, 2-shot results for DROP, and 0-shot results for all other benchmarks. Notably, AXb,1038

AXg, and RTE are used for Textual Entailment tasks; COPA, ReCoRD, HellaSwag, PIQA, and SIQA for1039

Commonsense Reasoning tasks; BBH for Complex Textual Reasoning; LogiQA for Logical Reasoning;1040

DROP for Discrete Reasoning; and Qasc for Multi-hop Inference.1041

Mathematical Reasoning. The average performance is reported using GSM8K (Cobbe et al., 2021)1042

and MATH (Hendrycks et al., 2021c). GSM8K represents Base Mathematical Reasoning, while MATH1043

represents Advanced Mathematical Reasoning. These test sets are all evaluated with 4-shot results.1044

Textual Understanding. The average performance is reported using RACE (Middle and High) (Lai et al.,1045

2017), OpenbookQA (Mihaylov et al., 2018), Xsum (Narayan et al., 2018), and LAMBADA (Paperno1046

et al., 2016). RACE (Middle and high) and OpenbookQA are used for Reading Comprehension tasks,1047

Xsum for Content Summary tasks, and LAMBADA for Content Analysis tasks. These test sets are all1048

evaluated with 0-shot results.1049

Long Context. The model’s ability in long text understanding and reasoning is represented using1050

English datasets within Longbench (Bai et al., 2023b).1051

Code Generation. We report the average pass@1 scores of models on HumanEval (Chen et al., 2021)1052
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Ability Test DaseSet

Language Modeling
Word Definition WiC (0- shot)

Coreference Resolution WSC (0- shot)
Multi-language Question Answering TyDiQa (0- shot)

Knowledge Knowledge Question Answering
BooIQ (0- shot)

CommonSenseQA (8- shot)
NaturalQuestions (0- shot)

Textual lnference

Textual Entailmen
AXb (0- shot)
AXg (0- shot)
RTE (0- shot)

Commonsense Reasoning

COPA (0- shot)
ReCoRD (0- shot)

HellaSwag (0- shot)
PIQA (0- shot)
SIQA (0- shot)

Complex Textual Reasoning BBH (3- shot)
Logical Reasoning LogiQA (0- shot)
Discrete Reasoning DROP (2- shot)
Multi hop inference Qasc (0- shot)

Mathematical Reasoning Base Mathematical Reasoning GSM8K (4- shot)
Advanced Mathematical Reasoning MATH (4- shot)

Textual Understanding
Reading Comprehension RACE (0- shot)

OpenbookQA (0- shot)
Content Summary Xsum (0- shot)
Content Analysis LAMBADA (0- shot)

Long Context Long Context Understanding LongbenchLong Context Reasoning

Code Generation Code Generation MBPP (1- shot)
HumanEval (0- shot)

Examination Junior High, High School, University,
Professional Examinations

ARC (0- shot)
MMLU (5- shot)
AGIEval (0- shot)

Safety Safety TruthfulQA (0- shot)

Table 2: Classification of the Test Data.

and MBPP (Austin et al., 2021). MBPP is evaluated with 1-shot results, while HumanEval is evaluated 1053

with 0-shot results. 1054

Examination. The average performance is reported using ARC (easy and challenge) (Clark et al., 2018), 1055

MMLU (Hendrycks et al., 2021b,a), and AGIEval (Zhong et al., 2023). We report 5-shot results for 1056

MMLU and 0-shot results for all other benchmarks. It is worth noting that for AGIEval, we only selected 1057

English datasets. 1058

Safety. Performance is represented using TruthfulQA, evaluated with 0-shot results. 1059

D Target DaseSet 1060

The CodeAlgorithm corpus contains building on the leetcode dataset created by Hartford (2023), selected 1061

17 of the most important algorithms. Following the methodology of Wang et al. (2022), for algorithm 1062

types with not enough size, we utilized GPT-4 OpenAI et al. (2023) for data augmentation to ensure 1063

a minimum of 2, 000 samples per algorithm. Furthermore, to ensure the model’s Unlearning pertains 1064

to the algorithms themselves and not to a specific programming language, each algorithm problem was 1065

represented in five language formats: C++, Python, Java, JavaScript, and pseudocode. 1066

The CodeLanguage dataset is derived from the GitHub portion of the Redpajama dataset Computer 1067

(2023). In terms of language selection, based on the characteristics of programming languages, this study 1068

chose 15 types, including Object-Oriented, Procedure-oriented, Declarative programming, Scripting, 1069

frontend and other common languages. It is specifically filtered to include data where a single language 1070

proportion for more than 99.99% of the content and the total length is in excess of 2000 bytes, aiming to 1071

isolate target data for a specific language. From this filtered data, 2000 samples are randomly selected for 1072

each language to constitute the CodeLanguage dataset. 1073

The Arxivs dataset is constructed based on the Arxiv part of the Redpajama dataset Computer (2023), 1074

which is further divided into eight main categories. Randomly select 2000 samples from each category to 1075
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Target Data name

Redpajama
C4 Github Books

ArXiv Wikipedia StackExchange

CodeLanguage

C C++ CSS
HTML Java Python
PHP JavaScript Shell

R Web Ontology Language SQL
TeX ASP Prolog

CodeAlgorithm

Backtracking Binary Search Binary Search Tree
Binary Tree BreadthFirst Search DepthFirst Search

Divide and Conquer Dynamic Programming Graph
Greedy Heap (Priority Queue) Ordered Set

Recursion Sorting Stack
Tree Two Pointers

ArXiv
Physics Mathematics Computer Science

Quantitative Biology Quantitative Finance Statistics
Electrical Engineering

StackExchanges
StackExchange quality

score lower
StackExchange quality

score higer

Table 3: Classification of the Target-Data.

form the Arxiv dataset.1076

The StackExchanges dataset is constructed from the StackExchanges segment of the Redpajama1077

dataset Computer (2023), comprising Q&A pairs that have garnered more than 5 “likes”. Subsequently, it1078

is segregated into two tiers based on the count of “likes”. The underlying rationale is that the number of1079

“likes” is indicative of an answer’s quality and popularity. Consequently, these five subsets encompass1080

samples ranging in quality and popularity from the lowest to the highest.1081

E Experimental Result and Joint Impact of Multiple Ability on Model Capabilities1082
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Figure 8: The first part of results for Unlearning different types of datasets
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Figure 9: The second part of results for Unlearning different types of datasets
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Figure 10: The third part of results for Unlearning different types of datasets
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Figure 11: A correlation matrix based on the model’s performance across 48 Unlearning tasks after experiencing
data Unlearning.
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