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Abstract

In the context of average-reward reinforcement
learning, the requirement for oracle knowledge
of the mixing time, a measure of the duration
a Markov chain under a fixed policy needs to
achieve its stationary distribution, poses a sig-
nificant challenge for the global convergence of
policy gradient methods. This requirement is par-
ticularly problematic due to the difficulty and ex-
pense of estimating mixing time in environments
with large state spaces, leading to the necessity
of impractically long trajectories for effective gra-
dient estimation in practical applications. To ad-
dress this limitation, we consider the Multi-level
Actor-Critic (MAC) framework, which incorpo-
rates a Multi-level Monte-Carlo (MLMC) gradi-
ent estimator. With our approach, we effectively
alleviate the dependency on mixing time knowl-
edge, a first for average-reward MDPs global con-
vergence. Furthermore, our approach exhibits
the tightest available dependence of O (y/Tmiz)
known from prior work. With a 2D grid world
goal-reaching navigation experiment, we demon-
strate that MAC outperforms the existing state-of-
the-art policy gradient-based method for average
reward settings.

1. Introduction

In reinforcement learning (RL) problems, temporal depen-
dence of data breaks the independent and identically dis-
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tributed (i.i.d.) assumption commonly encountered in ma-
chine learning analyses, rendering the theoretical analysis
of RL methods challenging. In discounted RL, the impact
of temporal dependence is typically mitigated, as the effect
of the discount factor renders the stationary behavior of
the induced Markov chains irrelevant. On the other hand,
in average-reward RL, stationary behavior under induced
policies is of fundamental importance. In particular, un-
derstanding the effect of mixing time, a measure of how
long a Markov chain takes to approach stationarity, is criti-
cal to the development and analysis of average-reward RL
methods (Suttle et al., 2023; Riemer et al., 2021). Given
the usefulness of the average-reward regime in applications
such as robotic locomotion (Zhang & Ross, 2021), traffic
engineering (Geng et al., 2020), and healthcare (Ling et al.,
2023), improving our understanding of the issues inherent
in average-reward RL is increasingly important.

Key to theoretically understanding a learning method is
characterizing its convergence behavior. For a method to be
considered sound, we should ideally be able to prove that,
under suitable conditions, it converges to a globally optimal
solution while remaining sample-efficient. Convergence to
global optimality of policy gradient (PG) methods (Sutton
& Barto, 2018), a subset of RL methods well-suited to prob-
lems with large and complex state and action spaces, has
been extensively studied in the discounted setting (Bhandari
& Russo, 2024; Liu et al., 2020; Bedi et al., 2022; Gaur et al.,
2023; Mondal & Aggarwal, 2024; Gaur et al., 2024). Due
to gradient estimation issues arising from the mixing time
dependence inherent in the average-reward setting, how-
ever, the problem of obtaining global optimality results for
average-reward PG methods remained open until recently.

In Bai et al. (2024), the Parameterized Policy Gradient with
Advantage Estimation (PPGAE) method was proposed and
shown to converge to a globally optimal solution in average-
reward problems under suitable conditions. However, the
implementation of the PPGAE algorithm relies on oracle
knowledge of mixing times, which are typically unknown
and costly to estimate, and requires extremely long trajec-
tory lengths at each gradient estimation step. These draw-
backs render PPGAE costly and sample-inefficient, leav-
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ing open the problem of developing a practical average-
reward PG method that enjoys global optimality guaran-
tees. Recently, Suttle et al. (2023) proposed and analyzed
the Multi-level Actor-critic (MAC) algorithm, an average-
reward PG method that enjoys state-of-the-art sample com-
plexity, avoids oracle knowledge of mixing times, and lever-
ages a multi-level Monte Carlo (MLMC) gradient estima-
tion scheme to keep trajectory lengths manageable. Despite
these advantages, convergence to global optimality has not
yet been provided for the MAC algorithm.

In this paper, we establish for the first time convergence to
global optimality of an average-reward PG algorithm that
does not require oracle knowledge of mixing times, uses
practical trajectory lengths, and enjoys the best known de-
pendence of convergence rate on mixing time. To achieve
this, we extend the convergence analysis of (Bai et al., 2024)
to the MAC algorithm of (Suttle et al., 2023), closing an out-
standing gap in the theory of average-reward PG methods.
In addition, we provide goal-reaching navigation results
illustrating the superiority of MAC over PPGAE, lending
further support to our theoretical contributions. We summa-
rize our contributions as follows:

* We prove convergence of MAC to global optimality in
the infinite horizon average-reward setting.

* Despite lack of mixing time knowledge, we achieve
a tighter mixing time dependence, O (‘ /Tmm), than
previous average-reward PG algorithms.

* We highlight the practical feasibility of MAC com-
pared with PPGAE by empirically comparing their
sample complexities in a 2D gridworld goal-reaching
navigation task where MAC achieves a higher reward.

The paper is organized as follows: in the next section we
given an overview of related works in policy gradient algo-
rithms and mixing time; Section 3 describes general problem
formulation for average-reward policy gradient algorithms
and then specifically details the MAC algorithm along with
PPGAE from (Bai et al., 2024); Section 4 presents our global
convergence guarantees of MAC and provides a discussion
comparing the practicality of MAC to PPGAE. We also pro-
vide a 2D gridworld goal-reaching navigation experiment
where MAC achieves a higher reward than PPGAE. We then
end paper with conclusions and discussion of future work.

2. Related Works

In this section, we provide a brief overview of the related
works for global optimality of policy gradient algorithms
and for mixing time.

Policy Gradient. Convergence to global optimality of pol-
icy gradient methods has been established for softmax (Mei

et al., 2020) and tabular (Bhandari & Russo, 2024; Agarwal
et al., 2020) parameterizations. For the discounted reward
setting, (Liu et al., 2020) provided a general framework
for global optimality for PG and natural PG methods for
the discounted reward setting and the optimal convergence
rate guarantees have been studied in (Mondal & Aggarwal,
2024). Recently, Bai et al. (2024) adapted this framework
for the average-reward infinite horizon MDP with general
policy parameterization. In this work we apply this frame-
work for the MAC algorithm to introduce a global optimality
analysis in the average-reward setting with no oracle knowl-
edge of mixing time.

Mixing Time. Previous works have emphasized the chal-
lenges and infeasibility of estimating mixing time (Hsu et al.,
2015; Wolfer, 2020) in complex environments. Recently,
Patel et al. (2023) used policy entropy as a proxy variable for
mixing time for an adaptive trajectory length scheme. Pre-
vious works that assume oracle knowledge of mixing time
such as Bai et al. (2024); Duchi et al. (2012); Nagaraj et al.
(2020) are limited in practicality. In the Multi-level Actor-
Critic (MAC) scheme proposed in Suttle et al. (2023), this
assumption was relaxed while still recovering SOTA con-
vergence by leveraging Multi-level Monte Carlo (MLMC)
gradient estimation along the lines introduced by Dorfman
& Levy (2022). In this paper, we establish the global con-
vergence of MAC and highlight its tighter dependence on
mixing time without requiring oracle knowledge of mixing
time. We highlight the contributions and advancements of
this paper compared to prior art (Bai et al., 2024; Dorfman
& Levy, 2022; Suttle et al., 2023) in Table 2.

3. Problem Formulation
3.1. Average Reward Policy Optimization

The average-reward reinforcement learning problem may
be formalized as a Markov decision process M :=
(S, A,P,r), where S and A are the finite state and action
spaces, respectively, P(- | s, a) maps the current state s € S
and action a € A to the conditional probability distribu-
tion of next state s’ € S, and r : S X A — [0, Tmax] 1S
a bounded reward function. An agent, starting from state
s¢ € S, selects actions a; € A which causes a transition
to a new state s;y1 ~ P(- | s¢, a¢), while the environment
reveals a reward (s, a;). Actions are selected according
to a policy 7 (- | s), which is a distribution over action space
A given current state s. The goal in this setting is to find a
policy m maximizing the long-term average reward

T
. 1
J(m) == TlgnooE [T Zr(st, at)] .
t=0
We consider the parameterized setting this work, where the
policy is parameterized by a vector § € R?, where g denotes
the parameter dimension, and the policy dependence on 6 is
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Table 1. This table compares the different policy gradient algorithms for the average reward setting and their global convergence rates.
Out of all the papers with an explicit dependence on mixing time, MAC from (Suttle et al., 2023), which we analyze in this paper, has the

tightest dependence.
Algorithm Reference Mixing Time Known | Mixing Time Dependence | Convergence Rate | Parameterization
FOPO (Wei et al., 2021) Yes N/A o <T‘ %> Linear
OLSVLFH (Wei et al., 2021) Yes N/A o (T* %> Linear
MDP-EXP2 (Wei et al., 2021) Yes 0 (Vi) o(r%) Linear
PPGAE (Bai et al., 2024) Yes O (m2,,) o <T - %> General
MAC (This work) | (Suttle et al., 2023) No O (/Tmiz) o (%) General

Table 2. This table highlights the contributions of this work compared to prior work in global optimality (Bai et al., 2024) and mixing

time (Dorfman & Levy, 2022; Suttle et al., 2023).

. Mixing Time .
Reference Global Optimality General I?Oh?y Assumptions Practical Number
Parameterization of Samples
Removed
(Dorfman & Levy, 2022) X X v v
(Suttle et al., 2023) X v v v
(Bai et al., 2024) v v X X
This Work v v v v

indicated via the notation 7. Parameterization in practice
can vary widely, from neural networks to tabular representa-
tions. This work, like in (Bai et al., 2024), aims to provide a
global convergence guarantee with no assumption on policy
parameterization. With this notation, we can formalize the
objective as solving the following maximization problem:

mOaX J(T‘—G) = Th—1>noo Est+1N]P’(»\st,at),atrwﬁg(»\st) [RT] ; (1)

where Ry := 7 Z;T:O r(st, at). Observe that, in general,
(1) is non-convex with respect to 6, which is the critical chal-
lenge of applying first-order iterations to solve this problem
—see (Zhang et al., 2020; Agarwal et al., 2020). We further-
more define the stationary distribution induced by a given
policy 7y to be

T—1

d™ (s) = Tlgnoo% tz:; Pr(st = s|so ~ p,m)| . (2)
As we will later discuss, the induced d™ for a given 0 is
unique and is therefore agnostic to initial distribution p,
due ergodicity assumptions. We are now able to express
the average reward with respect to d™ induced by a pa-
rameterized policy as J(mg) = Esgmo g, [1(s, a)]. This
equation reveals the explicit dependence our optimization
problem has on d". It is assumed that the data sampled
comes from the unique stationary distribution. Any samples
that are generated before the induced Markov Chain reaches
a stationary distribution are known as burn-in samples and
can lead to noisy gradients. Thus, knowing the number of
timesteps it takes an induced Markov Chain to reach its sta-
tionary distribution is a crucial element for policy gradient

algorithms. The formally capture this notion, the quantity is
known as mixing time T,,;, is defined as follows.

Definition 1 (e-Mixing Time). Let d™ denote the stationary
distribution of the Markov chain Py induced by my. Let

m(t;0) == sup | P (-|s) —d™ ()| zv, ©)
sES

where || - ||y is the total variation distance. The e-mixing
time of a Markov chain parameterized by 6 is defined as

T,,GMI(E) = 1inf{t : m(¢;0) < e}, (€))

In PG and other analyses of mixing time, it is useful to

define 78, = 7. (1/4), as it implies the result that

m(l78,..;0) < 27!} (Dorfman & Levy, 2022). Finally,
given a timestep T' € N, we define 7,,;; = max;c[7) Tﬁfim.
In prior works such as (Duchi et al., 2012; Nagaraj et al.,
2020; Bai et al., 2024; Wei et al., 2021), 72, is assumed to
be known. However, for complex environments this is rarely
the case (Hsu et al., 2015; Wolfer, 2020). In Section 3.4 we
discuss the Multi-level Actor-Critic algorithm and how it
relaxes this assumption. We will first briefly introduce the

elements of a vanilla actor-critic in Section 3.3.

To do so, we define the action-value (@) function as

oo

Q™ (s,a) =E| Y [r(se,a) — J(mo)] |, 5)

t=0

such that sp = s, a9 = a, and action a ~ 7. We can then further
write the state value function as

V7(5) =Eqrmy(5)[Q™ (5, a)]. ©)
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Using Bellman’s Equation and the definitions (5) and (6),
we can write (Puterman, 2014)

V7™ (s) = E[r(s,a) — J(me) + V™ (s')], 7

where the expectation is over a ~ my(-|s), s’ ~ P(+|a, s).
We also define the advantage function by

AT (s,a) £ Q" (s,a) — V™(s). (8)

With this, we can now present the well-known policy gradi-
ent theorem established by (Sutton et al., 1999),

Lemma 1. The gradient of the long-term average reward
can be expressed as follows.

VoJ(0) =Eswaro amrg(-1s)|A"° (5,a)Vologme(als)|. (9)

PG algorithms maximize the average reward by updating 0

using a gradient ascent step with stepsize o !,

9t+1 =0; + CleQJ(ﬂ'et), (10)

Normally, average-reward policy gradient algorithms esti-
mate the advantage function with a simple average of all
reward values observed during a trajectory. In (Bai et al.,
2024) they propose an advantage estimation algorithm that
estimates () and V' values from the trajectories sampled by
splitting them into sub-trajectories. However, they propose
dividing the trajectory into sub-trajectories, where the length
of the length of trajectory and sub-trajectories are functions
of mixing time. Thus, we aim to provide a global conver-
gence guarantee of an algorithm that has no requirement of
knowing mixing time. This goal motivates us to select MAC
which has no such requirement but lacks global convergence
analysis. We give an high-level overview of the algorithm
from (Bai et al., 2024) in the following subsection.

3.2. Parameterized Policy Gradient with Advantage
Estimation

Recently, (Bai et al., 2024) proposed a PG algorithm, Param-
eterized Policy Gradient with Advantage Estimation (PP-
GAE), and derived its global convergence gaurantee in the
average reward setting for general policy parameterization.
PPGAE defines K as the number of gradient updates, H as
the length of trajectory, and 7" as the sample budget of the
entire training process. Therefore, we can express them in
terms of each with K = T/ H. To formulate the policy gra-
dient update at the end of the trajectory, the advantage value
of each sample collected in a trajectory is then estimated
based on the reward values observed in the samples. A more
detailed description of the PPGAE algorithm can be found
in the Appendix. In PPGAE, H = 1671t Tyix VT (log T')?,
where 7,5, hitting time is defined as below:

1
Thit '= Max max
‘ 6 ses dTe (8)

. (11)

'With slight abuse of notation, we use ¢ as an index for sample
number and gradient update to align with prior work in mixing
time (Suttle et al., 2023; Dorfman & Levy, 2022).

Intuitively, it is the amount of time to reach all states in the
state space. If the induced Markov Chain is ergodic, then
Thit 1S finite because each state in S has a non-zero chance
of being reached. Similar to mixing time, hitting time is
also defined by the stationary distribution of a given policy.
Thus, its estimation also suffers from the same difficulties
as mixing time estimation.

The algorithm relies on knowing the mixing time and hitting
time to calculate H, restricting its use case to simple envi-
ronments with small state spaces where they can be feasibly
be estimated. This requirement becomes more impractical
as the state space or environment complexity increases (Hsu
et al., 2015; Wolfer, 2020). Furthermore, even if mixing
time and hitting time are known, by definition of trajectory
length, H, the minimum sample budget, 7', required for
the number of updates, K, to be at least one is practically
infeasible as we will explain in Section 4. In this work,
we utilize a variant of the actor-critic (AC) algorithm that
is able to estimate the advantage with a trajectory length
scheme that has no dependence on mixing time, hitting time,
and total sample budget as we will explain in more detail in
the following sections.

3.3. Actor-Critic Algorithm

The AC algorithm alternates between a actor and a critic.
The actor function is the parameterized policy 7y and the
critic function estimates the value function V7 (s). We can
rewrite the policy gradient theorem in terms of the temporal
difference (TD), 6™

Vo () =

B a6 ammy(-|s),s'~p(-|s,a) |0 Vo logma(als)|, (12)

where 0™ = r(s,a) — J(0) + V™ (s") — V7™ (s). We
can see that the TD is an estimation of the advantage term.
Actor-critic algorithms provide a greater stability that al-
ternative PG algoirhtms, such as REINFORCE (Williams,
1992) and PPGAE that estimate the advantage with a sum
of observed rewards. The stability comes from the learned
value estimator, the critic function, being used as a baseline
to reduce variance in the gradient estimation.

Because the scope of this work focuses on the global conver-
gence for the actor, we assume that the critic function is the
inner product between a given feature map ¢(s) : S — R™
and a weight vector w € R™. This assumption allows the
critic optimization problem we describe below to be strongly
convex.

We denote the critic estimation for V™ (s) as V,(s) =
(¢(s),w) and assume that ||¢(s)|| < 1forall s € S. The
critic aims to minimize the error below,

melg d™(s) (V™ (s) — Viu(s))?. (13)
seS
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By weighting the summation by d™(s), it is more imper-
ative to find an w that accurately estimates of V' value at
states where the agent has a higher probability of being in
the long-run. The gradient update for w is given as

wir =g [we — Be(r(se, ar) — J(m,) + (d(st41), we)
— (B(se), we)) p(s0)], (14)

where [ is the critic learning rate. Because the critic update
in (14) relies on J (7, ), which we do not have access to, we
can substitute a recursive estimate for the average reward
as i1 = n — Ye(ne — (8¢, ar)). We now write the AC
updates as

Net1 =Nt — Ve - ft, (reward tracking)
wi+1 =llo [wt =Bt gt],

011 =0t + ay - hy,

(critic update)
(actor update) (15)

where we have

fe=ne —1(s¢, ar),
g =(r(s¢,ae) — 1t 4 (P(s041) — P(5¢),we)) B(s¢),
he =870 - Vg log mo, (at|st),
0T =r(se, ar) — ne + (P(se41) — d(se), we)- (16)

As the critic and reward tracking are vital to average-reward
AC, we incorporate the critic and average-reward tracking
errors in our global convergence analysis of the actor. One
drawback of most vanilla AC algorithms is their assump-
tion on the decay rates of mixing time. Under ergodicity,
Markov Chains induced by 7y reach their respective d™¢ ex-
ponentially fast, i.e., for some p € [0,1],m(t;0) < O (p').
However, most vanilla AC analyses assume there exists
some p such that, for all 6, m(¢;0) < O (p"). This assump-
tion sets an upper limit on how slow-mixing an environment
can be for the algorithm to handle. In the following section,
we provide an overview of the AC variant, MAC, that will
provide tighter dependence on mixing time despite without
oracle knowledge and with no limit on p.

3.4. Multi-level Actor-Critic

Recent work has developed the Multi-Level Actor-Critic
(MAC) (Suttle et al., 2023) that relies upon a Multi-level
Monte-Carlo (MLMC) gradient estimator for the actor,
critic, and reward tracking. Let J; ~ Geom(1/2) and we
collect the trajectory T; := {s%,al, 7%, st 22:1 with policy
mp,. Then the MLMC policy gradient estimator is given by
the following conditional:

27 (Rt — pJ ), i 270 < Toax
hi\/[LJVIC’ _ h? + (h; t ), i = (17)
0, otherwise

. . i o
with b = o S h(By; 5%, al) and where Thay > 2. We
note that the same formula is used for MLMC gradient esti-
mators of the critic, gM £ and reward tracker, fMEMC,

As we will see from Lemma 2, the advantage of the MLMC
estimator is that we get the same bias as averaging T' gra-
dients with O (1) samples. Drawing from a geometric dis-
tribution has no dependence on knowing what the mixing
time is, thus allowing us to drop the oracle knowledge as-
sumption previously used in works such as (Bai et al., 2024).
To reduce the variance introduced by the MLMC estima-
tor, (Dorfman & Levy, 2022; Suttle et al., 2023) used the
AdaGrad stepsize scheme (Duchi et al., 2011; Levy, 2017).

4. Global Convergence Analysis

In this section we provide theoretical guarantee of the global
convergence of MAC from (Suttle et al., 2023).

4.1. Preliminaries

In this section, we provide assumptions and lemmas that
will be used in our global convergence analysis below.

Assumption 1. For all 8, the parameterized MDP M, in-
duces an ergodic Markov Chain.

Assumption 1 is typical in many works such as (Suttle et al.,
2023; Pesquerel & Maillard, 2022; Gong & Wang, 2020;
Bai et al., 2024). As previously mentioned, it ensures all
states are reachable, and importantly also guarantees the
existence of a stationary distribution d™¢ for any induced
Markov Chain.

Because we parameterize the critic using linear function
approximation, for a fixed policy parameter 6 the tempo-
ral difference will converge to the minimum of the mean
squared projected Bellman error (MSPBE), as discussed in
(Sutton & Barto, 2018).

Definition 2. Denoting w*(6) as the fixed point for a given

6, and for a given feature mapping ¢ for the critic, we define
the worst-case approximation error to be

Eipi® = 5up\/Bumy [0(s) 7" (0) = Vo ()", (19)

which we assume to be finite. With a well-designed feature

map, £5741°¢ will be small or even 0. We will later see that by

assuming £ = 0 we recover the O (T - %) dependence

as in (Bai et al., 2024).

Assumption 2. Let {mg}ycgra denote our parameterized
policy class. There exist B, R, L > 0 such that

1. ||[Viogmg(als)|| < B, forall § € R?,

2. [|[V1ogmg(als) — Viogmyr(als)|| < R||6 — ¢'||, for all
9,0 € RY,

3. |me(als) — mg: (als)| < L||@ — @), forall 6,6" € R?.

Assumption 2 establishes regularization conditions for pol-
icy gradient ascent and has been widely used in prior work,
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including (Suttle et al., 2023; Papini et al., 2018; Kumar
et al., 2019; Zhang et al., 2020; Xu et al., 2020; Bai et al.,
2024). This assumption is vital for presenting our modified
general framework for non-constant stepsize in Lemma 6, as
B, R, L will appear in our bound for the difference between
optimal reward and the average cumulative reward.

Assumption 3. Define the transferred policy function ap-
proximation error as

Lygs oo (5, 0) =
E[(Vologme(als) - by — A™(s,a))’],  (19)

where expectation is over s ~ dj ,a ~ 7*(:[s), 7" is the

optimal policy, and h} is given by

hy = arg }Iblelgi Es~d;§9 Eonry(]s) {
9 (20)
(VG log mo(als) - h — A™ (s, a)) } .

We assume that the error satisfies Ly .. (hy,0) < 53;;0’
T,

gactor

for any 6 € ©, where app

is a positive constant.

Assumption 3 bounds the error that arises from the pol-
icy class parameterization. For neural networks, 53;;”
has been shown to be small (Wang et al., 2019), while for
softmax policies, 83;;07" = 0 (Agarwal et al., 2021). This
approximation assumption has also been used in (Bai et al.,
2024) and is important to generalizing the policy parameter-
ization in the convergence analysis, since, as we will later
see in Section 4, 53;;,” will appear as an independent term
in the final bound.

For our later analysis, we also define recall the definition of
the Fisher information matrix F'(6):

F(0) =EsuqmoBanr,(|s) [V@ log 7o (als)(Ve log 7r9(a|s))T] .

We can now also express hj; defined in (20) as
hy = F(G)TEswdwe Eqry(-1s) [Vologmg(als)A™ (s,a)],

where 1 denotes the Moore-Penrose pseudoinverse.

Assumption 4. Setting I as the identity matrix of the same
dimension as F'(0), let there exist some positive constant
wp such that F(0) — uplp is positive semidefinite.

Assumption 4 is a common assumption for global conver-
gence of policy gradient algorithms (Liu et al., 2020; Bai
et al., 2024). This assumption will be useful later in our
analysis by translating the general framework proposed in
Lemma 6 into terms of ||V.J(6;)]|°, which allows us to lever-
age the analysis of the local convergence rate of MAC given
in (Suttle et al., 2023). We then can use the convergence rate
bound established by (Suttle et al., 2023), which is stated in
Lemma 4 below.

Lemma 2. Let jae = |log Thaz |- Fix 0, measurable
w.rt. Fy 1. Assume Taw > 7045, |VJ(0)| < G, for
all 0, and |hY || < Gy, for all N € [Ty42) Then

Eoy [B7M] = B[] @1
E [[I1"*€] < O (Gl 10g Tas ) +
81og(Tmaz)Tmaz (E(t)+
16B2(E5riFe)?, (22)

app
E[|VJ(6;) — hime=||* < O (GH o, 108 Tmas T’W)

mzCL Tma:l:

+ & () +16B*(ESH)?. (23)

Lemma 2 provides a bound for the variance of the MLMC
gradient estimator and will be integral to our analysis.

(1 + t)iuva =
1+t

Lemma 3. Let f; = v =
ag/\/zizlllhi”mcllgy and o), =
0<v<o<l Then
1 T
v—1 —2(oc—v
Z3Ew <o () +o (17 )
t=1
+ 6 (Tmz’m log TmaX) @ (T_V)

~ log Timax
i . 24
+ 0 (T £ L ) 24)

, where

By setting v = 0.5 and o = 0.75 leads to the following:

i (Tmiz log Tmax) O (Tﬁé)

~ log Timax
+ 0 (T i L ) 25)

’ﬂ \

Lemma 3, which is established by (Suttle et al., 2023), states
the convergence rate of the critic with an MLMC estima-
tor. This result directly affects the following overall MAC
convergence rate from (Suttle et al., 2023):

Lemma 4. (MAC Convergence Rate) Assuming J(0) is

L-smooth, supy |J(0)| < M, and |[VJ(0)]], |hMEMC|| <
Gy, then, for all 0, t and under the assumptions of Lemma

3, we have that
critic Tmix 10g Tmax
<0 (ei) + O (Mg )

4 O (T’"LZ‘L log Tvmax) . (26)

T

Z |VJ (6:) H

Tmax

Both Lemmas 3 and 4 rely on the convergence of the er-
ror in average reward tracking, provided in Lemma D.1 of
(Suttle et al., 2023). However, we have noticed that there

isa O ( w) term in Lemma D.1 that should

TI[laX
actually absorb the 0] (%) term in (25) and (26).

max
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We provide a correct version of the proof in the Appendix,

where we were able to remove the square root.

Finally, we will use the following result to manipulate the
AdaGrad stepsizes in the final result of this section.

Lemma 5. Lemma 4.2, (Dorfman & Levy, 2022). For any
non-negative real numbers {a;}icn),

@7

4.2. Global Convergence Guarantee

To develop our convergence analysis, we present a modified

version of the general framework proposed in (Bai et al.,

2024) to accommodate non-constant stepsizes such as those
used in AdaGrad with MLMC gradient estimator hM ZM¢.

Lemma 6. Suppose an MLMC gradient ascent algorithm

updates the policy parameter in the following way, using
RMLMC _ p,.

9t+1 = 9t + Oétht. (28)

When Assumptions 2, 3, and 4 hold, we have the following
inequality for any T':

1 LB d
*_ < actur -
J T; (00) < Ve + Z
- (29)
R 2, 1
72 o [lhel” + ZOT sman* Gty
where hy = h;tand h;‘)t is defined in (20), J* = J(0%),
T = mp«, where 0% is the optimal parameter, and (; =

[KL(m"(-]s)l[ma (-|5)) — “Cls)lImor . (13))]:

We provide a proof of the above lemma in Appendix A. The
proof is similar to that of (Bai et al., 2024) with a notable
difference that the non-constant stepsize does not allow us
to simplify the telescoping summation in the last term. As
will be seen later on in the analysis, we address this issue
by bounding «; with a suitable constant.

KL(w

Theorem 1. Let {Gt}thl be defined as in Lemma 6. If assump-

tions 1, 2, 3, 4 hold and J(-) is L-smooth, then the following
inequality holds.

T
1 V me: max 10g Trndx
R E|[J 0 < gacto'r + O
R
+ (’9" ( V Tmix log Tmax)

T4
+(5<

The proof of the above can be found in Appendix B. We

+ gcrztzc

app

Tmiz 1Og Tmax
Tmax
(30)

here provide a proof sketch to highlight the main mechanics.

)

Proof sketch. We first rewrite the bound on the expectation
in (29) into terms of (22) of Lemma 2 and (26) of Lemma 4.
The expectation in the second term on the right-hand side
(RHS) of (29) can then be bounded as follows using Lemma
2 and Assumption 4:

T T

1 * 1 .'m.a'r

T S Elhe —hil| < J T S Elhre — V6,2
t=1 t=1

J ;i (2+ % ) B[Iw0s612).

For the third term of the RHS of (29), we can use Lemma 5
to obtain that

(3N

R

32
T (32

T
> lhe 2.

t=1

R T
oT > ad|lhal® <
t=1

We bound the fourth term as follows, using the fact that it is

a telescoping sum and that ap < ay, ap = W:
t=1 1t

ii B[] < Bemar [KLE Cls)lo, (15))]
1 T
x| S 2. (33)

t=1

Plugging these bounds back into (29) and ignoring constants,
we obtain that

T

el

t=1

1 & 1
I =7 2 B0 < VEET + 7

T
1 .
" $ LS B - V)]
t=1
T
Z [nw 0 H?}

(34)

Bounding the the second and third term by the RHS with
Lemmas 2 and 4 respectively concludes the proof.

Remark. With Theorem 1, we can recover the O (T _i)

as in (Bai et al., 2024). Furthermore, MAC has a tighter
dependence on mixing time with O (M) compared to
the O (72,,) in (Bai et al., 2024), despite having no prior
knowledge of mixing time due to the combination of MLMC
gradient estimation and AdaGrad stepsize. Similar to (Bai
et al., 2024), the independent term 8;’;;0” > 0 accounts for
the general policy parameterization. However, our bound
has no dependence on hitting time like that in (Bai et al.,
2024), as their dependence was a result of their advantage
estimation algorithm described in Section 3.2.
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Discussion on Practicality. In this section, we want to
highlight how practically feasible it is to implement MAC
as compared to PPGAE. As mentioned previously, PP-
GAE defines T as the sample budget of the entire train-
ing process, K as the number of gradient updates, and
H = 167334 Tymie VT (log(T))? as the length of one update,
whence K = T'/H. Since K represents the number of up-
dates, it must be a positive integer. For K = T'/H < 1, this
is equivalent to % < 16714 Tmiz- Even if 7 = 10
and T,,i» = 1, H ~ 6.6 %« 10°. Since 75,;+ can become in-
finitely large and 7,4, grows with environment complexity,
in practice H would be much higher. As Figure 1 shows, if
we set 7x;+ = 10, then, as mixing time increases, the min-
imum episode length H increases exponentially to satisfy
K > 1. Even at 7y, = 60, the minimum H is around 10
samples.

lel4

minimum H
=
(9,]

0.0{ ee o °
0 20 0 60 80 100
mixing time

Figure 1. Minimum H required for K = 1 given a mixing time
Tmiz- Both H and T, are in terms of number of samples. We
set the hitting time to be 10 for this plot.

In contrast, for MAC the trajectory length is based on a
geometric distribution with no dependence on mixing time,
hitting time, or total sample budget.

4.3. Experimental Results

As a preliminary proof-of-concept experiment to show the
advantage of MAC over PPGAE, Vanilla AC, and REIN-
FORCE, we consider a 15-by-15 sparse gridworld environ-
ment. The agent tries to from the top left to bottom right
corner. The agent receives a reward of +1 if goal is reached
and 40 else. The episode ends when the agent either reaches
the goal or hits a limit of 200 samples. We report a moving
average success rate over 100 trials with 95% confidence
intervals in Figure 2. We can see that MAC has a higher
success rate and can more consistently reach the goal than
the baselines.

— MAC
0.4 Vanilla AC

—— REINFORCE
—— PPGAE /_/—’ﬂ/_————’___

@ 0.3

[

x

A

302

v

=

("2}

0.1

0 50 100 150 200 250 300
Episodes

Figure 2. Success Rate in a sparse 15-by-15 grid over 300 training
episodes with 200 samples per episode. For MAC, Tha = 4
and for PPGAE, H = 200 and N = 1. Vanilla AC and REIN-
FORCE both have H = 200. and 100 trials for each algorithm.
PPGAE, Vanilla AC, and REINFORCE consistently converge to
significantly less optimal solutions than MAC.

5. Conclusion and Further Work

In this work, we provide policy gradient global convergence
analysis for the infinite horizon average reward MDP with-
out restrictive and impractical assumptions on mixing time.
Using MAC, we show that actor-critic models, utilizing a
MLMC gradient estimator, achieves a tighter dependence
on mixing time for global convergence. We hope this work
encourages further investigation into algorithms that do not
assume oracle knowledge of mixing time. Future work can
also further test the advantages of MAC in slow mixing
environments for robotics, finance, healthcare, and other
applications.

Followed by this work, (Ganesh et al., 2024) has proposed
an algorithm that achieves convergence rate of o (T_%>,
while requiring knowledge of mixing time. Coming up with
such guarantees without knowledge of mixing time is an
open problem.
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Appendix
A. Proof of Lemma 6

In this section, we provide a bound for the difference between the optimal reward and the cumulative reward observed up to
trajectory 7' that will be used as our general framework for the global convergence analysis. Our framework is a modification
from (Bai et al., 2024) in that it can handle non-constant stepsizes. The framework provided in (Bai et al., 2024) is itself
an average reward adaptation of the framework provided by (Liu et al., 2020) for the discounted reward setting. We first
provide a supporting result in the form the average reward performance difference lemma:

Lemma 7. The difference in the performance for any policies g and wy: is bounded as follows

J(0) — J(0') = Esnaro Eqny(15) [A7 (5,0)], (35)

We can now provide the general framework lemma.
Lemma 8. Suppose a general gradient ascent algorithm updates the policy parameter in the following way.

9t+1 = 9,5 + atht. (36)

When Assumptions 2, 3, and 7 hold, we have the following inequality for any T.

1 « B« K « 1 1
* actor _ h* 2 _ .
T g 2000 < s R = DI g Dl + 1 3 B (D

where h} = h;f and h;t is defined in (20), J* = J(0%), and 7w = my~ where 0* is the optimal parameter, and

o = [KL(m"(:[s)lImo, (-[s)) = KL(m*(:[s)lI7m0,,, (-]5))]-

Proof. We start the proof by lower bounding the difference between the KL divergence between 7% and 7y and the KL
divergence between 7 and gy 1.

Eygee [KL(*(:]8) |0, (:|8)) — K L(7"(-[5)[|7o,, (-5))] (38)
o, (als)

=E, g Boors (1) | 0 “] 39
srd (|){ gm((ﬂs) (39

(a) K 5

> By Banre(1s)[Vo log ma, (als) - (Or1 — 04)] — 5||9t+1 — 04l (40)

Ka?
=E,gvEqmr () [Volog m, (als) - cawhy] — —L[|he? 41)

2

N . Kao?
= Eyir Bane (10)[Vo l0g 7o, (als) - ] + By ogm Banee (1) [Vo log mo, (als) - n (e = b)) = = ll]|* - (42)
= ay[J* = J(0)] + Eqogr Eqore(1s) Vo log mg, (als) - arhi] — ay[J* — J(6)] 43)
Kao?
+ Egnar Barre (1) [Vo log o, (als) - ay(he = B7)] = =+ [ (44)
b * * T
® o [J* = J(0r)] + By gnEare(.1s) | Vo log g, (als) - hy — AT (s,a)} (45)
* KOL% 2
+ aloar Banne (1) Vo log mo, (als) - (he — hi)] — —— [l ]”. (46)
Taking the conditional expectation in the above expression, and using the equality in (21), we can write:
BiE g [KL(m™ (-] ) [mg, (-]5)) — KL(7"(:|s)llme,, (-]5))] (47)
> ay[J* = Ee[J(0p)]] + BBy gn Egrrs(-s) [Vg log g, (a|s) - hy — A™ (s, a) (48)
jmmx * Ka% 2
+ By grr Banre (1) [Vologmg, (als) - (A" — hi)] — ——Ee|h] (49)

12
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(c) 2

S a7 — 760, - at\/ B a1 | (Vlog o, (el - — 4 (5.0)) |
P N Ka?

By B |V o 6, () o (7 — 1)) — 2L 2

(d) . . Kao?

S al” — J00)] — an JEat — @B — )| — T2 g 2,

where we use Assumption 2 for step (a) and Lemma 7 for step (b). Step (c) uses the convexity of the function f(z)
and (d) comes from Assumption 3. We can get by rearranging terms,

; N Ka
—J(8:) </ Eggtor + Bl (™ — h)|l + =~ [lhe]?
*(-IS)IIWetCIS)) -

Because KL divergence is either 0 or positive, we can conclude the proof by taking the average over T trajectories.

KL(m

b KL (1) o ()]

B. Proof of Theorem 1

To use 29 for our convergence analysis, we will take the expectation of the second term. With M LMC

1 T ) 2
(7 oz~ 1)
t=1

B i - 172

IA
N =
[M]=

~
Il
-

I

Nl =
(]~
=

| — F(@)*vem»lﬂ

t=1

2 [ 2 ¢

<2 SOB| I - Vos @I + 72" 190J(6:) = F6)' V0T 00
t=1 = t=1

@2 [ 2 ¢

22 Sk Ini - vasool?] + TZ( ) E[Iv0601]

o~
Il

1 L

< V/a + /b we arrive at:

téE[thm‘“ - VgJ(Gt)HQ] ;té (1 + /Jl%> E[|V9J(9t)”2]'

where (a) uses Assumption 4. Taking the square root of both sides and from v/a

L~
(7 Bl - 111 <
t=1

‘We can also bound the third term of the RHS of 29 with Lemma 5

Nl

T T T
R , R R
k) < - <
2TZ°“”’”H = QTZ ST >
= =/ Il =

We can also bound the fourth term using the fact that it is a telescoping sum and that oy < oy,

T 1 C
207 mod Ct _TZ swd"r t

_1E g [KL( “([8)ll7e, (-[5))]
T aT

5)llmo ()]

/
Tal,

Eoar [KL(m" (|

i llhel?

13

(50)

61y

(52)
(53)

2

:"Z;"

(54)

O

= hy, note that,

(55)

(56)

(67
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Taking the expectation of both sides of 29 and plugging in 55, 56, and 57, ignoring constants:

T T
1 .
Z 17N <v/Exgper + $ 7 2 E[h{m = V(0,2
From Lemma 2 we can bound the summation of the expected variance of the MLMC gradient. Ignoring the G i constant,

T
ZJE[WF] Zo(mlong)+Zlog maz) TmazE +Zlog mae) Tmaz (Em ). (59)
t=1

t=1

(5%)

H \

t=1

22: 190012 + J ZE[uhtn?}

We can bound the third term of the RHS by utilizing the maximum mixing time, 7,
Z O (70,0108 Toar ) < O (TTiniz 108 T (60)

For the second term by using 25,

=

> 10g(Timaz) Trmaz€ () <T(10g Tinax) TnaxO (i (10g Trnax)) O (T—

)

_ ©61)
+ T(log Tmax)Tm‘de <7-mi:c (loijﬂ)
:6 (TTmzz (log Tmax)2Tmax) .
The third term can be simply bounded as follows:
T
Z log(Tmaac)Tmaac (6;;;tw) <0 (T 10g( max)Tma;L (Eg;;)tw)Q) . (62)

t=1

We can now bound the summation of the expected variance of the MLMC gradient:

T
Z |:Hht||2:| S O (TTmz:c log Tmax) + O (TTmix (log Znax) max) + O (T 10g( maa:)Tmax (52;?16)2) . (63)

'ﬂ \

Taking the square root of both sides, from v/a + b < \/a + v/b, and dividing by T:

Nl

2 T2 T2

2

T critic
A mix max mix de max 1 maz )L mazx 5(1
SB[ ] < 0 (Yol e ) | g (VimeThelogThes ) | o ((ViosTnar Tnes 50 ) - o0

t=1

From Lemma 4 we can bound the square root of the summation of the expectation of the gradient norm squared:

T
g e V Tmiz 10g Tmax ~ V Tmizx 10g Tmax

critic - = = 65

\j g [IIVJ(0:)]°] (,/gw )+0( p +0 T . (65)
We can also bound the error between the first term with Equation 23 and Lemma 2:
T
1 j ; critic A V Tmiz IOg Tmax A V Tmiz IOg Tmax

=Y E|himer —VI@)|2 <O (ESH) + 0O <7> + 0O (7 . (66)

We can see that all terms of (66) absorb the terms of (65). Combining (64) and (66) we can get the final global convergence.
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C. Corrected Analysis of Multi-level Monte Carlo

In this section, we wish to provide a corrected analysis for Lemma 4. The issue lies in the convergence rate of the average
reward tracker. We first give an overview of the problem and how it affects Lemma 4. We then provide a corrected version
of the average reward tracking analysis.

C.1. Overview of Correction

We repeat Lemma 4,

Lemma 9. Assume J(0) is L-smooth, supy |J(0)| < M, and |V J(0)|, [|hMEMC|| < Gy, for all 0,t and under assump-
tions of Lemma 3, we have

1 & e ~ [ Tmiz l0g T, ~ ( Tiz log T,
= ZE [”vj(at)”ﬂ <0 (g(izth) +0 <m”\FTW‘) +0 <mzmeax> . (67)
t=1 max

The above lemma is correct. However, the analysis for it does not match this final statement. Specifically, given the current
analysis provided in (Suttle et al., 2023), the o (%) term should actually be o (1 / %) The term

max

stems from Lemma 3, the convergence of the critic estimation £(t), which we repeat here,

Lemma 10. Let 3y = v = (1+t) ", a = a;/\/Z};:th{WLMCH?, and oy = (1+1t)77, where 0 < v < o < 1. Then

1

el

T
SEW) <O + 0 (T7™) 4 O (Tmia 10g Tinax) O (T ) + O (Tm 1°§Tm“) : (68)
t=1 max

Once again the O (%) term should actually be 9] ( %) based on the current analysis. This term

max max

from Lemma 3 is dependent on the average reward tracking error. We repeat its convergence theorem from (Suttle et al.,
2023) below,

Theorem 2. Let =y = (1+t)7V,a =a}/ ZZ=1||ht

2 and oy = (1 4+1)7%, where 0 < v < o < 1. Then

T

1 A A 1 Tmaz

=Y E[m-m) <o) +0 (T*ZW*”)) + O (Tmiz 108 Traa) O (T7) + O ( TMO?> . (69)
t=1 max

The proof of Theorem 2 matches the statement above. In the next subsection we provide a correct version of the statement
along with a proof that will align with Lemmas 3 and 4.

C.2. Corrected Average Reward Tracking Error Analysis

Before we provide the correct version of Theorem 2, we provide the following lemma from (Dorfman & Levy, 2022) and
utilized by (Suttle et al., 2023) for Theorem 2 as we will still use it for the correct version of the theorem. In (Suttle et al.,
2023), the following lemma is written for MLMC gradient estimator in general. Our restatement is tailored to the MLMC
gradient estimation of the reward tracking error.

Lemma 11. Lemma A.6, (Dorfman & Levy, 2022). Given a policy g, assume we the trajectory sampled from it is
2 = {2 = (si,al, 1, st bieny starting from Y ~ po(-), where pg is the initial state distribution. Let V() be an
average reward tracking gradient that we wish to estimate over z;, where B, =, [f(1,2)] = VF(z), andn € K C R
is the parameter of the estimator. Finally, assume that ||f(n, 2)||, IVFEM)|| < 1, foralln € K,z € Sx A xR x 8.
Define fN = % vazl F(ne, 28). Fix Traw € Nand let K = Tppiz[210g Thnaz |- Then, for every N € [Tyna) and every
N € K measurable w.r.t. Fy_1 = o(Ok, Nk, Wk, 2x; k < t — 1), where 0 and w are the parameters of the actor and critic,
respectively,

E[IfY = VF@m)|] <0 (x/logKN\/E> , (70)
(15 - VFIP) < 0 (log(N) ). a
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Below is the corrected theorem for the reward tracking error analysis and the accompanying proof.

Theorem 3. Assume v, = (1+t)"",a = a}/ ZZZIHht

=(141t)"9 where0 < v < o < 1. Then

T
! =2 B[ <o) +0 ( 2<U—”>) (72)
t:l
+ O (Timiz 10g Tinaz) O (T7Y) (73)
+0 <ka)%?:z> : (74)

Proof. Because the proof closely resembles the original version from (Suttle et al., 2023) with a few changes, we will only
show intermediate steps for portions the changes affect. Similar to (Suttle et al., 2023), we recall that the average reward
tracking update is given by

M1 = e — Ve ft, (75)
where f; := fMMC. We can rewrite the tracking error term (1,11 — ;1) as

(M1 — mi1)” < (1= 29) (e = m7)* + 2% (e — 0 ) (F () — fo) + 2(ne — m7) (0f — nfy)

+2007 = ni41)” 4200 f)*. (76)
As in (Suttle et al., 2023), we take expectations and transform the expression into five separate summations,
T Ty
> E[(m —np)? ZT n)® - +ZE (e — 0} ) (F' (me) — fo)]
t=1 t=1
I Iy
T 1 Ty T
Z — m) 0 = i)+ Y —Elmf —ni)?+ > wEl(f)7]. (77)
=1 It =1 It t=1
I3 Iy Is

(Suttle et al., 2023) provides bounds for Iy, I, I, I4 and I5. In this proof, only I needs to be modified. So we will simply
restate the bounds for the other terms and give more details for our modified /5,

,],.2
I < o, (78)

where we use the fact that (n; — n;)? < 2r2,,.-

Bound on /5: (Suttle et al., 2023) achieves this intermediate bound on the absolute value I5.

T
Ll < SE || —m)| - [(F ) = 7)) 9

(Suttle et al., 2023) proceeds to bound (7; — 77,;*)2 < 27rmaz. However, we will omit that step and bound in the term in the
following way,

T

LI < STE [0 =) - [(F o) = £ (80)
t=1
T

<) E| ZE\ = i) (81)

~
Il
-

1
2

E [|(n—m ﬂ) (ZE[ (m) fi'm“)ﬂ). (82)
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1
For (ZL E “(F’(nt) — ffme )|2D ?, we utilize Lemma 11 like Suttle et al. (2023) with z; = 1, VL(z;) = VF(n,)
and [(z, z:) = fi, and the fact that the Lipschitz constant of VF(n;) is 1:

d : 108 Tha | *
|12|s<;E[\(m—n:>ﬂ> O (T )
Bound on /5:

T 1/2 1/2
m§<ZEMrﬁﬂ> Q%’Z%> : (84)

t=1

Bound on /,:

I, < L*G% Z — (85)
Bound on /5:
T
<> %0 (R, 108 Thnax ) (86)
t=1

ombining the foregoing and recalling that v; = +1)7", 0 = +1)7 7%, 0<rv<o<l1and oy <y, we get
Combining the foregoing and Iling that ~, (1 t)”é(l t)"O 1 d <§ g

ZE (e — n)2] < 202 (1 +T)" + {LQGi + O (Tuix 10g Tinax } Z 1+1)” 87)
t=1

d 2\ ~ log T, H

+ (;E [|(77t - Wt)’ ]) o (TTmimeax> (88)
T 3

- (ZE[(nt —n7)? ) <L2G Z 14¢)~2- ”>> : (89)
t=1

where the second inequality follows from the fact that v — 20 < —v.

Define
T
T) =Y E[(n —n;)%, (90)
=1
22 T
F(T) = L fH (1 + )20, 91)
t=1
G(T) =TO (mixk’;{ﬂm) : (92)
_ T
A(T) = 202, (14 T)" + [L2G} + O (rin 108 Thnar) | Y (1L4+1) ™. ©3)
t=1
(94)

The inequality can now be written as,

Z(T) < A(T) 4 23/ Z(T)\/F(T) + 20/ Z(T)\/G(T) < 2A(T) + 16 F(T) + 16G(T), (95)
By following the same steps as the critic error analysis in (Suttle et al., 2023) to rearrange the above inequality, we achieve,

Z(T) < 2A(T) + 16 F(T) + 16G(T). (96)
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From 2A(T) +16 F(T) = O (T*) +O (T"**~27) 4O (T"~*) and using the bound 3", (1+1)~¢ < (1+1)'¢/(1-¢),
we have by dividing by T,

1 * v— —2(c—v ~ —v ~ longaw
T STE[-n)? <017 +0 (T 2 )) + O (Tmiz 108 Trnaz) O (T77) + O (rm%) L)
=1
O
D. Parameterized Policy Gradient with Advantage Estimation
We repeat the algorithm for PPGAE as it appears in (Bai et al., 2024).
Algorithm 1 Parameterized Policy Gradient
1: Input: Initial parameter 61, learning rate «, initial state s ~ p(-), episode length H
2. K=T/H
3:forke{l,---,K}do
4 Te+ ¢
5. forte{(k—1)H,--- ,kH — 1} do
6: Execute a; ~ 7y, (+|s¢), receive reward r (s, a;) and observe s;1
7 Tio < Te U{(st,a0)}
8: end for
9. forte{(k—-1)H,--- ,kH —1}do
10: Using Algorithm 2, and 7, compute A™ (¢, a;)
11:  end for
1 L1 A
12:  Compute wy = i Zi’”;tz YA (54, a4) Vg log ma, (ag]s¢)
13:  Update parameters as
9k+1 = 0 + awg (98)

14: end for
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Algorithm 2 Advantage Estimation

Input: Trajectory (s¢,, at,, ..., St,, Gt, ), State s, action a, and policy parameter
Initialize: 7 < 0, 7 < ¢;
Define: N = 4t logy T
while 7 < t5 — N do
if s, = s then
141+ 1.
T < T
Y = ::thlr(st,at).
T+ 7+ 2N.
else
T T7+1.
end if
: end while

ifi >0 theil
V(S) = = Z;:l y]’
! 1 1
16:  Q(s,a) = ————|=>%, yil(ar, = a)

mo(als) | @

_ =
TYRe Rk Wy

—_
w

_ =
wooR

17: else

18:  V(s)=0,Q(s,a) =0
19: end if

20: return Q(s,a) — V(s)

E. Multi-level Actor-Critic

We repeat the algorithm overview for MAC as it appears in (Suttle et al., 2023).

Algorithm 3 Multi-level Monte Carlo Actor-Critic (MAC)
1: Initialize: Policy parameter 6, actor step size o, critic step size (3¢, average reward tracking step size -y, initial state
s§0> ~ po(+), maximum trajectory length 7T},ax.
2: fort=0to7T — 1do
Sample level length j; ~ Geom(1/2)
fori=1,...,2/t do
Take action a} ~ 7, (+|st)
Collect next state s: T ~ P(-|si, a?)
Receive reward ri = (s, al)
end for
Evaluate MLMC gradient fMEMC pMIMC and gMLMC yiq (17)
10:  Update parameters following (15)
11: end for

R A A
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