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ABSTRACT

The paper provides data-dependent bounds on the test error of the Gibbs algorithm
in the overparameterized interpolation regime, where low training errors are also
obtained for impossible data, such as random labels in classification. The bounds
are stable under approximation with Langevin Monte Carlo algorithms. Experi-
ments on the MNIST and CIFAR-10 datasets verify that the bounds yield nontrivial
predictions on true labeled data and correctly upper bound the test error for random
labels. Our method indicates that generalization in the low-temperature, interpola-
tion regime is already signaled by small training errors in the more classical high
temperature regime.

1 INTRODUCTION

Modern learning algorithms can achieve very small training errors on arbitrary data if the underlying
hypothesis space is large enough. For reasonable data originating from real-world problems, the
chosen hypotheses also tend to have small test errors, a fortunate circumstance, which has given
great technological and economic thrust to deep learning. Unfortunately, the same algorithms also
achieve very small training errors for data specifically designed to produce very large test errors, such
as random labels in classification. Consequently, the hypothesis space and the training error do not
suffice to predict the test error. The key to generalization must be more deeply buried in the data.
While not so disquieting to practitioners, this mystery has troubled theoreticians for many years
(Zhang et al.| 2016;2021), and it seems safe to say that the underlying mechanisms still have not
been completely understood.

We are far from solving this riddle in generality, but for the Gibbs posterior we show how nontrivial
bounds on the test error can be recovered from the training data. The Gibbs posterior assigns
probabilities, which decrease exponentially with the training error of the hypotheses. The exponential
decay parameter /3 can be interpreted as an inverse temperature in an analogy to statistical physics.
The Gibbs measure is a sufficient idealization to have tractable theoretical properties, but also the
limiting distribution of several concrete stochastic algorithms, here summarized as Langevin Monte
Carlo (LMC), including Stochastic Gradient Langevin Dynamics (SGLD), (Gelfand & Mitter;, |1991;
Welling & Tehl 2011)), a popular modern learning algorithm.

When [ is large and the hypothesis space is rich, these algorithms can reproduce the dilemma
described above by achieving very small training errors on data designed to have large test errors.
Our paper addresses this interpolation regime of the Gibbs posterior and makes the following three
contributions:

* We give high-probability data-dependent bounds on the test error, both for a hypothesis
drawn from the Gibbs posterior and for the posterior mean, assuming that we can freely
draw samples from it. These bounds holds for the entire range of temperatures.

* We weaken the above assumption by showing that the bounds are stable under approxima-
tions of the posterior in the total variation and Ws-Wasserstein metrics. Given sufficient
computing resources, this yields bounds for LMC algorithms.

* Using LMC on real-world classification data (MNIST and CIFAR-10), we obtain non-trivial
upper bounds on the test error for true labels and upper bounds for random labels, despite
the algorithms achieving very small training error on the random labels.
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Our method is based on a combination of the PAC-Bayesian bounds (McAllester, [1999; |Alquier,
2021} Rivasplata et al., 2020) with an integral representation of the log-partition function. This makes
it possible to bound the logarithm of the density of the Gibbs posterior at a given temperature in terms
of empirical averages at higher temperatures. A qualitative conclusion is that generalization in the
under-regularized low-temperature regime (3 > n) is already indicated by small training errors in the
over-regularized high-temperature regime (8 < n), where n is the number of training examples.

1.1 RELATED LITERATURE

Many papers address the generalization of the Gibbs algorithm and Langevin Monte Carlo, with
special focus on SGLD, which is the most popular algorithm. Most similar to this work is Raginsky
et al.| (2017), which bounds the distance to the Gibbs posterior and then its generalization error. Their
bound, however, applies only to the high temperature regime 8 < n.

Several works concentrate on the optimization path of SGLD. Mou et al.{(2018)) gives both stability
and PAC-Bayesian bounds. |Pensia et al.| (2018) applies the information theoretic generalization
bounds of Xu & Raginsky|(2017). These ideas are further developed by [Negrea et al.| (2019), where
random subsets of the training data are used to define data-dependent priors. [Farghly & Rebeschini
(2021)) gives time-independent bounds for SGLD, which are further improved by |[Futami & Fujisawa
(2024). Most of the bounds in the above papers are in expectation. The very recent paper of Harel
et al. (2025) gives a very elegant argument for Markov chain algorithms based on the second law
of thermodynamics. If the invariant distribution is the Gibbs posterior, the bound along the entire

optimization path is of order /3/n but improvable to 3/n.

Some papers give similar bounds for the Gibbs posterior, roughly of the form 3/n or /3 /n (Raginsky
et al., 2017; |Dziugaite & Roy} 2018; |[Kuzborskij et al., 2019; [Rivasplata et al., 2020) or[Maurer| (2024)
and |[Harel et al.|(2025))). These bounds hold equally for random labels and are therefore vacuous for
overparametrized hypothesis spaces in the low temperature regime 5 > n. To our knowledge, ours is
the only bound for the Gibbs posterior, which is valid in this regime.

Other bounds have been developed for specific algorithms designed to optimize them. The milestone
paper by Dziugaite & Roy|(2017) is the most prominent example, and (Dziugaite & Roy, [2018)
and (Pérez-Ortiz et al.,|2021) are also in this category. Our bounds by contrast apply to the Gibbs
posterior and LMC in their standard forms.

2 PRELIMINARIES

The relative entropy of two Bernoulli variables with expectations p and ¢ is denoted
—-p

1
H(p,q)=pln§+(1—p)lnl (1)

We also define the function =1 : [0,1] x [0,00) — [0, 1] by
kH(p,t) =inf{q:q>p,k(pg) > 1}

Throughout the following (X, ¥) is a measurable space of data with probability measure .. The iid
random vector x ~ u" is the training sample.

We let (H,€2) be a measurable space of hypotheses, and let £ : H x X — [0, 00) be a prescribed
loss function. Members of # are denoted h or g. We write L (h) := By, [¢ (h,x)] and L (h,x) :=
(1/n) >, £ (h, z;) respectively for the true (expected) and empirical error of hypothesis i € 7. The
set of probability measures on (H, 2) is denoted P (H).

A stochastic algorithm is a function v : X™ — P (#), which assigns to a training sample x a
probability measure v (x) € P (H). The K L-divergence between two probability measures is
the function KL : (p,v) € P(H) x P(H) — Epo,[In %] if p absolutely continuous w.r.t. v,
otherwise the value is co. The total variation distance is defined as drv : (p,v) € P(H) x P(H) —
SUp geq |P(A) —v(A)|. The W,-Wasserstein distance is W, (p, v) = (infw E(, yow[[|z —y|[P]) /P
with the infimum over all probability measures on P(#) x P(H) with p and v as marginals.

There is an a-priori reference measure 7w € P (H), called the prior. With a fixed prior, the Gibbs
algorithm at inverse temperature 3 > 0 is the stochastic algorithm G : x € X" — G (x) € P (H)
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defined by
1

25 (%)
Gp (x) is called the Gibbs-posterior; the normalizing factor

Z5(x) == /H e BLBX) g (b)

is called the partition function. The motivation for the Gibbs posterior is that it puts larger weights on
hypotheses with smaller empirical error.
Given a stochastic algorithm v we define a probability measure p, on H x X™ by

pv (A) = ExepnEpoxo) [1a (R, x)] for A € Q@ 2", )

Then, E, x)~p, [¢ (7, X)] = ExEpy(x) [¢ (R, x)] for measurable ¢ : H x & — R. To draw the
pair (h,x) from p, we first draw the training sample x, and then sample h from v (x). The main
objective in learning is that the risk E,~,, [f (h, )] is small with high probability in (k,x) ~ p,,
where f is some application-dependent loss function, possibly different from ¢. In the sequel we will
give corresponding guarantees.

G (x) (4)

/ e PLULX) g (h) for A € Q.
A

3 BOUNDS FOR THE GIBBS POSTERIOR

In this section, we make the idealized assumption that we are free to sample from the Gibbs posterior
at any finite 5 > 0.

3.1 AN INTEGRAL REPRESENTATION OF THE FREE ENERGY

Lemma3.1. Let0= [y < 1 < -+ < Bg = 0. Then

B R K R
—InZs(x) = /0 B, (0 [L(h, %)) dy < (Bk = Br-1)Egncy, (0 [L(9:%)]-
h=1

Proof. Let A(3) = —In Z(x). One verifies the identities

A(0) = 0,
AB) = ﬁ /H L(h, x)e B0 dre(h) = Epo, o [L(h %),
A(B) = *(Ehwﬁ(x) [L(h,%)*] = (B~ (0 [ﬁ(h,X)])Q) <0.

The equality in the lemma then follows from the first two identities above and the fundamen-
tal theorem of calculus, and the inequality follows from the last identity, which shows that

EgnGs, | »(x) [ﬁ(g, x)] is non-increasing in . O

In statistical physics there is a formal analogy, where the function h +— I:(h, x) is the (x-dependent)
energy of the system in the state h, and S is the inverse temperature. The Gibbs posterior then
becomes the "canonical ensemble" (Gibbs| |1902), describing the probability of states in equilibrium
with a heat bath at temperature 3~!. The function 3 — A(3) plays an important role: 3~ A(3)
is the Helmholz free energy, A'(3) = Epq,x) [ﬁ(h, x)] is the thermal average of the energy,
—BA’(B) + A(B) is the entropy and —A”([3) is proportional to the heat capacity at temperature 3!
(see e.g.|Huang, [2008).

For h € H, x €X™ and an increasing sequence 3 = (f1 < --- < k) of positive numbers, we
denote

K
L(h,x,8) = =B L(h,x) + > _(Bk = Be-1)Egnc,, ([ L(9:%)]. 3)
k=1
So Lemma|3.1|states that, when 3y = 0, then,
—Br L (h,x) —InZg, (x) <T (h,x,0). (4)

Note that T" (h, x, 3) depends only on the training data x, the sequence (3 and the hypothesis h.
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3.2 BOUNDS

The function F' in the following is a placeholder for a random variable related to the generalization
gap, which we would like to bound with high probability.

Theorem 3.2. Let F' : H X X™ — R be some measurable function, 3 > 0and 3 = (f1 < -+ < Bk)
as above with 3o = 0 and B = . Then,

(i) for 6 > 0 with probability at least 1 — 0 in x ~ p" and h ~ Gg (x)

F(h,x) <T (h,x,3) + InExEyr [6F<9a>=>} +1n(1/6),

(ii) for § > 0 with probability at least 1 — § inx ~ "
Enncy ) [F (%)) < By [T (X, B)] + InExEg oy [eF(g,;a} FIn(1/6).

Proof. By Markov’s inequality, for any real random variable Y
Pr{Y >IE "] +In(1/6)} =Pr{e" >E[e"] /§} <.

To prove (i), we apply this to the random variable Y = F (h,x) + SL (h,x) + In Z3 (x) on the
probability space (7—[ x X" Q%o pGB) as defined in . Together with the definition of the
Gibbs posterior, this gives, with probability at least 1 — ¢ in (h,x) ~ pg, (equivalent to saying
x ~ " and h ~ Gg (x)),

F (h,x) + BL (h,x) + In Z5 (x)
S R e AL EREYCI)

= INExEyr [eF(.qm)Jrﬂﬁ(mX)Hn Z5(x)~BL(gx)~In Zﬁ(X)} +1n (1/6)
= InELE,., [eF@vx)} +1n(1/6).

Subtract AL (h,x) + InZg(x) and use l| For (ii) apply Markov’s inequality to
Epncsx) | F (%) + BL (h,x) +In Zg (x)} instead. By Jensen’s inequality

ErGo[F(hx)+BL(Ax)+In Z5(x)] - Byt 0 {eF(97X)+ﬁﬁ(97X)+ln Z5(x)
and proceed as above using (@). O

Up to the application of (@), the above proof of (i) just gives the single-draw version of the PAC-
Bayesian bound as in Rivasplata et al.|(2020) applied to the Gibbs posterior, while (ii) is the standard
PAC-Bayesian bound applied to the Gibbs posterior until (4)) is invoked.

3.3 LOSS FUNCTIONS AND SECONDARY LOSS FUNCTIONS

To apply Theorem we need to control the exponential moment ExE [eF (g ’x)] , but otherwise
we have free choice of the function F'. This gives the method some flexibility. If exp (F') has
sufficient integrability properties, we can exchange the two expectations and often there is a bound
on Ey [ef'(9*)] uniform in g, which then carries over to Ey-Ex [ef'(9)], since 7 is a probability
measure. In this way bounds for sub-Gaussian or sub-exponential losses can be obtained, but also
for U-statistics or even non-iid data, sampled from the trajectories of time-homogeneous, ergodic
Markov chains. In Section [B.T]in the appendix, we derive a bound for sub-Gaussian losses from
Theorem [3.2} other examples are planned for a longer version of the paper.

The function F' may be defined in terms of other, application-dependent loss functions, which are
different from the loss ¢, which defines the Gibbs posterior and the functional I'. To illustrate this
point, let f : % x X — [0, 1] be measurable and set F(h,x) = n x (1 Y. f(h,2;),E; [f(h, x)]),
with « the relative entropy as in (1). Then, Theorem 1 of Maurer| (2004) gives Ey [e” (hvx)] <2yn
for n > 8. Substitution in Theorem [3.2)and division by n then give the following corollary.



Under review as a conference paper at ICLR 2026

Corollary 3.3. Let f : H x X — [0, 1] be measurable, § > 0 and n > 8. Then, with probability at
least1 —§ inx ~ p™ and h ~ Gg(x)

. (i;f(h,zi)ﬂx[f(h,x)o < % < (h,x,8) +1n <2f>)

and with probability at least 1 — § inx ~ u"
1 1 2y/n
. (n 5 By [F (1220)] By o B [ <h,m>1> <1 (roxm em (22)).

For the second part, we used the joint convexity of x. Under the conditions of this corollary, the
second inequality becomes

EncyoEs |f (7)) < ( 3 Engaa If (), 5 (Pt +n (M»)

with an analogous version for the single-draw case. This is how we compute bounds in our experi-
ments. For an illustration, please refer to[C.2.1]

Here f plays the role of a secondary loss function, typically different from the loss function /,
which defines the Gibbs posterior. In applications one would define the Gibbs posterior in terms
of a differentiable loss function ¢ and approximate it with a suitable Monte Carlo method. For
classification, however, one is interested in bounding the 0-1 loss obtained by comparing ¢ to some
threshold 6. Then (momentarily changing notation by replacing € X by (z,y), where y is the
label corresponding to x) one can define f (h, (x,y)) = 1(—oc,9) (¥ (h, x)) to obtain a bound on the
expected 0-1 loss.

4 BOUNDS FOR LANGEVIN MONTE CARLO

For this section, we assume H = R? and an isotropic Gaussian prior 7 of width o. We condition on
the training data x, reference to which we omit. The Gibbs posterior is an idealization, from which it
is impossible to sample directly. Nevertheless a number of works (Raginsky et al., 2017} Dalalyan &
Karagulyan, 2017; Brosse et al., |2018; | Vempala & Wibisono, |2019; Dwivedi et al., 2019; Nemeth &
Fearnhead| [2021; Balasubramanian et al.,[2022) discuss algorithms (SGLD, ULA, MALA, etc, here
summarized as Langevin Monte Carlo (LMC)), capable of approximating a probability measure v on
R? of the form v o< exp (—V) or some nearby limiting distribution. In the following, we discuss one
of these algorithms.

4.1 ULA

We focus on the results of |Vempala & Wibisono| (2019), which do not require convexity of V' and
instead assume that the measure v satisfies a log-Sobolev inequality (LSI) in the sense that for all
smooth f : R » R

B [ (1) In 72 ()] — B [ (0)] iy [ ()] < 2By [NV W] )

for some o > 0. An LSI is satisfied when V' is strongly convex, but, importantly, also for measures
which are bounded perturbations of measures satisfying an LSI (Holley & Stroock] (1986)). Vempala
& Wibisono| (2019) give further examples and a list of references for measures, which are not log-
concave and satisfy an LSI. Raginsky et al.| (2017)) show, that under dissipativity conditions of the
loss the Gibbs posterior G (x) satisfies an LSI with constant independent of x.

Consider the iterative algorithm
ht+1 = ht — EVV (ht) + \/th, (6)

where € is a step size, the & ~ N (0, I) are independent Gaussian vectors and hg is drawn from some
initial distribution . Some authors call this algorithm simply LMC, for Langevin Monte Carlo. We
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call it ULA, alongside |Durmus & Moulines| (2017),Dwivedi et al.|(2019) and [Vempala & Wibisono
(2019), for Un-adjusted Langevin Algorithm, because it misses the Metropolis-type accept-reject
step, which would guarantee that the invariant distribution is indeed the Gibbs posterior. A popular
variant of ULA is Stochastic Gradient Langevin Dynamics (SGLD) (Welling & Teh| 2011} Raginsky
et al.| 2017)) where the gradient is replaced by an unbiased estimate, typically realized with random
minibatches. Here, we restrict ourselves to ULA with a constant step size, because it has the least
number of parameters to adjust, but in experiments we also use the more computationally efficient
SGLD.

As € — 0, ULA recovers the Continuous Langevin Dynamics (CLD) given by the stochastic differen-
tial equation

dhy = =V (hy) dt + V/2dBy,

where B, is centered standard Brownian motion in R?. CLD converges exponentially to the Gibbs
posterior (Chiang et al., [1987). For € > 0, the distribution v, ; of ULA converges ast — oo to a
biased limiting distribution v, which is generally different from v/, but expected to be closer to v as €
becomes smaller. [Vempala & Wibisono|(2019) use the LSI assumption and coupling to control the
difference between CLD and ULA along their path and prove the following result.

Theorem 4.1. Assume that v satisfies the log-Sobolev inequality (S) with o > 0, that the Hessian of
V satisfies —LI < V2V (h) = LI for all h and some L < oo, and that 0 < ¢ < o/ (4L2). Then,
fort >0

SedL?

KL (v,ves) < e *'KL(v,v) +
«

The first exponential term is due to the mismatch of the initial distribution and v. The second term
bounds the divergence between the limiting distribution v, and v. Similar results exist under different
conditions on the potential V. |Cheng et al.|(2018)) for example require V' to be strongly convex outside
of a ball instead of the log-Sobolev inequality and gives bounds in terms of the W;-Wasserstein
metric. Raginsky et al.| (2017) give bounds for W5 under dissipativity assumptions. The next corollary
adapts Theorem [4.1]to the situation studied in this paper.

Corollary 4.2. For 3 > 0 consider the Gibbs posterior G g corresponding to L (h), with centered
Gaussian prior of width o. Assume that it satisfies the log-Sobolev inequality ([B) with o > 0,

that the Hessian ofﬁ satisfies —RI = V2L (k) X RI for all h and some R < oo, and that
0<n<a/ (4 (5R + %)2) Consider the algorithm

h
hesr = he — Vil (he) —ﬂﬂ/ e, 7

where ho ~ vy and the & ~ N (0,1) are independent Gaussian random variables. Let D () =
KL (Gg,v) and let vg ,, . be the distribution of hy after t steps. Then,

(i) KL (G[h’//j,n,t) <eamt/Bp (8) + %L(j (6R + %)2 .

(ii) Wa (Gg,vp.n0) < Ze /5D (8) + 524 (BR + L)°.

(iii) drv (Gp, Vg pe) < e~/ /D (B) +2,/2¢ (BR+ %) .

Proof. We make the identifications V (h) = 8L (k) + ||| / (202),e =n/Band L = BR+
Then, v = G with Gaussian prior of width o, ULA becomes and (i) follows directly from
Theorem (ii) follows from Otto & Villani|(2000) and the LSI assumption, and (iii) follows from
Pinsker’s inequality (see e.g. [Boucheron et al.| (2013)). O

4.2 STABILITY OF THE BOUNDS

We now show the stability of our bounds for approximation in total variation and Ws-Wasserstein
metrics, under boundedness or Lipschitz conditions. Together with Corollary {.2]this implies bounds
for the algorithm defined in (7).
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We assume that there is a target approximation v (x) of G (x), for which we want to compute a
high probability bound, either for the single draw version on F' (h,x) as x ~ y™ and h ~ vg (x), or,
for the classical PAC-Bayesian version, on Ej, ., (x) [ (h,x)] as x ~ p". It is not surprising that
the single-draw bound will require a much closer approximation of the Gibbs posterior.

Since the bounding functional I' (h,x,3) depends on the Gibbs posteriors G, (x) for k €
{1,..., K — 1}, we require corresponding approximations v, of G, (x) to compute the bound. To
streamline notation, we define

K
T, (h,x,8) = =BL (h,x) + > (Bk = Br-1) Bgms, , (x0 [L(9,%)]
k=1

for0 = By < B < -+ < Bx = Band (vo(x),vp (X), v, (X)) € P (H)¥. Like
T (h,x, 3), the functional I',, (h,x, 3) depends on the training data, but it can also be computed by
repeated execution of the algorithm (7). The next theorem states the obtained bound in terms of the
approximation errors in total variation.

Theorem 4.3. Suppose that H = R and that there are numbers m, M < oo such that for every x
in X" and h € H we have |£ (h,x)| < mand |F (h,x)| < M. Let 0 = 5o < 1 < -+- < Bxg = f8
and vg, (x) € P (H) be such that drv (vg, (x),Gpg, (X)) = €g,. Then,

(i) with probability at least 1 — § as x ~ p" and h ~ vg (x)

K
1
F (h,x) <T, (h,x,8)+InExEp {eF(h’x)} +In g—}—ln (2eM+’6m + E (Bk — Br—1) meg,,_, -
k=1

(ii) with probability at least 1 — § as x ~ u”™
1
Envrs0 [F (1] < Ennsoy [T (h % B)] + MExEpr |7 +1n 5

K

+(M+Bm)es+ > (B — Br—1) meg,_,.-

k=1

The proof, given in Section[B.2] is similar to that of Theorem [3.2] and applies Markov’s inequal-
ity with vg instead of Gg. It then uses the fact that, if f is a bounded measurable function,
then |E,, [f] — E., [f]| < ||fllo drv (v1,12). For the single-draw version (i) this is applied to

(Ev, —Eg,) [eF (hx)+BL(h,x)+1n Zﬁ(x)} , which causes the exponential dependence on 3m and M.

For (i) we can apply this in the exponent to (E,, — E¢,) [F(h,x) + BL(h, x)], and the logarithm
makes the dependence linear. The rest of the proof is mechanical.

The last terms in (i) and (ii) are the additional errors due to the approximations of the Gibbs posteriors.
The worst term is clearly the first one in (i) due to the exponential dependence on the proxy function
F, which is typically of order n and on 3, which is larger than n in the regime in which we are
interested. In practice, the requirement of such an approximation is prohibitive for the single-draw
version. The bound in (ii) has more moderate approximation requirements. In this case, we can also
give bounds in terms of the TW,-Wasserstein metric (as guaranteed by Corollary i.2)), if F' sand ¢
satisfy a Lipschitz condition instead of boundedness. We will use the following fact: Since W; < Wa
it follows from the Kantorovich-Rubinstein Theorem (Villani, |2009), that for any real Lipschitz
function f on H and probability measures vy, v € P (H)

Enw, [f ()] = Enws [f (W] < (1 fllpip W (v1,02) < ([ fllpip Wa (11, 12),
where ||.|;,, is the Lipschitz-seminorm. The following result is then immediate, with proof exactly
as in (ii) of Theorem

Theorem 4.4. Assume the conditions of Theorem except that instead of |¢(h,x)| <
m and |F (h,x)] < M we have [|((.,x)[l;, < m and |[F(.,x)|;, < M and that

Wy (vg, (x),Gga (x)) = €. Then, with probability at least 1 — 6 as x ~ ™
1
EILNUB (x) [F (h,X)] < Ehwug(x) [FV (ha X, /6)] +InExEpr [eF(h,x):| +1In 5

K

+ (M +Bm)es+ > (B — Br—1) meg,_,.-

k=1
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5 EXPERIMENTS

The purpose of our experiments is to show that our method gives nontrivial bounds on the test error
for real-world data, while correctly bounding the test error on impossible data, where the same
algorithm also achieves a small training error. For this demonstration, we use binary classification
tasks. The real-world data are either the MNIST dataset, subdivided into the two classes of characters
0-4 and 5-9, or the CIFAR-10 dataset to distinguish between animals and vehicles. For impossible
data, we randomize the labels of the training data. Our experiments are computationally heavy,
so we generally use small sample sizes, from 2000 to 8000 examples. The hypothesis space is
the set of weight vectors for a neural network with ReLU activation functions constrained by a
Gaussian prior distribution with ¢ = 5. Neural network architectures are described in Section
[C.I.T] of the appendix. To approximately sample the weight vectors in the vicinity of the Gibbs
posterior, we use ULA as in (ﬂ]) or SGLD (Welling & Tehl 2011)) with constant step size 1. To
ensure reproducibility, we provide the code and experimental results in an anonymous repository at
https://anonymous.4open.science/r/Gibbs-Generalization—-45F1.

5.1 THE LOSS FUNCTION ¢

Unless o is very small, which would prevent near-zero training errors for random labels, an unbounded
loss function like binary cross-entropy entropy (BCE) would cause Ej,.¢, [ﬁ(h)] =Epon [ﬁ(h)]
and therefore the first term in the summation of I' in equation[3]to be very large. For this reason we
use a bounded loss function ¢, either bounded binary cross-entropy as described in Appendix D of
Dziugaite & Roy|(2018)) or the savage loss (Masnadi-Shirazi & Vasconcelos, 2008). We compute
bounds for the 0-1 loss, using the method described in Section@

5.2 APPROXIMATING THE ERGODIC MEAN

As we know of no sufficient criterion for convergence, we terminate iterations at time 7', when a

very slow running mean M, of the loss trajectory (ﬁ(hﬁkt, X))tho stops decreasing. A second

running mean M, is used as an approximation of the ergodic mean and thus of expectations in the
invariant distribution. We thus replace all expectations Ej~c,, [L(h, x)] occurring in the bounds

by Merg [(ﬁ(hgm x))z; |. Both running means My, and M, are implemented as first-order,
recursive lowpass filters described in Section [C.1.3]of the appendix.

5.3 CALIBRATION

A simple calculation shows that KL(Gg,G23) < 8(Eg, [ﬁ] —Eq,, [ﬁ]) < BEq, [[A& (Lemma

in Section . By Corollary , we should therefore have at least 8ndR* /o < E¢, (x)[L] to
distinguish between the expectations in the Gibbs posterior for 5 and 25. The smallest neural network

we use has d = 392,500. If £ has values in [0, 1] then E¢, [L] < 1 and even if the extremely

uncertain values of R and « are near 1 we would need step sizes in the order of 10~7. Safe values of
7, as suggested by the theoretical results in Section[d} are therefore impossible in practice, and the
bound has to be adapted to a realistic choice of 7.

For this purpose, we fix 7 to some practical value and assume that the computed functional T',, (h, x, 3)
fails to estimate I'(h, x, 3) by a factor 7(x) > 0, which we compute as

(T, (h,i,ﬁ’f))Jran\({ﬁ) . 1}

r (x) = min {r Vk € K], k! <]Eh~uﬂk (%) [ﬁm (h»i)} ) 2

r
n
where X is the training set x with random labels and Lo, the empirical 0-1 error. So r is the smallest
factor of I',,, for which we obtain a correct upper bound on the 0-1 error with random labels for all the
Bk By definition of I',,, replacing it by 7I",, is equivalent to a multiplicative shift of the temperature
scale, which is necessary to avoid an ambiguity arising from different scalings of the gradient, as
explained in Section

It is however a purely experimental finding, that our choice of r leads to correct and surprisingly
tight upper bounds on the test error of true labeled data in all cases we tried. We emphasize that our
calibration procedure depends only on the training data.
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5.4 RESULTS
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Figure 1: SGLD on MNIST and CIFAR-10 with 8000 training examples, MNIST above and CIFAR-
10 below, random labels on the left, correct labels on the right. Both random and true labels are
trained with the same algorithm and parameters on a fully connected ReLLU network with two hidden
layers of 1000 and 1500 units, respectively. The calibration factor for MNIST is 0.77, for CIFAR-10
0.89. Train error, test error and our bound for the Gibbs posterior average of the 0-1 loss are plotted
against (.

Several experiments confirm the validity of the proposed bounds. An example is shown in Figure[T]
where a fully connected ReLU-network with two hidden layers of 1000 (respectively 1500) units each
is trained with SGLD at inverse temperatures 8 = 0, 500, 1000, 2000, 4000, 8000, 16000, 32000,
and 64000. The train error for random labels is about 0.1 (or even less) at 5 = 64000, where the
bound is above 0.5. The test error for correct labels, however, is tightly bounded above.

Notice that for MNIST, which has the tightest bounds, the training error for the true labels is rapidly
decreasing from 0.5 to 0.17 at 8 = 500 and to 0.1 at 8 = 1000. The more moderate initial decrease
for CIFAR-10 corresponds to the tendency to overfit on this more difficult dataset. This confirms the
intuition, that good generalization at low temperatures is already announced in the high temperature
regime.

Experimental bounds for single draws from the posterior and various other experiments are reported
in Section

6 CONCLUSION

Using the integral representation of the log-partition function, the Gibbs posterior admits the compu-
tation of upper bounds on the true error based on the training data and for any temperature. These
bounds are stable under perturbation in the total-variation and Wasserstein metrics, and can be
approximated by Langevin Monte Carlo (LMC) algorithms. However, for realistic experiments, the
approximations obtained by these algorithms are coarse and require calibration, which leads to rather
tight bounds in the interpolation regime of overparametrized neural networks.

The fact that the calibrated bounds are very tight is, at this point, a purely experimental finding,
requiring more theoretical investigation in future work.
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APPENDIX

In this appendix, we summarize a glossary of notation, give additional theoretical results and
missing proofs, and provide more information on the numerical experiments, as well as additional
experimental results.

A TABLE OF NOTATION

Notation Brief description Section

X space of data 2

b sigma algebra (events) on X 2

m probability of data 2

n sample size 112

x generic member (21, ...,2,) € X", training sample 2

H hypothesis space 2

Q sigma algebra (events) on H 2|

¢ {:H x X —|0,00) loss function 2

f secondary loss function 3.3

P (H) probability measures on 2

m nonnegative a-priori measure on 2

o width of Gaussian prior 4

L(h) L (h) = Egz~p [k ()], expected loss of h € H 2

L (h,x) L (h,x) = (1/n) X1, £ (h,x;), empirical loss of h € H D

Jé] inverse temperature 11 2]

Zg (x) partition function 2

Gg.x (x) Gibbs posterior with energy L and prior © 2

Egrcsx) posterior expectation 2
increasing sequence (31 < ... < Bk) of positive reals 3.1

I'(h,x,B) | bounding functional 3.1

F(h,x) placeholder for generalization gap 3.2

K Kl (p,q) = pln% +(1-p)ln %, rel. entropy of Bernoulli variables | [2

KL (p,v) S/ (ln ?—5) dp, KL-divergence of p,v € P (H) 2\ 14.1 /4.2

dry (p,v) | total variation distance 2411142

W, (p,v) p-Wasserstein distance 2[4 1] 4.2

T, (h,x,3) | LMC approximation of I (1, x, (3) 4.2

n step size or learning rate 4.1

Vg invariant measure of LMC approximation of G'g with step size 7 4.1

Vgt LMC approximation of Gg with step size 7 at iteration ¢ 4.1

r(x) calibration factor 5.3

X randomly labeled data 5.3

Mtop-Merg | filters for stopping and ergodic mean 5.2[|C.1.3|

B ADDITIONAL RESULTS AND PROOFS

B.1

SUB-GAUSSIAN LOSSES

The freedom in the choice of F allows a number of bounds to be derived from Theorem 3.2l A
centered real random variable Y is called o-sub-Gaussian if In Ee?Y ~EY < \252/2 for all A € R.
Now, suppose that for some real function f all the x € X — f (h, x) are o-sub-Gaussian as x ~ (.

Let L(h,x) = L S°" | f(h, ;) and L(h) = E,[f(h,x)]. Then, x € X" — L (h,x) as x ~ p" is

o /+/n-sub-Gaussian. It is tempting to set F' (h,x) = A (L (h) = L (h, X)) in Theorem divide

by A and then optimize over A. Unfortunately, the last step is impossible, since the optimal A is
data-dependent in its dependence on I' and ruins the exponential moment bound on F. A more
careful argument establishes the following.

12
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Corollary B.1. Suppose that for all h € H the random variables x € X —f (h,z) asx ~ pu
are o-sub-Gaussian. For § > 0 with probability at least 1 — 6 as x ~ "™ and h ~ Gg r (x) if
T (h,x,8) > 1, then,

E, [f(h’x)]ing(h’m SG\/2[F(h,x,ﬁ) (1+1/n) +In(T (h,x,0) (n+1) /0)]

n

For the proof, we use the following auxiliary result.
Lemma B.2. (Anthony & Bartlett,|1999, Lemma 15.6) Suppose Pr is a probability distribution and

{E(a1,a2,0) : 0 < aq,a9,0 <1}
is a set of events, such that
(i) Forall0 < a<1land0 < 6 <1,
Pr{E (a,a,d)} <.

(ii) Forall 0 < a1 <a<as<land0<§; <§<1
E (a1,02,01) C E (o, ,0).

Then for 0 < a,d < 1,
Pr U E (aa,a,6a(l —a)) < 4.
ae(0,1]

We put this lemma in a more convenient form.

Lemma B.3. Let Y and X > 0 be real random variables, 1) : R x (0,1) — R be increasing in the
Ist argument and VC > 1, § € (0,1),

Pr{X <CAY > (C,0)} <.

Then, for every e > 0

Pr{X>1/\Y>w<X(1+e),X(f:_€)>}.

Proof. This follows from Lemma[B.2]using the events

E (ay,9,0) = {X <ayPAY > f (ozl_l,é)}
anda=1/(1+¢). O
Proof of Corollary[B.1} Take F' = \ (L (h) — L (h,x)), 50 MELE . [eF92] < X202/ (2n).

From Theorem and the properties of sub-Gaussian variables we get with A =
o~1y/2n (C +1n(1/9)) that

Pr{F(h,x,m <CONL(h) -1 (hx) >0 W}

- Pr{P(h,x,ﬁ) <OAL(h) -1 (hx) > EFA0) /\02}

) on
- Pr{F(h,x,ﬂ) <CAN (L (h) —i(h,x)) > C + N\20%/ (2n) +1n(1/5)} <.

Substitution in Lemma[B.3|with ¢ (C, 8) = 01/2(C + In (1/8)) /n, X =T (h,x,B8),Y = L (h) —
L (h,x) and e = 1/n gives Corollary O

13
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B.2 PROOFS FOR SECTION [4.2]

Restatement of Theorem (4.3}

Theorem B.4. Suppose that H = R and that there are numbers m, M < oo such that for every x
in X" and h € H we have ¢ (h,x)| < mand |F (h,x)| < M. Let 0=y < 1 < --- < g =0
and vg, (x) € P (H) be such that dpy (vg, (x),Gg, (x)) = €g,. Then,

(i) with probability at least 1 — § as x ~ p™ and h ~ vg (x)

F(h,x) < T,(h,x,08)+InExEpor {eF(h’x)} + ln%

K

+1In (ZeMJrﬁmeg) + Z (Br — Be—1) meg,_, .
k=1

(ii) with probability at least 1 — § as x ~ u”™
1,X 1
Eh””/ﬂ (%) [F (h,X)] < Eh””ﬁ(x) [FV (h7 X, 13)] +1In EXE}LNTr [eF(h )] +In g
K
+ (M +Bm)eg+ > (B — Ba-1) mep, _,.
k=1
Proof. By the bound on ¢ we have

K
T (h,x,8) <Ty (h,%,8)+ Y (Br — Br-1) meg, _,. ®)

k=1

(i) From Markov’s inequality we have (in analogy to the proof of Theorem 3.2 with probability at
least 1 — 6 as x ~ p™ and h ~ vg (x), that

F (h,x) + BL (h,x) + In Zg (x)

< MEEpey, o |:6F(h,x)+ﬁl:(h,x)+lnZﬁ(x)} +1n(1/96)

< I (]EthNGB(x) |:8F(h,x)+[ﬂﬁ(h,x)+lnZg(x)} _|_eM+ﬁm€B> +1n (1/96)
= In (IEXIEhN7r [eF(h’x)} + eM"’B’”eg) +1n(1/6)

< InE Epon {eF(h’x)} +1n (QeMHBme[;) +1n(1/6).

In the second inequality we used In Z3 (x) < 0 and in the last line we used for a,b > 1 that
In(a +b) < Inmax {a,b}+In2 < Ina+Inb+In2 = Ina+In2b. Subtract L (h,x) +1In Zs (x),
use (@) and (8).
(i1) Again with Markov’s inequality, with probability at least 1 — § as = ~ ™

E s 0 {F (h, %) + BL (h,x) + In Zg (x)}

[eJEth(x) [F(h,x)+BL(hx)+In Zg (x)]:|

IN

InEy,n

IN

InEoun [eEh~cﬂ<x> [ (hx)+BL(hx)+In Zﬁ(x)]+(M+ﬂm)€ﬁj| .

In the second inequality we used the fact that In Z (x) < 0 and the bounds on F' and ¢. Then,
Jensen’s inequality bounds the last line as

I By Bty 0 [eF(h,x)+Bi(h,x)+ln zﬁ(x)} o(M+Bm)eg
= InEx nEpor [eF(h’x)} + (M + Bm) eg.

Again subtract 3L (h,x) + In Zg (x), use @) and . O
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B.3 AN AMBIGUITY OF THE TEMPERATURE SCALE

A multiplicative shift of the temperature scale is necessary to remove an ambiguity, which arises
from different scalings of the gradient. This can be understood from Theorem [.3]and the nature of
the update rule in (/). Let U; ;. be the updating increment

b ()= =¥ E () 22 1 P

U

Suppose that for a given loss landscape L and sufﬁmently small 7, we have for all 5 that
drv (Gﬂ, Vﬁ,ﬁ,n) <2 g—i (BR+ L) < e. Let another loss landscape L' have a scaled gra-

dient VL' = rV L with < 1, for example because L/ (h, x) = L (rh,x). Then,

h
o e=v; 5,0 (0.

7“602 B
Since rn < 7, by the bound in Theoremwe should also have dry (Grg, Virg n) < e for all

Ui g, (h) =—=rnVL(h) -

B. So the same algorithm approximates Gg for L and Grp for L. To compensate this shift in

temperature scale we would have to multiply the I'-functional for L’ with r. The calibration method
in Section[5.3]is a convenient way to remove this ambiguity.

The above suggests that smaller gradients tend to increase the I'-functional and make the bounds
more conservative. This may be the reason, why the shift, which guarantees an upper bound on
random labels, in all cases also yields an upper bound for the true labels, because it seems intuitive
that the loss landscape for true labels should tend to have smaller gradients than the one for random
labels. This conjecture merits further theoretical and experimental investigation.

B.4 MISCELLANEOUS LEMMATA

Lemma B.5. For0 < < o0
max (KL (Gg, G2g) , KL (G, G2)} < 8 (Enec, [L(0)] = Buncrss [L(0)])

Proof. Using Lemma[3.1]

KL(Gg,Gop) = Ep~gs [_BIA/ (h) —InZs + 2/BIA/ (h) +In 22[3}
28
= EILNGﬁ {ﬂj’ (h’)} _A ]Eh"‘Gv [[A/ (h):| dry

< B (EhNGB [L (h)} — Ehncas [i (h)D
Similarly
L(G25,Gs) = Enecy, [—wz(h) —InZas + BL (h) +1In ZB]

= —Epgs [Bf, (h)} +/;ﬁ
3 (EhNGB [i (h)} — Ehncas [i (h)D

En~a, [L (h)} dy

IN

C EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

C.1 EXPERIMENTAL DETAILS

All the codes to reproduce the results are provided through this https://anonymous. 4open,
science/r/Gibbs—-Generalization—-45F1. For all the experiments we use the isotropic
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Gaussian prior with ¢4 = 0 and o = 5. This induces an L2-regularization term in the energy function
that is stated in the proof of Corollary [4.2]

We use either standard SGLD or ULA with a constant step size and without additional correction
terms. When ULA has been used, we use a step size of 0.01 for both datasets. However with SGLD,
we set the step size to 0.01 for MNIST and 0.005 for CIFAR-10. For both datasets, MNIST and
CIFAR-10, we use neural networks with ReLLU activation functions.

C.1.1 NETWORK ARCHITECTURE

The fully connected networks consist of one, two, three hidden layers, each containing a constant
number of units. Besides that we are using LeNet-5 architecture for MNIST and VGG16 architecture
for CIFAR-10 to achieve low test error. For loss function ¢, we are using either bounded binary
cross-entropy (BBCE) as described in Appendix D of |Dziugaite & Roy| (2018)) or the savage loss
(Masnadi-Shirazi & Vasconcelos, [2008]).

The LeNet-5 network follows a systematic pattern of alternating convolutional and pooling layers,
followed by fully connected layers (LeCun et al., 2002). It begins with an input layer that accepts
32 x 32 grayscale images. Thus, we pad our images to fit. The first convolutional layer (C1) applies
6 filters of size 5 x 5 to extract low-level features, followed by a 2 x 2 average pooling layer (S2) for
spatial downsampling. The second convolutional layer (C3) uses 16 filters of size 5 x 5 to capture
more complex feature combinations, followed again by a 2 x 2 average pooling layer (S4). A third
convolutional layer (C5) with 120 filters of size 5 x 5 acts as a feature extractor, producing 120
feature maps, each of size 1 x 1. The architecture concludes with two fully connected layers: F6 with
84 neurons and a final output layer with 10 neurons for the original digit classification task. However,
for our binary classification task, we modify F6 to have 420 neurons and use a single-neuron output
layer. Throughout the network, ReLLU activation functions replace the original tanh activations, which
improves gradient flow and training performance in modern implementations.

VGG-16 is a widely used deep convolutional neural network architecture known for its simplicity and
strong performance in image classification tasks (Simonyan & Zisserman), 2014). The architecture
follows a consistent design using only 3 x 3 convolutional filters and 2 x 2 max pooling operations
throughout the network. In our implementation, VGG-16 is adapted to handle CIFAR-10’s smaller
32 x 32 RGB images. The network consists of 13 convolutional layers organized into five blocks: the
first two blocks contain two convolutional layers each with 64 and 128 filters, respectively, while the
last three blocks contain three convolutional layers each with 256, 512, and 512 filters, respectively.
Each block is followed by a 2 x 2 max pooling layer for spatial downsampling. All convolutional
layers employ 3 x 3 kernels with padding to preserve spatial dimensions, and ReL.U activation
functions introduce non-linearity.The convolutional feature extractor is followed by a classifier head
consisting of three fully connected layers: two hidden layers with 1024 neurons each, using ReLLU
activation, and a final output layer with 1 neurons for binary classification. We also removed dropout
to ensure that SGLD minimizes the defined energy function without any additional terms.

For MNIST, the input is a 784-dimensional vector, and the output is a scalar since we perform binary
classification between digits 0—4 and 5-9. For CIFAR-10, the input dimension is 3072, and the output
is again scalar, corresponding to binary classification between vehicles and animals. For evaluating
our models, we are using all 10,000 test examples for both datasets.

C.1.2 MINIBATCHES

When using SGLD, we adopt minibatches of size proportional to v/n. Thus, for n = 2000 the
mini-batch size is 50, and for n = 8000 it is 100.

C.1.3 MOVING AVERAGE FILTERS

As we explained in Section we are using a running mean M(z1,--- , ;) of L(h;,x) from
J =1,--- ¢ both as a criterion to stop the experiment and an estimation for Ej¢,, {ﬁ (h, x)} . We
define the running mean recursively in one of two ways:

16



Under review as a conference paper at ICLR 2026

L(ht,x) + $L(hy—1,x) + (1 — o) M_1,

L(hy,x) + (1 — ) M1,

with Mlp = 0 and small o. We use the first (symmetric) form in the experiments with ULA, and the
second (standard exponential moving average) form with SGLD for convenience. We set different
values of o for the two roles: o = 0.0025 for the stopping criterion (Mop) and o = 0.01 for
approximating the ergodic mean (M,¢). The stopping rule is triggered when

M; — M1 > e,

with € = 10~7. To avoid premature termination, we impose a minimum of 4000 steps before applying
this criterion. As o« — 0 and ¢t — o0, the quantity M; converges to the ergodic mean.

C.2 EXPERIMENTAL RESULTS
C.2.1 ILLUSTRATION OF BOUND COMPUTATION

In this section, we demonstrate again the figure in the main body in more details. The figure [2]
illustrates how our bounds are computed. The sequence of mean training losses in ¢ is used to
compute for each (3 the functional I" and the "KL-Bound", which corresponds to the right hand side of
the inequalities in Corollary[3.3] Our bound on the test loss is then computed by applying the function
£~! to the empirical 0-1 error and to this kl-bound. The graph of "KL(Train, Test)" corresponds to
the left hand side in Corollary [3.3]

It is remarkable that the close fit of the upper bound on the random labels is achieved by the adjustment
of a single calibration parameter.
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Figure 2: A more detailed version of Figure to illustrate how the bounds are computed.

C.2.2 SINGLE-DRAWS

For the setting described in Section [5.4] we also present the bounds for the single-draw case in
Figure 3] It is noteworthy that, although the theoretical guarantees for this scenario are rather weak,
the empirical bounds behave well. However, as visible in the plots, the results exhibit fluctuations
and irregularities caused by stochastic effects, which make them less reliable.
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Figure 3: SGLD on MNIST and CIFAR-10 with 2000 training examples using BBCE loss function.
The first row corresponds to MNIST and the second row to CIFAR-10. Random labels are shown
on the left, correct labels on the right. Both random and true labels are trained with exactly the
same algorithm and parameters on a fully connected ReLU network with two hidden layers of 1000
(respectively 1500) units. The calibration factor for MNIST is 0.77, for CIFAR-10 0.89. Train error,
test error and our bound for a single-draw of the 0-1 loss are plotted against 3.

C.2.3 DIFFERENT ARCHITECTURES

In this section, we evaluate the performance of different models and architectures on both MNIST
and CIFAR-10, demonstrating that our bound can be used to guide model selection. In addition to the
two-hidden-layer neural networks described in Section[T} we consider fully connected neural networks
with three hidden layers, containing 500 and 1000 units for MNIST and CIFAR-10, respectively.
Furthermore, we employ the LeNet-5 architecture for MNIST and VGG-16 for CIFAR-10 to achieve
high test accuracy. Detailed descriptions of these architectures are provided in Section [C.1.1}

Figure ff] demonstrates the robustness of our bound across different models. We observe that the
bounds can be very tight even when the test error is small. For convolutional neural networks,
especially on the MNIST dataset, we observe strong performance with the true labels, but relatively
poor performance with random labels, despite having more parameters than training examples.
This can be explained by the fact that convolutional architectures are still far from being highly
overparameterized. For the MNIST dataset, we use fully connected neural networks with two or three
hidden layers, containing 1000 or 500 units per layer, respectively. This corresponds to a total of
approximately 1,787,000 and 893,000 parameters, resulting in a parameter-to-training-example ratio
of roughly 200 and 100, respectively. In contrast, LeNet-5 has around 100,000 parameters, yielding a
ratio of approximately 12.5.

The empirical test bounds can serve as a selection criterion among different models. Table|[T]show that
test bounds at low temperature are useful for model selection, and that bounds at high temperature
can also predict the behavior of the model at low temperature.
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Figure 4: SGLD on MNIST and CIFAR-10 with 8000 training examples using BBCE loss function.
The first two rows correspond to MNIST, and the remaining rows to CIFAR-10. Random labels are
shown on the left, and correct labels on the right. Both random and true labels are trained using the
same algorithm and hyperparameters on a fully connected ReLU network with three hidden layers of
500 (MNIST) or 1000 (CIFAR-10) units, followed by LeNet-5 (MNIST) or VGG-16 (CIFAR-10)
shown in the subsequent row. The calibration factors for MNIST are 1.05 and 0.32, for CIFAR-10
0.96 and 0.73. The training error, test error, and our bound for the Gibbs posterior average of the 0—1
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2HL (W=1000) 3HL (W=500) LeNet-5

Test Bound at 8 = 1k 0.1766 0.2347 0.0887
Test Error at 5 = 64k 0.0498 0.0549 0.0317
Test Bound at 8 = 64k 0.0860 0.1314 0.0375

(a) MNIST, 8k training examples (true labels).

2HL (W=1500) 3HL (W=1000) VGG-16

Test Bound at 8 = 1k 0.2905 0.3635 0.2330
Test Error at 5 = 64k 0.1719 0.1782 0.0903
Test Bound at 5 = 64k 0.2266 0.2807 0.2030

(b) CIFAR-10, 8k training examples (true labels).

Table 1: Test bounds and test errors for different neural network architectures on MNIST and CIFAR-
10. The bounds at both low and high temperatures reliably reflect test error performance at low
temperature.

C.24 ULA

We have also conducted experiments using ULA for both datasets. The main difference from SGLD
is that we use all the information to compute the gradient at each step. The results are shown in

Figure[5]
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Figure 5: ULA on MNIST and CIFAR-10 with 2000 training examples using BBCE loss function.
The first row corresponds to MNIST and the second row to CIFAR-10. Random labels are shown on
the left, correct labels on the right. Both random and true labels are trained with the same algorithm
and parameters on a fully connected ReLLU network with one (respectively two) hidden layers of 500
(respectively 1000) units. The calibration factor for MNIST is 1.98, for CIFAR-10 1.85. Train error,
test error and our bound for the Gibbs posterior average of the 0-1 loss are plotted against /3.
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C.2.5 SAVAGE LOSS FUNCTION

We additionally performed experiments using the Savage loss to verify the robustness of our results
across different loss functions. Following the same setup as in the previous section, the outcomes are
reported in Figure [f]
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Figure 6: ULA on MNIST and CIFAR-10 with 2000 training examples using savage loss function.
The first row corresponds to MNIST and the second row to CIFAR-10. Random labels are shown on
the left, correct labels on the right. Both random and true labels are trained with the same algorithm
and parameters on a fully connected ReLU network with one (respectively two) hidden layers of 500
(respectively 1000) units. The calibration factor for MNIST is 0.49, for CIFAR-10 0.59. Train error,
test error and our bound for the Gibbs posterior average of the 0-1 loss are plotted against 3.

C.2.6 REAL-WORLD USE CASES

We further evaluated Stochastic Gradient Descent (SGD) to examine the practical relevance of our
bounds in real-world interpolation regimes.

Based on our observations, we suggest the following procedure for practitioners who wish to train
overparameterized neural networks with standard SGD while also obtaining generalization guarantees.
First, randomly permute the labels, train the network at different temperatures, and compute the
bound together with the calibration factor. Then, repeat the same procedure using the true labels. At
very low temperatures, this approach provides generalization guarantees that may transfer to SGD.
The corresponding results are presented in Table[2]
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2HL (W=1000) 3HL (W=500) LeNet-5

Test Error with SGD 0.0364 0.0363 0.0308
Test Error at 5 = 64k 0.0498 0.0549 0.0317
Test Bound at 3 = 64k 0.0860 0.1314 0.0375

(a) MNIST, 8k training examples (true labels).

2HL (W=1500) 3HL (W=1000) VGG-16

Test Error with SGD 0.1423 0.1415 0.0933
Test Error at § = 64k 0.1719 0.1782 0.0903
Test Bound at 3 = 64k 0.2266 0.2807 0.2030

(b) CIFAR-10, 8k training examples (true labels).

Table 2: Comparing SGD test error with SGLD test errors and bounds for different neural network
architectures on MNIST and CIFAR-10.
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