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Abstract

Many real-world control problems require continual policy adjustments to bal-
ance multiple objectives, which requires the acquisition of high-quality policies
to cover diverse preferences. Multi-Objective Reinforcement Learning (MORL)
provides a general framework to solve such problems. However, current MORL
methods suffer from high sample complexity, primarily due to the neglect of effi-
cient knowledge sharing and conflicts in optimization with different preferences.
To this end, this paper introduces a novel framework, Conflict Objective Regular-
ization in Latent Space (COLA). To enable efficient knowledge sharing, COLA
establishes a shared latent representation space for common knowledge, which
can avoid redundant learning under different preferences. Besides, COLA in-
troduces a regularization term for the value function to mitigate the negative ef-
fects of conflicting preferences on the value function approximation, thereby im-
proving the accuracy of value estimation. The experimental results across vari-
ous multi-objective continuous control tasks demonstrate the significant superi-
ority of COLA over the state-of-the-art MORL baselines. Code is available at
https://github.com/yeshenpy/COLA.

1 Introduction

Real-world problems often involve multiple performance metrics, where conflicts among these met-
rics make it infeasible to maximize all metrics simultaneously with a single policy. This necessitates
a trade-off among different metrics, requiring the learning of multiple high-quality policies to meet
diverse preferences [1-3]. For instance, in robot control problems, performance metrics may include
both forward speed and energy consumption. In such cases, two reward signals are returned, and
multiple optimal policies exist based on different trade-offs between the two metrics [4]. Learning
these policies enables us to control the robot more flexibly [5]. For example, initially, one might
prefer a policy that prioritizes speed without considering energy consumption. Still, as energy loss
accumulates, a preference may shift towards an energy-efficient policy to extend running time.

A popular approach to addressing the multi-objective control problems involves leveraging Multi-
Objective Reinforcement Learning (MORL) to acquire policies that meet human preferences [6, 7].
Current MORL algorithms can be roughly categorized into three categories: Single-policy methods,
Multi-policy methods, and General policy methods. Single-policy methods directly transform multi-
objective problems into single-objective problems and solve them using standard RL [6, 8, 9]. These
methods typically require expert knowledge to predefine preferences, and the obtained policies are
difficult to generalize to unknown preferences. Multi-policy methods seek a set of policies to cover
optimal solutions under diverse preferences, which often require a substantial amount of sample
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cost to construct high-quality policies [10-12]. General policy methods aim to construct a single
network with preferences as the condition to cover all policies, which have higher sample efficiency
compared to the above two categories due to the implicit knowledge sharing [13—15].

However, the general policy methods still require a large number of samples to learn high-quality
policies. We summarize two challenges. 1) Inefficiency of Knowledge Sharing: Although using
a single network allows implicit knowledge sharing, policies under different preferences need to
redundantly learn common knowledge, resulting in inefficient learning. 2) Conflict of Optimization
Directions: Different preferences may conflict in optimization directions. When using a shared
network to approximate the value of a specific preference, it may compromise the approximation
of the values of other preferences, resulting in a tug-of-war during optimization. These conflicts
impede the accurate approximation of the value function to distinct preferences, thereby resulting in
suboptimal policies.

To address these challenges, we propose a novel framework named Conflict Objective Regular-
ization in Latent Space (COLA). The core insight of COLA is to seek commonalities while ac-
commodating differences, i.e., extracting and sharing the common knowledge required for learning
under various preferences, while mitigating interference between different preferences when their
optimization directions conflict. COLA comprises two main components: 1) To solve the prob-
lem of Inefficiency of Knowledge Sharing, we introduce the Objective-agnostic Latent Dynamics
Model (OADM), which utilizes underlying dynamics transitions in the environment to extract a
universal knowledge representation through temporal latent consistency. The knowledge extracted
by OADM provides more compact general information of dynamics and is essential for learning
policies under all preferences. Subsequent multi-objective optimization based on the latent repre-
sentation constructed by OADM can thus be more efficient. 2) To address the problem of Conflict
of Optimization Directions, COLA introduces Conflict Objective Regularization (COR). When the
optimization direction of the current preference conflicts with the optimization direction of other
preferences, COR constrains the value estimates for other preferences from deviating away from the
original value estimates. This minimizes negative impacts (or interference) between optimizations
for different preferences, allowing the value function to simultaneously maintain value estimates for
multiple preferences. The experiments in a range of multi-objective control tasks show that COLA
significantly outperforms current state-of-the-art MORL algorithms across various general metrics,
achieving higher sample efficiency and ultimate performance.

2 Background

2.1 Multi-Objective Markov Decision Process

Consider a Multi-Objective Markov Decision Process (MOMDP) [16], defined by a tuple
(S, A, P,r,v,Q, fo) with state space S, action space A, transition function P(s, a), the vector-
valued reward function 7 with d objectives, the discount factor v € (0, 1), the preference space
2 and the scalarization function fo which produces a scalar utility using preference w € 2. In
our work, we use a linear preference function, i.e., f.,(r(s,a)) = w'r(s,a), which is commonly
adopted in the MORL works [13, 14, 17]. When the number of objectives is d = 1, the MOMDP
simplifies to a standard MDP. If multiple objectives (d > 1) and all possible returns are considered,
a set of Pareto optimal solutions called Pareto Frontier (PF) can be obtained. A policy 7 is Pareto
Optimal when no other policy 7’ can increase its expected return in any objective without decreas-
ing the expected return in any other objective. In continuous control tasks, obtaining the PF is an
NP-hard problem [4]. Therefore, the goal of MORL is to obtain an approximation of the PF.

In this paper, we focus on the general policy methods. Therefore, our objective is to construct a
general policy 7(als,w) [18, 19] that, given a state s € S, can generalize across the entire space of
preferences by adjusting the preference w € .

2.2 Envelope Soft Actor Critic

We introduce a foundational MORL algorithm, which integrates Envelope Q-Learning with SAC.
We refer to this algorithm as Envelope SAC [14, 20], which serves as the foundational algorithm for
our work. Specifically, the multi-objective Bellman equation for Envelope SAC can be formalized
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where (s, a,r,s') is sampled from the replay buffer D, ¢, 0, ¢ (or &) are the parameters for corre-
sponding networks (or the target network), and 1, denotes a d-dimensional vector of all ones. To
ensure that the samples contribute to the optimization of all preferences, w is randomly sampled
from the preference space 2 rather than using the preferences applied during the interaction. The
general policy for different preferences is optimized through the following equation:

Lr(w) =E | sup {alog(m(als,w)) —w'Q(s,a,w)}|, 2)
w’ €N

where a is sampled from my. We follow the structures of SAC, maintaining two Q-functions to
alleviate overestimation issues and adjusting v in a learning manner.

3 COLA Framework

This section introduces our framework Conflict Objective Regularization in Latent Space (COLA).
We begin by introducing how to construct a latent space by Objective-agnostic Latent Dynamics
Model for efficient knowledge sharing. Subsequently, we elaborate on how to mitigate the impact of
conflicting preferences on value function approximation through Conflict Objective Regularization.
Finally, we provide an overview of the COLA framework.

3.1 Objective-agnostic Latent Dynamics Model

In complex multi-objective continuous control tasks, optimizing a policy or set of policies to cover
the entire preference space typically requires a significant sample cost. To enhance sample effi-
ciency, general policy methods employ shared networks and integrate preferences as conditional
inputs to facilitate implicit knowledge sharing across various preferences. However, the lack of effi-
cient extraction and utilization of general knowledge limits the efficiency of this learning approach.

To solve the problem, we propose the Objective-agnostic Latent Dynamics Model (OADM) to ex-
tract and share the representations of common knowledge in the underlying environment dynamics
transitions. Our key insight is that the dynamic transition information underlies robot motion and
must be mastered, regardless of the preference policies for robots. By explicitly extracting and shar-
ing the representations, the policies avoid redundant learning of the common knowledge for different
preferences, and a more compact and beneficial latent space is constructed, making multi-objective
optimization more efficient.

The architectural diagram of OADM is de- —_ —

MSE  + MSE
picted in Figure 1. Specifically, the OADM Pl 0\ \s\ et Q\ \s\
consists of two components: a state encoder E; . — °
and a transition model D,,. We formalize the 4 I 4

components as follows: - - -
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Figure 1: The conceptual illustration of Objective-

In OADM, the encoder maps state s; to the agnostic Latent Dynamics Model (OADM). We
latent representation z;. The transition model construct consistent state representations z; and
takes the latent representation 2; and a; as in- state-action representations ¢;)"; in latent space
puts and output c; 1. To extract the consistent for extracting common dynamics information.
representations in dynamic transitions, OADM
leverages the temporal consistency loss to make
ct+1 predict the latent representation z;4; of the next state s;4 ;. The loss is defined as follows:

Lowu(¥;7) = Ep [(E¢(5t+1) - Dw(Zt, at))2] ) (3)

where (s, at, s¢+1) is sampled from the replay buffer D.



The temporal consistency loss is used in several previous methods [21-26], which are predominantly
tailored for single-objective optimization tasks. In addition to capturing dynamics, these methods
inject task-specific information by maximizing the value function or predicting rewards. However,
when applied to multi-objective optimization, this approach may introduce potential conflicts, par-
ticularly in the optimization of conflicting objectives. Therefore, in COLA, we remove the influence
of different preference values and rewards on OADM. This intentional separation allows us to con-
centrate specifically on providing objective-agnostic state transition information.

For the multi-objective optimization process,
the main distinction lies in the optimization be-
ing performed in the more compact latent space
constructed by OADM, rather than in the orig-
inal state space. The latent policy optimiza-
tion process is depicted in Figure 2, which con-
sists of two parts: multi-objective value func-
tion approximation and multi-objective policy
optimization. Specifically, to optimize more ef-
ficiently, the value function takes the latent state
representation z;, the latent state-action repre-
sentation ¢y 1, the action a;, and the preference
w as inputs. The original state information s;
can be optional. However, in the experiments,
we observe that discarding the original infor-
mation s; sometimes results in unstable policy Figure 2: Multi-objective policy optimization in
updates, possibly due to real-time updates of latent space.

OADM. Therefore, during the learning process,

we also take the stable input s; to mitigate the problem. The formulation of the optimization loss
Lg can be rewritten as follows:

= Q(s, 2, €1y, Ay W)
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where y = 7(s¢, ar) + vVe (St+1, 2t+1,w) . The policy 7 makes decisions by taking s;, z; and w as
inputs. The loss £, of policy is formulated as follows:
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With efficient representation and sharing of common knowledge, multi-objective value function and
policy optimization can become more efficient.

3.2 Conflict Objective Regularization

The multi-objective value network is crucial for providing policy gradient guidance under various
preferences. In current general policy methods, a shared architecture is employed for the value net-
work. Leveraging the shared architecture facilitates task-related knowledge sharing among similar
preferences, leading to more efficient learning. However, in multi-objective optimization, numerous
conflicting preferences exist. Approximating the value for one preference can have negative impacts
on the value estimates for other potentially conflicting preferences. In essence, this is a manifesta-
tion of Neural Network Churn [27, 28] in the context of multi-objective optimization. To this end,
naturally we aim to study: How can we mitigate the negative impact of conflicting preferences?

To solve the problem, we propose the Conflict Objective Regularization Loss (COR) to mitigate
the negative effects of optimization direction conflicts among preferences. When the value function
approximates the values of preference w;, COR aims to minimize the value estimate variation of
random preference wj if the optimization directions of the value function under preferences w; and
w; conflict. This enhances the stability of value function learning, preventing drastic changes in the
estimated values of conflicting preferences, thus preserving effective policy gradient guidance under
different preferences.

To implement COR, we first need to establish a metric for the degree of conflict. Concretely, we
measure the stiffness p (w;, wj) [29-31] of the value network between preferences w; and w;, which



Algorithm 1 COLA Algorithm

1: Initialize: a replay buffer D, the Objective-agnostic Latent Dynamics Model with encoder E,, and transi-
tion model D, the MO policy 7y, the MO value function Qg, Vz.
repeat
: # Interaction for experiences

2:
3
4:  Sample a preference w; from €2
5:  The MO policy interacts with the environment based on w;
6:  Store the transitions {s, a, s’, 7, done} to D
7 # Optimize the OADM
8:  Optimize OADM with experiences in D {see Eq. 3}
9:  # MO Learning in the latent space
10:  Optimize the Critic:
11:  Sample experiences to calculate the COR loss with w; and a random sampled w; {see Eq. 7}
12:  Optimize Q to approximate the values under w; {see Eq. 8}
13:  Optimize the Policy: Optimize 7 under w; {see Eq. 5}
14: until reaching maximum training steps

is defined by:
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Low stiffness indicates that updating the value network parameters toward minimizing L for pref-
erence w; will have a negative effect on the minimization of Lg for preference w;. Meanwhile, a
higher stiffness indicates a more consistent optimization direction for the value network parameters
between w; and w;. We set a conflict boundary, denoted as c. When the stiffness p (w;, w;) is
greater than or equal to ¢, we consider that the optimization directions of the value functions under
preferences w; and w; are relatively consistent, mutually reinforcing each other. However, when
p (w;,wj) is less than ¢, we assume that there is a conflict in the optimization directions between w;
and w;. Additionally, a larger value of c-p (w;, w;) indicates a more severe conflict.

(6)

If p (w;,w;) — ¢ < 0, we introduce the COR loss to the value function under the preference w; to
ensure that the optimization under w; does not significantly compromise the value estimation under
w;. The COR loss can be formalized as follows:

Loon = Ep [max(c—p(wi,w;),0) (Q(w;) - Qw;))’ |, @)

A Aw;)

where the term A represents the degree of conflict, with a larger value indicating a greater conflict,
consequently, the regularization term’s constraining effect will be stronger. The term A(w;) rep-
resents the magnitude of the change in Q. @’ is the value function of @ optimized based on the
preference w;, i.e., Q — @Q’. Minimizing A(wj) helps mitigate the impact on the value estima-
tion under w;. In the practical implementation, obtaining the optimized value function Q' for the
next step to optimize the current parameters is challenging. This can be addressed by leveraging
the MAML method [32]. However, it introduces significant additional computational overhead. To
simplify this process, we employ a surrogate approach by maintaining an old Q network from the
previous step, denoted as @14, and using the squared difference between the current Q(w;) and the
previous step’s Qo14(w;) as a replacement for A(w; ). Finally, the value function loss of COLA is
defined as follows:

Leowa = Lo + B Lo, ®)

where [ is the hyperparameter to balance the impact of COR loss. Through L¢qra, we can reduce
the negative impact on the value functions of other preferences when optimizing any preference w;,
thereby enhancing the ability of the value function to maintain values for different preferences.

3.3 COLA Algorithm

We provide the pseudo-code of COLA in Algorithm 1. In each iteration, the algorithm proceeds
across three phases (denoted by blue). First, we randomly sample a preference w; from the pref-
erence space {2 and interact with the environment based on 7 and w;, the interaction experiences



Table 1: Comparison of COLA with other MORL algorithms across ten tasks in terms of the three
metrics. All algorithms are trained for 3 million environment steps. The reference point is set to
the origin for HV calculation. COLA achieves remarkable superiority over other algorithms in all
metrics with an equivalent number of samples.

Tasks Metric Envelope SAC PGMORL Q-Pensieve CAPQL COLA (Ours)

HV (x10°) 5.54 £0.47 513+0.06 5.66+0.16 5.84+0.14 7.91+0.06
HalfCheetah-2d ~ UT (x10%) 2.19+0.11 2.14+0.03 2224+0.06 2.24+0.03 2.90+0.07

ED 0.40+0.04 0.34+0.00 0.374+0.02 0.50+0.00 0.89+0.00

HV (x107) 2.00+0.10 1.904+0.07 2.06+0.08 1.65+0.07 2.11+0.03

Hopper-2d UT (x10%) 4154009  4.1240.07 4214+0.07 3.95+009 4.28+0.02
ED 0.61+£0.00 0.23+0.00 0.69+0.01 0.04+0.00 0.91+0.00

HV (x10°) 6.90+£0.06 54040.62 6.93+0.16 7.07+0.98 11.33+2.76

Ant-2d UT (x10%) 2.38+0.01 21240.11 239+0.03 243+0.15 3.04+0.40
ED 0444005 0.00+0.00 0.624+0.01 054+0.09 0.90+ 0.02

HV (x10°%) 4474008 4504016 4.374+0.19 3.35+026 4.87+0.05

Walker-2d UT (x10%) 1.954+0.03 1.94+£0.05 1.91+0.04 1.784+0.05 2.02+0.03
ED 0.52+0.00 0.51+0.00 0.324+0.01 026+001 0.90+0.00

HV (x10'%) 3204027 3.35+0.07 3.2940.20 1924023 3.41+0.04

Hopper-3d UT (x10%) 3.21+0.04 32140.01 320+£004 270+0.11 3.224+0.06
ED 0.61+£0.03 0.55+0.00 0.454+0.03 0.03+0.00 0.85-+0.01

HV (x10°%) 5.76£0.09 7.804+0.52 7.32+£297 9.88+0.89 18.58+0.76

Ant-3d UT (x10%) 1.604+0.01 1.90£0.02 1.82+024 2024+0.06 2.68+0.04
ED 0.13+0.01  0.39+0.01 0.314+0.04 0.72+0.00 0.95+ 0.00

HV (x10')  430+£0.75 3.15+0.11 3.904+1.23 5.03+0.12 7.23+2.84

Ant-4d UT (x10%) 453+0.19  4.1940.07 4.3640.34 4.71+£002 5.17+0.45
ED 0.51+0.01 0.15+0.02 0.164+0.02 0.70£0.00 0.97 + 0.00

HV (x10'%)  5.244+2.00 7.524+0.52 5.03+2.77 7.56+2.59 9.15+ 1.58
HalfCheetah-5d  UT (x10%) 256+0.32  2.644+0.02 260+0.26 265+0.35 3.11+0.12

ED 0.39+0.02 0.56+0.00 0.46+0.03 048+0.02 0.61+0.00

HV (x10%'%)  7.83+095 9.80+0.31 868+0.89 3.37+251 10.41+0.46

Hopper-5d UT (x10%) 2.59+0.05 2714+0.01 263+£002 1.68+0.05 2.7140.01
ED 0444001 0.67+£0.00 0594+0.02 0.12+0.00 0.68+0.00

HV (x10'%)  3.25+0.10 3.124+0.04 3.224+0.05 3.53+0.08 3.56 &+ 0.09

Ant-5d UT (x10%) 2.024+0.03  2.014+0.02 2.03+0.003 2.04+0.02 2.05=+0.02
ED 0.54+0.02 0.50+0.00 0504+0.01 0.39+0.03 0.57+0.00

are then stored into the replay buffer D. Subsequently, we optimize the Objective-agnostic La-
tent Dynamics Model (OADM) based on Eq. 3, extracting dynamic transition representations and
constructing a more compact latent space. Within this latent space, we randomly sample a new pref-
erence w; to optimize the value function and policy. To calculate COR loss, an additional preference
wj is sampled, and the value function is optimized based on our new loss with Eq. 8. Finally, policy
improvement is conducted on the policy based on Eq. 5.

4 Experiments

This section provides a comprehensive evaluation of COLA through experiments. We first present
the experimental setup, followed by performance comparisons and experimental analysis.

4.1 Experimental Setting

Our experiments are primarily conducted on multi-objective continuous control tasks proposed by
PGMORL [4]. Additionally, we construct more complex multi-objective optimization tasks, such
as Ant, Hopper, and HalfCheetah, each with more than two objectives. Detailed information can be
found in Appendix B. We compare COLA with several state-of-the-art MORL algorithms, including
Envelope [14], PGMORL [4], Q-Pensieve [20], and CAPQL [33]. For a fair comparison, we use the
official implementation, fine-tune the hyperparameters and present the best results obtained in each
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Figure 3: Hypervolume and Expected Utility comparison for continuous control tasks.
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Figure 4: Pareto front comparison for continuous control tasks.

task. It’s worth noting that, as the original Envelope is tailored for discrete tasks, we provide its SAC
version for comparison in continuous tasks. All algorithms are trained for 3 million environment
steps. All statistics are obtained from 5 independent runs and the mean and standard deviation
are reported, which is consistent with the setting in previous MORL works. More implementation
details can be found in Appendix C.

Performance Metrics: We follow the performance evaluation metrics proposed in previous meth-
ods [20], which focus on the following metrics:

Hypervolume (HV) is a metric designed to quantify the convergence speed of a Pareto fron-
tier and the diversity of policies within it. HV is defined HV:= [ H(R) I{z € H(R)}dz,

where R is a set of return vectors attained, 7o € R? is a reference point, H(R) :=
{z€eR?:3r € R,mo < z < 7} and I is the indicator function.

Expected Utility (UT) serves as a metric to evaluate the overall performance of policies under
linear scalarization and is defined as [UT := Eyecq [max,er(w'r)], where R is a set of return
vectors attained.

Episodic Dominance (ED) is defined as ED; 5 := Eycq [H {ZtT;O wlrl > ZtTiO wTer,

where 7}, 72 are return vectors, and Ty, T are the episode lengths. ED is a metric designed for

pairwise comparison of algorithms, particularly suitable for problems where there is a significant
difference in returns for different preferences. In such cases, HV and UT may be dominated by

a minority of preferences. We calculate ED between algorithms pairwise and report the average
ED.



Table 2: Comparison between Envelope and COLA on DMC.

Tasks Metric Envelope COLA
Cheetah_Run-2d  HV (x10%) 8.61 £ 0.02 12.71 £ 0.02
Cheetah_Run-2d UT 318.80 £29.25 415.98 + 30.51
Hopper_Hop-2d  HV (x10?) 3.47 + 1.60 31.59 + 0.14
Hopper_Hop-2d UT 122.06 =193  128.53 + 0.78
Walker_walk-2d ~ HV (x10°) 5.89 + 3.98 7.73 £ 3.14
Walker_walk-2d  UT 238.42 +84.43  311.69 + 59.90

Table 3: Comparison between Envelope and COLA on the DeepSea Treasure task.

DeepSea Treasure Envelope COLA
HV 799.9 £97.00 1028.93 + 3.37
uUT 6.323 + 0.64 7.94 £+ 0.08

4.2 Performance Evaluation

We evaluate COLA and related strong MORL baselines across ten continuous control tasks. The
experimental results shown in Table 1 indicate a significant performance advantage of COLA over
other methods. Compared to the second-best approach in different tasks, COLA demonstrates an
average improvement of 26.8% in HV and 12% in UT. In pairwise comparisons with other algo-
rithms, COLA consistently achieves significantly higher ED than other methods. Additionally, we
also observe that as the number of objectives increases, such as in HalfCheetah-5d and Hopper-5d,
COLA exhibits more substantial performance improvements compared to other general policy meth-
ods. This indicates that COLA exhibits better adaptability to tasks with more objectives. Besides,
we present the training process of COLA in comparison to other general policy methods in Figure 3.
Notably, COLA demonstrates significant superiority over other algorithms in both HV and UT met-
rics with an equivalent number of samples, showcasing its higher sample efficiency. Furthermore,
we compare the Pareto fronts constructed by different algorithms, which offers a more intuitive rep-
resentation of the quality of the discovered Pareto fronts. As depicted in Figure 4, COLA constructs
a broader and denser Pareto front compared to other algorithms. In the Ant-2d task, COLA’s Pareto
front is significantly superior to other algorithms. Moreover, in Hopper-3d, COLA almost covers
other algorithms. These visualizations consistently highlight the superiority of COLA.

In addition to the main experiments described above, we further evaluate COLA on three additional
benchmarks to examine its generality and effectiveness. (1) First, we consider the DeepMind Con-
trol Suite (DMC) [34] and extend it to the multi-objective setting, which involves image-based tasks.
The objectives of these tasks include energy consumption and the original task goals, such as run-
ning speed, walking speed, and jumping height. In this setting, we combined COLA with RAD and
compared it against Envelope-RAD with 800,000 environment steps. The results shown in Table 2
indicate that COLA consistently provides significant performance improvements across different
tasks. (2) The second benchmark is the continuous-control DeepSea Treasure task proposed in Q-
Pensieve [20]. Here, COLA is integrated with SAC and compared against Envelope. As shown
in Table 3, COLA achieves better performance on both HV and UT metrics. (3) The third experi-
ment involves two classic tasks from MO-Gym [3], namely Mo-lunar-lander and Mo-mountain-car.
As reported in Table 4, we compared against GPI/LS, GPI/PD [35], and MORL/D [36]. The re-
sults demonstrate that COLA exhibits a notable performance advantage on Mo-lunar-lander, while
on Mo-mountain-car, it shows a slight disadvantage in UT compared to GPI/PD. Overall, COLA
demonstrates strong and consistent performance across diverse tasks and algorithmic combinations.

4.3 Superiority of Components & Parameter Analysis

In this section, we delve into the impact of COR loss on value function approximation. Our analysis
is conducted on MO-Hopper-3d, encompassing three objectives: forward speed, jump height, and
energy efficiency. We gather 10,000 states from the interaction between policies and the environment
under diverse preferences, calculate the corresponding Monte Carlo ground truth, and determine



Table 4: Experiment on the two tasks from MO-Gym with 10,000 environment steps.

Task Metric GPI/LS GPI/PD MORL/D COLA
Mo-lunar-lander ~ HV (x108) 4.37 4.66 3.84 6.42
UuT 13.52 15.12 3.71 30.18
Mo-mountain-car HV (x103) 1.79 3.46 1.10 3.31
UuT -48.57 -42.47 -50.23 -50.42
(1.0, 0.0, 0.0) (0.0,1.0, 0.0) (0.0, 0.0,1.0) All preferences
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Figure 5: The comparison of ground truth error. The first three plots illustrate the error in three
extreme preference settings, while the last plot showcases the average true error across multiple
preferences sampled uniformly from the entire preference space.

the errors between the estimated values based on these states and the ground truth. The above
follows the evaluation method for value approximation accuracy in TD3 [37]. The experimental
results illustrated in Figure 5 demonstrate that using COR results in significantly smaller errors
compared to not using it for extreme preferences (1.0, 0.0, 0.0) and (0.0, 1.0, 0.0), while the errors
are comparable for (0.0,0.0, 1.0). Furthermore, we uniformly sample all possible preferences with
a step size of 0.25 to calculate the mean errors. The results show that using COR can lead to smaller
mean errors in the value function, indicating that COR is more conducive to maintaining value
functions with multiple preferences.

Next, we conduct ablation experiments on two components of COLA, i.e., OADM and COR. We
conduct ablation experiments on the Ant task with three objectives and the Hopper task with five
objectives. We gradually remove two components. The results in Figure 6 demonstrate that remov-
ing COR significantly decreases both UT and HV. Further removal of OADM on top of that leads
to a further decrease in the performance of both metrics. This indicates the crucial role of the two
components in COLA.

Subsequently, we conduct the hyperparameters analysis introduced by COLA, i.e., c and (3, where ¢
is used to control the conflict boundary, and 3 is used to control the weight of COR. For hyperpa-
rameters ¢, we primarily chose values from {0.0,0.25}. We conduct the experiments on the Ant-3d
task. The results in Figure 7 show that ¢ = 0.25 outperforms ¢ = 0.0 in terms of both metrics. In ex-
periments, we set ¢ to 0.25 for all tasks. Regarding 3, we select values from {1.0,0.1,0.01,0.001}.
We observe that 5 = 1.0 is more efficient, allowing COR to have a greater impact. Thus we set [ to
1.0 in most multi-objective tasks. For more details, please refer to Appendix B.2. In addition to the
experiments above, we provide further analyses in Appendix D, including studies on the number of
sampled preferences and the ablations on s and z, and a more detailed analysis of the parameter c.

5 Related Works

The MORL algorithms can be categorized into three categories. Single-policy methods transform
multi-objective problems into single-objective problems by using a scalarization function [6, 8, 9].
These methods typically require predefined preferences and cannot be generalized to other prefer-
ences. Multi-policy methods approximate the Pareto front of the optimal solution by constructing
a set of policies [10—12, 38-40, 4, 35, 3]. These methods commonly face the challenge of high
sample complexity, as they explicitly learn each individual policy. PGMORL [4] employs a model
to predict the improvement along with preferences to guide the learning process. General policy
methods take preferences as input and aim to cover all policies through a single policy network.
CN [13] extends single-objective DQN to multi-objective for approximating Q values under differ-
ent preferences. Besides, CN introduces Diverse Experience Replay to improve sample efficiency.
Envelope Q-Learning [14] introduces envelope Q-functions, enabling efficient knowledge sharing
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Figure 6: Ablation study on the components of COLA.
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Figure 7: Analysis of main hyperparameters.

when learning different preference objectives. PD-MORL [15] guides multi-objective training based
on the correlation between preference and Q values. In addition, PD-MORL further enhances per-
formance through parallel sampling and Hindsight Experience Replay [41]. Q-PENSIEVE [20]
maintains multiple Q values generated during the learning process to efficiently leverage existing
knowledge. CAPQL [33] addresses the failure of linear scalarization methods in multi-objective
training by adding a concave term to the immediate reward. Moreover, some works have been
devoted to developing benchmark toolkits for MORL [3]. However, existing policy methods face
challenges associated with Inefficiency of Knowledge Sharing and Conflict of Optimization Direc-
tions, limiting sample efficiency and ultimate performance. Thus we propose OADM and COR loss
to solve the problems.

6 Conclusion

In this paper, we propose a novel framework, COLA, to more efficiently cover the entire preference
space through a single network. We attribute the primary challenges of current general policy meth-
ods to the Inefficiency of Knowledge Sharing and Conflict of Optimization Directions. To address
these challenges, we first propose the Objective-agnostic Latent Dynamics Model. This model ex-
plicitly extracts and shares consistent representations in dynamic transitions, establishing a latent
space to accelerate multi-objective learning. Additionally, we propose Conflict Objective Regu-
larization to alleviate negative influences among different preferences in the value approximation
process, constructing a more accurate value function. In our experiments, we demonstrate the sig-
nificant superiority of COLA compared with various strong baselines.
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A Limitations & Future Work

For limitations and future work, firstly our work is empirical proof of the effectiveness of the COLA
idea and we provide no theory on optimality, convergence, and complexity. Second, one critical
point is the expressivity of the representation method, which is not optimally addressed by this work.
Thirdly, our work currently focuses solely on linear utility functions. Therefore, the theoretical
foundation, improved representation methods, and the incorporation of nonlinear utility functions
are all worthy of further investigation and exploration, which we leave for future work.

In addition, in our previous analysis, we observed a certain degree of policy degradation and forget-
ting, where behaviors learned in the early stages could not be retained. However, such phenomena
have not been observed in population-based multi-objective algorithms. Recently, the integration
of evolutionary algorithms (EAs) and RL has been proven effective in single-objective optimiza-
tion tasks [42—49], but its framework for multi-objective optimization remains underexplored. We
believe that exploring this direction, which emphasizes collaborative optimization and the mutual
enhancement between RL and EAs [50], can better address the current challenges faced by MORL.
We regard this as a key direction for future research in MORL and plan to further explore it based
on the COLA framework.

B Environment Setup

We conduct performance tests in multi-objective MUJOCO tasks. Below are the specific configura-
tion details for each task.

» MO-HalfCheetah-2d: Observation and action space dimensionality: S € R'7, 4 € RS,
and the environment runs for 500 steps. The first objective is forward speed: Ry = v, + C.
The second objective is control cost: Ry =4 — >, a? + C. C = 1 is the alive bonus, v,
is the speed in x direction, a; is the action of each actuator

» MO-Hopper-2d: Observation and action space dimensionality: S € R, 4 € R3, and the
environment runs for 500 steps. The first objective is forward speed: Ry = 1.5v, + C. The
second objective is jumping height: Ry = 12 X (h — hinis) + C. C = 1—0.0002 x >, a?
is composed of alive bonus and energy efficiency, v, is the speed in x direction, A is the
current height, hy,;; is the initial height, a; is the action of each actuator.

» MO-Walker-2d: Observation and action space dimensionality: S € R'7, A € RS, and the
environment runs for 500 steps. The first objective is forward speed: Ry = v, + C. The
second objective is energy efficiency: Ry =4 — . a? + C. C = 1is the alive bonus, v,
is the speed in x direction, a; is the action of each actuator.

» MO-Ant-2d: Observation and action space dimensionality: S € R?7, A € R8, and the
environment runs for 500 steps. The first objective is x-axis speed: Ry = v, + C. The
second objective is y-axis speed: Ry = v, +C. C=1-0.5x)_, a? is composed of alive
bonus and energy efficiency, v, is x-axis speed, v, is y-axis speed, a; is the action of each
actuator.

+ MO-Hopper-3d: Observation and action space dimensionality: S € R!', A € R3, and
the environment runs for 500 steps. The first objective is forward speed: R; = 1.5v, + C.
The second objective is jumping height: Ry = 12 X (h — hinity ) + C. The third objective
is energy efficiency: Rz = 4 — ), a? + C. C = 1 is the alive bonus, v, is the speed
in x direction, h is the current height, hini¢ is the initial height, a; is the action of each
actuator.

* MO-Ant-3d: Observation and action space dimensionality: S € R?7, A € R®, and the
environment runs for 500 steps. The first objective is x-axis speed: 1 = v,. The second
objective is y-axis speed: Ry = v,. The third objective is energy efficiency: R3 = 4 —
0.5%x >, a2.C=1-05xY i a? is composed of alive bonus and energy efficiency, v,
is x-axis speed, v, is y-axis speed, a; is the action of each actuator.

» MO-Ant-4d: Observation and action space dimensionality: S € R?7, A € R®, and the
environment runs for 500 steps. Each objective is energy efficiency of one leg and x-
axis speed: Ry1234y = 4.0 —2 X (a7 + a7 ;) 4 vs. ;0 and a;; are the action of each
actuator on the ith leg. The objective of this task is to enable the agent to maximize velocity
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while simultaneously controlling the energy cost of different legs, aiming to achieve precise
control of each leg.

» MO-HalfCheetah-5d: Observation and action space dimensionality: S € R'7, A € RS,
and the environment runs for 500 steps. The first objective is forward speed: R; = 0.5 x
v, + C. The second objective is jumping height: Ry = 20 X (h — hinit) + C. The third
objective is the control cost of the front leg: Rz = 4 — 1.5 x (a} , + a5 ,) + C. The fourth
objective is the control cost of the torso: Ry = 4 — 1.5 x (af + a7 ) + C. The fifth
objective is the control cost of the hind leg: Rs = 4 — 1.5 x (0}21,0 + a,2171) +C.C=1
is the alive bonus, v, is the speed in x direction, ayf o, af,1, a¢,0,0¢,1,0k,0 and a1 are the
actions of different actuators.

» MO-Hopper-5d: Observation and action space dimensionality: S € R'!, 4 € R3, and the
environment runs for 500 steps. The first objective is forward speed: Ry = 1.5 x v, + C.
The second objective is jumping height: Ry = 12 X (b — hinis ) + C. The third objective
is the energy efficiency of the first actuator: R3 = 4 — 3 x a2 + C. The fourth objective is
the energy efficiency of the second actuator: Ry = 4 — 3 x a? + C. The fifth objective is
the energy efficiency of the third actuator: R5 = 4 — 3 x a3 + C. C' = 1 is the alive bonus,
v, 18 the speed in x direction, h is the current height, hi,;¢ is the initial height, a; is the
action of each actuator.

+ MO-Ant-5d: Observation and action space dimensionality: S € R?7, A € R®, and the
environment runs for 500 steps. The first objective is x-axis speed: R; = v,. The second
to the fifth objectives are the energy efficiency of different legs: Rz 345 = 4.0 —2 X
(a?O + a? 1) + V. a;0 and a; 1 are the actions of each actuator on the ith leg. This task
is similar to MO-Ant-4d, but the key difference lies in the desire to achieve precise energy
consumption control for different legs under varying speeds.

B.1 Experiment Details

During training, we predefined a preference set to record HV and UT every 50000 environment steps.
These preferences are sampled at regular intervals in the preference space, covering all possible
preferences. For two-objective tasks, the preference interval is set to 0.005. For three-objective
tasks, the preference interval is set to 0.05. For four-objective tasks, the preference interval is set
to 0.1. For five-objective tasks, the preference interval is set to 0.2. Then we use these preferences
as conditions for the general policy methods, collecting return vectors for each preference. Based
on these vectors, we calculate HV and UT. For algorithms like PGMORL which are multi-policy
methods, we select the best policy for each preference to calculate HV and UT. To visualize the
Pareto frontier, PGMORL directly plots the discovered set of policies. In contrast, for general policy
methods, we set small intervals to explore their potential as much as possible. For two-objective
tasks, a preference interval of 0.0001 is used, and for three-objective tasks, a preference interval of
0.002 is employed. All experiments are run on an Intel Xeon E5-2680 v4 @ 2.40GHz machine with
an NVIDIA GTX 2080 Ti. Except for the DMC experiments, all other experiments are conducted
using only the CPU.

B.2 Experiments Compute Resources

All experiments are carried out on CPU E5-2680 v4 @ 2.40GHz with 256GB memory

C Implementation Details

We introduce the implementation details of COLA in this section:

» The baselines we compared includle PGMORL!, Envelope SAC, CAPQL?, and Q-
Pensieve’. We reproduce the results based on their official implementations, fine-tuning
the hyperparameters involved in each algorithm to achieve the best performance results.

"https://github.com/mit-gfx/PGMORL
2https://github.com/haoyelu/CAPQL
*https://github.com/NYCU-RL-Bandits-Lab/Q-Pensieve
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Table 5: Details of the hyperparameters of COLA that are varied across tasks.

Env name 5]
MO-HalfCheetah-2d | 0.01
MO-Hopper-2d 1.0
MO-Walker-2d 1.0
MO-Ant-2d 0.001
MO-Hopper-3d 1.0
MO-Ant-3d 1.0
MO-Ant-4d 1.0
MO-HalfCheetah-5d | 1.0
MO-Hopper-5d 0.01
MO-Ant-5d 1.0

* We built our code following the official implementation of Q-Pensieve, with the excep-
tion that the policy network has layer sizes of {128,128} while keeping the rest of the
architecture and hyperparameters consistent.

* For the Objective-agnostic Latent Dynamics Model, a neural network with two layers, each
having 256 units, is constructed. It utilizes the ReLU activation function, and the output
dimension is set to 50.

* We set ¢ = 0.25 for all tasks. Besides, we list the hyperparameters specific to COLA which
varied across tasks in Table 5. if you don’t want to tune hyperparameters, competitive
performance can be obtained when keeping ¢ = 0.25 and 8 = 1.0 in most tasks.

D Additional Experiments

Table 6: Comparison between COLA with and without state variable s under different environment
steps.

Env steps 500k 1000k 1500k 2000k

COLA w/s 1598628813764 1676569413822 1808911113996 18933218 14062
COLA w/os 1387491613685 1647369613791 1656431213870 14904042 | 3535

Why do we need to retain s as an input? This is primarily based on empirical observations. We
find that omitting s causes performance fluctuations in some tasks, such as Hopper-2d. The HV and
UT results are shown in Table 6: We observe that excluding s leads to performance drops in learning
process. Moreover, using s as input is more efficient.

Table 7: Comparison between COLA and COLA with multi-preference (w) under 2M environment
steps.

2M env steps Walker-2d Hopper-3d Ant-2d HalfCheetah-2d

COLA 4806728 12006 29541776029 13063 8722546 12696 7390226 | 2766
COLA w/Multi w 452924211942 29957011493 1 3083 792788012545 722184812798

Is sampling a single preference at each iteration sufficient, or should multiple preferences be
sampled instead? To answer this question, we follow CAPQL and sample a batch of preferences at
each step. The results are shown in Table 7. Overall, we find that sampling a single preference yields
better performance in most tasks. This aligns with recent findings suggesting that multiple training
iterations on the same batch lead to improved outcomes. Fully learning under one preference before
switching to another appears more beneficial for training.

Ablation study on z. We conduct an ablation study using only ¢ while removing z. The experi-
mental results are shown in Table 8. We observe that incorporating z leads to better performance
compared to the variant without z. This improvement is primarily due to the fact that the encoder
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Table 8: Comparison between COLA with and without latent variable z under 2M environment
steps.

2M env steps Walker-2d Hopper-3d Ant-2d HalfCheetah-2d

COLA w/z 4806728 12006 29541776029 | 3063 872254612696 7390226 | 2766
COLA w/oz 468261611992 29431977661 13083 7974809 12543 7036496 | 2656

extracts higher-level latent information from the original state s, which helps accelerate the approx-
imation of the critic function and thereby improves learning efficiency.

Table 9: Parameter analysis on the coefficient c. The best result for each task and metric is high-
lighted in bold.

Task Metric c=00 ¢=0.25 c=0.5 c=1.0

Ant-3d HV (1e10) 1.33 1.59 1.56 1.37
UT 2285.39  2483.19 2558 2403

HalfCheetah-5d HV (1el6) 6.78 8.59 7.20 + 0.81 5.94
UT 2962 2949 2902 2939

Analysis of the parameter on c. In all experiments, c is set to 0.25. A smaller value of ¢ indicates
that the COR loss has less influence, whereas ¢ = 1.0 means that COR is always active, regardless of
whether conflicts are present or not. We initially conduct a preliminary comparison between ¢ = 0.0
and ¢ = 0.25 on a single case and find that ¢ = 0.25 yields the best performance. Based on this
observation, we adopt ¢ = 0.25 consistently across all experiments. We also conduct an ablation
study on the effect of ¢, as shown below in Table 9. The results indicate that ¢ = 0.25 generally
delivers strong performance across different tasks.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: This paper focuses on further improving the performance of MORL from two
perspectives: knowledge sharing and value function approximation, and provides extensive
experimental evidence to demonstrate the effectiveness of the proposed method. The main
claims made in the abstract and introduction accurately reflect the paper’s contributions and
scope.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a discussion of the limitations in Appendix A.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This study focuses on empirical evaluation and does not provide theoretical
proofs or formal analysis. We leave the development of theoretical guarantees and formal
analysis as future work.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed reproduction details in the appendix and will release the
code upon public release.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: We commit to releasing the code upon the public availability of the paper.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

e The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the detailed experimental settings in both the main experiment
section and the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Following the experimental settings of prior work, we conduct each experi-
ment with 5 independent runs and report error bars to reflect statistically significant vari-
ability.

Guidelines:
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8.

10.

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% ClI, if the hypothesis of
Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: These details are provided in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research conducted in this paper fully conforms with the NeurIPS
Code of Ethics in all respects.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

21


https://neurips.cc/public/EthicsGuidelines

11.

12.

Justification: This paper presents work whose goal is to advance the field of MORL. There
are many potential societal consequences of our work, none which we feel must be specif-
ically highlighted here.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

e The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, all creators and original owners of the assets used in the paper are prop-
erly credited and fully respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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13.

14.

15.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA|

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

24


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Multi-Objective Markov Decision Process
	Envelope Soft Actor Critic

	COLA Framework
	Objective-agnostic Latent Dynamics Model
	Conflict Objective Regularization
	COLA Algorithm

	Experiments
	Experimental Setting
	Performance Evaluation
	Superiority of Components & Parameter Analysis

	Related Works
	Conclusion
	Limitations & Future Work
	Environment Setup
	Experiment Details
	Experiments Compute Resources

	Implementation Details
	Additional Experiments

