
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LANGUAGE MODELS AS FEATURE EXTRACTORS FOR
ACCURATE CONTINUAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper addresses the challenges of class incremental learning (CIL) within
the broader context of continual learning. In CIL, a system learns a sequence of
tasks or classes incrementally. The resulting classifier can categorize test sam-
ples into any learned class thus far without relying on task-specific information
during testing. CIL presents two significant challenges: catastrophic forgetting
(CF) and inter-task class separation (ICS). ICS occurs because the system lacks
data from previous tasks when learning new ones, making it harder to establish
decision boundaries between classes, reducing accuracy. This paper proposes a
novel method to overcome both CF and ICS. The basic classifier is based on the
statistical technique Mahalanobis distance (MD), which measures the distance of
a data point to a normal distribution. In the proposed approach, each class is rep-
resented by a normal distribution with the mean and covariance derived from the
features of its training data, which are extracted from a language model (LM).
To reduce storage, all classes share a common covariance matrix. Two additional
techniques are also proposed to enhance the accuracy: (1) using a kernel function
to expand the feature space, and (2) incorporating an ensemble mechanism. Our
experiments show that the proposed method achieves accuracy comparable to the
upper bound accuracy of joint fine-tuning, which, to our knowledge, has not been
achieved before.

1 INTRODUCTION

The objective of continual learning (CL) is to enable an AI agent to incrementally acquire knowledge
by learning a sequence of tasks over time (Chen & Liu, 2018; Wang et al., 2023a). One of the major
challenges in CL is catastrophic forgetting (CF), where updating the model’s parameters to learn
new tasks can lead to a decline in performance on previously learned tasks (McCloskey & Cohen,
1989). In this work, we focus on the class incremental learning (CIL) setting of continual learning
(CL) (Van de Ven & Tolias, 2019).

In CIL, each task introduces a unique set of classes, and the goal is to train a single unified model
capable of recognizing all the classes encountered across tasks. Since learning has to be done in-
crementally, learning a task has no or limited access to the data of previous tasks. A defining char-
acteristic of CIL is that no task identification information is provided during testing, meaning the
model does not know which task a test sample belongs to.1 An additional challenge to CIL is inter-
task class separation (ICS) (Kim et al., 2022), which refers to the problem that without access to
previous task data when learning a new task, it is difficult to establish decision boundaries between
new and previously learned classes. While many CIL methods have been proposed (De Lange et al.,
2021; Zhou et al., 2024), they still suffer from significant performance degradation as more tasks are
learned, largely due to the combined challenges of CF and ICS.

This paper proposes a novel technique, called Kernel Mahalanobis Distance (KMD), to address
both challenges and can achieve an accuracy level comparable to that obtained by joint training of
all classes/tasks together, which is regarded as the accuracy upper bound of CIL, with no replay data.

1Two other common CL settings are task incremental learning, where task information is provided during
testing, and domain-incremental learning, which involves learning tasks from different domains but with the
same set of classes (Van de Ven & Tolias, 2019).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

KMD leverages a frozen language model (LM) as a fixed feature extractor, meaning that dur-
ing learning, the LM’s parameters remain unchanged, and no additional structures like learnable
prompts (Wang et al., 2022b; Razdaibiedina et al., 2023) or adapters (Houlsby et al., 2019) are
added to tailor it for each new task. KMD operates under the assumption that each class follows
a Gaussian distribution characterized by a mean and covariance. It further assumes that all classes
share the same covariance but differ in their means. Throughout the CIL process, KMD simply cal-
culates and updates the shared covariance and class-specific means based on the features extracted
by the LM for each training sample. For classification, it employs Mahalanobis Distance (MD)–a
function that measures the distance between a data point and a Gaussian distribution–to compare
the test sample to the distribution of each class and select the nearest match. Since the approach
involves no training or updates to the LM’s parameters, it avoids CF caused by parameter updates.

Two additional enhancements are proposed to further improve the results. First, employing the
Radial Basis Function (RBF) kernel (Scholkopf & Smola, 2018) to improve the features extracted
from the LM. The RBF kernel computes the dot product in an implicit higher-dimensional space,
giving higher similarity to closer points and lower similarity to those further apart. This creates
a localized effect, where the influence of each data point diminishes as you move further away
from it, which is desirable for our distance-based classification approach. However, the RBF kernel
requires storing the pairwise similarities for all data points, which is infeasible. To address this, We
approximate the kernel using Random Fourier Features (RFF) (Rahimi & Recht, 2007), making it
feasible for CIL. When a new task arrives, KMD uses the kernalized features to compute the class
mean of each class and updates the shared covariance matrix for all classes learned thus far. Second,
instead of relying on a single kernel transformation, we create a few parallel models and perform an
ensemble for the final classification, which gives the final system KMD-Ensemble. In summary, this
paper makes three key contributions:

(1) It presents a novel CIL method called KMD, which leverages the rich features extracted from
an LM, further enhancing them through a kernel technique and an ensemble strategy. To our knowl-
edge, this approach has not been previously explored.

(2) KMD addresses both CF and ICS challenges by (i) using a shared covariance matrix and class
feature means to define Gaussian distributions, effectively addressing ICS by creating clear class
boundaries, and (ii) gathering only statistical information during CIL without updating the LM or
training new networks, thus avoiding CF at the LM level. Although incrementally updating the
covariance matrix could introduce CF, our results show even a slight positive knowledge transfer.

(3) Our experiments show that KMD-Ensemble significantly outperforms existing baselines, achiev-
ing accuracy comparable to joint Fine-tuning of the LM on all tasks, the upper bound for CIL. We
further validate this using various LMs. This is notable, as existing CIL methods have consistently
below this upper bound–often by a considerable margin–posing a significant barrier to their practical
use in real-world applications.

2 RELATED WORK

There is a large body of literature on continual learning (CL). Most of it focuses on mitigating
catastrophic forgetting (CF). Existing methods generally fall into several categories: Regularization-
based methods use regularizers to penalize changes to important parameters of previous tasks, (Kirk-
patrick et al., 2017; Zenke et al., 2017; Li et al., 2022; Liu et al., 2019a). Replay-based methods
store some samples from previous tasks and learn a new task using both the new and stored data to
maintain performance across tasks (Liu et al., 2021a; Scialom et al., 2022; Qin et al., 2022; Huang
et al., 2021). Some methods learn data generators instead of storing actual data to generate samples
similar to those from previous tasks (Shin et al., 2017; He & Jaeger, 2018). Architectural-based
methods include many approaches. Some expand the network as new tasks are introduced (Wang
et al., 2022a; Yan et al., 2021; Qin et al., 2023). Some use parameter isolation, where sub-networks
are trained for each task via mechanisms like masking or orthogonal projection (Serra et al., 2018;
Gururangan et al., 2021; Zhu et al., 2022; Geng et al., 2021; Lin et al., 2022; Wortsman et al., 2020;
Liu et al., 2023). Yet, some class incremental learning (CIL) methods employ a task predictor to
identify the appropriate model for the predicted task classifier (Rajasegaran et al., 2020; Abati et al.,
2020; Wang et al., 2023b; 2024a). They may utilize strategies like separate networks, entropy, or
out-of-distribution (OOD) detection to determine the task and to deal with inter-task class separa-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

tion (ICS) problem. Most CL methods operate in a batch setting, where all task data is available
at once. There are also online CL methods that process data incrementally in a stream (Mai et al.,
2022). While we do not focus on streaming, our approach shares similarities with (Hayes & Kanan,
2020), which uses streaming linear discriminant analysis with class means and a covariance matrix.
However, our work differs by employing Mahalanobis distance. Additionally, we enhance feature
representations with a kernel and utilize an ensemble technique.

In natural language processing (NLP), continual learning has been applied to a wide range of prob-
lems, e.g., text classification (Sun et al., 2020; Chuang et al., 2020), sentiment analysis (Ke et al.,
2021), topic modeling (Gupta et al., 2020), slot filling (Shen et al., 2019), question answering (Greco
et al., 2019), language acquisition (Li et al., 2019; Liang et al., 2024; Zhao et al., 2024), and the pre-
training of language models (Qin et al., 2022; Ke et al., 2021). Employing pre-trained models is a
standard approach in many NLP-related CL scenarios as leveraging their capabilities can improve
performance (Shao et al., 2023; Wang et al., 2024b). For further insights and overview, please refer
to the surveys (Ke & Liu, 2022; Wang et al., 2023a).

The rise of large foundation models has led to a growing interest in integrating CL with pre-trained
models (Yang et al., 2024). While prior work incorporates pre-trained models, they do so within the
framework of the three main CL strategies discussed above, which still suffer from CF. In contrast,
we explore the full potential of the pre-trained large language models as fixed feature-extractors for
CIL, i.e., leveraging only their latent features for downstream tasks. However, our experiments show
that using latent features directly is sub-optimal. To address this, we propose KMD, which enhances
features with kernel functions, improving class separability in the kernelized space. KMD is distinct
in being replay-free, without relying on regularizers or architectural changes.

3 BACKGROUND

This section presents the main background information for the proposed method.

Class Incremental Learning (CIL): In CIL, a model is trained on a sequence of tasks
{T1, T2, . . . , TT }, where each task Tt introduces a disjoint set of classes with its associated train-
ing data Dt = {(x(i)

t , y
(i)
t )}Nt

i=1. The learning process is incremental, meaning that the data from
previous tasks T1, . . . , Tt−1 is not accessible while learning the current task Tt. The model must
learn new classes without forgetting previously learned ones, despite the absence of earlier training
data. The goal is to learn a unified model F : X → Y capable of classifying samples from any of
the classes encountered across the T tasks. During inference, the task identity is unknown, and the
model must predict the correct class label from all the classes encountered so far.

3.1 CLASS-PROTOTYPES FOR CONTINUAL LEARNING

Fine-tuning an LM for CIL often leads to catastrophic forgetting (CF). Instead, leveraging the ex-
tracted features from a powerful LM to incrementally accumulate class-prototypes (CPs) while keep-
ing the LM frozen can result in more accurate classification, as we will demonstrate in Section 5.5.1.
A simple yet effective method is the Nearest Class Mean (NCM) classifier, where the prototype for
each class is the mean of the feature vectors extracted from the LM for all training samples of that
class. For simplicity, from this point on, we use x to denote the feature vector extracted from the
LM for an input x. The class prototype µm for a class m is computed as:

µm =
1

nm

nm∑
i=1

xi (1)

where nm is the number of samples for class m. This mean vector can be computed incrementally
for each class and does not cause CF as it doesn’t involve any training. During inference, a test
sample is classified by finding the class mean with the highest cosine similarity.

ŷ = argmax
m

x⊤
testµm

∥xtest∥∥µm∥
(2)

This straightforward method surprisingly outperforms more complex prompt-based, generation-
based, or Fine-tuning-based CIL baselines (see Section 5.5.1), which are susceptible to CF. This
suggests that LMs provide robust, generalizable representations suitable for downstream tasks.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

To enhance NCM, higher-order statistics can be incorporated. We can represent the data by a mul-
tivariate Gaussian distribution N (µm,Σm), where each class has its own mean µm and covariance
Σm. The Mahalanobis distance (MD) (De Maesschalck et al., 2000) is then used for classification,
where a test sample is assigned to the class whose distribution is closest in terms of MD.

However, storing a separate covariance matrix Σm for each class becomes impractical in a contin-
ual learning setting, as the number of parameters grows significantly with the introduction of new
classes. To address this, we assume that all classes share the same covariance matrix Σ, which
allows us to keep the model tractable and suitable for continual learning. The shared covariance
matrix is computed as follows:

Σ =
1

N

M∑
m=1

nm∑
i=1

(xm,i − µm)(xm,i − µm)⊤ (3)

where M is the number of classes seen so far, and N is the total number of samples, i.e., N =∑M
m=1 nm. This shared covariance matrix can be updated incrementally during the CIL process as

new tasks arrive by first computing the mean for each class before updating Σ. Under the shared
covariance assumption, the Mahalanobis distance for classification can be written as:

MD(xtest, µm,Σ) =
√

(xtest − µm)⊤Σ−1(xtest − µm) (4)

This method addresses some limitations of the NCM method by taking into account the covariance of
the data, while avoiding the excessive parameter overhead of storing individual covariance matrices
for each class.

4 PROPOSED METHOD: KMD

We propose enhancing MD with a kernel function, resulting in the KMD method. The core idea
is to improve the separability of feature representations obtained from the pre-trained LM using a
kernel function. This allows us to maintain a robust representation of the data as new classes/tasks
are added, without suffering from CF.

4.1 KERNEL FUNCTIONS

While MD works well for separable Guassian distributions, it may struggle when class boundaries
are not well-separated in the original feature space. A powerful approach to overcome this limitation
is through the use of kernel functions, which implicitly map the input data (features from the LM
in our case) into a higher-dimensional space where the data becomes more separable. In this high-
dimensional space, MD can provide better class separation, even when the original feature space
lacks clear boundaries.

Mathematically, if we have an input space X and a mapping φ : X → V , where V is a potentially
infinite-dimensional feature space, a kernel function K(xi,xj) computes the inner product in this
space without explicitly performing the transformation:

K(xi,xj) = ⟨φ(xi), φ(xj)⟩V (5)

One of the most commonly used kernels is the Radial Basis Function (RBF) kernel (Scholkopf &
Smola, 2018), which is defined as:

K(xi,xj) = exp

(
−∥xi − xj∥2

2σ2

)
(6)

The RBF kernel corresponds to an inner product in an infinite-dimensional space, making it highly
effective for capturing complex patterns in data.2 However, directly computing the kernel matrix
K for all pairs of instances in a dataset of size N leads to a large matrix of size N × N , which
is computationally prohibitive. In the continual learning setting, this approach is infeasible as it
requires access to data from all previous tasks, which is not available.

2 We also experimented with several other kernel functions and found the RBF kernel to be better suited for
our CIL setup.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.2 APPROXIMATING THE KERNEL WITH RANDOM FOURIER FEATURES

To address the challenges associated with the kernel method in the CIL setting, we approximate
the kernel function using Random Fourier Features (RFF) (Rahimi & Recht, 2007). This method
is grounded in Bochner’s theorem (Rudin, 2017), which states that any continuous, shift-invariant
kernel can be represented as the Fourier transform of a non-negative measure:

K(xi,xj) =

∫
p(ω)eiω

⊤(xi−xj)dω = Eω

[
eiω

⊤(xi−xj)
]

(7)

Here, ω is the frequency in the Fourier domain, and p(ω) is the probability density function asso-
ciated with ω. Given that both the kernel K(xi,xj) and the distribution p(ω) are real, the integral
can be simplified. The complex exponential eiω

⊤(xi−xj) can be expressed in terms of its real part
using Euler’s formula. Therefore, we can obtain a real-valued mapping that satisfies the condition
E[zω(xi)zω(xj)] = K(xi,xj) by setting:

zω(x) =
√
2 cos(ω⊤x+ β) (8)

where ω ∼ p(ω), β ∼ Uniform(0, 2π). For the RBF kernel, the Fourier transform p(ω) is a Gaussian
distribution (Rahimi & Recht, 2007). We now have a simple and efficient algorithm to estimate the
kernel function by pooling D independent pairs ω, β from these distributions and estimating the
expectation. Therefore, we can define the random feature map as:

z(x) =

√
2

D

[
cos(ω⊤

1 x+ β1), . . . , cos(ω
⊤
Dx+ βD)

]
(9)

where ω is drawn from N (0, σ−2I) and β from Uniform(0, 2π). As the number of pooled pairs D
increases, the approximation of the kernel function improves because more Monte Carlo samples
are used to estimate the expectation. The dot product of these random features approximates the
original kernel function:

z(xi)
⊤z(xj) ≈ K(xi,xj) (10)

Thus, z represents an approximation of φ. We can now convert the input x into random features
z(x) and apply MD. This approximation enables us to avoid directly computing the kernel matrix,
making it feasible to apply in continual learning settings while preserving the benefits of the kernel
transformation.

4.3 CLASSIFICATION WITH KMD AND ENSEMBLES

Training: The training process for KMD is outlined in Algorithm 1. We first apply RFF to the
original feature vector x ∈ Rd, transforming it into z ∈ RD. With each new class, the mean µm is
calculated, and the shared covariance matrix Σ is updated incrementally.

Inference: Given a test sample, we apply RFF to obtain its transformed representation ztest. The
MD is then computed between ztest and the distribution of each class m (i.e., (µm Σ)). The predicted
class is the one with the smallest distance:

ŷ = argmin
m

MD(ztest, µm,Σ) (11)

Ensemble Method: To enhance performance, we introduce an ensemble mechanism, leading to our
final system KMD-Ensemble. Multiple KMD models are trained using different RFF transforma-
tions, each initialized with distinct frequency matrices and phase vectors (see Algorithm 1). During
inference, the MDs are calculated for each model, then negated and transformed into probabilities
via the softmax function:

P (y = m | ztest) =
exp(−MD(ztest, µm,Σ))∑M
c=1 exp(−MD(ztest, µc,Σ))

(12)

The final prediction is made by averaging the probabilities across all E models, with the class having
the highest average probability selected: 3

ŷ = argmax
m

1

E

E∑
e=1

Pe(y = m | ztest) (13)

3We also experimented with other ways of combining predictions from multiple models, such as hard voting,
but found this approach to be the most effective, as it resolves tie votes.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 KMD Training

1: Initialize
2: ω ∼ N (0, σ−2I) ∈ Rd×D {RFF frequency matrix}
3: β ∼ U(0, 2π) ∈ RD {RFF phase vector}
4: Σ = 0 ∈ RD×D {shared covariance matrix}
5: Ntotal = 0 {total number of samples}
6: Function RFF(X):

7: return
√

2
D cos(Xω + β) {RFF applied to batch}

8: Function Update(X , m):
9: Input: X ∈ Rnm×d - batch feature vectors for all training samples of class m

10: Nprev ← Ntotal
11: Ntotal ← Ntotal + nm

12: Z ← RFF(X)
13: Compute class mean: µm ← 1

nm

∑nm

i=1 Zi

14: Update covariance matrix:
15: Σ← Nprev

Ntotal
Σ+ 1

Ntotal

∑nm

i=1(Zi − µm)(Zi − µm)⊤

5 EXPERIMENTAL EVALUATION

To evaluate our proposed method, KMD, we conduct experiments across multiple text classifica-
tion datasets and compare KMD against different types of baselines. The code of KMD has been
submitted in Supplementary Materials.

5.1 DATASETS

Four text classification datasets are used in our experiments: 1. CLINC: This dataset has 150
classes, which are dialogue intents, from many different application domains (Larson et al., 2019).
We used the train/test split of 10,000/750 samples, and the classes were randomly divided into 10
disjoint tasks. 2. Banking: This dataset has 77 classes of dialogue intents in the banking domain
(Casanueva et al., 2020). We employed a 10,000/1,000 train/test split and divided the classes into
7 disjoint tasks. 3. DBpedia: A text classification dataset of Wikipedia articles with 70 classes
(Liu et al., 2021b). We used a train/test split of 10,000/1,000 samples and divided the classes into
7 disjoint tasks. 4. HWU: Another dialogue intent classification dataset with 20 domains and 64
classes (Auer et al., 2007). We used a train/test split of 9,000/1,000 samples and partitioned the
classes into 8 disjoint tasks.

We adhere to the standard CIL protocol, where the classes are partitioned into disjoint tasks. The
classes within each dataset are randomly shuffled and assigned to these tasks, ensuring that each
task introduces new classes not seen in previous tasks. To account for the variability in performance
due to different task splits, we perform multiple runs with different random shuffles and report the
average results.

5.2 BASELINES

We compare KMD against a range of baselines, categorized into existing CIL methods, class-
prototype based methods, and joint training. These diverse baselines allow us to thoroughly evaluate
the performance of KMD.

– Existing CIL Baselines: These systems use various existing popular approaches. 1. Vanilla:
Sequentially fine-tunes the model on each task with no mechanism to mitigate CF. 2. EWC (Elas-
tic Weight Consolidation): A popular regularization-based method that adds a penalty to preserve
important parameters from previous tasks, balancing new learning with retention (Kirkpatrick et al.,
2017). 3. KD (Knowledge Distillation): Uses knowledge distillation to help the model retain infor-
mation from old tasks by learning from softened output probabilities of previous versions of itself
(Hinton et al., 2015). 4. L2P (Learn to Prompt): Freezes the LM and learns trainable prompts to
guide inference, adapting to new tasks without altering the LM (Wang et al., 2022b). 5. LAMOL

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(Language Modeling for Lifelong Language Learning): Employs pseudo-replay by generating
pseudo-examples of previous tasks to mix with new task data, maintaining past performance while
learning new tasks (Sun et al., 2019). 6. VAG (Vocabulary-Aware Label Generation): Lever-
ages vocabulary sparsity to selectively activate relevant outputs for each task, mitigating forgetting.
Instead of traditional classification, VAG focuses on generating labels (Shao et al., 2023).

– Class-Prototype Based Baselines: 7. NCM (Nearest Class Mean): Maintains a mean feature
vector for each class, updated incrementally. Classification is based on the nearest class mean to
the test sample’s feature vector. 8. MD (Mahalanobis Distance): Uses the original feature space
without our RBF kernel extension.

– Upper Bound Baseline: 9. Joint Fine-tuning: Fine-tuning the full LM by adding a classifier head
on top of the latent features and training on all classes simultaneously as a single task. The result
from this is considered the upper-bound performance of CIL.

5.3 IMPLEMENTATION DETAILS

For all experiments–except the ablation on different LMs–we use the BART-base model (Lewis
et al., 2019), which features a 6-layer encoder-decoder architecture with a 768-dimensional hidden
state. We chose this model because many of our baselines employ a generative objective or require
generating pseudo-replay data during training, making the decoder component essential. Addition-
ally, the state-of-the-art baseline VAG (Shao et al., 2023) also utilizes BART-base.

To study the generalization of our method to other LMs, we also evaluate it using the following
models: 1. paraphrase-MiniLM-L3 (Reimers & Gurevych, 2019) (3 layers, 384 dimensions), 2.
BERT-base (Devlin, 2018) (12 layers, 768 dimensions), 3. RoBERTa-large (Liu et al., 2019b)
(24 layers, 1024 dimensions), 4. T5-3b (Raffel et al., 2020) (24 layers, 1024 dimensions), and 5.
Mistral-7b Jiang et al. (2023) (32 layers, 4096 dimensions).

LAMOL and VAG were executed using their official codes and configurations. For the remaining
existing baselines, we used implementations from (Shao et al., 2023) repository. The class-prototype
based baselines were implemented using our own code, adhering to the same update rules applied
in KMD to ensure consistency in comparison.

The Joint Fine-tuning model, regarded as the upper bound, is trained for 50 epochs with a batch
size of 128, using the Adam optimizer with a learning rate of 1e-3 for the classifier head and 1e-4 for
the LM parameters. Additionally, we experimented with various configurations, including different
learning rates, batch sizes, and epoch numbers, to ensure the models were thoroughly trained and
optimized. We also compared our Joint Fine-tuning results with those reported in (Shao et al., 2023)
and found that our configuration actually achieves better performance.

For KMD-Ensemble, we always use an ensemble of 5 models, but we also provide an ablation study
on the impact of the number of models in the ensemble. KMD itself has two hyperparameters:
the transformation dimension D and the RFF σ. Given the CIL setup, where tasks are learned
incrementally, the system does not see all tasks at the same time, and validation sets are not typically
available. Therefore, it is hard to optimize the parameters for all tasks. Through empirical testing,
we found that setting D to 5000 offers a balanced trade-off between memory usage and performance.
The σ parameter is also empirically determined within range [10−2, 10−6] for each LM and remains
fixed across different datasets. We will show the results of different parameter settings later. Our
implementation is built using PyTorch, with all LMs sourced from the Hugging Face Transformers
library. All experiments are conducted on a NVIDIA A100 GPU with 80GB of VRAM.

5.4 EVALUATION METRIC

We measure classification accuracy after all tasks have been processed, referred to as Last or Final
Accuracy. Additionally, we use Forgetting Rate to quantify how much the model forgets previ-
ously learned tasks as it learns new ones. For each task i, let’s define At

i as the accuracy on the
data of task i after learning task t, where the classification is restricted to classes of task i. By this
definition, Ai

i represents the model’s accuracy on task i immediately after learning it, serving as the
initial performance benchmark for the task. The Forgetting Rate after learning task t, denoted as Ft,
is calculated as the average loss in accuracy across all tasks up to t: Ft = 1

t

∑t
i=1

(
Ai

i −At
i

)
. A

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

higher value of Ft indicates greater forgetting, while a lower value suggests that the model retains
information from previously learned tasks more effectively. We also discuss the efficiency and the
memory requirement of the proposed method.

Method CLINC (10-T) Banking (7-T) DBpedia (7-T) HWU (8-T)

Joint Fine-tuning 95.33 ±0.04 91.36 ±0.32 94.83 ±0.16 88.60 ±0.29

Vanilla 42.06 ±1.53 31.80 ±1.20 43.45 ±2.54 30.95 ±3.37

EWC 45.73 ±0.46 38.40 ±2.70 44.99 ±2.90 34.01 ±3.46

KD 36.33 ±0.86 27.40 ±1.59 42.10 ±2.40 25.46 ±2.13

L2P 30.66 ±2.46 31.45 ±0.55 23.52 ±1.54 24.04 ±0.88

LAMOL 58.42 ±0.84 42.60 ±1.36 48.61 ±1.82 44.85 ±1.57

VAG 76.42 ±0.90 59.34 ±1.28 65.40 ±1.52 56.88 ±1.22

NCM 83.60 ±0.00 71.10 ±0.00 75.70 ±0.00 73.30 ±0.00

MD 93.71 ±0.00 89.09 ±0.00 93.42 ±0.00 86.41 ±0.00

KMD 95.90 ±0.68 92.23 ±0.32 94.13 ±0.32 87.27 ±1.39

KMD-Ensemble 96.62 ±0.08 93.03 ±0.06 94.53 ±0.12 89.78 ±0.09

Table 1: Final accuracy (%) of different methods on various datasets. All results are with a BART-
base backbone, and no replay buffer was used for any method. The number of tasks is indicated in
parentheses next to each dataset (#-T). Note that the number of tasks does not affect KMD, NCM,
or MD, as these methods add a class-prototype at a time. Joint Fine-tuning is considered the upper
bound for CIL performance since it learns all classes together as a single task.

5.5 RESULTS AND ANALYSIS

We now present and analyze the performance of KMD in comparison with baselines, examining its
accuracy, memory usage, and efficiency. We also study how KMD performs across different LMs
and its two hyperparameters.

5.5.1 COMPARISON WITH BASELINES

Table 1 presents the performance of KMD against various baselines. The existing CIL baselines
include EWD, KD, L2P, LAMOL and VAG. Despite specialized mechanisms for mitigating CF,
these methods still exhibit significant forgetting, with even the best-performing method, VAG, falling
far short of the accuracy achieved by the simple NCM method.

NCM, while effective, significantly underperforms MD and KMD, indicating that merely accumu-
lating a mean feature vector for each class is insufficient to fully leverage the information in the
LM’s feature representations. KMD improves upon MD by leveraging the kernel method, lead-
ing to better performance. The addition of the ensemble approach further enhances accuracy, with
KMD-Ensemble outperforming all other methods.

Joint Fine-tuning Upper Bound. KMD-Ensemble consistently matches the accuracy of the Joint
Fine-tuning upper bound, even surpassing it on 3 out of the 4 datasets, and achieving nearly identical
results on the fourth (DBpedia). Notably, even KMD alone performs on par with Joint Fine-tuning.
This shows that the features of LMs are well-suited for highly accurate continual learning, and the
key lies in how to utilize these features appropriately, which is achieved by the proposed method
KMD and KMD-Ensemble for CIL.

5.5.2 GENERALIZABILITY ACROSS DIFFERENT LMS

We evaluate KMD-Ensemble’s performance across different LMs of varying sizes. The results,
shown in Table 2, indicate that KMD-Ensemble consistently achieves performance comparable to
or better than Joint Fine-tuning across all datasets, regardless of the LM used. This highlights the
robustness of KMD-Ensemble for CIL.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Method CLINC Banking DBpedia HWU

paraphrase-MiniLM (3 layers, 384 dimensions)
KMD-Ensemble 94.53±0.00 91.73±0.09 86.83±0.17 87.95±0.23

Joint Fine-tuning 93.20±0.16 90.90±0.08 87.43±0.16 87.13±0.12

BERT-base (12 layers, 768 dimensions)
KMD-Ensemble 94.98±0.31 91.00±0.24 95.40±0.08 88.32±0.31

Joint Fine-tuning 94.56±0.04 88.96±0.16 95.03±0.09 87.26±0.28

RoBERTa-large (24 layers, 1024 dimensions)
KMD-Ensemble 96.31±0.06 92.93±0.05 94.60±0.08 89.25±0.04

Joint Fine-tuning 95.96±0.30 91.16±0.04 94.99±0.21 88.40±0.29

T5-3b (24 layers, 1024 dimensions)
KMD-Ensemble 96.04±0.17 93.77±0.05 95.33±0.09 89.31±0.27

Joint Fine-tuning 96.86±0.06 92.30±0.10 94.60±0.03 90.30±0.10

Mistral-7b (32 layers, 4096 dimensions)
KMD-Ensemble 97.13±0.11 92.53±0.12 96.00±0.08 90.02±0.09

Joint Fine-tuning 97.60±0.11 92.50±0.14 95.70±0.07 90.43±0.11

Table 2: Comparison of final accuracy (%) between KMD-
Ensemble and Joint Fine-tuning across different LMs. Joint
Fine-tuning is considered the upper bound for CIL perfor-
mance since it learns all classes together as a single task.

Dataset FT (%)
CLINC (10-T) -0.133
Banking (7-T) -0.105
DBpedia (7-T) -0.085
HWU (8-T) -0.476

Table 3: Forgetting rate (%) of
KMD on each dataset after learning
all tasks. T represents the total num-
ber of tasks in each dataset.

5.5.3 ANALYSIS OF FORGETTING RATE

Our method has no forgetting at the LM level since we do not fine-tune it or add any additional struc-
ture to it for adaptation. However, the incremental updates to the shared covariance can introduce
some forgetting. Therefore, we measured the forgetting rate after all tasks were learned and found
it to be negative across all datasets, as shown in Table 3. This indicates slight positive knowledge
transfer, meaning the accuracy on earlier tasks improved after learning new ones.

5.5.4 MEMORY USAGE COMPARISON

We compare the methods in terms of memory usage. The Joint Fine-tuning only adds a classifier
head on top of the LM features, introducing approximately 0.1M additional parameters for typical
values of M = 150 classes and d = 768 hidden dimensions. Existing method baselines, particularly
those requiring the model to operate in the generation mode, significantly increase the memory
usage. For instance, an LM head required for text generation adds approximately 38.5M parameters
for a vocabulary of 50,265 tokens, although this number does not increase with the number of
classes.

Class Prototype (CP) methods are more memory-efficient as they only require storing the class
prototypes. NCM requires M×d parameters for the mean vectors, similar to the classifier head of the
Joint model. MD adds an d×d covariance matrix, increasing the parameter count by approximately
0.6M. KMD introduces D × (d + 1) fixed non-trainable parameters for the RFF transformation.
With D set to 5000, this adds around 3.8M parameters. KMD also scales the parameters required
for CPs by a factor of D/d, leading to an additional 0.75M parameters. The covariance matrix for
KMD is D × D, resulting in an additional 25M parameters. In total, KMD’s memory footprint
is approximately 29.5M parameters. This memory requirement is still significantly lower than the
LM head needed for text generation alone. Our KMD-Ensemble utilizes 5 models, resulting in a 5x
increase in memory usage, which remains within a reasonable limit. For reference, the BART-base
model used in our experiments has 139.5M parameters. We highlight that a large portion of KMD’s
parameters are associated with the fixed RFF transformation and the shared covariance matrix, which
do not increase as more classes are added in the CIL process.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 1: Impact of hyperparameters on KMD performance. (Left) Effect of the RFF parameter σ
with a fixed transform dimension D = 5000. (Right) Effect of varying the transform dimension D
with σ = 10−4.

5.5.5 EFFICIENCY AND RUNTIME ANALYSIS

Our method is highly efficient, as it bypasses the need to update LM parameters or compute gradients
during training. Instead, it simply computes class means and the covariance matrix. On the CLINC
dataset with a BART-base LM, KMD and KMD-Ensemble train in approximately 10 and 30 seconds,
respectively, on our GPU setup–comparable to the time required to extract latent features from the
LM. In contrast, Joint Fine-tuning takes about 4 minutes to train. Existing CL method baselines take
much longer to train, as they involve updating the model incrementally on each task. They often
require additional computations too, e.g., computing the output of their previous versions (KD) or
generating pseudo-replay data (LAMOL and VAG), leading to training times ranging from 11 to 23
minutes.

5.5.6 ANALYSIS OF HYPERPARAMETERS

For KMD-Ensemble, we used 5 models in the ensemble, as we found this to provide good perfor-
mance without significantly increasing space or computation requirements. Further details on the
effect of different ensemble sizes (number of models) on performance can be found in Appendix A.
KMD itself has two key hyperparameters: transform dimension D and the kernel scale σ. Figure 1
shows how these hyperparameters affect accuracy across different datasets. D controls the balance
between the memory usage and the accuracy of kernel approximation. We found that setting D to
5000 provides a good balance, offering sufficient accuracy without excessive memory usage. σ af-
fects the scale of the RBF kernel and thus influences the separation of the transformed features. We
fixed σ for all the datasets after determining it for each backbone (see Apendix A). KMD performs
well across all datasets with this parameter setting. This indicates that KMD can learn various tasks
incrementally without the need for major adjustments to its configuration.

6 CONCLUSION

A large body of literature exists on class incremental learning (CIL). Most existing methods focused
on mitigating the CF by Fine-tuning an LM through direct parameter updates or by learning prompts
or adapters, but these approaches are still prone to CF and limited attentions have been paid to
ICS. The proposed method KMD deals with both problems and is fundamentally different from the
traditional approaches. KMD only uses a fixed LM as a feature extractor. It leverages the Radial
Basis Function (RBF) kernel to enhance the feature representation through Random Fourier Features
approximation. This kernelized representation is then used to compute class means and a shared
covariance matrix. The final classification is based on Mahalanobis distance. Our experiments show
that KMD-Ensemble significantly outperforms existing baselines and, more importantly, achieves
accuracy on par or better than joint Fine-tuning, which is regarded as the upper bound of CIL.

Limitations: The proposed method relies on the assumption that the LM contains sufficiently rich
features for the CIL tasks in the target domain. If the LM’s features are not well-suited to a specific
domain, the accuracy of our method may suffer. A standard approach to address this is to fine-tune
the general-purpose LM using a large domain-specific corpus before applying it to CIL.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Davide Abati, Jakub Tomczak, Tijmen Blankevoort, Simone Calderara, Rita Cucchiara, and
Babak Ehteshami Bejnordi. Conditional channel gated networks for task-aware continual learn-
ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 3931–3940, 2020.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary Ives.
Dbpedia: A nucleus for a web of open data. In international semantic web conference, pp. 722–
735. Springer, 2007.

Iñigo Casanueva, Tadas Temčinas, Daniela Gerz, Matthew Henderson, and Ivan Vulić. Efficient
intent detection with dual sentence encoders. arXiv preprint arXiv:2003.04807, 2020.

Zhiyuan Chen and Bing Liu. Lifelong machine learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning, 12(3):1–207, 2018.

Yung-Sung Chuang, Shang-Yu Su, and Yun-Nung Chen. Lifelong language knowledge distillation.
arXiv preprint arXiv:2010.02123, 2020.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
tasks. IEEE transactions on pattern analysis and machine intelligence, 44(7):3366–3385, 2021.

Roy De Maesschalck, Delphine Jouan-Rimbaud, and Désiré L Massart. The mahalanobis distance.
Chemometrics and intelligent laboratory systems, 50(1):1–18, 2000.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Binzong Geng, Fajie Yuan, Qiancheng Xu, Ying Shen, Ruifeng Xu, and Min Yang. Continual learn-
ing for task-oriented dialogue system with iterative network pruning, expanding and masking. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021,
(Volume 2: Short Papers), Virtual Event, August 1-6, 2021, 2021.

Claudio Greco, Barbara Plank, Raquel Fernández, and Raffaella Bernardi. Psycholinguistics meets
continual learning: Measuring catastrophic forgetting in visual question answering. arXiv preprint
arXiv:1906.04229, 2019.

Pankaj Gupta, Yatin Chaudhary, Thomas Runkler, and Hinrich Schuetze. Neural topic modeling with
continual lifelong learning. In International Conference on Machine Learning. PMLR, 2020.

Suchin Gururangan, Mike Lewis, Ari Holtzman, Noah A Smith, and Luke Zettlemoyer. Demix
layers: Disentangling domains for modular language modeling. arXiv preprint arXiv:2108.05036,
2021.

Tyler L Hayes and Christopher Kanan. Lifelong machine learning with deep streaming linear dis-
criminant analysis. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition workshops, pp. 220–221, 2020.

Xu He and Herbert Jaeger. Overcoming catastrophic interference using conceptor-aided backprop-
agation. In ICLR, 2018.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019.

Yufan Huang, Yanzhe Zhang, Jiaao Chen, Xuezhi Wang, and Diyi Yang. Continual learning
for text classification with information disentanglement based regularization. arXiv preprint
arXiv:2104.05489, 2021.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Zixuan Ke and Bing Liu. Continual learning of natural language processing tasks: A survey. arXiv
preprint arXiv:2211.12701, 2022.

Zixuan Ke, Bing Liu, Nianzu Ma, Hu Xu, and Lei Shu. Achieving forgetting prevention and knowl-
edge transfer in continual learning. Advances in Neural Information Processing Systems, 34,
2021.

Gyuhak Kim, Changnan Xiao, Tatsuya Konishi, Zixuan Ke, and Bing Liu. A theoretical study on
solving continual learning. In Advances in Neural Information Processing Systems, 2022.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Stefan Larson, Anish Mahendran, Joseph J Peper, Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K Kummerfeld, Kevin Leach, Michael A Laurenzano, Lingjia Tang, et al. An evaluation
dataset for intent classification and out-of-scope prediction. arXiv preprint arXiv:1909.02027,
2019.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. arXiv preprint
arXiv:1910.13461, 2019.

Dingcheng Li, Zheng Chen, Eunah Cho, Jie Hao, Xiaohu Liu, Fan Xing, Chenlei Guo, and Yang Liu.
Overcoming catastrophic forgetting during domain adaptation of seq2seq language generation.
In Proceedings of the 2022 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 2022.

Yuanpeng Li, Liang Zhao, Kenneth Church, and Mohamed Elhoseiny. Compositional language
continual learning. In International Conference on Learning Representations, 2019.

Yunlong Liang, Fandong Meng, Jiaan Wang, Jinan Xu, Yufeng Chen, and Jie Zhou. Continual
learning with semi-supervised contrastive distillation for incremental neural machine translation.
In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 10914–10928, 2024.

Sen Lin, Li Yang, Deliang Fan, and Junshan Zhang. Beyond not-forgetting: Continual learning with
backward knowledge transfer. Advances in Neural Information Processing Systems, 35:16165–
16177, 2022.

Junpeng Liu, Kaiyu Huang, Hao Yu, Jiuyi Li, Jinsong Su, and Degen Huang. Continual learning
for multilingual neural machine translation via dual importance-based model division. In Pro-
ceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp.
12011–12027, 2023.

Qingbin Liu, Xiaoyan Yu, Shizhu He, Kang Liu, and Jun Zhao. Lifelong intent detection via multi-
strategy rebalancing. CoRR, abs/2108.04445, 2021a.

Tianlin Liu, Lyle Ungar, and João Sedoc. Continual learning for sentence representations using con-
ceptors. In Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis,
MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), 2019a.

Xingkun Liu, Arash Eshghi, Pawel Swietojanski, and Verena Rieser. Benchmarking natural lan-
guage understanding services for building conversational agents. In Increasing Naturalness and
Flexibility in Spoken Dialogue Interaction: 10th International Workshop on Spoken Dialogue
Systems, pp. 165–183. Springer, 2021b.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019b.

Zheda Mai, Ruiwen Li, Jihwan Jeong, David Quispe, Hyunwoo Kim, and Scott Sanner. Online
continual learning in image classification: An empirical survey. Neurocomputing, 469:28–51,
2022.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Chengwei Qin, Chen Chen, and Shafiq Joty. Lifelong sequence generation with dynamic module
expansion and adaptation. In Proceedings of the 2023 Conference on Empirical Methods in Nat-
ural Language Processing, pp. 6701–6714. Association for Computational Linguistics, Decem-
ber 2023. doi: 10.18653/v1/2023.emnlp-main.414. URL https://aclanthology.org/
2023.emnlp-main.414.

Yujia Qin, Jiajie Zhang, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. Elle:
Efficient lifelong pre-training for emerging data. arXiv preprint arXiv:2203.06311, 2022.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in
neural information processing systems, 20, 2007.

Jathushan Rajasegaran, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Mubarak Shah.
itaml: An incremental task-agnostic meta-learning approach. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 13588–13597, 2020.

Anastasia Razdaibiedina, Yuning Mao, Rui Hou, Madian Khabsa, Mike Lewis, and Amjad
Almahairi. Progressive prompts: Continual learning for language models. arXiv preprint
arXiv:2301.12314, 2023.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084, 2019.

Walter Rudin. Fourier analysis on groups. Courier Dover Publications, 2017.

Bernhard Scholkopf and Alexander J Smola. Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press, 2018.

Thomas Scialom, Tuhin Chakrabarty, and Smaranda Muresan. Continual-t0: Progressively instruct-
ing 50+ tasks to language models without forgetting. arXiv preprint arXiv:2205.12393, 2022.

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. In International Conference on Machine Learning, pp.
4548–4557. PMLR, 2018.

Yijia Shao, Yiduo Guo, Dongyan Zhao, and Bing Liu. Class-incremental learning based on label
generation. arXiv preprint arXiv:2306.12619, 2023.

Yilin Shen, Xiangyu Zeng, and Hongxia Jin. A progressive model to enable continual learning for
semantic slot filling. In EMNLP-IJCNLP, 2019.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. Advances in neural information processing systems, 30, 2017.

Fan-Keng Sun, Cheng-Hao Ho, and Hung-Yi Lee. Lamol: Language modeling for lifelong language
learning. arXiv preprint arXiv:1909.03329, 2019.

13

https://aclanthology.org/2023.emnlp-main.414
https://aclanthology.org/2023.emnlp-main.414


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Fan-Keng Sun, Cheng-Hao Ho, and Hung-Yi Lee. Lamol: Language modeling is all you need for
lifelong language learning. In ICLR, 2020. URL https://openreview.net/forum?id=
Skgxcn4YDS.

Gido M Van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734, 2019.

Fu-Yun Wang, Da-Wei Zhou, Liu Liu, Han-Jia Ye, Yatao Bian, De-Chuan Zhan, and Peilin Zhao.
Beef: Bi-compatible class-incremental learning via energy-based expansion and fusion. In The
Eleventh International Conference on Learning Representations, 2022a.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning: Theory, method and application, 2023a.

Mingyang Wang, Heike Adel, Lukas Lange, Jannik Strötgen, and Hinrich Schütze. Rehearsal-
free modular and compositional continual learning for language models. arXiv preprint
arXiv:2404.00790, 2024a.

Yifan Wang, Yafei Liu, Chufan Shi, Haoling Li, Chen Chen, Haonan Lu, and Yujiu Yang. In-
sCL: A data-efficient continual learning paradigm for fine-tuning large language models with
instructions. In Proceedings of the 2024 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, pp. 663–677. Associ-
ation for Computational Linguistics, June 2024b. doi: 10.18653/v1/2024.naacl-long.37. URL
https://aclanthology.org/2024.naacl-long.37.

Zhicheng Wang, Yufang Liu, Tao Ji, Xiaoling Wang, Yuanbin Wu, Congcong Jiang, Ye Chao, Zhen-
cong Han, Ling Wang, Xu Shao, et al. Rehearsal-free continual language learning via efficient
parameter isolation. In Proceedings of the 61st Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 10933–10946, 2023b.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vin-
cent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 139–149,
2022b.

Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad Rastegari,
Jason Yosinski, and Ali Farhadi. Supermasks in superposition. Advances in Neural Information
Processing Systems, 33:15173–15184, 2020.

Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynamically expandable representation for
class incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 3014–3023, 2021.

Yutao Yang, Jie Zhou, Xuanwen Ding, Tianyu Huai, Shunyu Liu, Qin Chen, Liang He, and Yuan
Xie. Recent advances of foundation language models-based continual learning: A survey. arXiv
preprint arXiv:2405.18653, 2024.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In International Conference on Machine Learning, pp. 3987–3995. PMLR, 2017.

Weixiang Zhao, Shilong Wang, Yulin Hu, Yanyan Zhao, Bing Qin, Xuanyu Zhang, Qing Yang,
Dongliang Xu, and Wanxiang Che. Sapt: A shared attention framework for parameter-efficient
continual learning of large language models. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 11641–11661, 2024.

Da-Wei Zhou, Qi-Wei Wang, Zhi-Hong Qi, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Class-
incremental learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2024.

Qi Zhu, Bing Li, Fei Mi, Xiaoyan Zhu, and Minlie Huang. Continual prompt tuning for dialog state
tracking. arXiv preprint arXiv:2203.06654, 2022.

14

https://openreview.net/forum?id=Skgxcn4YDS
https://openreview.net/forum?id=Skgxcn4YDS
https://aclanthology.org/2024.naacl-long.37


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A ADDITIONAL ABLATIONS AND IMPLEMENTATION DETAILS

Dataset E=1 E=2 E=3 E=5 E=10
CLINC 95.91±0.68 96.04±0.28 96.09±0.20 96.62±0.08 96.67±0.20

Banking 92.23±0.32 92.73±0.15 92.83±0.06 93.03±0.06 93.13±0.12

DBpedia 94.13±0.32 94.40±0.20 94.43±0.25 94.53±0.12 94.97±0.06

HWU 87.27±1.39 89.34±0.44 89.53±0.05 89.78±0.09 90.09±0.19

Table 4: Final accuracy (%) of KMD-Ensemble across different ensemble sizes. E represents the
number of models used in the ensemble.

Backbone σ

paraphrase-MiniLM 1e-2
BART-base 1e-4
BERT-base 5e-3
RoBERTa-large 5e-3
T5-3b 5e-2
Mistral-7B 5e-6

Table 5: The σ value used in our experiments for each LM. We fix the value across all datasets after
determining the optimal value.

15


	Introduction
	Related Work
	Background
	Class-Prototypes for Continual Learning

	Proposed Method: KMD
	Kernel Functions
	Approximating the Kernel with Random Fourier Features
	Classification with KMD and Ensembles

	Experimental Evaluation
	Datasets
	Baselines
	Implementation Details
	Evaluation Metric
	Results and Analysis
	Comparison with Baselines
	Generalizability Across Different LMs
	Analysis of Forgetting Rate
	Memory Usage Comparison
	Efficiency and Runtime Analysis
	Analysis of Hyperparameters


	Conclusion
	Additional Ablations and Implementation Details

