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Abstract

Generally, reward models used for reinforcement learning from human feedback
(RLHF) are trained to directly predict preference scores without leveraging the
generation capabilities of the underlying large language model (LLM). To enable
reward models to reason explicitly about the quality of a response, we introduce
Critique-out-Loud (CLoud) reward models. CLoud reward models operate by
generating a natural language critique of the assistant’s response that is then used
to predict a scalar reward for the quality of the response. While classic reward
models typically model the average preference over a set of humans, CLoud reward
models can model a diverse set of preferences more faithfully through reasoning
about multiple preference in the generated critique. We demonstrate the success of
CLoud reward models for both Llama-3-8B and 70B models: compared to classic
reward models, CLoud reward models improve pairwise preference classification
accuracy on RewardBench by 4.65 and 5.84 percentage points for the 8B and
70B base models respectively. Furthermore, CLoud reward models also lead to a
Pareto improvement for win rate on ArenaHard when used as the scoring model
for Best-of-N.

1 Introduction

In reinforcement learning from human feedback (RLHF) (Christiano et al.l [2017; Nguyen et al.,
2017), a reward model is trained as a proxy for human preferences. Such reward models are then
used to produce a human-preference aligned generation policy.

Generally, reward models are trained as simple LLM based classifiers of the user’s prompt and the
assistant’s response (Stiennon et al., 20205 |Ouyang et al.||2022). Importantly, the language modeling
(LM) head of the underlying LLM is not used during reward modeling. We hypothesize that this
limits the performance of classic reward models as they cannot explicitly reason about the quality of
the response in a Chain-of-Thought (CoT) (Wei et al., [2022)) like manner.

The utility of reasoning traces for preference modeling is demonstrated by the LLM-as-a-Judge
framework (Zheng et al.,[2023), where a scoring rubric is provided to an LLM, and the LLM reasons
about how the provided response adheres to the rubric before scoring the quality of the response.
While LLM-as-a-Judge provides both the ability to define preferences at inference time through the
judging rubric and interpretable evaluation by inspecting the produced CoT reasoning, LLM-as-a-
Judge generally under-performs classic reward models at pairwise preference classiﬁcatio

In this work, we investigate how to leverage the language generation capabilities of LLMs to improve
reward model performance by allowing reward models to explicitly reason about the quality of an
input. To this end, we propose Critique-out-Loud (CLoud) reward models: conditioned on the user’s
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prompt and the assistant’s response, CLoud reward models first generate a detailed critique about how
well the response answers the user’s query. Then, as a function of the user’s prompt, the assistant’s
response, and the self-generated critique, the CLoud reward model produces a scalar reward for the
quality of the response. Through generating critiques, CLoud reward models can explicitly reason
about the quality of an input under a multiplicity of preferences. To train CLoud reward models we
assume access to a preference dataset composed of prompts, responses, and oracle critiques of the
responses. We train CLoud reward models to both generate critiques by supervised finetuning (SFT)
on the oracle critiques and to produce scalar rewards based on the Bradley-Terry (BT) preference
model (Bradley & Terry,|1952).

Contributions Our work makes the following contributions:

* We introduce Critique-out-Loud (CLoud) reward models: reward models trained to explic-
itly reason about the quality of responses before scoring them. Through adding critique
capabilities, CLoud lays the groundwork for unifying reward models and LLM-as-a-Judge.

* We show that CLoud reward models improve pairwise preference classification accuracy
on RewardBench by 4.65 and 5.84 percentage points for the 8B and 70B base models
respectively (Figure[I)). Additionally, CLoud reward models lead to a Pareto improvement
for win rate on ArenaHard when used as the scoring model for Best-of-N (Figure [2).

2 Methods

In the following we will refer to the trunk of a pretrained LLM before the final language modeling
layer as the base model and the linear or shallow multi-layer perceptrons (MLPs) that operate on the
output of the base model as heads.

2.1 Classic reward models

Typically, classic reward model consists of a base model and a shallow MLP reward head. Its
parameters are (6, 0r), where 05 and g are the parameters of the base model and reward head
respectively. Given a user prompt x and an assistant response y, the classic reward model predicts
a scalar reward score R = ryg 5.0r(Z,y). A classic reward model is initialized from a pretrained
base model and a randomly initialized reward head and then trained on a dataset of NV examples,
D= {(z,y",y"); 1N:1~ Here, x is a user’s prompt and the ys are two different assistant responses
to the prompt: y is the chosen or preferred response and y~ is the rejected response as judged by a
human or a more powerful model. Reward models are trained to predict a higher reward for 4 than
for y~ under the Bradley-Terry model (Bradley & Terry, |1952). This is achieved by minimizing:

‘CRM(GBa Or, D) = 7]E(w,y*,y+)~D[10g(o—(reB,eR (:L', y+) —T05,0r (:L’, yi)))]

where o (x) is the sigmoid function.

2.2 CLoud reward models

In addition to the base model and reward head, CLoud reward models preserve the language modeling
head of the original pretrained LLM and are defined by parameters § = (6,07, 0r) where 01,5/
are the parameters of the language modeling head. CLoud reward models extend classic reward
models by first generating a critique of the assistant’s response and then predicting a scalar reward
conditioned on the critique (depicted in Figure [3). Formally, given a user prompt z and assistant
response y we first sample a critique é ~ p(|z, y; 0p; 01 ) and then predict a reward conditioned

on the prompt, the response, and the critique: R = rqy 505 (2, Y, €).

Training CLoud reward models. CLoud reward models are trained with a dataset of N examples,
D = {(z,y~,y", e, c");},, where we introduce oracle critiques, ¢, ¢, of the rejected and
chosen responses y~, y T respectively. The critiques are reasoning traces generated by Llama-3.1-
405B-Instruct that provide feedback on the weaknesses of the responses and strategies for improving
them (Appendix [C).



Before formally detailing the steps of CLoud reward model training, we introduce the following
objectives. First, we modify L), to work with CLoud reward models as:
)

Lryv(05,0r, D) = —E@y- y+ .o ct)un[l08(0(rog 00 (@ yt, ™) —rog.0n(x,y~,¢7)))]

where the reward estimator 7 (x, y, ¢) is now also conditioned on a critique ¢. Next, we introduce the
critique SFT loss, which is the negative log likelihood of the rejected and chosen critiques:

ESFT(9B7 GLM; D) = _E(:c,y*,er,c*,c*)ND[ Z Ing(Ct_|l', yia Czt; 03, eLJW)
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+ Y logp(ef |a,yt, ¢ty 05, 000)]

cjecJr

where c.; = ¢y, ..., ¢,_1 is the prefix of the critique up to the ' token. Finally, we introduce a joint
SFT and RM loss as:

Lcorowa(08,000,0r, D) = Lry(0B,0r, D) + X - Lspr(05,000, D)
where ) is a hyperparameter that weights the contribution of the language modeling loss.

To train CLoud reward models we first train 65, 01,5, to generate critiques by minimizing £gp7 on
the oracle critiques in the oracle dataset D and obtain parameters 65, 61 3,. We use the finetuned
model to modify our dataset with self-generated critiques that replace the oracle critiques. Specifically,
given the i*" element from our dataset (x,y~,y",c~,cT) = D; we sample new critiques ¢~ ~

p(*|z, v~ 05, GNLM) and ¢ ~ p(*|z,y";60p, 050 ). We then construct a new dataset as D¢ f,; =
(z,y~,y*,¢7,¢"). Finally, we obtain our CLoud reward model parameters by training on our
self-critique dataset:

* * * .
05,070, 0% = argmin Lorouwa(0B,000,0R, Dseiy)
0p,0LM,0R

where 6, 01,5 are initialized to the finetuned parameters 0 B, 7] .- We train CLoud reward models
on the joint loss Lo 0uq instead of L), to preserve the critique generation capability of the CLoud
reward model and to prevent over-fitting to solely producing reward scores.

3 Results

Training. As base models we experiment with the Llama-3 family of models (Dubey et al., 2024).
Specifically, we train reward models starting from the Llama-3-8B and Llama-3-70B base models.
We provide details on training hyperparamaters in Appendix [D}

Data. For training data we use a mix of the prompts from the UltraFeedback (Cui et al., [2023)
and Ultralnteract (Yuan et al.| [2024a) datasets. For each prompt we sample two responses from
Llama-3-8B-Instruct and assign chosen and rejected labels through a pairwise judgement using
Llama-3.1-405B-Instruct as an oracle preference model. We then generate critiques for the chosen
and rejected responses Llama-3.1-405B-Instruct as the oracle. The prompt we use to generate oracle
critiques can be found in Appendix [C]

Evaluation. We evaluate the quality of reward models on both pairwise preference classification
accuracy and Best-of-N (BoN) win rate.

We evaluate pairwise preference classification on the RewardBench (Lambert et al., 2024)) evaluation
suite. Each example contains a prompt and a chosen and rejected response and a reward model is
evaluated as to whether it predicts a greater reward for the chosen response.

We evaluate BoN win rate performance on ArenaHard (Li et al.,|2024b)), an open-ended generation
benchmark. To preform BoN, for each user query, we sample N potential responses from Llama-
3-8B-Instruct. We score each response with the given reward model and select the response with
the highest reward. We report the win-rate of the selected responses as compared to responses from
Llama-3.1-70B-Instruct using Llama-3.1-405B-Instruct as the judge.



CLoud vs. Classic on RewardBench
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Figure 1: Comparing pairwise preference classification accuracy of classic and CLoud reward
models on RewardBench. At both the 8B and 70B model scales, CLoud reward models significantly
outperform classic reward models on all categories.
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Figure 2: Comparing Best-of-N (BoN) win rates using classic and CLoud reward models on
ArenaHard. At both model sizes, CLoud is a Pareto improvement meaning that it produces an equal
or significantly higher win rate BoN policy than the classic reward model.

3.1 Do critiques improve performance?

To test whether critiques improve reward model performance, we first compare classic reward models
to CLoud reward models on RewardBench (Figure |I[) We find that across both model sizes, CLoud
reward models lead to large gains in pairwise preference accuracy, significantly outperforming the
corresponding classic reward model on all categories. On average, we find that CLoud reward models
outperform classic reward models by 4.65 and 5.84 percentage points for the 8B and 70B base models
respectively. Furthermore, on both the chat and safety categories, the 8B CLoud reward model even
outperforms the 70B classic reward model. To better understand the critiques generated by CLoud
reward models, we present critiques from examples in RewardBench in Appendix [G]

We next evaluate BoN with classic and CLoud reward models in Figure[2] We find that for all model
sizes, BoN with CLoud reward models is a Pareto improvement over BoN with classic reward models,
meaning that for each number of responses, the BoN win rate with CLoud is equal to or better than
that of classic. Selecting from sixteen responses with CLoud reward models leads to a win rate
improvement of 1.84 and 0.89 percentage points as compared to classic reward models for the 8B
and 70B base models respectively.

These results suggest that adding the capability for the reward models to generate critiques leads to
significant performance gains in preference modeling. Furthermore, the improvements in preference
modeling transfer to improving the quality a generation policy.

4 Conclusion

We propose Critique-out-Loud (CLoud) reward models which preserve the language modeling
capabilities of the underlying LLM while additionally training a scalar reward head. By generating
reasoning traces CLoud reward models substantially outperform classic reward models.
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A Related Work

Classic reward models. In RLHF, reward models have traditionally modeled human preferences
after ranking models such as the Bradley-Terry (BT) model (Bradley & Terryl [1952;|Ouyang et al.,
2022; |Bai et al.l 2022bja; |[Dubey et al., 2024)) or the Plackett-Luce model (Plackett, 1975} Luce,
1959; [Zhu et al., 2023)). Recent work has showed shortcomings of these models when handling
intransitive preferences (Munos et al., 2023; [Swamy et al., [2024). Another line of work directly
models the probability of one response being preferred over the other (Jiang et al., [2023; Zhao et al.,
2023; Liu et al.| 2023; Dong et al.,|2024; Swamy et al., 2024). Finally, another line of work aims
to model rewards over multiple objectives (Wang et al., 2023bl [2024bja). The improvements of
CLoud reward models are orthogonal to the above methods as CLoud is agnostic to the preference
modeling objective. Future work should explore the composition of CLoud reward models with
more complex reward model objectives. Recently, Yang et al.|(2024) proposed to maintain the LM
head of a reward model, and train the LM head on the chosen and rejected responses as a form of
regularization. While CLoud also maintains and further trains the LM head, we do so for the purpose
of generating critiques.

Critique-based feedback. There is a large body of work that concerns providing feedback in the
form of natural language critiques. In settings where oracle critiques or signals for critique quality do
not exist, past works have explored using the model itself to generate critiques that are then either
referenced to improve generation quality or directly leveraged as a preference signal (Bai et al.
2022b; |Shinn et al.} 2024;|Ganguli et al., 2023} |[Madaan et al., {2024} |Yuan et al.||2024b; Ramji et al.,
2024; |[Kim et al.| 2024). While our work also leverages self-generated critiques at inference, our
work differs in that we aim to train better reward models when human preference data is available as
opposed to bootstrapping preferences from the model itself. [Lee et al.|(2024) extend self-generated
critiques for preference modeling by leveraging additional inference compute via self-consistency
to improve preference modeling performance. While they find that self-consistency does not help
for the tasks they examine, we demonstrate that self-consistency does help for reward modeling on
reasoning tasks (Appendix [F.2).

Previous works have also explored the setting where oracle critiques are available for training.
Saunders et al.|(2022); |/Akyurek et al.| (2023) teach an LLM to critique by performing SFT on oracle
critiques and McAleese et al.[(2024)) teach an LLM to critique by performing RLHF on human-labeled
critique preferences. Other works leverage access to oracle feedback (e.g., human, error traces, etc.)
to generate refined answers conditioned on the critiques (Gao et al.l 2023} [Scheurer et al.| [2023]; [Chen
et al.,|2024; Gou et al., [2024)). Our work differs from the above as our goal is to leverage critiques
to train better reward models. Most similar to our work is that of |Ye et al.|(2024) which explores
improving reward model performance by training reward models on human preferences conditioned
on critiques generated by other models. While their work similarly demonstrates the advantages of
reward scores conditioned on critiques, our work differs in that we investigate training the reward
model to generate its own critiques. As such, CLoud reward models can perform inference without
requiring access to a larger model.

LLM-as-a-Judge. In the LLM-as-a-Judge framework, an LLM scores responses based on a user
provided grading rubric (Gilardi et al.l 2023} [Huang et al.l 2023} Zheng et al., [2023} Kim et al.|
2023; L1 et al.| 2024a). While similar to methods above such as Constitutional Al, LLM-as-a-Judge
differs in that the objective is to evaluate responses, not revise responses. Similar to CLoud reward
models, LLM-as-a-Judge produces chain-of-thought reasoning about how the grading rubric applies
to the response before producing a score. However, CLoud differs from LLM-as-a-Judge as our
models maintain a scalar reward head and as such can be trained according to classic reward modeling
objectives such as the BT model. Our work takes a first step towards unifying the classic reward
model and LLM-as-a-Judge methods for preference modeling. Future work should investigate how
the human crafted grading rubrics used in LLM-as-a-Judge can be integrated with the critique process
of CLoud reward models.

B Method Figures

To better understand how CLoud operates, we provide diagrams for performing inference and training
CLoud reward models in Figures [3|and | respectively.



User Prompt:

How can we improve reward
models?

Self-Generated Critique:

LM Head While the options provided are

correct, the response fails to

mention generating critiques
out loud.

Assistant Response:
Reward models can be Reward Head
improved through higher
quality preference data and
improved preference models
such as Plackett-Luce.

CLoud Reward
Model

Reward: 0.379

Figure 3: Overview of CLoud reward models. CLoud reward models augment classic reward
models with a language modeling (LM) head to provide critiques in addition to a scalar reward. Given
a user’s prompt and an assistant’s response as inputs, a CLoud reward model first generates a critique
describing the quality of the assistant’s response. Then, conditioned on the prompt, response, and
self-generated critique, the CLoud reward head produces a scalar reward.

Notation
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Figure 4: Overview of training CLoud reward models. CLoud reward models are trained using a
dataset that consists of user prompts, chosen and rejected assistant responses, and critiques of the
response quality generated by an oracle. We first train a pretrained LLM to generate critiques for
the responses by finetuning on the oracle critiques. We then rebuild the dataset by replacing oracle
critiques with critiques generated by the finetuned model. Finally, we initialize a scalar reward head
on top of the finetuned model and train on the new dataset composed of self-generated critiques to
minimize both a language modeling and a preference modeling loss.

C Generating Oracle Critiques

To approximate human critiques when constructing our dataset we generate oracle critiques using
Llama-3.1-405B-Instruct (Dubey et al., [2024). The exact prompt we use to generate oracle critiques
is displayed in Figure[3]

D Training Hyperparameter Sweep

We use a cosine learning rate schedule (Loshchilov & Hutter, [2017) with a warmup duration of 5%
and a final decay factor of 1%. Additionally, we use the Adam optimizer with decoupled weight
decay (Loshchilov & Hutter, [2019) with parameters 5; = 0.9, 83 = 0.95,¢ = 1e-10. We train
each model with two random seeds. All models are trained using Nvidia H100 gpus and training is
conducted using MosaicML Composer (MosaicML| 2021)).
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Oracle Critique Generation Prompt
System Prompt:

Please act as an expert in providing feedback. You will be given a user’s prompt and an
assistant’s response to the prompt. Your job is to think step by step and provide a thoughtful
and detailed analysis of how well the response answers the user’s query.

When providing feedback, consider if the assistant’s answer is helpful, relevant, and concise.
Helpful means the answer correctly responds to the prompt or follows the instructions.
Relevant means all parts of the response closely connect or are appropriate to what is being
asked. Concise means the response is clear and not verbose or excessive. Finally, identify any
missing important information in the assistants’ answers that would be beneficial to include
when responding to the user prompt.

It is not necessary to be polite when providing feedback. Think deeply to identify all the
good and bad parts of the answer.

Do not numerically score the response when evaluating it. Think deeply and provide linguistic
feedback and analysis only.

User Prompt
Here is the user’s prompt and the assistant’s response.
<|User Prompt [>{user’s prompt }<IEnd of User Prompt|>

<IThe Start of the Assistant’s Answerl>{answer}<|The End of the Assistant’s Answerl>

Figure 5: Prompt used to construct oracle critiques during dataset construction.

For fair comparison, we sweep over the the learning rate and number of training epochs of both the
classic and CLoud reward models. For 8B models, we first evaluate learning rates of 1e-6, 5e-6,
and le-5. Then, using the best learning rate, evaluate training for 1, 2, and 3 epochs. For CLoud
reward models we also evaluate the SFT loss weight \ at %, 1, and %. For the 8B base model, we
find the best performing parameters for classic reward models are {1r=5e-6, epochs=2} and that
the best performing parameters for CLoud reward models are {1r=1e-6, epochs=1,\ = %}. We
perform a similar sweep for 70B models, evaluating learning rates of 1e-6, and 5e-6. All 70B
models are trained for only 1 epoch. For CLoud reward models we again evaluate \ at %, 1, and

g. We find the best performing parameters for classic reward models are {1r=5e-6} and the best
performing parameters for CLoud reward models are {1r=1e-6, A\ = %}.

E Extended Results

Is on-policy training necessary? In our setup for training CLoud reward models, we augment
the original dataset by replacing all oracle critiques with self-generated critiques before training
the reward head. We do so to mitigate the distribution shift between the critiques the reward head
is trained on and the critiques available at inference. To determine whether this on-policy training
is necessary, we train an off-policy CLoud reward model by training on oracle critiques instead
of self-generated critiques. Namely, we train our off-policy CLoud reward model by minimizing
Lcroud over the original oracle critique labeled dataset, instead of the self-critique dataset.

We plot the pairwise preference modeling accuracy for on-policy and off-policy CLoud reward
models in Figure[6] CLoud trained on-policy significantly outperforms CLoud trained off-policy on
all categories except for chat-hard at the 70B base model scale. Off-policy training leads to a 5.60
and 3.03 percentage point drop in average performance for the 8B and 70B base models respectively.
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On vs. Off-Policy on RewardBench

_ Chat Chat-Hard Safety Reasoning Average
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5 80 64
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Off-Policy I On-Policy

Figure 6: Comparing pairwise classification accuracy between CLoud reward models trained
on-policy and off-policy on RewardBench. In this experiment, we ablate the importance of self-
generating critiques for training CLoud reward models. For CLoud off-policy, the reward head is
trained on the oracle critiques. For CLoud on-policy, the reward head is trained on self generated
critiques. For both model sizes, training in an off-policy manner leads to a significant drop in
performance. This highlights the importance of matching the distribution of critiques seen by the
reward head during training and inference.

On vs. Off-Policy on ArenaHard

8B Reward Model BoN 70B Reward Model BoN
35
30
225 2
~ & 25
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Off-Policy 20 Off-Policy
2 5 T T 9 T 13 Te 2 5 T T 9T T T3 T e
# Responses # Responses

Figure 7: Comparing BoN win rates on ArenaHard of CLoud reward models trained on and
off-policy. The shaded area represents £1 standard error from the mean. At both model sizes, we
find that the win rate from performing BoN with CLoud reward models trained on-policy is a Pareto
improvement over those trained off-policy. For Best-of-16, training off-policy decreases the win
rate by 3.31 and 1.56 percentage pooints for the 8B and 70B models respectively, highlighting the
importance of training on-policy CLoud reward models for defining better downstream policies.

We plot the BoN win rate for on-policy and off-policy CLoud reward models in Figure[7] We find
that CLoud reward models trained on-policy are a Pareto improvement in BoN win rate over models
trained off-policy. Specifically, selecting from sixteen responses with the off-policy reward model
leads to a 3.31 and 1.56 percentage point decrease in win rate as compared to the on-policy reward
models for the 8B and 70B base models respectively.

These results suggests that training CLoud reward models in an on-policy manner is necessary to
achieve strong performance.

F Self-Consistency For CLoud

As CLoud reward predictions can be stochastic through performing non-greedy decoding of critiques,
CLoud reward models offer the advantage of leveraging multi-sample inference techniques, such as
self-consistency (Wang et al.| 2023a)), to trade off inference compute for improved quality. In this
section we provide the technical details for performing self-consistent decoding of CLoud rewards
and evaluate the performance of self-consistency.
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Effect of Self-Consistency on RewardBench
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Figure 8: Effect of self-consistency decoding on performance of CLoud reward models on
RewardBench. The shaded area represents 1 standard error from the mean. For each prompt
and response input, we sample multiple (critique, reward) tuples from the CLoud reward model and
average the reward over the critiques to provide a better estimate of the reward. While self-consistency
does not improve the performance for most categories, on the reasoning category it is an effective
method to trade added inference compute for increased performance.

F.1 Self-consistent reward scores.

Self-consistency (Wang et al.,|2023a) is an inference technique for computing the maximum marginal
likelihood answer by sampling multiple (reasoning, answer) tuples and marginalizing over the
reasoning traces. It provides a simple method to improve performance at the cost of added inference
compute. In this work, we leverage self-consistency to provide a better estimate of the reward by
marginalizing over critiques.

Given a prompt x and response y to score, we first sample N critiques ci,co,...,cN ~
p(x|x,y;0p;0Ln;7), where T is the sampling temperature. For each critique, we predict a re-

ward as R; = 79,0, (2,y,c;). We then estimate the true reward as the mean of the individual
rewards.

F.2 Results

Do CLoud reward models benefit from added inference compute? To test whether CLoud
reward models benefit from added inference compute, we examine how accuracy changes when using
self-consistency decoding. For each response in RewardBench, we sample up to sixteen critiques
at a temperature of 0.5. We plot the performance of self-consistency decoding on RewardBench
for 8B and 70B CLoud reward models in Figure[§] We find that reasoning is the only category that
benefits from additional inference compute in the form of self-consistency. Specifically, we find that
self-consistency leads to an improvement in preference classification accuracy of up to 0.70 and 0.49
percentage points for the 8B and 70B base models respectively. Furthermore, that we do not see
a gain in self-consistency for non-reasoning categories agrees with the results of [Lee et al.| (2024)).
We also evaluate the effect of self-consistency reward modeling for BoN on ArenaHard. Unlike
RewardBench, we do not find any gain in BoN win rate from self-consistent rewards. For the sake of
brevity we present these results in Appendix [F] Our self-consistency results provide initial evidence
that in specific situations, added inference compute can improve the performance of CLoud reward
models, but that it is important to know the distribution of tasks being scored as not all task categories
benefit.
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Effect of Self-Consistency on ArenaHard
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Figure 10: Comparing BoN win rates on ArenaHard of CLoud reward models using greedy
and self-consistency decoding. The shaded area represents +1 standard error from the mean. To
perform self-consistency for BoN, we sample sixteen critiques of each response and average the
reward across critiques. At both model sizes, we find no difference in BoN win rates between greedy
and self-consistency decoding.

When is self-consistency useful? To better  # Reasoning Steps Effect On Self-Consistency
understand when self-consistency improves pair-
wise preference classification accuracy, we in- [-2steps ~—— 5-6steps
vestigate the effect that a response’s reasoning — 3-4steps 7+ steps
horizon has on self-consistency’s performance.
We do so on the reasoning split of RewardBench
and we approximate the number of reasoning
steps required for a problem as the average num-
ber of sentences in the chosen and rejected re-
sponse. We bin the number of reasoning steps
as 1-2, 3-4, 5-6, and 7+ steps. We plot the per-
formance gain from self-consistency grouped
by reasoning steps for CLoud 8B on the rea-
soning split of RewardBench in Figure 0] We
find that only problems requiring 1-2 steps see
a consistent gain in pairwise preference clas-
sification accuracy as the number of critiques
increases, while the performance on problems
with a greater number of steps actually decreases
after eight critiques. This result provides initial
evidence that CLoud + self-consistency may be
a strong combination when evaluating solutions
with short reasoning horizons.
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Figure 9: The dependence of performance gain
from self-consistency on the number of reason-
ing steps in the assistant’s response. We find
that prompts that require only 1-2 reasoning steps
observe a significant lift in performance as the num-
ber of critiques increases, while all other groups of
reasoning steps actually degrade in performance
past eight critiques. This result shows that self-
consistency with CLoud reward models enables
better judgement of response quality for short hori-
zon tasks.

Does self-consistency improve BoN? We

also explore the effect of self-consistency de-

coding for CLoud reward models on BoN win rate for ArenaHard. For each number of responses that
we are performing BoN over, we sample sixteen critiques at a temperature of 0.5 that we average
the reward over. We plot the BoN win rate for greedy and self-consistency decoding in Figure [I0]
For both model sizes, we find that the BoN win rate is the same for greedy reward scoring and for
self-consistency reward scoring, meaning that there there is no observed advantage in the BoN policy
for performing self-consistency to predict the reward on ArenaHard.

G Example Reward Predictions On RewardBench

In this section we present examples of the reward prediction process for CLoud reward models on
RewardBench. We randomly sample an example from the chat and reasoning categories, and evaluate
both the 8B and 70B CLoud reward models on these examples. For each example, we present the
user’s query, the preferred and non-preferred responses, the corresponding critiques, and the predicted
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rewards. We present the 8B CLoud critiques on the preferred and non-preferred chat responses
in Figures [TT] and [I2] respectively, and the 8B CLoud critiques on the preferred and non-preffered
reasoning responses in Figures [I3]and [T4]respectively. We present the 70B CLoud critiques on the
preferred and non-preferred chat responses in Figures [IT] and [T2]respectively, and the 70B CLoud
critiques on the preferred and non-preffered reasoning responses in Figures[T3]and [T4]respectively.
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User query

I’ve recently started playing the turn-based strategy game Into the Breach. I have read online that
the game is considered to have "perfect information’. What is meant by ’perfect information’ in this
context?

Preferred Response

In the context of Into the Breach and other strategy games, "perfect information" refers to a situation
where all players have complete knowledge of the game state, including information about the enemy’s
units, abilities, and intentions. In other words, there is no hidden information that could affect the
player’s decision-making.

In Into the Breach, this means that you, as the player, have access to all the information you need to
make informed decisions about how to deploy your units, which enemies to target, and how to plan
your attacks. This includes knowledge of the enemy’s unit types, their strengths and weaknesses, their
movement patterns, and their attack ranges.

This is in contrast to games with "imperfect information," where players may not have access to all the
information they need to make optimal decisions. For example, in a game with fog of war, players may
not be able to see enemy units that are hiding behind walls or in other areas of the map. In games with
imperfect information, players must use their intuition, deduction, and experience to make informed
decisions despite the lack of complete information.

The designers of Into the Breach have chosen to design the game with perfect information to create
a focus on strategic planning and decision-making, rather than on reacting to unexpected events or
hidden information. This allows players to concentrate on optimizing their moves and planning for the
long-term, rather than worrying about sudden surprises or unknown threats.

Critique of Preferred Response

The assistant’s response provides a clear and concise explanation of what "perfect information" means
in the context of Into the Breach. The answer accurately defines perfect information as a situation where
all players have complete knowledge of the game state, including information about the enemy’s units,
abilities, and intentions.

The response effectively uses a contrast with imperfect information to illustrate the concept, highlighting
the differences between games with and without perfect information. The example of fog of war is
a good choice, as it is a common concept in strategy games that is easily relatable to the concept of
perfect information.

The explanation of how perfect information affects the gameplay in Into the Breach is also clear and
relevant. The assistant explains that the game’s design choice of perfect information allows players to
focus on strategic planning and decision-making, rather than reacting to unexpected events or hidden
information.

However, the response could benefit from a more detailed explanation of how perfect information is
achieved in Into the Breach. For example, the assistant could explain how the game’s interface and
mechanics provide players with all the necessary information to make informed decisions. This could
include details about the game’s user interface, such as the use of overhead maps, unit health bars, and
other visual indicators that provide players with a clear understanding of the game state.

Additionally, the response could benefit from a more nuanced discussion of the implications of perfect
information on the gameplay experience. While the assistant mentions that perfect information allows
players to focus on strategic planning and decision-making, it could also be argued that this can lead
to a more predictable and less engaging gameplay experience. A more detailed discussion of these
implications could provide a more comprehensive understanding of the concept of perfect information
in Into the Breach.

Overall, the assistant’s response provides a solid foundation for understanding the concept of perfect
information in Into the Breach, but could benefit from additional details and nuance to provide a more
complete explanation.

Preferred Response Reward: 0.0170

Figure 11: Reward prediction process for an 8B CLoud reward model on the preferred response of an
example from the chat category of RewardBench.
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User query

I’ve recently started playing the turn-based strategy game Into the Breach. I have read online that
the game is considered to have ’perfect information’. What is meant by ’perfect information’ in this
context?

Perfect information refers to a condition in which all players in a game have access to the same
information at the same time. In the case of Into the Breach, this means that both the player and the
Al opponent have a complete understanding of the board state at all times, including the location and
strength of all units, the status of buildings and other structures, and the current turn order.

Perfect information is a desirable trait in games because it ensures that all players have an equal
opportunity to make informed decisions and to react to the actions of their opponents. It also eliminates
the possibility of one player having an unfair advantage due to hidden information or lack of knowledge.
Into the Breach is a unique game in that it blends the turn-based strategy of chess with the mecha-fueled
destruction of a disaster-management simulation. The game’s *perfect information’ design ensures that
each player has access to the same information at all times, which makes for a fair and challenging
gameplay experience.

The assistant’s response provides a clear and concise explanation of what perfect information means in
the context of Into the Breach. The answer accurately defines perfect information as a condition where
all players have access to the same information at the same time, which is a crucial aspect of the game’s
design.

The response is relevant to the user’s query, as it directly addresses the question and provides additional
context about the benefits of perfect information in games. The explanation of how Into the Breach
implements perfect information is also relevant, as it helps to clarify the game’s mechanics and design.
However, the second paragraph, while providing some additional context about the benefits of perfect
information, feels somewhat extraneous to the user’s question. The user specifically asked about the
meaning of perfect information in the context of Into the Breach, and the second paragraph could be
seen as a tangential explanation. A more concise response might have focused solely on the definition
and implementation of perfect information in the game.

The third paragraph, while providing some interesting background information about the game, feels
like an unnecessary addition. The user did not ask about the game’s design or its unique features, and
this paragraph could be seen as an attempt to provide additional context rather than a direct answer
to the question. A more focused response would have stuck to the definition and implementation of
perfect information.

One important piece of information that is missing from the response is an explanation of how the
game’s perfect information is achieved. For example, the response could have mentioned that the
game’s turn-based nature and the fact that all units and structures are visible on the board at all times
contribute to the perfect information design. This would have provided a more complete understanding
of how the game’s mechanics support the concept of perfect information.

Figure 12: Reward prediction process for an 8B CLoud reward model on the non-preferred response
of an example from the chat category of RewardBench.




User query

What is the smallest number which is one less than twice its reciprocal?

Preferred Response

The question is asking us to find the smallest value of  such that z = 2- % — 1. We multiply through by

 to clear the fraction, then rearrange terms: x2 42 —2 = 0. This can be factored as (z+2)(z—1) =0.
We could also use the quadratic formula to find x:

-1+ /124(1)(-2)
- 5 .

T

Either way, we find that x = 1 or x = —2. Since we want the smallest value of x, our answer is .

Critique of Preferred Response

The assistant’s response is generally helpful in answering the user’s query. It correctly identifies the
problem as finding the smallest number that is one less than twice its reciprocal and provides a clear
step-by-step solution. The response is also concise, directly addressing the problem without unnecessary
information.

The response is relevant, as it uses algebraic manipulation to solve the equation and provides a clear
explanation of the steps involved. The use of the quadratic formula is also a good approach, as it
provides an alternative method for solving the equation.

However, there are a few areas where the response could be improved. The response assumes that the
user is familiar with algebraic manipulation and the quadratic formula, which may not be the case for
all users. A brief explanation of the quadratic formula and its application would be beneficial for users
who may not be familiar with it.

Additionally, the response does not explicitly state that the solution is a negative number, which may be
important for users who are not familiar with the concept of negative numbers. A brief explanation of
why the solution is negative would be helpful in this case.

Furthermore, the response does not provide any context or explanation of the problem beyond the
algebraic solution. Providing some context or explanation of why this problem is important or interesting
would make the response more engaging and helpful for users.

In terms of clarity, the response is generally clear, but some of the sentences could be rephrased for
better clarity. For example, the sentence "We could also use the quadratic formula to find =" could be
rephrased as "Alternatively, we can use the quadratic formula to find z".

Overall, the response is helpful and relevant, but could benefit from additional explanations and context
to make it more accessible and engaging for a wider range of users.

Preferred Response Reward: 0.0027

Figure 13: Reward prediction process for an 8B CLoud reward model on the preferred response of an
example from the reasoning category of RewardBench.
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User query

‘What is the smallest number which is one less than twice its reciprocal?

I want to find a number x such that z = 2(1/z) — 1. To make the equation easier to work with, I can
multiply both sides by x and get 2> = 2 — z. This is a quadratic equation, so I can use the quadratic
formula to find the possible values of x. The quadratic formula says that x = (—b + / — sqrt(b* —
4ac))/2a, where a, b, and c are the coefficients of the quadratic equation az? + bz + ¢ = 0. In this case,
a=1,b=-1, and ¢ =-2, so I can plug these values into the formula and get z = (1+ / — sqrt(1+38))/2.
Simplifying, I get x = (1 4+ / — 3)/2, which means x = 2 or x = -1. These are the only two possible
numbers that satisfy the equation, but I want the smallest one, so I choose x = -1 as my answer.

The assistant’s response is generally helpful in that it provides a step-by-step solution to the problem.
However, there are a few areas where the response could be improved.

Firstly, the response assumes that the user is familiar with the quadratic formula, which may not be the
case. A brief explanation of the quadratic formula and its application would be beneficial for users who
are not familiar with it.

Additionally, the response does not explicitly state that the equation x = 2(1/x) - 1 is a quadratic equation,
which is an important step in the solution. This could be clarified by stating that the equation can be
rearranged to form a quadratic equation.

The response also does not provide any explanation for why the quadratic formula is used or why it is
the most suitable method for solving this type of problem. A brief explanation of the reasoning behind
the choice of method would be helpful.

Furthermore, the response does not check the validity of the solutions obtained. In this case, the
solutions x = 2 and x = -1 are both valid, but it would be good to explicitly state that x = 2 does not
satisfy the original equation, and therefore x = -1 is the only valid solution.

The response is concise and to the point, but could benefit from a few more explanatory sentences to
clarify the reasoning and methodology. The use of the quadratic formula is a good approach, but the
response could be improved by providing more context and explanation.

In terms of relevance, the response is generally relevant to the prompt, but could benefit from a clearer
connection to the original question. The response jumps straight into the solution without rephrasing
the question or providing context.

One important piece of information that is missing from the response is a check of the solution. The
response should include a step to verify that x = -1 satisfies the original equation, to ensure that it is
indeed the correct solution.

Overall, the response is a good start, but could benefit from more explanation, context, and verification

of the solution.

Figure 14: Reward prediction process for an 8B CLoud reward model on the non-preferred response
of an example from the reasoning category of RewardBench.




User query

I’ve recently started playing the turn-based strategy game Into the Breach. I have read online that
the game is considered to have perfect information’. What is meant by ’perfect information’ in this
context?

Preferred Response

In the context of Into the Breach and other strategy games, "perfect information" refers to a situation
where all players have complete knowledge of the game state, including information about the enemy’s
units, abilities, and intentions. In other words, there is no hidden information that could affect the
player’s decision-making.

In Into the Breach, this means that you, as the player, have access to all the information you need to
make informed decisions about how to deploy your units, which enemies to target, and how to plan
your attacks. This includes knowledge of the enemy’s unit types, their strengths and weaknesses, their
movement patterns, and their attack ranges.

This is in contrast to games with "imperfect information," where players may not have access to all the
information they need to make optimal decisions. For example, in a game with fog of war, players may
not be able to see enemy units that are hiding behind walls or in other areas of the map. In games with
imperfect information, players must use their intuition, deduction, and experience to make informed
decisions despite the lack of complete information.

The designers of Into the Breach have chosen to design the game with perfect information to create
a focus on strategic planning and decision-making, rather than on reacting to unexpected events or
hidden information. This allows players to concentrate on optimizing their moves and planning for the
long-term, rather than worrying about sudden surprises or unknown threats.

Critique of Preferred Response

The assistant’s response provides a clear and concise explanation of what "perfect information" means
in the context of Into the Breach and other strategy games. The response effectively contrasts perfect
information with imperfect information, providing examples to illustrate the difference.

The response is helpful in that it directly addresses the user’s question and provides relevant information
about the game’s design and the implications of perfect information on gameplay. The explanation of
how perfect information allows players to focus on strategic planning and decision-making is particularly
useful in understanding the game’s design choices.

However, the response could benefit from a more detailed explanation of how perfect information
affects the gameplay experience. For example, the response could elaborate on how the lack of hidden
information changes the way players approach the game, or how it affects the balance of power between
the player and the enemy. Additionally, the response could provide more specific examples of how
perfect information is implemented in Into the Breach, such as the game’s use of turn-based combat or
the way it presents information to the player.

The response is well-structured and easy to follow, but some of the sentences could be tightened up for
clarity. For example, the sentence "This is in contrast to games with ’imperfect information,” where
players may not have access to all the information they need to make optimal decisions" could be
rephrased to "In contrast, games with imperfect information often require players to make decisions
without complete information, such as in games with fog of war."

One potential issue with the response is that it assumes the user is familiar with the concept of "fog of
war" and other game design terms. While the response does a good job of explaining perfect information,
it may be helpful to provide a brief explanation of these terms for users who are not familiar with them.
Overall, the response is well-written and provides a clear explanation of perfect information in the
context of Into the Breach. With some additional details and clarifications, it could be even more
effective in helping users understand the concept and its implications for gameplay.

Preferred Response Reward: 0.0352

Figure 15: Reward prediction process for a 70B CLoud reward model on the preferred response of an
example from the chat category of RewardBench.
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User query

I've recently started playing the turn-based strategy game Into the Breach. I have read online that
the game is considered to have "perfect information’. What is meant by "perfect information’ in this
context?

Perfect information refers to a condition in which all players in a game have access to the same
information at the same time. In the case of Into the Breach, this means that both the player and the
Al opponent have a complete understanding of the board state at all times, including the location and
strength of all units, the status of buildings and other structures, and the current turn order.

Perfect information is a desirable trait in games because it ensures that all players have an equal
opportunity to make informed decisions and to react to the actions of their opponents. It also eliminates
the possibility of one player having an unfair advantage due to hidden information or lack of knowledge.
Into the Breach is a unique game in that it blends the turn-based strategy of chess with the mecha-fueled
destruction of a disaster-management simulation. The game’s *perfect information’ design ensures that
each player has access to the same information at all times, which makes for a fair and challenging
gameplay experience.

The assistant’s response provides a clear and concise explanation of what *perfect information’ means
in the context of the game Into the Breach. The response accurately defines perfect information as a
condition where all players have access to the same information at the same time, which is a crucial
aspect of the game’s design.

The response also provides additional context by explaining the benefits of perfect information in games,
such as ensuring fair play and eliminating unfair advantages. This helps to give the user a deeper
understanding of why perfect information is an important aspect of the game.

However, the response could be improved by providing more specific examples of how perfect infor-
mation is implemented in Into the Breach. For instance, the response mentions that the player and Al
opponent have a complete understanding of the board state, but it would be helpful to elaborate on
what this means in practice. For example, the response could explain that the player can see the exact
location and health of all enemy units, as well as the status of buildings and other structures.
Additionally, the final sentence of the response feels somewhat disconnected from the rest of the
explanation. While it is true that Into the Breach is a unique game that blends turn-based strategy
with disaster-management simulation, this sentence does not add much to the explanation of perfect
information. It would be more effective to use this sentence to provide a more detailed analysis of how
perfect information contributes to the game’s overall design and gameplay experience.

Furthermore, the response could benefit from a more nuanced discussion of the implications of perfect
information in Into the Breach. For example, the response could explore how perfect information affects
the player’s decision-making process, or how it influences the game’s overall difficulty level. This
would provide a more comprehensive understanding of the role of perfect information in the game.
Overall, the response provides a solid foundation for understanding perfect information in Into the
Breach, but could be improved with more specific examples and a more detailed analysis of the game’s
design and gameplay experience.

Figure 16: Reward prediction process for a 70B CLoud reward model on the non-preferred response
of an example from the chat category of RewardBench.




User query

What is the smallest number which is one less than twice its reciprocal?

Preferred Response

The question is asking us to find the smallest value of  such that z = 2- i — 1. We multiply through by

 to clear the fraction, then rearrange terms: x? 4z —2 = 0. This can be factored as (z+2)(z—1) = 0.
We could also use the quadratic formula to find x:

—14 /12 —4(1)(-2)
5 .

€r =

Either way, we find that z = 1 or x = —2. Since we want the smallest value of x, our answer is .

Critique of Preferred Response

The assistant’s response is generally helpful in that it provides a step-by-step solution to the problem.
However, there are a few areas where the response could be improved.

Firstly, the initial equation x = 2 - % — 1 is not entirely accurate. The correct equation should be
r=2- % — 1, but the assistant should have explicitly stated that this is the equation being solved, rather
than simply presenting it as a given.

The steps to solve the quadratic equation are clear and concise, and the use of both factoring and the
quadratic formula is a good way to provide alternative solutions. However, the assistant could have
provided more explanation for why the quadratic formula is being used, especially since the equation
can be easily factored.

The final answer is correct, but the assistant could have provided more context for why x = —2 is the
smallest value. A brief explanation of why = 1 is not the smallest value would have been helpful.
One important piece of information that is missing from the response is a check to ensure that the
solution is valid. The assistant should have plugged the value of x = —2 back into the original equation
to verify that it satisfies the condition.

Additionally, the response could benefit from a brief explanation of the concept of reciprocals and how
it relates to the problem. This would provide context for the solution and help the user understand the
underlying math behind the problem.

Overall, the assistant’s response is clear and concise, but could benefit from additional explanations and
context to make the solution more comprehensive and accessible to the user.

Preferred Response Reward: 0.0193

Figure 17: Reward prediction process for a 70B CLoud reward model on the preferred response of an
example from the reasoning category of RewardBench.
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User query

‘What is the smallest number which is one less than twice its reciprocal?

I want to find a number x such that z = 2(1/z) — 1. To make the equation easier to work with, I can
multiply both sides by x and get 2 = 2 — x. This is a quadratic equation, so I can use the quadratic
formula to find the possible values of x. The quadratic formula says that = (—=b + / — sqrt(b® —
4ac))/2a, where a, b, and ¢ are the coefficients of the quadratic equation az? + bz + ¢ = 0. In this case,
a=1,b=-1, and ¢ =-2, so I can plug these values into the formula and get z = (1+ / —sqré(1+8))/2.
Simplifying, I get z = (1 + / — 3)/2, which means x = 2 or x = -1. These are the only two possible
numbers that satisfy the equation, but I want the smallest one, so I choose x = -1 as my answer.

The assistant’s response is generally helpful in that it provides a step-by-step solution to the problem.
However, there are a few areas where the response could be improved.

Firstly, the initial equation x = 2(1/x) - 1 is not entirely accurate. The correct equation should be x =
2(1/x) - 1, which simplifies to x = 2/x - 1, and then to 2?2 = 2 — z. However, the assistant correctly
multiplies both sides by x to get 2% = 2 — ..

The assistant then correctly identifies the equation as a quadratic equation and uses the quadratic formula
to find the possible values of x. However, the explanation of the quadratic formula is somewhat verbose
and could be condensed for clarity.

The assistant correctly plugs the values of a, b, and c into the quadratic formula and simplifies the
expression to get x = (1 +/- 3)/2. However, the explanation of the simplification process could be more
detailed.

The final answer, x = -1, is correct, but the assistant could provide more context or explanation for why
this is the smallest possible value. For example, the assistant could note that x = 2 is not a valid solution
because it would result in a negative value for x, and therefore x = -1 is the smallest possible value.
One important piece of information that is missing from the assistant’s response is a check to ensure
that the solution x = -1 actually satisfies the original equation. The assistant could plug x = -1 back into
the original equation to verify that it is indeed a solution.

Additionally, the response could benefit from a clearer and more concise conclusion that summarizes
the main steps and the final answer. The use of the hashtag "# Answer" at the end of the response is
unnecessary and could be removed.

Overall, the assistant’s response is generally helpful but could benefit from some refinements to improve
clarity, concision, and completeness.

Figure 18: Reward prediction process for a 70B CLoud reward model on the non-preferred response
of an example from the reasoning category of RewardBench.
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