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ABSTRACT

Numerous studies have demonstrated that the Transformer architecture possesses
the capability for in-context learning (ICL). In scenarios involving function ap-
proximation, context can serve as a control parameter for the model, endowing
it with the universal approximation property (UAP). In practice, context is repre-
sented by tokens from a finite set, referred to as a vocabulary, which is the case
considered in this paper, i.e., vocabulary in-context learning (VICL). We demon-
strate that VICL in single-layer Transformers, without positional encoding, does
not possess the UAP; however, it is possible to achieve the UAP when positional
encoding is included. Several sufficient conditions for the positional encoding are
provided. Our findings reveal the benefits of positional encoding from an approx-
imation theory perspective in the context of ICL.

1 INTRODUCTION

Transformers have emerged as a dominant architecture in deep learning over the past few years.
Thanks to their remarkable performance in language tasks, they have become the preferred frame-
work in the natural language processing (NLP) field. A major trend in modern NLP is the devel-
opment and integration of various black-box models, along with the construction of extensive text
datasets. In addition, improving model performance in specific tasks through techniques such as
in-context learning (ICL) (Dong et al.| (2024); Brown et al.| (2020)), chain of thought (CoT) (Wei
et al.| (2022b)); /Chu et al.[(2024)), and retrieval-augmented generation (RAG) (Gao et al.|(2024))) has
become a significant research focus. While the practical success of these models and techniques is
well-documented, the theoretical understanding of why they perform so well remains incomplete.

To explore the capabilities of Transformers in handling ICL tasks, it is essential to examine their ap-
proximation power. The Universal Approximation Property (UAP) (Cybenko| (1989); Hornik et al.
(1989); Hornik| (1991); [Leshno et al.| (1993)) has long been a key topic in the theoretical study
of neural networks (NNs), with much of the focus historically on feed-forward neural networks
(FNNGs). [Yun et al.|(2020) was the first to investigate the UAP of Transformers, demonstrating that
any sequence-to-sequence function could be approximated by a Transformer network with fixed
positional encoding. |Luo et al.| (2022) highlighted that a Transformer with relative positional en-
coding does not possess the UAP. Meanwhile, [Petrov et al.|(2024b) explored the role of prompting
in Transformers, proving that prompting a pre-trained Transformer can act as a universal functional
approximator.

However, one limitation of these studies is that, in practical scenarios, the inputs to language models
are derived from a finite set embedded in high-dimensional Euclidean space—commonly referred
to as a vocabulary. Whether examining the work on prompts in [Petrov et al.|(2024b)) or the research
on ICL in |Ahn et al, (2024)); |Cheng et al.| (2024), these studies assume inputs from the entire Eu-
clidean space, which differs significantly from the discrete nature of vocabularies used in real-world
applications.

1.1 CONTRIBUTIONS

Starting with the connection between FNNs and Transformers, we turn to the finite restriction of
vocabularies and study the benefits of positional encoding. Leveraging the UAP of FNNs, we explore
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the approximation properties of Transformers for ICL tasks in two scenarios: one where the inputs
are from the entire Euclidean space, and the other where the inputs are from a finite vocabulary.

1. Without the restriction of a finite vocabulary, we establish a connection between FNNs and
Transformers in processing ICL tasks, as demonstrated in Lemma [2| Using this lemma,
we show that Transformers can function as universal approximators (Lemma [3), where
the context serves as control parameters, while the weights and biases of the Transformer
remain fixed.

2. When the vocabulary is finite and positional encoding is not used, we prove that single-
layer Transformers cannot achieve the UAP for ICL tasks (Theorem @ However, when
the vocabulary is finite and positional encoding is used, it becomes possible for single-layer
Transformers to achieve the UAP (Theorem [§)). In particular, for Transformers with ReLU
activation functions, the conditions on the positional encoding are discussed (Theorem J).

1.2 RELATED WORKS

Universal approximation property. Neural networks (NNs), through multi-layer nonlinear trans-
formations and feature extraction, are capable of learning deep feature representations from raw
data. From the early feed-forward neural networks (FNNs) (Rosenblatt (1958))), to later advance-
ments like recurrent neural networks (RNNs) (Waibel et al.| (1989); Hochreiter & Schmidhuber
(1997)), convolutional neural networks (CNNs) (Waibel et al| (1989); |[Lecun et al.| (1998))), and
residual neural networks (ResNets) (He et al.|(2016)), remarkable progress has been made. As the
application of NNs becomes more widespread, efforts have been directed toward understanding the
theoretical foundations behind their effectiveness, particularly through the UAP of NNs. Research
on the UAP of NNs generally falls into two categories: the first considers networks with any number
of neurons in each layer but a fixed number of layers (Cybenko| (1989); Hornik et al.|(1989); Hornik:
(1991); |Leshno et al.|(1993)), while the second examines networks with an arbitrary number of lay-
ers but a finite number of neurons in each layer (Lu et al.| (2017); [Park et al.| (2021); |Cai| (2023));
Li et al.|(2024)). Since our study builds on existing results regarding the approximation capabil-
ities of FNNs, we focus on investigating the approximation abilities of single-layer Transformers
in modulating context for ICL tasks. Consequently, our work relies more on the findings from the
first category of research. The realization of the UAP depends on the architecture of the network
itself, providing constructive insights for exploring the connection between FNNs and Transform-
ers, and offering valuable guidance for our study. Recently, Petrov et al.| (2024b)) also explored UAP
in the context of in-context learning, but without considering vocabulary constraints or positional
encodings.

Transformers. The Transformer is a widely used neural network architecture for modeling se-
quences (Vaswani et al.| (2017); [Devlin et al.| (2019); |Yang et al.| (2019); Raffel et al.| (2020); [Zhen-
zhong et al.| (2021)); Liu et al.|(2020)). This non-recurrent architecture relies entirely on the attention
mechanism to capture global dependencies between inputs and outputs (Vaswani et al.|(2017)). The
highly effective neural sequence transduction model is typically structured using an encoder-decoder
framework (Bahdanau et al.| (2014)); Sutskever et al.| (2014))). The encoder maps the input sequence
X into a continuous representation .S, from which the decoder generates the output sequence Y. In
the Transformer, both the encoder and decoder are composed of stacked self-attention layers and
fully connected layers. For simplicity, we describe the Transformer using a simplified self-attention
sequence encoder. Without positional encoding, the Transformer can be viewed as a stack of N
blocks, each consisting of a self-attention layer followed by a feed-forward layer with skip connec-
tions. In this paper, we focus on the case of a single-layer self-attention sequence encoder.

In-context learning. The Transformer has demonstrated remarkable performance in the field of
NLP, and large language models (LLMs) are gaining increasing popularity. ICL has emerged as a
new paradigm in NLP, enabling LLMs to make better predictions through prompts provided within
the context (Brown et al.| (2020); (Chowdhery et al.| (2023); [Touvron et al.| (2023); OpenAl et al.
(2024); | Xun et al.| (2017)). We chose ICL as the focus of our research primarily due to its wide
range of applications and superior performance, which motivated us to explore its underlying the-
oretical foundations. ICL delivers high performance with high-quality data at a lower cost (Wang
et al.| (2021b)); Khorashadizadeh et al.| (2023); Ding et al.| (2023)). It enhances retrieval-augmented
methods by prepending grounding documents to the input (Ram et al.| (2023))) and can effectively
update or refine the model’s knowledge base through well-designed prompts (De Cao et al.| (2021)).
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Positional Encoding. The following explanation clarifies the significance of incorporating posi-
tional encoding into the Transformer architecture. Recurrent neural networks (RNNs) capture se-
quential order by encoding the changes in hidden states over time. In contrast, for Transformers, the
self-attention mechanism is permutation equivariant, meaning that for any model f, any permutation
matrix 7, and any input z, the following holds: f(7(z)) = 7(f(z)). We aim to explore the impact
of positional encoding on the performance of a single-layer Transformer when performing ICL tasks
with a finite vocabulary. Therefore, we focus on analyzing existing positional encoding methods.
There are two fundamental methods for encoding positional information in a sequence within the
Transformer: absolute positional encodings (APEs) (e.g. He et al. (2021); [Liu et al.| (2020); Wang
et al.| (2021a); |[Ke et al.|(2021)), relative positional encodings (RPEs) (e.g. [Shaw et al.| (2018); Dai
et al.| (2019); Ke et al|(2021)) and rotary positional embedding (RoPE) (Su et al.| (2024)). The
commonly used APE is implemented by directly adding the positional encodings to the word em-
beddings, and we follow this implementation.

UAP of ICL. Regarding the understanding of the mechanism of ICL, various explanations have
been proposed, including those based on Bayesian theory (Xie et al.| (2022); Wang et al.| (2024))
and gradient descent theory (Dai et al.| (2023)). Fine-tuning the Transformer through ICL alters the
presentation of the input rather than the model parameters, which is driven by successful few-shot
and zero-shot learning (Wei et al.|(2022a); [Kojima et al.|(2022)). This success raises the question of
whether we can achieve the UAP through context adjustment.

Yun et al.[(2020) demonstrated that Transformers can serve as universal sequence-to-sequence ap-
proximators, while |Alberti et al.| (2023) extended the UAP to architectures with non-standard at-
tention mechanisms. These works represent significant efforts in enabling Transformers to achieve
sequence-to-sequence approximation; however, their implementations allow the internal parame-
ters of the Transformers to vary, which does not fully reflect the characteristics of ICL. In contrast,
Likhosherstov et al.| (2021) showed that while the parameters of self-attention remain fixed, vari-
ous sparse matrices can be approximated by altering the inputs. Fixing self-attention parameters
aligns more closely with practical scenarios and provides valuable insights for our work. However,
this approach has the limitation of excluding the full Transformer architecture. Furthermore, |Deora
et al.[(2024) illustrated the convergence and generalization of single-layer multi-head self-attention
models trained using gradient descent, supporting the feasibility of our research by emphasizing the
robust generalization of Transformers. Nevertheless, Petrov et al.|(20244)) indicated that the presence
of a prefix does not alter the attention focus within the context, prompting us to explore variations
in input context and introduce flexibility in positional encoding.

1.3 OUTLINE

We will introduce the notations and background results in Section [2} Section [3| addresses the case
where the vocabulary is finite and positional encoding is not used. Section[d]discusses the benefits of
using positional encoding. A summary is provided in Section[5] All proof of lemmas and theorems
are provided in Appendix.

2 BACKGROUND MATERIALS

We consider the approximation problem as follows. For a target continuous function f : K — R%
with a compact domain K C R%, we aim to adjust the content of the context so that the output of
the Transformer network can approximate f. First, we present the concrete forms and notations for
the inputs of ICL, FNNs, and Transformers.

2.1 NOTATIONS

Input of in-context learning. In the ICL task, the given n demonstrations are denoted as z(*) =
(@, y®) fori = 1,2,...,n, where (¥ € R% and y(") € R%. Unlike the setting in |Ahn et al.
(2024) and |Cheng et al.|(2024) where 3(*) was related to z() (for example y(*) = d)(w(i)) for some
function ¢), in this paper, we do not assume any correspondence between z(*) and 3, i.e., () and
y) are chosen freely. To predict the target at a query vector z € R% or z = (x,0) € R% % we
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define the following matrix Z as the input:

W 2@ .. g0
T T x T

€ R(datdy)x(n+1) 1
yO @ 0] M

7 = [Z(l) 22 . () z] = [
Furthermore, let P : N* — R?%+dv represent a positional encoding function, and define P(*) :=
P(i). Denote the demonstrations with positional encoding as zg) =20 + PO and 2p = 2 +
P(+1) | The context with positional encoding can then be represented as:

O RN C) B (n)
Zp= [ A P wpl= TR TR TR TP e RO (g
Yp Yp o Yp yp
Here, the vectors zg) and yg) represent the corresponding components of zg). Additionally, we
denote:
X=[0 2@ . 2] RN Xp=[of) o .. 2] eRWT @)
Y=[0 4@ . ] eRW v, = [%@ O ygz)} cRWX™ (4

Feed-forward neural networks. One-hidden-layer FNNs have sufficient capacity to approximate
continuous functions on any compact domain. In this article, all the FNNs we refer to and use are
one-hidden-layer networks. We denote a one-hidden-layer FNN with activation function o as N9,
and the set of all such networks is denoted as N7, i.e.,

N7 ={N7:=Ag(Wz +b) | A RW** W e R¥>*4 b e R* | € N} (5)
k

= {NU = Zaia(wi -x+ bl) | (ai,wi,bi) S R% x R% x R,k € N} . (6)
=1

For elementwise activations, such as ReLU, the above notation is well-defined. However, if the
activation function is not elementwise, especially in the case of softmax activation, we need to give
more details for the notation:

Noftmax {NSO“W L WO () € RY xR xRk € N} )

Transformers. We define the general attention mechanism following|Ahn et al.[(2024)); (Cheng et al.
(2024) as:

Attng, v (2) :=VZMo(QZ) K Z), (8)

where V,Q, K are the value, query, and key matrices in R(%=+dv)x(datdy) " respectively, M =
diag(I,,,0) is the mask matrix in R("+1)x("+1) ‘and & is the activation function. Here the softmax
activation of a matrix G € R™*" is defined as:

softmax(Q) := e (Gig) . 9)

i exp (G1,5)

=1 i,j
With this formulation of the general attention mechanism, we can define a single-layer Transformer
without positional encoding as:
T (2 X,Y) = (Z+VZMo((QZ) K Z)) 4, +1:d, +d,)n+1> (10)

where [a : b, ¢ : d] denotes the submatrix from the a-th row to the b-th row and from the ¢-th column
to the d-th column. If a = b (or ¢ = d), the row (or column) index is reduced to a single number.
Similarly to the notation for FNNs, 77 denotes the set of all T? with different parameters.
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Vocabulary. In the above notations, the parameters are general and unrestricted. When we refer
to a “vocabulary”, we mean that the parameters are drawn from a finite set. For networks and their
corresponding sets, we use the subscript * to indicate the use of a vocabulary V.

In the context of ICL, we refer to it as vocabulary ICL if all input vectors z(*) come from a finite
vocabulary ¥V = V, x V, C R% x R%. In this case, we use TS (z;X,Y) to represent the
Transformer T? (x; X,Y") defined in equation , and denote the set of such Transformers as 7.7:

To = {Tg(a;;x, Y) =T (2: X,Y) | 2D eV,ie{1,2,..,n},ne N+} . an
When positional encoding P is involved, we add the subscript P, i.e.,
Top = {T;;P(x;x, Y) =T (x; Xp,Yp) | 2D € V,ie {1,2,...,n},n € N+}. (12)

Note that the context length n in T?, T¢, and T¢ p are unbounded.

For feedforward neural networks (FNNs), we denote a network with a finite set of weights as N7,
and the corresponding set of such networks as N.:

k
./\/:f = {Ng = Zaia(wi-x—i—bi) ‘ (ai,wi,bi) EAXWXB,]{ZEN}. (13)
=1

where A C R%, W C R%, and B C R are finite sets.

To simplify calculations and expressions, we introduce the following assumptions throughout the
remainder of the article similar to the setting in|/Ahn et al.|(2024)) and |(Cheng et al.| (2024).

Assumption. The matrices Q, K,V € RU=tdv)x(detdy) paye the following sparse partition:

Q{g 8} K[g 8} V{ﬁ 8] (14)

where all matrices B,C, D € R%*% qnd U € R%*% are non-singular. In addition, we assume
the elementwise activation o is non-polynomial, locally bounded, and continuous.

We present all our notations in the table below.

Table 1: Table of Notations

Notations | Explanations

dy,d, Dimensions of input and output.
Positional encoding.
XY Context without positional encoding.
Xp,Yp Context with positional encoding P.
A Input without positional encoding.
Zp Input with positional encoding.
1% Vocabulary of the vectors.

Vi,V | Vocabulary of 2() and y(®).

N7, N? | One-hidden-layer FNN and its collection.

T, T° Single-layer Transformer and its collection.

N7, N? One-hidden-layer FNN with a finite set of weights and its collection.

T, T2 Single-layer Transformer with vocabulary restrictions and its collection.
Single-layer Transformer with positional encoding, vocabulary restrictions,

log g
Tp: TP and its collection.
[ -1l Uniform norm for vectors or functions.
- N
T Pad aone totheend of x, i.e. & = [1]
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2.2 UNIVERSAL APPROXIMATION PROPERTY

The vanilla form of the universal approximation property for feedforward neural networks plays a
crucial role in our study. We state it in the following lemma:

Lemma 1 (UAP of FNNs (Leshno et al.| (1993))). Let 0 : R — R be a non-polynomial, locally
bounded, piecewise continuous activation function. For any continuous function f : R% — R%
defined on a compact domain IC, and for any € > 0, there exist k € N, A € R%** b ¢ R¥, and
W € RF*de such that

|[Aoc(Wx +b) — f(x)| <e, Vzek. (15)

The theorem presented above is well-known and primarily applies to activation functions operating
pointwise. However, it can be readily extended to the case of the softmax activation function. In
fact, this can be achieved using neural networks with exponential activation functions. The specific
approach for this generalization is detailed in Appendix [A]

2.3 FEED-FORWARD NEURAL NETWORKS AND TRANSFORMERS

It is important to emphasize the connection between FNNs and Transformers.

Lemma 2. Let 0 be an elementwise activation and T be a single-layer Transformer. For any one-
hidden-layer network N° : R%=~1 — R% ¢ NReLU \ith n hidden neurons, there exist matrices
X € R%=X" and Y € R%X™ such that

T (#; X,Y) =N (z), VzeR%="1 (16)

There is a difference in the input dimensions of T and N9, as the latter includes a bias dimension
absent in the former. To connect the two inputs, = and x, we use a tilde, where z is formed by
augmenting x with an additional one appended to the end.

By employing the structure of query, key, and value matrices in (T4), the output forms of the Trans-
former T (Z; X,Y") can be simplified as follows:

_ X z AX 0 X"BTCX XTB'C#
= ([ [ (58 TEED),
Y O Uy 0 z'B'CX z'B'Czx ot Lot dy 1

=UYo(X"B'Cx). (18)
Comparing this with the output form of FNNs, N°(z) = Ao (Wax + b), it becomes evident that
setting X = (CTB)~} [W b]T and Y = U~ A is sufficient to finish the proof.

It can be observed that the form in equation (I8) exhibits the structure of an FNN. Consequently,
Lemma [2] implies that single-layer Transformers T? with in-context learning and FNNs N are
equivalent. However, this equivalence does not hold for the case of softmax activation due to differ-
ences in the normalization operations between FNNs and Transformers. Therefore, in the subsequent
sections of this article, we employ different analytical methods to address the two types of activation
functions.

Moreover, the equivalence in equation (33) suggests that the context in Transformers can act as a
control parameter for the model, thereby endowing it with the universal approximation property.
This offers a novel perspective on the parameterization of FNNs.

2.4 UNIVERSAL APPROXIMATION PROPERTY OF IN-CONTEXT LEARNING

We now present the UAP of Transformers in the context of ICL.

Lemma 3. Let T be a single-layer Transformer with elementwise or softmax activation, and K be
a compact domain in R%~1, Then for any continuous function f : K — R% and any & > 0, there
exist matrices X € R%*" and Y € R%*™ such that

IT” (& X,Y) - f(@)] <&, Voek. (19)

For the case of elementwise activation, the result follows directly by combining Lemma [I] and
Lemma 2] However, for the softmax activation, the normalization operation requires an additional
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technique in the proof. The key idea is to consider an FNN with the exponential function as its ac-
tivation and introduce an additional neuron to account for the normalization effect. Detailed proofs
are provided in Appendix [A] Similar results have also been reported in recent work [Petrov et al.
(2024b)), albeit using different techniques.

3 THE NON-UNIVERSAL APPROXIMATION PROPERTY OF N7 AND 77

One key aspect of ICL is that the context can act as a control parameter for the model. We now
consider the case where the context is restricted to a finite vocabulary. A natural question arises:
can a single-layer Transformer with a finite vocabulary, T¢ € 7.7, still achieve the UAP? Given the
established connection between FNNs and Transformers, we first analyze N9 € A/¢ for simplicity.

The answer is that N7 cannot achieve the UAP because the parameters can only take on a finite
number of values. For elementwise activations, N7 = span(/N?) forms a finite-dimensional func-
tion space. According to results from functional analysis, /7 is compact under the function norm.
This implies that the set of functions approximable by N7 is precisely the set of functions within
NZ?. Consequently, any function not in A7 cannot be arbitrarily approximated, meaning that the
UAP cannot be achieved.

For softmax networks, the normalization operation introduces further limitations. Even though
Nsoftmax congists of weighted units drawn from a fixed finite collection of basic units, normalization
prevents these networks from being simple linear combinations of one another. While the span of
Noftmax mioht theoretically have infinite dimensionality, its expressive power remains constrained.

To better understand the behavior of functions within A/8°f'™m2% we present the following proposition
as an introduction.

k
Proposition 4. The scalar function hy(x) = > a;e®®, where a;,b;,x € R and at least one a; is
i=1
nonzero, has at most k — 1 zero points.

The function hy(x) is commonly referred to as a sum of exponentials. Propositionestablishes the
maximum number of zero points for this class of functions. The result can be proved using mathe-
matical induction. The cases for k = 1 and k£ = 2 are straightforward. Assuming the proposition
holds for & = N, we proceed with a proof by contradiction for K = N + 1. Assume ayy1 # 0
and h(x) has N + 1 zero points. We can define a new function g that shares the same zero points as
hn41, given by

) = L =14+ Z elbi—bni1)z (20)

any1ePNT an+1

The derivative of g is the sum of [NV exponentials. By applylng the intermediate value theorem, we
show that if the number of zero points exceeds [V, it leads to a contradiction.

As a consequence of Proposition[d we know that a sum of & exponential functions cannot arbitrarily
approximate certain functions, such as f(x) = sin((k + 1)7x) over the interval [0, 2]. The function
f(x) has k + 1 peaks and k + 1 zeros within this interval. By applying the intermediate value theo-
rem, we conclude that any function approximating f(z) closely must also exhibit more than k zeros,
leading to a contradiction. This limitation in the approximation power of sums of exponentials ex-
tends naturally to multivariate functions and applies to softmax activations, where the normalization
further restricts expressiveness.

Now we can summarize the non-universal approximation property of A7 in the following lemma.

Lemma 5. The function class N, with elementwise or softmax activation o, cannot achieve the
UAP. Specifically, for any compact domain K C R%, there exists a continuous function f : K —
R% and g > 0 such that

If =Nillogey = €0, VNT € NY. 21

By leveraging the connection between FNNs and Transformers, we establish Theorem [6]

Theorem 6. The function class T.2, with elementwise or softmax activation o, cannot achieve the
UAP. Specifically, for any compact domain K C R%~1, there exists a continuous function f : K —
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R% and 9 > 0 such that
max [f(z) =TI(Z)|]| >e0, VT, E€TS. (22)

The result for elementwise activations is straightforward by applying Lemma 2] and Lemma 5] The
case for softmax is more complex, requiring an additional technique to address the normalization
effect. The proof is provided in the Appendix, where Proposition ] comes into play again.

4 THE UNIVERSAL APPROXIMATION PROPERTY OF 7.7

After establishing that neither A7 nor 7.7 can achieve the UAP, we aim to leverage a key feature
of Transformers: their ability to incorporate absolute positional encodings during token input. This
motivates us to investigate whether 7.7 can realize the UAP.

To facilitate our constructive proof, we introduce Lemma [7)as an auxiliary tool to support the main
theorem.

Lemma 7 4(Kro'necker Approximation Theorem (see e.g. |Apostol| (1989)). Given real n-tuples
ald) = (ozgl),ozg), e ,ozgf)) eR"fori=1,--- ;mand 8 = (51,82, ,Fn) € R", the following
condition holds: for any € > 0, there exist q;,l; € Z such that

Bj—Zqioz§-i)+lj <e, 1<j5<n, (23)
i=1
if and only if forany ri,--- ;v € Z,i =1, --- ,m with
n .
Sallrien, i=1,-,m, (24)
j=1

n
the number )", B;r; is also an integer. In the case of m = 1 and n = 1, for any «, B, e € R with o
j=1
irrational and € > 0, there exist integers | and q with q > 0 such that | — qa + 1| < e.

This lemma (Lemma [7) indicates that if the condition in equation (24) is satisfied only when all r;
are zeros, then the set {Mq+1| ¢ € Z™,l € R"} is dense in R", where the matrix M € R"*™ is
assembled with vectors a(?), i.e., M = [a(M), a®) | ..., a(™)] In the case of m = n = 1, let @ = /2.
Then, Lemmaimplies that the set {gv/24+1 |l € Nt ¢ € N*} is dense in R. We will build upon
this result to prove one of the most significant theorems in this article.

Theorem 8. Let T.7p be the class of functions T p, where o is an elementwise activation, the
subscript refers the finite vocabulary V = V, x V,, P = P, X P, represents the positional encoding
map, and denote the set S as:

S::Vw+7>$={xi+79;j>\xievm,i,jew}. 25)

If S is dense in R, {1,—1,+/2,0}% C V, and P, = 0, then TS p can achieve the UAP. That i,
for any continuous function f : R%~1 — R% defined on a compact domain K, and for any € > 0,
there always exist X € Ré*" gnd Y € Rdyxnfrom the vocabulary V (i.e., z® ¢ Ve, y(l) € Vy)
with some length n. € N such that

|Tp (3 X.Y) - f(z)|| <&, Vzek. (26)
We provide a constructive proof in Appendix [C] and here we only demonstrate the proof idea by
considering the specific case of d, = 1 and assuming the matrices U, B, C, and D in the Trans-

former are identity matrices. In this case, the Transformer T¢ ,(#; X,Y") can be simplified to an
FNN, N7, similar to the calculation in equation (T8):

N{(z)=Yo (X;i) = jz:;y(j)a ((x(j) + Pg(aj)) j) . 27



Under review as a conference paper at ICLR 2025

The UAP of FNNs shown in LemmaI]implies that the target function f can be approximated by an
FNN N (z) with & hidden neurons:

.
N(z) = Ac(WZ) = Z aio(w; - 7). (28)

Since we are considering a continuous activation function o, we can conclude that slightly per-
turbing the parameters A and W will lead to new FNNs that can still approximate f, provided
the perturbations are small enough. This observation motivates us to construct a proof using
the property that each w; € R% can be approximated by vectors in S, and each a; € R can
be approximated by numbers of the form ¢;v/2 + [;, with positive integers ¢; and [;. Note

that the summation Zle(qi\/ﬁ + [;)o(w; - ) can be reformulated as Zf,/zl yio(w;y - &) with

E = Zf(qi + 1),y € {/2,41} and wy € {wy, ..., wy }. For each w;/, we can choose a vector
Wy = 4, + Pg(gji') € S that approximates w;s well, where j;; € NT and xj, € Vg. The integers

7i» can be chosen to be distinct from each other.

Now, the FNN in (27) can be constructed by using n = max(ji, j2,. - ., ji-) neurons, where the
j-th neuron is assigned by setting y/) = y;; € V, and 2\9) = z;, € V, for the case of j = jy €
{j1,J2,---,Jr}, and y) =0 e V, for the case of j & {j1,j2,...,jk }. Here, the nonzero value
of 49) highlights useful positions and demonstrations.

In the proof idea above, we take the density of the set S in R% as a fundamental assumption. V,
contains only finitely many elements, rendering it bounded. For S = V, + P, to be dense in the
entire space, P, must be unbounded. Next, we relax this requirement, eliminating the need for
P to be unbounded, making the conditions more aligned with practical scenarios. Particularly,
we consider the specific activation function in the following Theorem 9} where the notations not
explicitly mentioned remain consistent with those in Theorem g}

Theorem 9. [f the set S is dense in [—1,1]%, then 7;1?7§LU is capable of achieving the UAP. Addi-

tionally, if S is only dense in a neighborhood B(w*, §) of a point w* € R% with radius § > 0, then
the class of transformers with exponential activation, ’7;@7?, is capable of achieving the UAP.

The density condition on S is significantly refined here. This improvement is possible because the
proof of Theorem [§] relies directly on the UAP of FNNs, where the weights take values from the
entire parameter space. However, for FNNs with specific activations, we can restrict the weights to
a small set without losing the UAP.

For ReLU networks, we can use the positive homogeneity property, i.e., AReLU(WZ) =
%AReLU(/\W‘%) for any A > 0, to restrict the weight matrix . In fact, the restriction that all
elements of W take values in the interval [—1, 1] does not affect the UAP of ReLU FNNs because
the scale of W can be recovered by adjusting the scale of A via choosing a proper A.

For exponential networks, the condition on S is much weaker than in the ReLU case. This relax-
ation is nontrivial, and the proof stems from a property of the derivatives of exponential functions.
Consider the exponential function exp(w - ) as a function of w € B(w*, d), and denote it as h(w),

h(w) = exp(w - ) = exp(w1x1 + -+ + wazq), w,z €RY, d=d,, (29)

where w; and x; € R are the components of w and z, respectively. Calculating the partial derivatives
of h(w), we observe the following relations:

9“h olalp

= =M. x5 h(w), 30

ow™ — w ---dwy? ! a'hlw) 30)

where a = (a, ..., aq) € N% is the index vector representing the order of partial derivatives, and
|a] :== a1 4 -+ 4+ ay. This relationship allows us to link exponential FNNs to polynomials since

any polynomial P(z) can be represented in the following form:

P(z) = exp(—w* - x) (Z aag:;)

a€cA

; €1y

*

w=w
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where a,, are the coefficients of the polynomials, A is a finite set of indices, and the partial derivatives
can be approximated by finite differences, which are FNNs. For example, the first-order partial
derivative 7/ - ’w:w* = x1h(w*) can be approximated by the following difference with a small
nonzero number A € (0, ),
h(w* + Xey) — h(w*)
A
This is an exponential FNN with two neurons. Finally, employing the well-known Stone-Weierstrass
theorem, which states that any continuous function f on compact domains can be approximated by
polynomials, and combining the above relations between FNNs and polynomials, we can establish
the UAP of exponential FNNs with weight constraints.

Remark 10. When discussing density, one of the most immediate examples that comes to mind is the
density of rational numbers in R. How can we effectively enumerate rational numbers? The work
by [Calkin & Wilf| (2000) introduces an elegant method for enumerating positive rational numbers,
synthesizing ideas from [Stern| (1858) and [Berndr et al (1990). It demonstrates the computational
feasibility of enumeration through an effective algorithm. Thus, we assume that positional encodings
can be implemented using computer algorithms, such as iterative functions.

= %exp((w* +Xey) - x) — %exp(w* - x). (32)

5 CONCLUSION

In this paper, we establish a connection between feedforward neural networks and Transformers
through in-context learning. By leveraging the universal approximation property of FNNs, we
demonstrate that the UAP of in-context learning holds when the context is selected from the en-
tire vector space. When the context is drawn from a finite set, we explore the approximation power
of vocabulary-based in-context learning, showing that the UAP is achievable only when appropriate
positional encodings are incorporated, underscoring the importance of positional encodings.

In our work, we consider Transformers with input sequences of arbitrary length, implying that the
positional encoding P, consists of a countably infinite set of elements, independent of the target
function. As a result, the set S is also infinitely large and may or may not be dense in R?. In The-
orem |§|, we assume a strong density condition, which is later relaxed in Theorem E[ However, in
practical applications, input sequences are finite, typically truncated for computational feasibility.
This shift allows our conclusions to be interpreted through an approximation lens, where the objec-
tive is to approximate functions within a specified error margin, rather than achieving infinitesimal
precision. Additionally, to achieve universal approximation, it is insightful to compare the function
approximation capabilities of our approach (outlined in Lemma [3) with the direct use of FNNs,
particularly when the Transformer parameters are trainable.

It is important to note that this paper is limited to single-layer Transformers with absolute positional
encodings, and the main results (Theorem@ and TheoremE[) focus on elementwise activations. Fu-
ture research should extend these findings to multi-layer Transformers, general positional encodings
(such as RPEs and RoPE), and softmax activations. For softmax Transformers, our analysis in Sec-
tions 2 and 3 highlighted their connection to Transformers with exponential activations. However,
extending this connection to the scenario in Section 4 proves challenging and requires more sophis-
ticated techniques.

Although this paper primarily addresses theoretical issues, we believe our results can offer valuable
insights for practitioners. Specifically, in Remark [T0] we observe that certain algorithms use func-
tion composition to enumerate numbers dense in R. This idea could inspire the design of positional
encodings via compositions of fixed functions, similar to RNN approaches. RNNs capture the se-
quential nature of information by integrating the importance of word order in sentence meaning.
However, to the best of our knowledge, existing research on RNNs has not explored the denseness
properties of the sets formed by their hidden state sequences. We hope this unexplored property will
inspire experimental research in future studies.
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A PROOF FOR SECTION 2

We will lay out some lemmas mentioned in this article below.

A.1 PROOF OF LEMMA [2]

Lemmal2] Let o be an elementwise activation and T be a single-layer Transformer. For any one-
hidden-layer network N : R%=—1 5 R e NReLU yith n hidden neurons, there exist matrices
X € R%=*" and Y € R%*™ such that

T (£ X,Y) =N%(z), VzeR%E"1 (33)

Proof. We can directly compute the following
TR (7 X,Y)
= (Z + Attni Y (7 X,Y)) do iy 41

— T™NT
= (Z+VZMRLU(ZTQ KZ))y 14 a win (34)

B (Z N {AX o] [ReLU(XTBTCX) ReLU(XTBTCaé)D
= T RT =T RT s .
UY 0| |ReLU(z'B'CX) ReLU(z'B'Cz) Ayt idy oyt 1

It is obvious that

TREU(7: X, Y) = (UY)ReLU(X "' BT C%). (35)
Assume NRLU(z) = AReLU(Wx + b) is an arbitrary single-layer FNN, where W € R¥*d= A ¢
R <k b ¢ R*, and k represents the width of hidden layer.

Let us set the length of context to &, that is X € R%** Y ¢ R% ¥ Through trivial calculation we
can find that if we set

X =(CB)! W:] ., Y=U'A, (36)

then 7Rl (3 X V) = NReLU(z) holds. O

A.2 PROOF OF THE UAP OF SOFTMAX FNNSs

Lemma 11. For any continuous function f : R% — R defined on a compact domain K and
€ > 0, there always exist a softmax FNN N3°fmax () . R9® — Ry satisfying

|[Nsoftmax(z) — f(z)|| < e. (37)

Proof. According to Lemmal T] we can construct a network
N®P(z) = Aexp(Wz + b)
exp(Wz + b)1)
4 exp((Wz +b)2) (38)
exp(Wz + b))

such that |[N®P(z) — f(x)|| < e for all x € K and k represents the width of hidden layer. We now
construct a softmax network as follows

/
Nsoftmax () — A’ softmax ({WQCO* b D , (39)

where every element in b’ = b/(e) is sufficiently small to satisfy exp((Wix + b');) < % for all

Ai’jexp(bj—b;-) j:17 ,k

0 k1 ,wherei =1,--- ,d,. We

reK,i=1,2,-- kand A} ; = {
can compute that

1 () = N2 ()| < || f(2) — NP (2) | + NP () — N*OFmX(g) | (40)
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We focus on estimating of the upper bound of the second term, since it is evident that the first term
does not exceed €.

k
X ;1 A jexp(Wz + b))
NP = N @) | < maxe 1Y A exp(Wa +b);) = ——
- J=1 1+ > exp((Wz +b);)
j=1
k
k 2y Ai»j exp((Wx + b)])
= max. > Aijexp(Wa+b);) — ——
- =t 14+ > exp((Wz+b);)
j=1
<IN (@) | 1- .

1+ i exp(Wa +V');)

Jj=1

1
< ||Ne*P 1-— .
<IN (1- )

< NP ()"

(4D

By setting ¢’ = W, we ensure it is finite, leading to the conclusion that
1f (2) = N2 ()| < 2e. 42)
O

A.3 PROOF OF LEMMA 3]

Lemma[3} Let T be a single-layer Transformer with elementwise or softmax activation, and KC be
a compact domain in R% =1, Then for any continuous function f : K — R% and any € > 0, there
exist matrices X € R%*" and Y € R%*™ such that

T (7; X,Y) — f(z)]| <&, Vzek. (43)

Proof. For ReLU case, with the help of Lemma|I]and[2] the conclusion follows trivially.

Then we solve the softmax case. Similarly, for any € > 0, we can construct an exponential FNN

Nsoftmax (1) = A softmax ([on"" b]) using Lemma [3 such that [[Nsofmax — f#(z)|| < & and

it has k£ hidden neurons. What we need to do is to approximate this softmax FNN with a softmax
Transformer. We can directly compute the following
Tsoftmax (,i‘; X7 Y)
— (7 + Att softmax 7 X, Y )
( T nQ’K’V ((E ) dy+1:dg+dy,n+1
_ TAT
— (Z + VZM softmax(Z ' Q KZ))de:dm-s-dy,n—s-l

- (Z + {AX O} {softmax ([XTBTCX]> softmax ({XTBTCﬂ )})
Uy o FTBTCX i'BTCz do+1:dg+dy,nt+1

(44)
It is obvious that

TRT -~
peeftmax(y. X Y) = ([UY 0] {softmax ( [{(—rg—rccﬂ )} ) . (45)
x x dp+lidg+dy,1

Then through comparing the output of the softmax Transformer with the exponential FNN, we
can find out that there is one more bounded positive term ¢(x) = exp(#' BTC%) when pro-

%1% b—l—sl} € REDx() 7y = [A 0] €

cessing normalization. Assume X ' B'C = [0 <

17
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Ry *(k+1) " where s = s(¢’) is big enough, making exp(#BTC#% — s) < ¢/, then X 'BTCi =
[W b+51] [x} _ [Wx+b+sl

. So we can compute a detailed form that is
0 s 1 S

Tsoftmax (:E; X, Y)

_il Ay jexp (Wxz+b);+s) il Ay jexp (Wa+bd);)
_zk: exp (Wxz+b);+s)+exp (s)+exp (BT Cix) zk: exp (Wz+b);)+1+exp (ZBT Cz—s)
j=1 =1
5 As exp (Wah);+9) 5> Az exp (Wath),)
j=1 j=1
K K (46)
= Z:l exp (Wz+b);+s)+exp (s)+exp (zBTCz) | = Z:l exp (Wz+b);)+1+exp (zBT Cz—s)
5 Ay exp (Wartb);+5) 5 Ay b (Wath))
=1 =
_il exp (Wz+b)j+s)+exp (s)+exp (BT Cz) _il exp (Wz+b);)+1+exp (zBT Cz—s)
L i= i Li= i

We focus on estimating the upper bound of the distence between Ns°ftmax apd Tsoftmax that js

|| Nsoftmax () _ psoftmax . Xy |

3 k
'21 A; jexp (Wz +0b);) Zl A jexp(Wz +b);)
Jj= J=
k k
Soexp(Wa+0b);)+1 > exp(Wz+b);)+1+exp(ZBTCE —s)
J=1 Jj=1

i:l exp (Wz +b),) +1

< ”Nsoftmax” 1— -
S exp (W +b);) + 1 +exp(ZBTC7 — s)
j=1

— ”Nsoftmax” exp (i'BTCi‘ — 8)

k
Sexp((Wa+b);)+1+exp(@BTCZ —s)
j=1

< ”Nsoftmax” ‘exp ({IN;‘BTC{,?J _ S)’
< ”Nsoftmax”e/.

(47)
By setting ¢’ = HNS"“iW which is ensured to be finite, the entire lemma has been proved. [

B PROOF FOR SECTION 3

B.1 PROOF OF PROPOSITION[4]
k
Proposition 4, The scalar function hy(x) = > a;e®®, where a;,b;,x € R and at least one a; is
i=1

nonzero, has at most k — 1 zero points.

Proof. We prove this statement by induction. When k& = 1 and 2, the statement is easy to prove. For
the case £ = N, suppose that every hy has at most N — 1 zero points.

18
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N+1

Now consider k = N + 1. Let hyy1(z) = > a; exp(b;xz). Without loss of generality, assume
i=1

an+1 7 0. Thus, we can rewrite A1 () as

N
a;
h = anp1e"¥ 0T [ 1+ et ) (48)
N11(2) = anta ( Z -~
We proceed by contradiction. Suppose h 11 () has more than N zero points. This implies
N a;
=1+ L ebibr)r (49)
; GN+1

has more than N zero points.

Then, according to Rolle’s Theorem, ¢’ (x) must have more than N — 1 zero points. Since ¢'(z) =

N

3 ‘”(lz;ifj”fl)e(bi*bwrl)‘” must have at least N zero points, this leads to a contradiction.

i=1
N+1

Thus, hxy1(x) = > a;e’® can have at most N zero points. The proof is complete. O
i=1

B.2 PROOF OF LEMMA[3]

Lemma E The function class N, with elementwise or softmax activation o, cannot achieve the
UAP. Specifically, for any compact domain K& C R%, there exists a continuous function f : K —
R% and g > 0 such that

If - NZ”c(}c) >e9, VN7 eN. (50)

Proof. For any N9 € N7 with elementwise activation o, the function N? belongs to a finite-
dimensional function space, which is precisely the span of N?. It is well known that finite-
dimensional spaces are compact, meaning any function that does not belong to the span of N7
cannot be arbitrarily approximated. Consequently, the A/ cannot be achieve the UAP.

Without loss of generality, for any Nsoftmax ¢ Afsoftmax ‘agqume IC = [0, 1]% and consider only the
first component of x. Thus, we may assume d, = 1. Let us consider the output of an arbitrary j-th
dimension, that is

k
Z Aj7i exp (wzx + bl)
(Nioftmax)(j) _ ’l:lk . (51)

>~ exp (wix + by)
=1

Then the numerator, » | A; ; exp (w;x + b;), can have at most £ — 1 zero points.

=1

Now, we consider a special function f(z) = sin(ma),where [ 2] > k—1, and the period is 7' = 2Z
[x] is the smallest integer greater than or equal to .

Let us focus on two adjacent extreme points x1, 22, where f(z1) = 1 and f(x2) = —1. We proceed
by contradiction in our proof. Suppose N5°f™MaX can achieve the UAP. There exists N3oftmax ¢
NEoftmax guch that |[(NSoftmax)(7) — f(z)| < ¢ forall z € [0,1].

Taking € = 0.1, we have:

(N (20)) D) — fa1)] < 0.1 = (NP (20))9) > ~0.1+ f(1) = 0.9,
(N2 (22)) 9 — fa)] < 0.1 = (NP (22))9) < 0.1 4 f(a2) = —0.9,

By the intermediate value theorem, there exists some z¢ € (min(zy,z2), max(z1,x2)), such that
(Nsoftmax(,1)(7) — (. Therefore, there is at least one zero of (Ns°ftmax(3:))(9) between two
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adjacent extrema of f(z), and the total number of zeros in the interval[0, 1] is either[ ] + 1 or

[
Thus, the number of zeros of (NS°fmax(3:))(4) exceeds k — 1, leading to a contradiction.

If approximation cannot be achieved in one dimension, it is evident that it cannot be achieved in
higher dimensions either. Therefore, N*°f"™2% cannot achieve the UAP. O

B.3 PROOF OF THEOREM[@]

Theorem@ The function class T.7, with elementwise or softmax activation o, cannot achieve the
UAP. Specifically, for any compact domain KK C R%~1, there exists a continuous function f : K —
R% and 9 > 0 such that

max | () = T2@)| > 20, YTI €T 52

Proof. For any T¢ € 77 with elementwise activation o, since T = N?, we can replace N¢ in
Lemma 5] with T accordingly.

Without loss of generality, for any Tscftmax ¢ Fsoftmax aequme IC = [0, 1]% and consider consider
the output of an arbitrary j-th dimension and one-dimensional input as an example that is

k
Ajﬂ' exp (wzx —+ bz)
(Tioftmax)(j) _ =1 ) (53)
exp (wiz + b;) +exp (ZTBTCT )

-

i=1

We observe that the form of the numerator remains consistent with Lemma [5} and we follow the
same proof as above. We consider a specific function f(x) = sin(mx), where [*] > k — 1, and its

period is 7' = 2Z. This leads to the conclusion that 7,°°/™** cannot achieve the UAP. O

C PROOF FOR SECTION 4

C.1 PROOF OF LEMMA 12|

Lemma 12. For a network with a fixed width and a continuous activation function, it is possible to
apply slight perturbations within an arbitrarily small error margin. For any network N () defined
on a compact set K C R%, with parameters A € RW**F W € RFxde b ¢ RFXL there exists
M > 0(||z|| < M), and for any € > 0, there exists 0 < § < 7 and a perturbed network Ng (x)

with parameters/i € RWXk W e RF>de b e RF*Y | such that if max{|a; — as|max, M||w; —
Willmax + |0 = bllmax | 1 =1, ,k} < dforanyi=1, ..., k, then

|Ni(z) — No(z)|| < €%, VzeK, (54)

where a;, a; are the i-th column vectors of A, A, respectively, w;, W; are the i-th row vectors of W, W
, and b;, b; are the i-th components of b, b, respectively, foranyi=1,--- | k.

k .
Proof. We have N§(z) = Y a;o(w;x + b;), where a; € R% w; € R% b, € R, and N§(z) =
i=1

;o (wix + b;), where a; € R% ; € R% b; € R. Forany z € K, ||z]| < M.

-

i=1

Due to the continuity of the activation function, for any € > 0, there exists 0 < & < % such that if
wiz + b; — (Wi + bi)|lmas < [Jwi — 5[ [|]] + [1b; — bi|| < MJw; — @illmax + [|b— bllmax <9,
then ||o(w;x 4 b;) — o (Wix + b;)||mae < €, and ||a; — @;l|max < 9.
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Combining all these inequalities, we can further derive:

k
INT (z) = N3 () lmaz = || Zaia(wim + b;)

=1

vaC + b Hmar

\'M»

= . . (55)
< kmax{||la; —a;|||i=1,--- ,k} max{||a(wim +b)—o(wz+b)|]|i=1,---,k}
<é?
The proof is complete. O

C.2 PROOF OF THEOREMI§|

Theorem Let T7. p be the class of functions T P where o is an elementwise activation, the
subscript refers the ﬁmte vocabulary V =V, xV,, P = P, x Py represents the positional encoding
map, and denote the set S as:

$i=Vy + P ={ui + PY |2 € Vyyij €NFL (56)

If S is dense in R, {1,—1,v/2,0}% C V, and P, = 0, then T? "p can achieve the UAP. That is,

for any continuous function f : R%—1 — Rd” defined on a compact domain IC, and for any e >0,
there always exist X € R%=*" and Y € R%*™ from the vocabulary V (i.e., x(l €EVe,y ey )
with some length n € N1 such that

T2 5 (: X,Y) — f(z)]| <e. VzeK. 57)

Proof. Our conclusion holds for all element-wise continuous activation functions in 7.7,. We
demonstrate this with d,, = 1. Similar cases can be inferred by analogy.

We reformulating the problem.

Using Lemma|[2] we have,
T 5 (5 X,Y) = U¥po ((X P BTCQE> —UYpo (XLB'Ci). (58)

Since P, = 0, it follows that Yp =Y. For any continuous function f : R%~!1 — R% defined on a
compact domam K and for any € > 0, we aim to show that there exists T € T such that:

‘2p<ﬁ}XJj—Uﬂ@

& ||Yo (XpBTCZ) - f(x)] <&, Vzek.

<||U|le, VzeKk,

(59)

Let N7(z) := Yo (XAB'Cz) = Z y) o(R;iZ) € N7, where n € N*, y) € R% and R; €
R (the i-th row of R € R™*dx), The proof is divided into four steps:
Step (1): Approximating f(x) Using a N7 (x)
k
For any ¢ > 0, there exists a neural network N7 (z) = Ac(Wz +b) = > a;o(w;x +b;) € N9,

=1
with parameters £k € N*, A € R%>k b € R¥, and W € RF*(d=—1) (where a; and w; denote the
i-th column of A and the i-th row of /),

|Ac(Wa +b) — f(z)] < % Vr €K, (60)
which is supported by Lemmal [T}

Step (2): Approximating N9 (z) Using N'(x)
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k
Using Lemma [7| and Lemma a neural network N (z) = > a;o(w;xz + b;) € N7 can be
i=1

perturbed into N'(z) = Z(qu:l) o(w;x + b;) (withg; € Nt and[; € N5 =1,--- k), such

that for any € > 0, there ex1sts 0 <6 < £ satisfying:

max{||a; — (qx[:l: Dillmax, M [[wi — ;|| max + [[b — B”max li=1,---,k} <9, (61)
ensuring:
k k -
N (z) — N'(x a; o(w;x + b;) (V2 £1);o(wz+by)|| < =, Yrek. (62)
N (@) > X )| <: (
Step (3): Approximating N’(z) Using N7 (z)
n - k
Next, we show that N7(z) = >y o(R;Z) € N7 can approximate N'(z) = > (¢v2 +
i=1 i=1

1); o(;Z). As a demonstration, we approximate a single term (qv/2 £ 1) o (101 ).

Given that the set S is dense in R%, it follows that G := {R | R = XABTC, Xp C 25} is also
dense. Since y(* € {1, —1,/2,0}, we require ¢; + [; elements of R; to approximate 0, such that

Z y(j) U(Rji") - (Q\@ﬁ: 1)1 o(w17)

JEK1
= V2 Y o(®id) £ Y o(RyE) — (¢V2 £ 1)1 o(ind)] (63)
JEQ JjE€L1
13

Here, #(K1) = ¢1 + 11 and K1 = Q1 L1, where @1, L; are disjoint subsets of positive integer
indices satisfying #(Q1) = ¢; and #(L;) = [;. For this construction, we assign y\/) = /2

k
for j € Q and y9) = 41 forj € L. Forj ¢ |J K, we set y¥) = 0. We then define
=1

k
n=max{j|je U Ki}.
1=1
Finally, we have:
n 4 ~ k
NI (z) = N'(@)|| = | Dy o(Rid) = Y (qV2 £ 1); o(ii)
i=1 i=1

Step (4): Combining Results

Combining all results, we have:
1Y o (XpB'CE) — f()|| = [N () — f(=)]
< INZ (@) = N'(2) | + |N'(2) = N ()] + [IN°(z) - f(2)]| (64)
<e, Vzelk.

The proof is complete.

C.3 PROOF OF THEOREM[9]

Lemma 13. For any continuous function f : R% — R% defined on a compact domain K and

£ > 0, there always exist a softmax FNN NP (z) : R%® — R 2+ Aexp(Wx + b) satisfying
IN*(2) — f(a)| <&, Voek

where b = 0 and all row vector of W are restricted in a neighborhood B(w™*, &) with any prefixed
w* € R% and § > 0.
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Proof. According to Stone-Weirestrass theorem we know that, for any continuous function f and
i=1,---,d, and ¢’ > 0, thers exists a polynomial P;(x) which can approximate exp(—w”* -

2)(f(x));, ie.

|Pi(x) — exp(—w* - x)(f(z))i]| <€, Vxek. (65)
The inequation above indicates that
| exp(w™ - x)Pi(z) — (f(2))i]| < ||exp(w® - z)||e" :=¢, Vze€K. (66)

Then we construct a FNN with exponential activation function to approximate exp(w*x)P;(x).
Without loss of generality, let us consider the first hidden neuron of a softmax FNN. Assume

h(w) = exp(w - &) = exp(wrz1 + -+ - + w4, Ta, ), (67)
then the multiple derivatives of h(w) with respect to wy, - - - , wgq, is
olelh 9°h
=7 a o (68)
ow*  Qwit - Owy ™
where o € N%= represents the index and |a| := oy + - - - g, . Actually, the form of 5 alaag w18
wy e Ow gy
a polynomial of || degree with respect to x1, - - - , x) times h(w). Note that exp(w - ) P;(x) can

be written as a finite sum of some multiple derivatives of h(x), that is

lex]
exp(w’ - ) Pi() = (Z gf)

a€EN;

) (69)

w=w*

where o € N is the index of multiple derivative and A; is a finite multiple set of indexes. As
for multiple derivatives, they can be approximated by finite difference method, and the approach of
finite difference method can be done by a one hidden layer. For example,

oh  h(w* + Aep) — h(w*)

Xy — = + R\ w")
=3 exp((w* + Aep) - x) — X exp(w*z) + R(\, w™),
where e; = (1,0,---,0) is a unit vector and R(\, w*) is an error term with respect to A and w*.

Due to the approach of finite difference method, we can actually restrict the weight in a small
neighborhood of w*, which indicate that all row vectors of W are restricted in its neighborhood
B(w*, ). O

TheoremEl If the set S is dense in [—1,1]%, then 7;{{7§LU is capable of achieving the UAP. Addi-

tionally, if S is only dense in a neighborhood B(w*, §) of a point w* € R% with radius § > 0, then
the class of transformers with exponential activation, 7;€’:Xp, is capable of achieving the UAP.

Proof. For the proof of ReLLU case, we follow the same reasoning as in the previous one, noting
that ReLU(ax) = aReLU(z) holds for any positive a. In the proof of (8} we construct a T  to

approximate a FNN Ao (Wz + b). Here we can do the similar construction to find another T  to

approximate t Ao (%x =+ b) as the second to the forth steps in where ¢ is big enough to make the
elements in W is small enough so S = {w; + P | #; € Vy,i,j € N*} is dense in [—1,1]% is
sufficient. For the exponential, we using Lemma|[I3] we can do step the second to the forth steps in
Theorem [8] again, which is similar to ReLU case. O
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