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Figure 1: Comparison of the generated image samples given the caption “a cat sat on the mat”. Our models generate more

diverse images with the help of autoregressive latent modeling.

Abstract

Diffusion models have emerged as a powerful
tool for generating high-quality images from tex-
tual descriptions. Despite their successes, these
models often exhibit limited diversity in the sam-
pled images, particularly when sampling with a
high classifier-free guidance weight. To address
this issue, we present Kaleido, a novel approach
that enhances the diversity of samples by incor-
porating autoregressive latent priors. Kaleido in-
tegrates an autoregressive language model that
encodes the original caption and generates latent
variables, serving as abstract and intermediary rep-
resentations for guiding and facilitating the image
generation process. In this paper, we explore a va-
riety of discrete latent representations, including
textual descriptions, detection bounding boxes,
object blobs, and visual tokens. These represen-
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tations diversify and enrich the input conditions
to the diffusion models, enabling more diverse
outputs. Our experimental results demonstrate
that Kaleido effectively broadens the diversity of
the generated image samples from a given textual
description while maintaining high image qual-
ity. Furthermore, we show that Kaleido adheres
closely to the guidance provided by the generated
latent variables, demonstrating its capability to ef-
fectively control and direct the image generation
process.

1. Introduction

Diffusion models have become pervasive in many text-to-
image generation tasks for their ability to generate high-
quality images based on textual descriptions. A pivotal
mechanism in these models is classifier-free guidance
(CFG) (Ho & Salimans, 2021), which effectively steers
the sampling process towards better alignment to textual
prompts and improved sampling quality at the same time.
CFG can be interpreted as tuning the temperature of the
conditional distribution, whereas increasing the guidance
scale sharpens the conditional distribution. This guides the
generation to focus on regions of high conditional probabil-
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ity, effectively reducing sampling noise which is typically
of lower density. However, while high CFG improves sam-
pling quality, it simultaneously narrows the diversity in the
generated samples. This manifests in the models’ inability
to produce diverse images from the same caption, even when
there are variations in the initial noise that seeds the genera-
tion process. For instance, given a fixed textual description,
“a cat sat on the mat”, existing text-to-image diffusion mod-
els predominantly produce image samples depicting cats
with similar colors and patterns, as shown in Figure 1. Such
limited visual diversity hinders the practical application of
diffusion models in scenarios where a wide range of cre-
ative and diverse visual interpretations are desired from
identical textual inputs. It also poses challenges in scenarios
demanding the representation of underrepresented data or
accommodating a wide range of user preferences. Therefore,
enhancing diversity in diffusion models without compromis-
ing the quality remains a critical research problem.

To tackle this, we introduce Kaleido, a general framework
that improves diffusion models with autoregressive priors.
Kaleido first defines a discrete encoding of images (eg, de-
tailed captioning, bounding boxes), which captures desir-
able abstractions of images that’s not included in the default
text prompts. Next, Kaleido integrates an encoder-decoder
language model that encodes the original text caption and
autoregressively predicts the discrete latent tokens. Lastly,
the diffusion model is conditioned on both the original text
prompt and the autoregressively generated discrete latents
and generates an image. This enriched conditioning allows
Kaleido to produce a more diverse array of high-quality
images, even at high guidance scales. We explore various
forms of latents, including textual descriptions, detection
bounding boxes, object blobs, and abstract visual tokens
— all designed to refine and guide the conditional image
generation process.

We experiment on both class and text conditioned image
generation benchmarks !. We show that Kaleido not only
outperforms standard diffusion models in terms of diversity
but also maintains the high quality of the generated image.
Additionally, the generated latents effectively control the
characteristics of the generated images, ensuring that the
image samples closely align with the intended latent vari-
ables. This modeling of latent tokens not only increases
the diversity of image outputs but also provides a degree of
interpretability and control over image generation process.

To summarize, Kaleido exhibits the following advantages:

1. Kaleido promotes the diversity in generated image sam-
ples even with high CFG, allowing the image generation of
both high quality and diversity.

'the class conditioning setting can be considered as a special
case of text conditioning.

2. The generated latent variables are interpretable, offering
an explainable mechanism behind the image generation
process, and facilitating an understanding of how different
latents affect the outputs.

3. Kaleido provides a fine-grained, editable interface that
allows users to adjust the discrete latent codes before final
image production, granting greater flexibility and control
over the output.

2. Preliminaries

Autoregressive Image Generation The success of large
language models (LLMs) in NLP has demonstrated their
scalability and universality of modeling any complex data,
motivating the development of using autoregressive mod-
els for image generation. Typically, autoregressive image
generation operates on discrete image tokens obtained from
vector-quantization (VQ) (Van Den Oord et al., 2017). More
precisely, given an image € R3*#*W e first obtain
a sequence of discrete tokens z;.; = &(x) which ap-
proximately reconstructs the input with a learned decoder
D(z1.n) =~ x. Then, an autoregressive model is learned to
predict the discrete tokens one after another, mirroring the
sequential language modeling:

N
EQR = Z 10g P@(Zn‘zom_h 0)7 (1)

n=1

where c is the condition (e.g., class, text prompt, etc.), and
zo is a special start token. At inference time, we first sample
from the learned distribution, and then pass the sampled
latents to the decoder (D) to get the final output. Such VQ-
based paradigm has been the foundation for various text-
to-image (Esser et al., 2021; Yu et al., 2021; Zheng et al.,
2022; Yu et al., 2022) and multi-modal generation (Team
et al., 2023; Team, 2024).

However, these methods share a common limitation: they
primarily rely on discretization, which struggles to capture
all the nuances of an image when using a limited length
of discrete image token sequence. To generate higher-
resolution images, a longer sequence of image tokens is
necessary. Yet, this inherently leads to increased capacity
demands. For instance, (Yu et al., 2022) requires 20B param-
eters to work properly. Additionally, the left-to-right proper-
ties of these autoregressive models prevent the rewriting of
previously generated image tokens, resulting in suboptimal
image quality.

Diffusion-based Image Generation Diffusion mod-
els (Sohl-Dickstein et al., 2015; Ho et al., 2020) are latent
variable models with a pre-determined posterior distribu-
tion and are trained using a denoising objective, which has
quickly become the new de-facto approach for image gener-
ation. Unlike autoregressive models which predict images as
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Figure 2: Training pipeline of the proposed Kaleido diffusion.

a sequence, diffusion-based models iteratively generate the
whole image in a non-autoregressive fashion. Specifically,
given an image & € R3*#*W and a signal-noise schedule
{ay, 04} where the signal-to-noise ratio (SNR) (a? /0?) de-
creases monotonically with ¢, we define a series of latent
variables x¢,t = 0, ..., T that adhere to:

q(x|z) = N (205 0y, 021), and
q(@i|zs) = N(@4; apes, 07,1), @)

where @y = @, ays = o/, and afls =0’ — af‘saﬁ
for s < t. The model then learns to reverse this process
using a backward model py(xs|x;, ¢), which reformulates

a denoising objective:
LM = Byt 1] @i mq(ae2) (w2 - @0 (e, €) — 23], (3)

where xg (¢, ¢) is a neural network (typically a UNet (Ron-
neberger et al., 2015) or Transformer (Peebles & Xie, 2022))
that maps the noisy input x; to its clean version x, based on
the time step ¢ and conditional input c; w; € RT is a loss
weighting factor. In practice, &y can be re-parameterized
with noise- or v-prediction (Salimans & Ho, 2022) for
enhanced performance, and can be applied on raw pixel
space (Saharia et al., 2022; Gu et al., 2023) or latent
space (Rombach et al., 2022).

Classifier-free Guidance An intriguing property of con-
ditional diffusion models is that we can easily guide the
iterative sampling process for better sampling quality. For
instance, (Ho & Salimans, 2021) introduced Classifier-free
Guidance (CFG), which utilizes the diffusion model itself
to perform guidance at test time. More specifically, we
perform sampling using the following linear combination:

Zg(xs,c) =7 - (zo(Tr,€) — To(T0)) + XY (1), (4

where + is the guidance weight, and xg(x;) = xg(x:,c =
() is the unconditional denoising output. During training,
we drop the condition ¢ with certain probability pycond to
facilitate unconditional prediction. When ~ > 1, CFG takes

effect and amplifies the difference between conditional and
unconditional generation, leading to a global control of
high-quality generation.

Compared to autoregressive models, diffusion models are
more flexible in adjusting sample steps, allowing for the
utilization of noise schedules to learn different frequencies.
Additionally, with the use of CFG, diffusion models can
achieve higher quality images with much fewer parameters
than autoregressive models. However, it’s notable that CFG
can significantly impact the diversity of the diffusion output,
which motivates us to revisit the basics and combine the
strengths of both.

3. Kaleido Diffusion

We propose Kaleido, a general framework that integrate an
autoregressive prior with diffusion model to enhance im-
age generation. As shown in Figure 2, Kaleido comprises
two major components: an AR model that generates latent
tokens as abstract representations, and a latent-augmented
diffusion model that iteratively synthesizes images based
on these latents together with the original condition. For
following sections, we first describe the importance to intro-
duce additional latents in standard diffusion models (§ 3.1),
and show how we can model them with AR models (§ 3.2).
The training and inference procedure are described in § 3.3
and § 3.4.

3.1. Latent-augmented Diffusion Models

As demonstrated in (Ho & Salimans, 2021), diffusion with
CFG (Eq. (4)) is equivalent to follow

Vi log pg(x|c) =7 [V (log pe(x|c) —logpe(x))]
+ Vg logpg(x), (5)

which can be interpreted as sampling from a “temperature-
adjusted” distribution:
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Figure 3: Effect of augmented latents. The first row displays the sampling results from the standard diffusion model, while
the second row shows the results from the latent-augmented diffusion models.

@ ~ po(x|c) o po(x) [po(cl@)]”
where  py(clz) o< po(x|c)/po(x). (6)

Here « can be seen as inverse temperature, which sharpens
the conditional distribution py(c|x) when v > 1. That is
to say, CFG is crucial as it guides the generation to only
focus on high-probability regions, avoiding sampling noise
(which tends to have low density). However, sharpening the
distribution also reduces the diversity, causing undesirable
phenomena like “mode collapse”. This is because ¢ (e.g.,
class label, text prompt, etc.) normally does not contain all
the information that describes . Suppose we introduce a
hypothetical variable z to represent the “modes” of & which
we care most — pp(z|c), and leave py(x|z, c) to model
other variations including local noise. In this case, CFG will
simultaneously sharpen both distributions, considering:

po(z|c) = Z po(zlc) - po(z|z,c) . )
z S —
mode selection  image variation
where standard diffusion models implicitly learn mode se-
lection step together with generation.

Therefore, a natural solution is to explicitly model “mode
selection” before applying diffusion steps so that the mode
distribution will not be distorted by guidance. In this way,
the sampling procedure (Eq. (6)) is modified as two steps:
z ~ pg(z|e),x ~ py(x|z,c), where CFG can be applied
after z is sampled. From the perspective of score function,
we rewrite pp(x|c) as pp(x|e, z) in Eq. (5):

V. log (e, 2) =
v [Va (log po(le) + logpa(zle, ) — logpo())]
+ Vg log pg(x). (8)

Compared to standard diffusion process, the highlighted
term above pushes the updating direction towards the sam-
pled modes at each step. This ensures diverse generation as
long as py(z|c) is diverse.

A Toy Example We visualize the effect of explicitly in-
troducing latent priors using a toy dataset with two main
classes, each containing two modes. We compare two mod-
els: a standard diffusion model conditioned on the major
class ID, and a latent-augmented model incorporating sub-
class ID as priors. Figure 3 shows that while the standard
diffusion model tends to converge to one mode (subclass)
with increased guidance, the latent-augmented model cap-
tures all modes, showing the benefit of latent priors for
improving diversity under high guidance. In practice, given
the challenge of identifying all “modes” in real-world data
distribution, we next propose to employ an autoregressive
model to universally model various latent modes.

3.2. Autoregressive Latent Modeling

To capture the complex distribution of real images, it is
clearly impossible to assign classes for each mode. However,
it is non-trivial to determine (1) the best representations for
modes z; (2) the suitable generative model that can model
po(z|c). Fortunately, the modes that humans can perceive
from an image are largely abstract, and such abstract seman-
tics are easily represented in discrete symbols. For example,
we can easily describe content differences through natural
language, create composite images based on spatial loca-
tions, and imagine novel visual concepts from experience.
Therefore, it is logical to use such abstract discrete tokens,
i.e., z = [21,...zyN]. Naturally, the most convenient way
to model such distribution is using an autoregressive model
po(z|c). Note that this is distinct from the conventional
autoregressive image generation (§ 2), as we only learn such
models as “latent modes”, where the sampled z1. are not
supposed to reconstruct an image directly. As a result, it
eases the modeling difficulty and improves the sampling
performance.

In this work, we explore four types of abstract latents: fex-
tual descriptions (text), detection bounding boxes (bbox),
object blobs (blob), and visual tokens (voken), all of which
can be predicted from multi-modal large language models
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Textual Descriptions
A person in a blue sweater and jeans is sitting on the
floor on top of a gray couch with their laptop in their lap.
They have a yellow Labrador Retriever in their lap, who
is looking at the camera. The dog has its tongue out and
is laying down on the person’s lap. ...

Object Blobs

Detection
Bounding

Boxes [ Caption: 1 13 4 7 - 9
Dog laying on a human's lap

Figure 4: A Variety of Discrete Tokens. Original caption:
“Dog laying on a human’s lap”

(MLLMs) (Bai et al., 2023; Liu et al., 2024; Ge et al., 2023a)
given the condition-image pair (¢, x). Each type aims to
enrich the mode-to-image correspondence, covering differ-
ent aspects of image formation. These extracted tokens can
either be predicted separately or modeled together with a
single autoregressive model. Figure 4 shows the examples
of these four generated latent variables. The methodology
for constructing the training dataset for these variables is
detailed in Appendix A.

Visual Tokens

3.3. Joint Learning of Autoregressive and Diffusion
Models

Similar to other latent variable models like VAEs (Kingma
& Welling, 2013), Kaleido can be trained to maximize the
evidence lower bound (ELBO) as follows:

maxlog py(z|c) >

IEzrvq(z|w,c) [logpe(z‘c) + 10gp9 (IB|Z, C)] +H [Q(Zlma C)] y
LAR Eq. (1)

LPM Eq. (3)

&)

where ¢ is the inference model, and H(q) is the entropy.
In this paper, we always assume a fixed inference process
(as explained § 3.2). Therefore, the entropy term can be
omitted, and we can efficiently sample and store z for the
entire dataset before training starts. We illustrate the training
pipeline in Figure 2. Compared to standard diffusion models
which typically involves a context encoder and a denoising
network, Kaleido integrates the additional autoregressive
decoder for modeling the discrete latents. Such decoder
uses cross-attention to gather the encoder states at every
step, and the final decoder layer states are concatenated with
the encoder as the inputs for diffusion. Following common
practices, we freeze the context encoder during training, and
jointly optimize the autoregressive decoder together with
the denoising model. The training objectives (Eq. (9)) is
equivalent to the combination of both models, denoted as
L = LPM4y.LAR with 1) as a hyperparameter for balancing
the contributions of the autoregressive and diffusion models
in practice.

3.4. Interpretable and Controllable Generation

During the inference stage, given the provided textual de-
scription, the autoregressive model will first predict the dis-
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Figure 5: Comparison with guidance weights.

crete latents before image generation. These latents, being
predominantly human-readable, add a layer of interpretabil-
ity to the image-generation process, allowing humans to
observe its internal “thought” process. This transparency
also provides users with the flexibility to modify the latents
as desired. To incorporate user modification, the altered
latents are re-input into the autoregressive decoder to obtain
the modified final hidden states. The latent-augmented dif-
fusion model then synthesizes the final image conditioned
on the updated representation.

4. Experiments
4.1. Experimental Setups

Dataset We validate our approach on both class- and text-
conditioned image generation benchmarks. For the former,
we use ImageNet (Deng et al., 2009), and we learn the text-
to-image models on CC12M (Changpinyo et al., 2021), a
large image-text pair dataset where each image is accom-
panied by a descriptive alt-text. All models are trained to
synthesize at 256 x 256. We generate all four types of latents
as discussed in Appendix A for both datasets.

Evaluation Metrics To assess the performance of
our models, we employ Fréchet Inception Distance
(FID) (Heusel et al., 2017) to capture the overall perfor-
mance (considering both quality and diversity) of the gener-
ated images, and use Recall (Kynkidnniemi et al., 2019) to
specifically measure the diversity of the generated images.

Implementation Details and Baseline We implement
Kaleido with Matryoshka Diffusion Models (MDM) (Gu
et al., 2023), a recently proposed approach that generates
images directly in the raw pixel space with efficient training.
The default MDM consists of a frozen T5-XL (Radford et al.,
2021) context encoder and a nested UNet-based denoiser.
We initialize the additional autoregressive decoder with the
decoder of T5-XL, and make the parameters trainable. The
vocabulary is resized to adapt special visual tokens. For fair
comparison, we use MDM with the same hyper-parameters
as our baseline model, and train both types in almost identi-
cal settings on 64 A100 GPUs.
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Input: a teddy bear wearing glasses

A teddy bear wearing glasses and
a sweater sits on a stool in a
dimly lit room. The background
features a chair and a wall, and
(a) | the lighting is moody. The teddy

bear appears to be deep in
thought, with its chin resting on
its hand.

e

T the image, a teddy bear
wearing glasses is sitting on the i
ground next to a flower. The bear
has a brown and white fur and is
looking to the left. The flower is
small and yellow, with green
leaves. The background is a
wooden fence. The bear's glasses
have a brown frame and clear
lenses. The bear's nose is brown
and its eyes are black. The flower
and the bear create a sense of
calm and serenity in the image.
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Input: a squirrel wearing a crown
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Input: an owl with a knitted hat holding a board with “Thank You” written on it

#501266804811#7914#680#1448
#6543467547914#2315 4231547914
#7914#6543#8081#4509#2315%#144
BuBriguq6BingBuinbsq3n6543423
15#251187914#46814144B8 4446247
914#7914#1291

In the image, an owl wearing a
yellow knitted hat is holding a
sign that says "Thank You" in red

(e)

lettering. The owl is sitting on @
tree branch with a green
background. The sign is white
and has a simple design, mahing
the message stand out. The owl's
yellow hat adds a pop of color to

+

+

#6193w2157#7782#r1089 6804344
5#637Bw21974#7949#2315#23154#57
7647949463784 7782444q#231543
445#7949%444%7949+4574#6378
#2315#69554444#7949#7949%217
T#7949%444#1576

the scene. Overall, the image is a
cute and cheerful representation
of gratitude.

-

Figure 6: Example of generation with various latents.. This figure showcases images generated with different types of
latents: (a) textual descriptions, (b) object blobs, (c) detection bounding boxes, (d) visual tokens, and (e) combined latents
(textual descriptions + detection bounding boxes + visual tokens). Each row shows two sets of generated images sampled
with one type of latents. Each set displays a visualization of the generated latents tokens (left) and a collage of images
(right) sampled using the same latent tokens but different noises. The image tokens capture visual details difficult to convey

through text, such as artistic style.

4.2. Quantitative Results

Figure 5 quantitatively compares Kaleido with the base-
line diffusion models (MDM) with various guidance scales.
Both metrics are evaluated with 50k samples against the
full training set, where both our models and the baseline
use DDPM sampling with 250 steps. Our findings reveal
that Kaleido consistently enhances the diversity of samples
without compromising their quality across different CFG,

evidenced by the general improvement in both FID and
Recall. Moreover, while the baseline’s FID increases and
Recall decreases significantly with higher CFG, Kaleido
demonstrates a steadier performance profile.

4.3. Qualitative Results

Diversity of Generated Images We present a compara-
tive analysis of the images generated by Kaleido against
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“Siberian husky” (Class-to-Image Generation)

Figure 7: Diversity comparison to standard diffusion model. Images sampled under varying CFG scales (). Panels (a)
and (c) display images from the baseline models, while panels (b) and (d) show images from Kaleido. From left to right, as
the CFG increases, the standard diffusion models exhibit reduced diversity, while Kaleido consistently maintains diversity

across different guidance scales.

baseline models (MDM). Figure 7 demonstrates the com-
parison between baseline models and Kaleido on two condi-
tional generation tasks: the class-conditioned image genera-
tion and the text-to-image generation. In both tasks, Kaleido
consistently produces more diverse images from identical
condition (class or textual description) across varying CFG
scales. For instance, in the task of class-to-image genera-
tion, the baseline diffusion models generate predominantly
frontal views of a “husky” at high CFG, while Kaleido pro-
duces diverse images depicting huskies in various poses and
numbers. A similar improvement in diversity is observed
in the text-to-image generation as well, highlighting the
robustness of Kaleido in generating diverse images under

identical conditions.

Control from Latent Tokens We show the efficacy of
latent variables in guiding the image generation process in
Figure 6. Figure 6 demonstrates images generated with
different types of latent variables: (a) textual descriptions,
(b) object blobs, (c) detection bounding boxes, (d) visual
tokens, and (e) combined latents, which integrate textual
descriptions, detection bounding boxes and visual tokens.
We visualize the generated latents tokens alongside the re-
sulting images, showing how closely the images generated
by Kaleido align with the latent tokens. Such alignment is
evident in fine-grained visual information — such as object
appearance, background, and atmosphere —, spatial loca-
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Input: a photo of a frog drinking coffee

Diffusion Generation:

Autoregressive Generation:

Figure 8: Effect of sequential latent editing. The top row
displays images generated with autoregressively produced
latent tokens. The middle row shows the re-generated im-
ages after applying latent editing to the textural description,
and the bottom row presents re-generated images after fur-
ther edits to the bounding box.

tion and orientation of different objects, and the stylistic
elements of generated images. This alignment confirms that
Kaleido can effectively interpret and utilize generated latent
variables to guide and refine the image generation process.

Latent Editing Figure 8 showcases the impact of latent
editing in image generation. The first row displays images
generated using autoregressively produced latent tokens.
In the second row, we demonstrate the effect of manual
modifications to the textual descriptions: changing “log” to
“cobblestones” and “a body of water” to “forest”. These
changes result in a modified image where a frog is now
positioned on cobblestones with a forest background. Addi-
tionally, by further augmenting the bounding box of a cup
to a different position, we observe that the cup’s position
in the image changes accordingly, while most other visual
elements remain unchanged. The precise control of im-
age characteristics via latent editing underscores Kaleido’s
flexibility and controllability, offering a powerful interac-
tive interface for users to customize the generated images.
Furthermore, the high fidelity of the re-generated images
to their original versions indicates Kaleido’s potential for
applications requiring personalization or customizations.

5. Related Work

Augmenting Diffusion Models Various enhancements
have been proposed to improve the versatility and control-
lability of diffusion models with augmented latents. In-
novations such as Diffusion AE (Preechakul et al., 2022)
integrates diffusion models with a learnable encoder that ex-

tracts high-level semantics and enables the diffusion model
to add details directly in image space. Further efforts have
focused on incorporating specific control signals, such as
bounding boxes, layout, and segmentation masks to guide
and control the image generation process. (Balaji et al.,
2022; Li et al., 2023; Zheng et al., 2023a; Hu et al., 2023).
Recently, BlobGen (Nie et al., 2024) proposes to ground
existing text-to-image diffusion models on object blobs —
tilted ellipses that capture spatial details of the objects — for
compositional generation. While these approaches improve
the models’ capacity to adhere to specified spatial layouts,
they often necessitate modifications to the attention mecha-
nism, potentially limiting their generality. In contrast, our
method enhances the generative capabilities of diffusion
models without altering the model architecture.

Connecting Diffusion Models with LLMs The success
of Large Language Models (LLMs) and diffusion models
has spurred interest in connecting these models, aiming
to leverage the capabilities of LLMs in understanding and
generating complex data and combine it with the powerful
image synthesis capabilities of diffusion models (Ge et al.,
2023b; Zheng et al., 2023b; Sun et al., 2023). (Ge et al.,
2023b; Zheng et al., 2023b) propose image tokenizers that
encodes images into visual tokens, enabling multimodal lan-
guage modeling. This line of work focuses on empowering
LLM with image generation ability by aligning its output
embedding space with the pre-trained diffusion models. Our
work leverages the LLMs’ robust capabilities in textural
understanding and generation to model the generation of
abstract latents from the original text. These latents are then
integrated with latent-augmented diffusion model, enabling
a more interpretable and diverse image generation process.

Our approach distinguishes itself from the re-captioning
method introduced in DALL-E 3 (Betker et al., 2023). Un-
like re-captioning, which typically replaces the original cap-
tions with more descriptive captions, our method retains the
original condition and enrich it with various abstract latents
(beyond textual captions like bbox, blob and “vokens”). The
sampled latents serves as a unifying interface for various
types of inputs, and introduce diversity compared to recap-
tioning where no sampling is involved at inference time.

6. Conclusion

This work tackles the challenge of improving sample di-
versity under high CFG in diffusion models. We introduce
Kaleido Diffusion, which combines an autoregressive prior
with a latent-augmented diffusion model. Results show
Kaleido increases diversity without compromising quality,
even at high CFG. With human interpretable latent tokens,
Kaleido offers an explainable mechanism behind the gener-
ation process and provides a fine-grained editable interface,
enabling precise user control over the generated images.
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Appendix

A. Auto-regressive Latent Modeling

In this work, we explore four types of abstract latents, including textual descriptions (text), detection bounding boxes
(bbox), object blobs (blob), and visual tokens (voken). Each type is designed to enrich the mode-to-image correspondence,
covering different aspects of image formation. Examples of these abstract latents are illustrated in Figure 4. In the following
paragraphs, we detail the methodology employed in constructing the training dataset for these abstract latents. Additionally,
Figure 9 outlines the pipeline for the step-by-step generation of these abstract latents.

Textual descriptions (caption)

Original caption: {}
Using the information provided in the caption above, Please provide a detailed description of the image in 50-80 words,
incorporating relevant information from the caption and expanding on the visual elements:

- Include names, objects, events, and locations mentioned in the caption
- Do not include placeholders like jPERSON;, in the caption

- Describe people, characters, animals, and notable entities

- Mention the setting, background, and overall environment

- Note colors, lighting, composition, and style aspects

- Refer to any text, symbols, or logos in the image

Combine caption details with your observations to create a comprehensive description of the key elements and overall scene,
focusing on the most salient aspects of the image.

Textual descriptions (label)

Object labels: {}
Using the provided object labels, generate a detailed description of the image in 50-80 words, incorporating the relevant
information about prominent objects identified and expanding on the visual elements:

- Describe each labeled object, including its size, shape, and placement in the scene

- Depict relations between objects, such as proximity or arrangement

- Highlight interactions or functions implied by the objects

- Describe the surrounding environment or context that complements the labeled objects

- Any notable features or characteristics of the objects, like color, texture, or design elements
- Describe people, characters, animals, and notable entities

- Mention the setting, background, and overall environment

- Note colors, lighting, composition, and style aspects

- Refer to any text, symbols, or logos in the image

Craft a comprehensive depiction of the scene based on the identified objects, utilizing both the labels and contextual
observations to enrich the description.

Captions with grounding

Generate the caption in English with grounding:

Table 1: The instruction for prompting Qwen-VL to generate detailed textual descriptions and captions with grounding.

Textual descriptions Typical text-image datasets often provide captions that fail to fully capture the details of the
image. For instance, as shown in Figure 4, the original caption “Dog laying on a human’s lap” omits crucial details
such as the presence of “laptop”, which is essential for accurate image generation. To address this, we employ detailed
textual descriptions as latent variables. These textual descriptions supplement the original captions by providing additional
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information that might be missing from the original captions. Specifically, we leverage Qwen-VL-Chat (Bai et al., 2023), a
large visual language model, designed for effective instruction-following across a variety of multimodal tasks. We instruct
Qwen-VL-Chat to produce a detailed textual description given the original caption and corresponding image. The specific
instructions used for generating the textual descriptions are detailed in Table 1 under the section Textual descriptions
(caption). Figure 4 shows an example of the generated detailed textual description that provides a more comprehensive
depiction of the scenes than the original captions, thus allowing for a richer image generation.

Additionally, for the ImageNet dataset, which consists of label-image pairs for class-to-image generation, we instruct
Qwen-VL-Chat to generate detailed descriptions based on the class label and corresponding image. The instruction for this
procedure is similarly documented in Table 1 under the section Textual descriptions (label).

Detection bounding boxes The spatial location of objects within an image is also crucial information for accurate
representation of the image, yet such information is typically absent in textual descriptions. To incorporate this spatial
information into the image generation process, we use detection bounding boxes as one type of abstract latents. Specifically,
we use Qwen-VL (Bai et al., 2023) to prompt the model to “Generate the caption in English with grounding:”. This approach
results in captions where the spatial locations of objects are explicitly annotated within the text. For instance, as shown in
Figure 4, the caption with grounding for this example is: “Dog (1, 33, 995, 995) resting head on owner’s lap (1, 630, 785,
998) while they work on a laptop (39, 336, 999, 972).” Each bounding box is described in a string format “x1, y;, 2, y2”,
where x1, y1 and z9, ys are the coordinates of the top-left and bottom-right corner, respectively. All the coordinates are
normalized to a [0, 1000] range. The coordinates string is treated as part of the text, obviating the need for an additional
positional vocabulary.

Object Blobs Inspired by (Nie et al., 2024), we utilize object blobs as the abstract latents that contain more advanced
spatial information. An object blob is defined as a tilted ellipse that specifies the position, size, and orientation of an object
within an image. Specifically, a blob is represented as “(z¢, Ye, T"major> "minor, ) Where (¢, y.) denotes the center point
of the ellipse, 7major and T inor are the radii of its semi-major and semi-minor axes, respectively, and ¢ € [0,180) denotes
the orientation angle of the ellipse. To extract the blobs for meaningful objects, we leverage the results from bounding box
detection and employ SAM (Kirillov et al., 2023) to generate the segmentation maps using the bounding boxes as prompts.
Subsequently, an ellipse fitting algorithm is applied to these segmentation maps to determine the blob parameters for each
identified object. This method allows for a more precise representation of objects’ spatial characteristics, thus improving the
integration of spatial and structural information within the image generation process.

Visual Tokens Representing images via discrete visual tokens, especially using technologies like Vector Quantized
Variational Autoencoder (VQ-VAE) (Van Den Oord et al., 2017), has become a prevalent technique in generative modeling
due to its ability to encode high-dimensional image data into a more manageable, discrete space. In this work, we utilize
SEED (Ge et al., 2023b), a VQ-based image tokenizer, to encode an image into a sequence of abstract discrete image tokens.
These tokens encapsulate high-level semantic information of the visual elements in the image, serving as potent latent
variables for guiding the diffusion model. The visual tokens are concatenated with the delimiter “#”, forming a sequence of
visual tokens represented as “I;#Io#..#[35”, where each “I;” denotes the image token id.

B. Implementation Details
B.1. Architecture

In this paper, we use the following NestedUNet architecture proposed in (Gu et al., 2023) to implement the denoising model.
The total number of parameters is about 500M. For the autoregressive prior, we employ T5-XL (Raffel et al., 2020) for
all experiments regardless of the input latent types. Both the denoiser and TS5 decoder receive gradients and are trained
end-to-end.

config:

resolutions=[256,128, 64]

resolution_channels=[64,128,256]

inner_config:
resolutions=[64,32,16]
resolution_channels=[256,512,768]
num_res_blocks=[2,2,2]
num_attn_layers_per_block=[0,1,5]
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num_heads=8,

schedule=’cosine’
num_res_blocks=[2,2,1]
num_attn_layers_per_block=[0,0,0]
schedule=’"cosine-shift4’
emb_channels=1024,
num_lm_attn_layers=2,
1m_feature_projected_channels=1024

B.2. Training

For all experiments, we share all the following training parameters for both the baseline model and the proposed Kaleido

Diffusion.

default training config:
batch_size=512
num_updates=400_000
optimizer="adam’
adam_betal=0.9
adam_beta2=0.99
adam_eps=1.e-8
learning_rate=le-4
learning_rate_warmup_steps=10_000
weight_decay=0.0
gradient_clip_norm=2.0
ema_decay=0.9999
mixed_precision_training=bpl6

All experiments are performed on 64 A100 GPUs which takes roughly 2 weeks for training 400k steps for both ImageNet
and CC12M datasets. For text-to-image models, we perform an additional 400k steps progressive training at 64 x 64
resolution, while we train the entire model from scratch directly at 256 x 256 for ImageNet. Due to the memory cost of the
T5-decoder, we can only fit 4 ~ 8 images per GPU, causing at least x3 slower training compared to the original MDM
models.

B.3. Learned Models

To demonstrate the effectiveness of various latents, we train our model with 5 types including text, bbox, blob, voken, and
combined for text-to-image generation. For combined setting, we use the autoregressive model to predict

combined = text — bbox — voken

in a sequential way such that the latter latents will be controlled by earlier latents. We also trained models on ImageNet
using combined latents for quantitative comparison.

C. Limitations

Training Complexity: The enhanced diffusion model may require more complex and extended training processes
compared to standard models. This could lead to increased computational costs and longer development times, potentially
limiting accessibility for smaller organizations or individual researchers.

Difficulty in Finding Optimal Latents: Identifying the most effective latent variables to achieve the desired output
diversity can be challenging. This process might involve extensive experimentation and fine-tuning, which can be time-
consuming and resource-intensive. Additionally, covering a broader range of modes, such as depth and semantic maps, adds
another layer of complexity to the model development, requiring sophisticated techniques to integrate these diverse forms of
data effectively.

Memory Usage: The improved diffusion model, with its increased output diversity, might demand higher memory usage
due to the integration of the heavy language models. However, potential strategies such as partial training or joint training
with LLMs could be explored to mitigate this issue. These methods could help distribute the computational load more
effectively and reduce the memory footprint during the training process.
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D. Impact Statement

The proposed method to enhance diffusion models and increase output diversity has significant social implications. By
advancing the diversity and accuracy of generated outputs, this technology can be leveraged in various fields such as art,
media, and content creation, providing more inclusive and representative outputs that reflect a broader spectrum of human
experiences and creativity. Moreover, in areas like healthcare and education, diverse and precise models can lead to more
personalized and effective solutions, addressing the unique needs of individuals and communities. This innovation also
promotes ethical Al practices by reducing biases in model outputs, fostering a more equitable digital landscape. Ultimately,
the enhanced diffusion models will contribute to the democratization of Al, making sophisticated tools accessible to a wider
range of users and applications, thereby driving societal progress and innovation.

E. Additional Results

We show additional results randomly sampled from our models. For all results including the baseline model, we use DDPM
sampling with 250 steps.
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Textual Descriptions

/—L L _ e

e = \
= A person in a blue sweater and jeans is sitting on
N

N the floor on top of a gray couch with their laptop
'SQ ~ < QWen-VL-Chat in their lap. They have a yellow Labrador
@ 5 » (Vision Language Model) Retriever in their lap, who is looking at the camera.
‘ The dog has its tongue out and is laying down on
Dog laying on a the person'‘s lap.
human's lap

Detection Bounding Boxes

Sl
ks =
'\&~ Dog (1, 33, 995, 995) resting head s 1
— = < QWen-VL og (1, 33,995, resting head on owner's lap
E}-\ o .
"\“ » (Vision Language Model) (1, 630, 785, 998) while they work on a laptop (39,
336, 999, 972)
Dog laying on

a human's lap

Object Blobs
/—L L _ ]
e =% - Dog (1, 33, 995, 995) resting head on owner's lap (1, 630, 785, 998) while they
=S work on a laptop (39, 336, 999, 972)

25\
= { i i
&’; | (1,33,995,995) | | (1,630, 785,998) | [ (39, 336,999,972) |

p —
Segment-Anything (SAM) ] [ Segment-Anything (SAM) ] [ Segment-Anything (SAM) ]
[ Fit Ellipse ] [ Fit Ellipse ] [ Fit Ellipse ]
[ (120, 164, 112, 130, 84) | [ (384, 881, 138, 486, 92) | [ (562,632,238, 468, 78) |

Dog (120, 164, 112, 130, 84) resting head on owner's lap (384, 881, 138, 486, 92) while they work
on a laptop (562, 632, 238, 468, 78)

Visual Tokens

~ S o
[P .‘ . 2440#680#6654#1246#680#1643#2189#1227#6
e SEED T40#680#2157#6740#2189#2189#468 T#404#23
N (VQ-based Image Tokenizer) 15#1643#2315#761T#6T404761T#2189#2315#7

B
'\\9 = < 237#4235#7650#622#6654#6740#8140#2508
S |

S

Figure 9: Pipeline for generating various discrete latents.



Kaleido Diffusion: Improving Conditional Diffusion Models with Autoregressive Latent Modeling

Baseline Diffusion Model (MDM)

Figure 10: Uncurated samples for both the baseline (MDM) and the proposed Kaleido Diffusion on ImageNet 256 x 256.
The guidance scale is set 4.0.
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Baseline Diffusion Model (MDM)

Figure 11: Uncurated samples for both the baseline (MDM) and the proposed Kaleido Diffusion on ImageNet 256 x 256.
The guidance scale is set 4.0.
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a teddy bear wearing glasses

=z, £ <
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Kaleido Diffusion Model (texts as latents)

& =

Figure 12: Uncurated samples for both the baseline (MDM) and the proposed Kaleido Diffusion (using text,bbox,blob,voken
latents) on CC12M 256 x 256 given the same condition. We visualize the generated bounding-boxes and blobs for the ease

of visualization. The guidance scale is set 7.0.
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a squirrel wearing a crown

A “a ) ("~ — - —
Baseline Diffusion Model (MDM)

p— |
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Kaleido Diffusion Mod

" Kaleido Diusion Model (voken as latents)

Figure 13: Uncurated samples for both the baseline (MDM) and the proposed Kaleido Diffusion (using text,bbox,blob,voken
latents) on CC12M 256 x 256 given the same condition. We visualize the generated bounding-boxes and blobs for the ease
of visualization. The guidance scale is set 7.0.
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Input: A dog is reading a thick book

Autoregressive Generation:

Edi

Edi

Edi

Edi

Diffusion Generation:

-
In the image, a small pug dog is sitting
on top of a dog house that resembles a
pink book. The book is open and the
dog appears to be reading it. The dog
house is placed on a windowsill, and
the dog is surrounded by two potted
plants, one on each side. The
background features a large window
with a cityscape visible outside. The
scene is set in a cozy and relaxed
atmosphere.

-

+

#1872#680#2888#26194#68
0#3445#6930#124#6073#21
57#2157#6073#6073#6930
#124#124#215743445%2157#
3526#6073#6073#6930#215

7#6930#352645178#2517#6
498#261946187#4863

t1: Add an owl next to the dog

-
In the image, a small pug dog and an
owl are sitting on top of a dog house
that resembles a pink book. The book
is open and the dog appears to be
reading it. The dog house is placed on
a windowsill, and the dog is
surrounded by two potted plants, one
on each side. The background features
a large window with a cityscape visible
outside. The scene is set in a cozy and
relaxed atmosphere.

-

#1872#6804#28884#2619#68
0#3445#6930#124#6073#21
57#2157#6073#6073#6930
#124#124#2157#3445#2157#
3526#6073#6073#6930#215
7#6930#352645178#251746
498#261946187:4863

t2: Switch their locations

-~
In the image, a small pug dog and an
owl are sitting on top of a dog house
that resembles a pink book. The book
is open and the dog appears to be
reading it. The dog house is placed on
a windowsill, and the dog is
surrounded by two potted plants, one
on each side. The background features
a large window with a cityscape visible
outside. The scene is set in a cozy and
relaxed atmosphere.

.

4

#1872#680#28884#2619#68
o#3445#6930#124#6073#21
57#2157#6073#6073#6930
#124#124#2157#3445#2157#
3526#6073#6073#6930#215
7#6930#3526:#5178#2517#6
498#2619#6187#4863

t3: Change book, dog breed, background
(

In the image, a shiba dog and an owl
are sitting on top of a dog house that
resembles a blue book. The book is
open and the dog appears to be
reading it. The dog house is placed on
a windowsill, and the dog is
surrounded by two potted plants, one
on each side. The background features
a large window with a snow mountain
visible outside. The scene is set in a
cozy and relaxed atmosphere.

.

4

#1872#680#2888#2619#68
o#3445#6930#124#6073#21
57#2157#6073#6073#6930
#124#124#2157#3445%2157#
3526#6073#6073#6930#215

7#6930#3526#5178#25174#6
498#2619#6187#4863

t3: Change vokens from Figure 6 (d) former

-
In the image, a shiba dog and an owl
are sitting on top of a dog house that
resembles a blue book. The book is
open and the dog appears to be
reading it. The dog house is placed on
a windowsill, and the dog is
surrounded by two potted plants, one
on each side. The background features
a large window with a snow mountain
visible outside. The scene is set in a
cozy and relaxed atmosphere.

.

+

4

#3078#2157#3294#1579#68
o#2560#3294#7216#7914#2
315#2315#1579#7914#3294#
2401#7216#2315#430#2315#
281143294 #1579#3294#2315
#4671#1579#2811#2811#329
4#7914#11314#5120

Figure 14: Interactive example of editing the generation process by manipulating the autoregressive predicted latents. The
top row displays images generated using autoregressively produced latent tokens, and the subsequent rows show the images
re-generated after applying editing on the latents. The guidance scale is set 7.0.
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