
Under review as a conference paper at ICLR 2024

CHEF: A COMPREHENSIVE EVALUATION FRAME-
WORK FOR STANDARDIZED ASSESSMENT OF MULTI-
MODAL LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Multimodal Large Language Models (MLLMs) have shown impressive abilities
in interacting with visual content with myriad potential downstream tasks. How-
ever, even though a list of benchmarks has been proposed, the capabilities and
limitations of MLLMs are still not comprehensively understood, due to a lack of
a standardized and holistic evaluation framework. To this end, we present the
first Comprehensive Evaluation Framework (ChEF) that can holistically profile
each MLLM and fairly compare different MLLMs. First, we structure ChEF as
four modular components, i.e., Scenario as scalable multimodal datasets, Instruc-
tion as flexible instruction retrieving formulae, Inferencer as reliable question-
answering strategies, and Metric as indicative task-specific score functions. Based
on them, ChEF facilitates versatile evaluations in a standardized framework, and
new evaluations can be built by designing new Recipes (systematic selection of
these four components). Notably, current MLLM benchmarks can be readily
summarized as recipes of ChEF. Second, we introduce 6 new recipes to quantify
competent MLLMs’ desired capabilities (or called desiderata, i.e., calibration, in-
context learning, instruction following, language performance, hallucination, and
robustness) as reliable agents that can perform real-world multimodal interactions.
Third, we conduct a large-scale evaluation of 9 prominent MLLMs on 9 scenarios
and 6 desiderata. Our evaluation summarized over 20 valuable observations con-
cerning the generalizability of MLLMs across various scenarios and the compos-
ite capability of MLLMs required for multimodal interactions. We will publicly
release all the detailed implementations for further analysis, as well as an easy-to-
use modular toolkit for the integration of new recipes and models, so that ChEF
can be a growing evaluation framework for the MLLM community.

1 INTRODUCTION

By applying the powerful Large Language Models (LLMs) (OpenAI, 2023; Chiang et al., 2023; Tou-
vron et al., 2023) as a universal task interface, recent works on Multimodal Large Language Models
(MLLMs) (Liu et al., 2023a; Zhu et al., 2023; Dai et al., 2023) have shown impressive abilities to in-
teract with visual contents through question-answering dialogues and are expected to address more
complex multimodal tasks that can harness LLMs’ generalization ability to myriad downstream sce-
narios. Yet the capabilities and limitations of MLLMs are still not well understood, and we observe
a lack of a standardized framework that can comprehensively evaluate different MLLMs. Recent
benchmarks often focus on building a multimodal evaluation dataset for MLLMs (Li et al., 2023b;
Liu et al., 2023c; Fu et al., 2023) or only evaluate one or a few factors of MLLMs (Shao et al.,
2023; Li et al., 2023d; Yu et al., 2023; Bitton et al., 2023), or attempt to establish a framework
but lack scalability and have limits in their comprehensiveness (Yin et al., 2023; Xu et al., 2023) 1.
This makes a thorough assessment of each model and reliable comparisons among various models
challenging.

To address these issues, we believe that a comprehensive evaluation framework, which is specially
designed for MLLMs, should encompass scalable datasets about multimodal tasks that can be han-

1More related works are provided in Supplementary Materials (Section A).
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(a)

(b)

Figure 1: (a) ChEF Overview. (b) Current MLLM benchmarks can be readily absorbed into ChEF.
Acc. is the accuracy. Acc.* is the accuracy from GPT-based metric. ∩ means overlap with ChEF.
ICL, Lang. Perf., Instruct. Follow. are shorts for in-context learning, language performance, and
instruction following, respectively.

dled by MLLMs. For each model, we should evaluate the performance in a broad set of perspectives
(i.e. capabilities more than multimodal perception and reasoning, such as robustness, in-context
learning, and etc.) that are vital to profile the intrinsic properties of MLLMs, especially as the
agents that can perform real-world multimodal interaction. Moreover, meaningful comparisons
among MLLMs require standardization in the evaluation process so that each model can be conve-
niently adapted. To this end, as shown in Figure 1(a), we present ChEF, a Comprehensive Evaluation
Framework for reliable and indicative assessment of MLLMs, which is highly scalable and can be
flexibly modified to adapt to the evaluation of any new model or task. It is modularly designed with
four components, i.e., Scenario, Instruction, Inferencer, and Metric.
(1) Scenarios are a set of datasets concerning representative multimodal tasks that are suitable for
MLLMs. Scenarios are scalable by design, allowing the inclusion of any related dataset if neces-
sary. We have included several prominent single-task datasets, such as CIFAR-10 (Krizhevsky &
Hinton, 2009) for image classification, VOC2012 (Everingham et al., 2012) for object detection, Sci-
enceQA (Lu et al., 2022) for multimodal question-answering. Recent multi-task benchmark datasets
proposed for evaluating MLLMs, such as MMBench (Fu et al., 2023) and SEEDBench (Li et al.,
2023b), are also accessible as Scenarios.
(2) Instruction focuses on how to pose questions and set instruction examples to the MLLMs. We
integrate various standard queries and query pools adaptive to each MLLM, and multimodal in-
context example (ICE) retrieving strategies for in-context learning (ICL) (Wu et al., 2023; Brown
et al., 2020). Both are tailored to specific Scenarios. To the best of our knowledge, we are the first
to incorporate ICL into the evaluation framework. The design of Instruction makes it flexible to
evaluate diverse Scenarios within the same framework.
(3) Inferencer pertains to how an MLLM answers questions. In a single-turn question-answering
(QA), in addition to the standard textual outputs (Direct) that may be hard to compare with the
ground-truth answers, we can employ the Perplexity (PPL) (Klein et al., 2017) to select the most
probable candidate answers, or Chain-of-Thought (CoT) (Zhang et al., 2023) prompting to increase
the reliability of the prediction. The Inferencer also allows Multi-Turn, in which PPL, CoT, and
Direct outputs can be applied in turns, and makes the evaluation result reliable.
(4) Metrics are a set of score functions designed to evaluate the performance of each MLLM. For
example, we include task-specific metrics such as accuracy for classification or multi-choice QA,
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mAP for detection, BLEU for captioning, and etc. More metrics can be included when evaluating the
MLLMs from new perspectives, such as Expected Calibration Error (ECE) (Naeini et al., 2015) if we
would like to know how the model is aware of its uncertainty in prediction, GPT-based metric (Chi-
ang & Lee, 2023) if we would like the outputs to be readable as natural language. The inclusion of
appropriate and newly defined metrics ensures that the evaluation results are more indicative.
With a systematic selection of Scenarios, Instructions, Inferencers, and Metrics, ChEF facilitates
versatile evaluations in a standardized framework. Users can easily build new evaluations according
to new Recipes (i.e. specific choices of the four components). For example, current MLLM bench-
marks (Fu et al., 2023; Li et al., 2023b; Liu et al., 2023c; Bitton et al., 2023; Yu et al., 2023; Xu et al.,
2023; Yin et al., 2023) can be summarized as different Recipes, as shown in Figure 1(b), and thus
can be readily absorbed into ChEF. We will extensively discuss the design principles in Section 2.1.
Moreover, we view ChEF as a growing framework, where each component can be evolved according
to the emerging techniques or applications. We will continuously update the ChEF framework with
a wider range of accessible models and evaluation tasks.

Based on ChEF, it becomes rather convenient to set up new evaluations to quantify the desired
capabilities (or called desiderata) that a competent MLLM model should possess, as a reliable
agent that can perform real-world multimodal interactions. These desiderata include:

• Calibration: Does MLLM express accurate uncertainty and confidence?
• In-context Learning: Does MLLM learn from instruction examples?
• Instruction Following: Does MLLM adhere to instructions?
• Language Performance: Does MLLM describe visual content in readable language?
• Hallucination: Does MLLM avoid mentioning objects that do not exist in the images?
• Robustness: Is MLLM robust to corruptions in the multimodal inputs?

Each desideratum is evaluated by constructing the evaluation pipeline from a ChEF Recipe. We will
introduce the Recipes for the desiderata in Section 2.3.

Overall, we comprehensively evaluated 9 MLLMs across 9 Scenarios and 6 desiderata. Our evalua-
tion yields the following 3 key findings:

(1) Recent MLLMs cannot perform well across all Scenarios. There is a significant tug-of-war
issue (Hadsell et al., 2020) between different tasks. There are also several critical tasks that can not
be addressed by recent MLLMs.
(2) Recent MLLMs are struggling with in-context learning, instruction following, and robustness,
thus they may fall short of real-world multimodal interactions.
(3) There is a strong correlation between the desiderata and visual performance. Evaluating the
desiderata reveals the intrinsic property on Scenarios that used to evaluate a composite performance.

2 CHEF: A COMPREHENSIVE EVALUATION FRAMEWORK

In this section, we first list the design principles of ChEF in Section 2.1, and then depict how to con-
duct an evaluation process based on a Recipe of selecting the four modules in ChEF (Section 2.2).
Furthermore, we introduce the Recipes of six desired capabilities (or called desiderata) that a com-
petent MLLM should have, as shown in Section 2.3.

2.1 DESIGN PRINCIPLES

ChEF is a comprehensive evaluation framework aiming at providing a fair and holistic assessment
of MLLMs’ performance across diverse multimodal tasks. To accomplish this objective, our design
principles encompass the following key aspects:
(1) Modular. We decouple the evaluation framework into four modular components 2: Scenario,
Instruction, Inferencer, and Metric, so as to enable fast modification of each component and ensure
consistent evaluation results across different benchmark datasets.
(2) Scalable. We implement easy-to-use interfaces to streamline the integration of new Scenarios
into the framework and have included almost all recent benchmark datasets into the Scenario.

2Details of these four components are provided in Supplementary Materials (Section B).

3



Under review as a conference paper at ICLR 2024

Figure 2: Two examples of Recipes in ChEF. A Recipe consists of {Scenario, Instruction, Infer-
encer, Metric}. The Recipe of (a) is {Flickr30k, ICE, PPL, Accuracy}, while (b) is {VOC2012,
Query, Multi-Turn, Accuracy}.

(3) Flexible. We design ChEF to accommodate the varying input formats supported by different
MLLMs, including Queries and in-context learning examples (ICE). Based on these Instructions,
MLLMs can generate outputs that are suitable for specific Scenarios.
(4) Reliable. We include three more reliable Inferencers, such as CoT and PPL, as well as their
multi-round combination (Multi-Turn), in addition to standard free-form outputs (Direct).
These Inferencers make the evaluation more reliable, and better tailored to reflect the precise per-
ception or reasoning abilities that the Scenarios tend to assess.
(5) Indicative. We utilize a list of task-specific metrics ranging from metrics for vision tasks to
the GPT-based metric for language proficiency. Each MLLM’s textual outputs are adapted to these
metrics, so as to indicatively measure that the MLLMs can actually perform the target tasks.

2.2 EXEMPLAR RECIPES AND THEIR EVALUATION PROCESSES

For an illustration of how each component functions and the overall evaluation is processed, we
provide two examples of Recipes in Figure 2.
(1) Image Captioning on Flicker30k. In Figure 2(a), the Scenario is Flickr30k and the task is
image captioning. The Instruction does not only include the standard query “Generate caption of
this image”, but also Top-k ICE to guide the generation of captions. These examples are retrieved
according to image similarity. The Inferencer applies single-round PPL to measure how each of the
four answers (as the answer pool) is consistent with the input image, in the form of probability. The
negative answers are retrieved based on text similarity. Using PPL instead of free-form outputs con-
strains the scope of the captions and thus can be measured more reliably. Finally, to be compatible
with PPL, the Metric applies accuracy to determine the correctness of the prediction.
(2) Object Detection on VOC2012. Object detection is another typical vision task. In Figure 2(b),
we apply VOC2012 as the Scenario. The Instruction has no ICE, but just a standard query. The
Inferencer is PPL that is conducted in two rounds. In the first round, ask the MLLMs “What is in
the image?”, and in the second round, ask the MLLMs the bounding box of the predicated object.
Note that the answer pools of the bounding boxes are generated by random scaling and translating
the ground-truth bounding boxes. The Metric is accuracy as we transform the detection task into a
multi-choice question-answering paradigm.

2.3 DESIDERATA

As shown in Figure 3, we implement six more evaluations based on the desiderata that a competent
MLLM model should have, i.e., calibration, in-context learning, instruction following, language
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Figure 3: Recipes for evaluating six dimensions of desiderata. 1) All six dimensions are assessed
on MMBench and ScienceQA, except for Hallucination, which is evaluated solely on MSCOCO; 2)
All use standard query as Instruction, except ICL uses random ICE; 3) All employ Multi-Turn
from CoT to PPL as Inferencer, except Hallucination with a single PPL; 4) The Metric for each
dimension is specifically designed for the respective evaluation.

Figure 4: The exemplar of desiderata. The distinguished design of each desideratum is marked
in red. For calibration evaluation, the prediction confidence is calculated to determine the gap be-
tween confidence and accuracy. Instruction following is evaluated through verbalizer manipulation.
In-context learning is evaluated by providing ICE in the instruction. Robustness is assessed by in-
troducing noise to both the image and text inputs. Language performance is evaluated by instructing
the model to generate chain-of-thought content. Hallucination is solely evaluated on MSCOCO, and
evaluated by querying whether a specific object is present in the image.

performance, robustness, and hallucination. Each dimension is assessed using a specially designed
Recipe. To fulfill consistent evaluations among different dimensions of the desiderata, the Scenarios
are almost MMBench (Liu et al., 2023c) and ScienceQA (Lu et al., 2022), except that hallucination
is evaluated on MSCOCO (Lin et al., 2014). The Inferencers share a similar strategy. Hallucination
applies PPL in a single round, while the rest desiderata use the same Multi-Turn that is composed
of CoT and PPL, to increase the reliability of the prediction. In the following part, we introduce the
rest components in each Recipe.

(1) Calibration. It evaluates how the uncertainty about each MLLM’s prediction is aligned with
its accuracy, as highlighted by HELM (Liang et al., 2022). As shown in Figure 4, its instruc-
tion is a standard query. Moreover, calibration is measured using the Expected Calibration Error
(ECE) (Naeini et al., 2015; Guo et al., 2017), which calculates the difference between the model’s
predicted probability and the fraction of times the model is correct.

(2) In-context Learning. It evaluates the crucial in-context learning (ICL) ability of an MLLM. To
evaluate this desideratum, the Instruction is set to include randomly retrieved in-context examples
(ICE). Note that ICE can include images. To assess the ICL ability, we introduce the Relative ICL
Accuracy for Multi-Choice QA (RIAM), which measures the relative accuracy improvement beyond
random guessing, written as

RIAM = (accICL − acc0-shot)/(acc0-shot − accrand), (1)
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where accICL denotes the average accuracy among the results based on the instructions with different
shots of in-context examples. acc0-shot means zero-shot prediction without ICE. accrand means the
accuracy by random guessing.

(3) Instruction Following. It evaluates how exactly the MLLM relies on the given instructions. The
Instruction is set as standard query, which is retrieved from the three categories of instructions as
the way used in verbalizer manipulation, i.e., natural, neutral, and unnatural (Li et al., 2023c). The
Metric applied here is the Match Ratio (MR), which calculates the percentage of textual outputs that
are matched with the outputs indicated by the verbalizer instructions.

(4) Language Performance. It evaluates the quality of the generated sentences. Since the applied
Inferencer does not generate free-form output, we evaluate the language performance of the outputs
corresponding to the chain-of-thought. Knowing that GPT-based metrics have shown to be well
correlated with human evaluation (Zheng et al., 2023; Liu et al., 2023b; Wang et al., 2023), we use
GPT-4 to evaluate the language performance of the CoT outputs based on the ground-truth sentences
(i.e. questions and answers) in the question-answering tasks. Moreover, we choose the average
results of multiple rounds of evaluations to eliminate the flickering of the GPT-based evaluations.

(5) Robustness. It measures how robust an MLLM is to corruptions in the multimodal inputs. The
image corruptions include noise, blur, weather, digital (Hendrycks & Dietterich, 2019) and common
data augmentation techniques. The textual corruptions include sentence-, word- and character-level
corruptions (Chen et al., 2023b), as well as switching choices for multi-choice question-answering.

The Metric in this desideratum is Relative Robustness for Multi-Choice (RRM), written as

RRM = (acccrp − accrand)/(acc − accrand), (2)

where acccrp denotes the accuracy after corruption, acc is the accuracy before corruption. accrand
means the accuracy by random guessing.

(6) Hallucination. It evaluates how an MLLM avoids mentioning visual objects that do not exist
in the images. The Scenario is MSCOCO. We follow the Polling-based Object Probing Evaluation
(POPE) (Li et al., 2023d) in this desideratum. It transforms hallucination evaluation into a set
of binary classification tasks. Essentially, the MLLMs are posed Yes-or-No questions about the
existence of some particular objects in the images, such as “Is there a car in the image?” Notably,
PPL is applied to as a more reliable Inferencer. The Metric applied here is accuracy.

3 EXPERIMENTS

3.1 EVALUATION SETUP

A wide range of recently introduced MLLMs are evaluated in ChEF, including LLaVA (Liu et al.,
2023a), LAMM (Yin et al., 2023), MiniGPT4 (Zhu et al., 2023), mPLUG-Owl (mPLUG) (Ye et al.,
2023), Otter (Li et al., 2023a), InstructBLIP (Dai et al., 2023), LLaMA-Adapter-v2 (LAv2) (Gao
et al., 2023), as well as models specifically designed for grounding tasks, such as Shikra (Chen
et al., 2023a) and Kosmos-2 (Peng et al., 2023). These MLLMs are evaluated across various single-
task Scenarios, including CIFAR-10 (CIFAR) (Krizhevsky & Hinton, 2009) for classification, Om-
nibenchmark (Omni) (Zhang et al., 2022) for fine-grained classification, VOC2012 (VOC) (Ever-
ingham et al., 2012) for object detection, FSC147 (FSC) (Ranjan et al., 2021) for object counting,
Flickr30k (Flickr) (Young et al., 2014) for image captioning and ScienceQA (SQA) (Lu et al., 2022)
for multimodal question-answering. We also evaluate the MLLMs on several multi-task datasets
including MME (Fu et al., 2023), MMbench (MM) (Liu et al., 2023c) 3, and Seedbench (SEED) (Li
et al., 2023b).

3.2 STANDARD PERFORMANCE OF VISUAL ABILITY

For each Scenario, we conduct various experiments with diverse Recipes, from which, the Recipe
behaving most reliably (i.e. stable to Instruction variations) is selected as the default setting 4 to

3MMBench provides two evaluation settings (i.e., VanillaEval and CircularEval). VanillaEval is adopted in
the default Recipe.

4The default Recipe is also demonstrated to display and approach the best performance of each MLLM, as
shown in Figure 6(a-b).
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Table 1: Visual performance of MLLMs on different Scenarios. In SQA and MM, as options
{A, B, C, D} are explicitly provided in the questions, models are required to output their answers in
the form of options. Similarly, MME also requires models to provide “yes” or “no” outputs. These
Scenarios can be considered as a discriminative (discrim.) question type. Conversely, the other
Scenarios are characterized by generative (gen.) types, as they require responses without predefined
options in questions. The abbreviations for Scenarios and MLLMs are defined in section 3.1. For
Omnibenchmark (Omni†), weighted accuracy is employed, which entails a weighted accuracy cal-
culation based on the granularity of classification. The entries that are both bold and underlined
indicate the best performance.

Scenario CIFAR Flickr VOC Omni† FSC SQA MM SEED MME
Question Type gen. gen. gen. gen. gen. discrim. discrim. gen. discrim.

LLaVA 89.40 80.80 26.01 26.62 24.11 46.55 43.13 46.45 50.17
LAMM 80.70 72.50 29.58 22.54 19.33 52.75 44.47 47.03 55.82
MiniGPT-4 80.80 71.50 26.51 30.60 22.52 47.0 54.34 46.48 57.12
mPLUG 79.67 79.20 28.50 30.70 20.92 48.44 49.57 42.81 71.59
Otter 81.34 71.30 27.15 26.41 20.00 50.22 53.91 36.40 63.78
LAv2 70.17 79.50 31.60 32.00 21.26 54.34 57.06 35.41 69.90
InstructBLIP 84.27 79.40 27.65 30.75 25.04 55.18 65.73 50.81 72.0
Shikra 68.71 94.70 55.23 22.89 22.43 45.21 63.26 49.79 70.28
Kosmos-2 88.87 85.70 54.55 21.34 21.93 34.60 25.60 46.38 52.95
Random Choice 10.0 25.00 25.00 10.94 20.00 35.80 27.57 24.27 50.00

evaluate the visual performance of all MLLMs, as shown in Table 1. As the default Recipes incor-
porate PPL, which can be regarded as a multi-choice question-answering paradigm, we also provide
the accuracy of random choice for each Scenario. There are some observations as follows:

(1) InstructBLIP attains superior performance across most Scenarios. It is worth noting that both
Shikra and InstructBLIP showcase exceptional performance on the multi-task datasets, including
MME, MMBench, and SEEDBench, while the performance of other models displays inconsisten-
cies. The visual performance of these MLLMs exhibits strong trade-offs across different tasks.

(2) All the MLLMs struggle in the object counting task (i.e. FSC), primarily due to the complexities
associated with the precise identification of numerous objects within an image.

(3) There is a capability gap between detection and other tasks. Shikra and Kosmos-2 demonstrate
remarkable detection capabilities, owing to their specialized training on detection datasets. However,
Kosmos-2 exhibits limited aptitude in other Scenarios, especially on MMBench and ScienceQA.
Despite its ability to perform perception and reasoning tasks, Kosmos-2 struggles to comprehend
the meaning of options {A, B, C, D} provided in the question, resulting in difficulty in aligning the
answers to options. As a consequence, it exhibits lower performance on discriminative tasks.

The unified evaluation of these models on diverse Scenarios in the ChEF enables us to conduct a
fair comparison, discerning the optimal architectures and methodologies for specific Scenarios.

3.3 RESULTS OF DESIDERATA

The scores of all the desiderata on MLLMs are shown in Figure 5 with the corresponding accuracy
of MMBench which we consider as the most representative assessment of MLLMs’ visual perfor-
mance. The six dimensions of desiderata are deemed essential for an MLLM to function as an
interactive AI agent, emphasizing human-like interactions. However, the poor performance on these
dimensions shows that current MLLMs fall short of being an AI agent capable of interacting with
humans.

(1) Most MLLMs exhibit good calibration, indicating their ability to accurately convey uncertainty.
This is primarily due to the relatively low accuracy of these models and their lack of confidence in
the responses, which results in such consistency.

(2) Most MLLMs achieve satisfactory language performance, except for Kosmos-2, which provides
few reasoning processes in its chain-of-thought responses.

(3) InstructBLIP and Shikra surpass other models on hallucination and meanwhile achieve superior
visual performance on MMBench, emphasizing the crucial role of hallucination.
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Figure 5: Results of desiderata. The dashline is the accuracy evaluated on MMBench. The score
for each dimension is computed by normalizing the results from the specific metric to a range of
0-100. Calibration score is represented by 1-ECE. Instruction following score is the average MR
across different verbalizer settings. In-context learning score is the average RIAM across various
shot numbers. Language performance score is normalized from the results of the GPT-based metric.
Robustness score is normalized from RMM and hallucination score directly represents accuracy.

(4) Most MLLMs exhibit poor performance in ICL. Notably, Otter, which is specifically trained on
in-context instruction tuning data, though performs the best ICL among the 9 MLLMs, also struggles
in ICL primarily due to its limited proficiency in visual tasks.

(5) Instruction following and robustness pose challenges for most MLLMs in effectively handling
Instructions that deviate from their priors and their susceptibility to noisy multimodal inputs.

3.4 CHEF PROVIDES STABLE ASSESSMENT

(a) (b)

Figure 6: Results of various Inferencers across
different queries on CIFAR10 and ScienceQA.
Black lines within each boxplot represent the me-
dian. Boxplots display the accuracy distribution.

Due to the modular design of ChEF, it has the
flexibility to employ different Recipes for eval-
uating the same Scenario. To get a reliable and
fair evaluation, we conduct exhaustive experi-
ments to identify the Recipe that behaves more
stable on Instruction variations than previous
approaches as the default setting.

Two examples, shown in Figure 6, are con-
ducted on CIFAR10 and ScienceQA with dis-
tinct Recipes for three MLLMs. Figure 6(a)
shows that utilizing Direct as Inferencer pro-
posed in LAMM (Yin et al., 2023) (with the
inclusion of synonyms judgment in the met-
ric) and LVLM (Xu et al., 2023) (without syn-
onyms) with different queries yields a large
variance. Alternatively, employing the PPL can
substantially mitigate these fluctuations with a
much smaller variance, accompanied by a note-
worthy gain in accuracy for all MLLMs. Sim-

ilar observations can be also found in Figure 6(b). We further leverage CoT, which mandates the
model to provide its reasoning process. Although the accuracy has a slight gain, it does not bol-
ster the stability. Nevertheless, the optimal combination of accuracy and stability emerges when
employing both the CoT and PPL in a Multi-Turn Inferencer.

Based on these interesting discoveries, we believe that ChEF, in conjunction with the meticulously
derived and recommended Recipes for diverse Scenarios, can deliver a trustworthy and indicative as-
sessment of MLLMs. We also conduct numerous experiments to carefully select appropriate Recipes
for reliable evaluations across the six dimensions of desiderata 5.

3.5 CORRELATION BETWEEN VISUAL PERFORMANCE AND DESIDERATA

To investigate the relationship between visual performance and the desiderata, we display the Pear-
son correlation matrix in Figure 7(a).

5More evidence of reliability is provided in the Supplementary Materials (Section F).
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(a) (b)

Figure 7: (a) Pearson correlation matrix of desiderata and
accuracy on MMBench. Cooler colors indicate higher cor-
relations. (b) Choice distribution with accuracy on MM-
Bench. GT indicates the actual choice distribution.

(1) Calibration is an independent
dimension, primarily assessing a
model’s proficiency in expressing un-
certainty, without direct correlations
to other dimensions.
(2) ICL demonstrates correlation
with others, as their evaluations in-
volve specific instructional aspects.
MLLMs with enhanced ICL ability
are better equipped to provide rele-
vant responses to unseen cases.
(3) Instruction following demon-
strates a significant correlation with
language performance, robustness,
and accuracy. As language perfor-
mance assesses the content of an
MLLM’s reasoning process, which is obtained through instructional guidance, MLLMs with
stronger instruction following capabilities are more likely to adhere to the “step by step” instruc-
tion and generate a comprehensive reasoning process.
(4) Hallucination is strongly correlated with the performance on MMBench. The choice distribution
of three models, as shown in Figure 7(b), reveals that LLaVA and LAMM prefer option D to C,
while Shikra tends to favor option A over D. These MLLMs display lower accuracy on options they
are inclined to answer and perform better on options that they resist. The distinct prior to options,
which is caused by the hallucination issue, leads to poor performance.
It can be concluded that the evaluation of Scenarios that involve discriminative questions evaluates a
composite performance, i.e., visual performance, and additional dimensions of abilities, such as the
comprehension of options. The evaluation of desiderata unveils intrinsic properties beyond visual
performance.

4 CONCLUSION

In this work, we introduce ChEF, a comprehensive evaluation framework for holistically profiling
and comparing MLLMs. ChEF’s modular design (i.e. Scenario, Instruction, Inferencer, and Metric)
enables versatile evaluations in a standardized framework. Based on ChEF, any evaluation, including
current MLLM benchmarks, can be summarized as Recipes of ChEF. We further introduce recipes
to assess MLLMs’ six dimensions of desiderata and conduct large-scale experiments to test the
generalizability of MLLMs across various scenarios and their composite capability for multimodal
interactions.

Limitations. As one of the pioneering works in this domain, our study has certain limitations.
Firstly, ChEF is still in its nascent stage, currently supporting only a limited number of Scenarios
and models. For instance, Scenarios evaluating safety and biases have not been incorporated yet.
As we move forward, we aim to include a wider array of Scenarios and other models to further
enrich and expand the framework’s applicability and comprehensiveness. Secondly, there remains a
discernible performance variance among models when confronted with different queries. While our
provided Recipes have significantly mitigated these disparities, such variations are inevitable. Fur-
ther research is needed to more accurately assess and optimize model performances across diverse
queries to achieve more consistent evaluation outcomes. Furthermore, the utilization of the GPT API
for evaluation remains an area where the effectiveness has not been conclusively determined. We
will continue to stay updated with the latest advancements in the field and leverage the scalability of
ChEF to optimize and update accordingly.
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