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ABSTRACT

We present ζ-DP, an extension of differential privacy (DP) to complex-valued
functions. After introducing the complex Gaussian mechanism, whose proper-
ties we characterise in terms of pε, δq-DP, Rényi DP and Gaussian DP, we present
ζ-DP stochastic gradient descent (ζ-DP-SGD), a variant of DP-SGD for train-
ing complex-valued neural networks. We experimentally evaluate ζ-DP-SGD on
three complex-valued tasks, i.e. electrocardiogram classification, speech classi-
fication and magnetic resonance imaging (MRI) reconstruction. Moreover, we
benchmark the performance of our methods on real- and complex-valued variants
of the CIFAR-10 and MNIST datasets as well as a large range of complex-valued
activation functions. Our experiments demonstrate that DP training of complex-
valued neural networks is possible with rigorous privacy guarantees and excellent
utility and represents a promising technique to mitigate privacy-utility trade-offs.

1 INTRODUCTION

The ability to harness diverse, feature-rich datasets for algorithm training can allow the scientific
community to create machine learning (ML) models capable of solving challenging data-driven
tasks. These include the creation of robust autonomous vehicles (Rao & Frtunikj, 2018), early-
stage cancer discovery (Cruz & Wishart, 2006) or disease survival prediction (Rau et al., 2018). A
subclass of these ML problems is able to profit particularly from the ability to execute deep learning
workflows over complex-valued datasets, such as magnetic resonance imaging (MRI) (Virtue et al.,
2017) or time-series data (Fan & Xiong, 2013; Kociuba & Rowe, 2016). Complex-valued deep
learning has seen increased traction in the past years, owing in part to the improved support by ML
frameworks and the broader availability of graphics processing unit (GPU) hardware able to tackle
the increased computational requirements (Bassey et al., 2021). However, since complex numbers
are often used to represent signals derived from sensitive biological or medical records (Cole et al.,
2020; Küstner et al., 2020; Peker, 2016), privacy constraints can render such datasets hard to obtain.
The resulting data scarcity impairs effective model training, prompting the adoption of regulation-
compliant and privacy-preserving methods for data access.

Distributed computation methods such as federated learning (FL) (Konečný et al., 2016) can partially
address this requirement by only requiring participants to share results of the local computation
rather than exchange data over the network. However, FL on its own has repeatedly been shown to
be insufficient in the task of privacy protection (Geiping et al., 2020; Yin et al., 2021). Thus, bridging
the gap between data protection and utilisation for algorithmic training requires methods able to offer
objective privacy guarantees. Differential privacy (DP) (Dwork et al., 2014) has established itself as
the cornerstone of such techniques and has been deployed in contexts like the US Census (Abowd,
2018) and distributed learning on mobile devices (Cormode et al., 2018). DP’s purview has been
expanded to encompass deep learning through the introduction of DP stochastic gradient descent
(DP-SGD) (Abadi et al., 2016), allowing for the training of deep neural networks on private data. So
far, however, the application of DP to complex-valued ML tasks remains drastically under-explored.

Our work attempts to address this challenge through the following contributions:
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1. We extend DP to the complex domain through a collection of techniques we refer to as
ζ-DP. We use this term instead of “complex-valued DP” for brevity and to avoid confu-
sion with the abbreviation “cDP”, which is already used for concentrated DP (Dwork &
Rothblum, 2016). The letter ζ alludes to the complex-valued Riemann ζ function and is
intended to convey the notion of “continuation” to the complex domain.

2. We define and discuss the complex Gaussian Mechanism (GM) in Section 4.1 and show
that its properties generalise corresponding results on real-valued functions. This allows
us to interpret the complex GM through the lens of previous work on pε, δq-DP, Rényi-DP
(RDP) and Gaussian DP (GDP).

3. To enable the design and privacy-preserving training of complex-valued deep learning mod-
els, we introduce ζ-DP-SGD in Section 4.2.

4. In Section 5 we experimentally evaluate the aforementioned techniques on several real-life
neural network training tasks, i.e. speech classification, abnormality detection in electro-
cardiograms and magnetic resonance imaging (MRI) reconstruction. Moreover, we estab-
lish baselines for future work by providing benchmark results on real- and complex-valued
variants of the MNIST and CIFAR-10 datasets and on complex neural network activation
functions both with and without ζ-DP-SGD.

5. We conclude that our DP analysis and the utilisation of tight sensitivity accounting through
the Wirtinger/CR-calculus allows practitioners to avail themselves of the higher learning
capacity of neural networks with complex-valued weights to achieve improved utility with
the same privacy guarantees as corresponding real-valued architectures.

2 RELATED WORK

Prior work has addressed several challenges in non-private complex-valued deep learning, including
the introduction of appropriate activation functions, and has presented applications in domains such
as MRI reconstruction (Küstner et al., 2020) or time series analysis (Fink et al., 2014). For a detailed
overview of methodology and applications, we refer to Hirose (2012); Bassey et al. (2021). Until
recently, deep learning frameworks did not fully support complex arithmetic and automatic differ-
entiation. Hence, previous works (Trabelsi et al., 2017; Nazarov & Burnaev, 2020) express Cn as
R2n and use two real-valued channels rather than complex floating-point numbers. This approach
can lead to a spurious increase in function sensitivity by incorrectly computing gradient magnitudes
and, by extension, to the addition of excessive noise in the private setting, adversely impacting util-
ity. Our work specifically addresses this shortcoming through the use of complex-valued weights
and the Wirtinger/CR-calculus (Wirtinger, 1927; Kreutz-Delgado, 2009). Only a limited number of
studies have utilised DP techniques in conjunction with complex-valued data (Fan & Xiong, 2013;
Fioretto et al., 2019), however, to our knowledge none has formalised a notion of complex-valued
DP or investigated neural network applications.

The pε, δq-definition of DP and the Gaussian mechanism are essential to our formalism, and details
on their real-valued definitions can be found in Dwork et al. (2014). As stated above, DP-SGD
was introduced by Abadi et al. (2016). Rényi-DP (RDP) was introduced by Mironov (2017) as a
relaxation of pε, δq-DP with favourable properties under composition, rendering it particularly useful
for DP-SGD privacy accounting. Gaussian DP (GDP) was introduced by Dong et al. (2019) and
tailored to the specific properties of the Gaussian mechanism, for which it provides a tight privacy
analysis.

3 BACKGROUND

We begin by introducing key terminology required in the rest of our work. We assume that a trusted
analyst in possession of sensitive data wishes to publish the results of some analysis performed on
this data while offering the individuals to whom the data belongs a DP guarantee. We will refer to
the set of all sensitive records as the sensitive database D, whereby we assume that one individual’s
data is only present in the database once. Let X , the metric space of all sensitive databases, be
equipped with the Hamming metric dX and letD P X . D’s adjacent databaseD1 can be constructed
from D by adding or removing exactly one database row (that is, one individual’s data), such that
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dXpD,D
1q “ 1. The analyst executes a query (function) f , for example a mean calculation, over

the database. We first define the sensitivity of f :
Definition 1 (Sensitivity ∆ of f ). Let X and dX be defined as above. f maps the elements of X
to elements of a metric space Y equipped with a metric dY . The (global) sensitivity ∆ of f is then
defined as:

∆pfq “ max
D,D1PX

dY pfpDq, fpD
1qq

dXpD,D1q
, D ‰ D1. (1)

The maximum is taken over all adjacent database pairs in X . When Y is the Euclidean space and
dY is the L2 metric, ∆ is referred to as the L2 sensitivity. We will only use the L2 sensitivity in this
work.

In private data analysis and ML, we are often concerned with differentiable functions; for Lipschitz-
continuous query functions, the equivalence of the Lipschitz constant and the L2-sensitivity
(Raskhodnikova & Smith, 2016) can be exploited:
Definition 2 (Lipschitz constant K of f ). Let X,Y, dX and dY be defined as above. Then f is
said to be K-Lipschitz continuous if and only if a non-negative real number Kf exists for which the
following holds:

dY pfpDq, fpD
1qq ď Kf dXpD,D

1q. (2)

Evidently, Kf ” ∆ by Equation (1) and the definition of adjacency. Moreover, let D be the dif-
ferential operator; then Kf “ sup }Dpfq}, where } ¨ } is the operator norm (O’Searcoid, 2006).
Therefore, for a scalar-valued query function, ∆ ” Kf ” sup }∇f}2.

A DP mechanism adds noise to the results of f calibrated to its sensitivity. Here, we provide the
definition of the (real-valued) Gaussian mechanism (GM):
Definition 3 (Gaussian mechanism). The Gaussian mechanism M operates on the results of a query
function f : Rn ÞÑ Rd with sensitivity ∆ over a sensitive databaseD by outputting fpDq`ξ, where
ξ „ N p0, σ2 Idq. Here, Id denotes the identity matrix with d diagonal elements and σ2 is the
variance of Gaussian noise calibrated to ∆.

The application of the GM with properly calibrated noise satisfies pε, δq-DP:
Definition 4 (pε, δq-DP). The randomised mechanism M preserves pε, δq-DP if, for all pairs of
inputs D and D1 and all subsets S of M’s range:

PpMpfpDq P Sqq ď eε PpMpfpD1q P Sqq ` δ. (3)

A number of relaxations have been proposed to characterise the properties of the GM, of which
Rényi DP is arguably the most widely employed in DP deep learning frameworks owing to its
favourable properties under composition.
Definition 5 (Rényi DP). M preserves pα, ρq-Rényi-DP (RDP) if, for all pairs of inputs D and D1:

Dα

`

MpfpDqq ‖ MpfpD1qq
˘

ď ρ (4)
where Dα denotes the Rényi divergence of order α ą 1 between MpfpDqq and MpfpD1qq. At
α “ 1, the divergence is defined by continuity as the Kullback-Leibler divergence. We note that the
term “between” is an abuse of terminology, as the Rényi divergence is asymmetric. In general, we
will use Dαpp, qq to denote suptDαpp, qq, Dαpq, pqu.

Gaussian DP (GDP) was introduced as a variant of f-DP by Dong et al. (2019) specifically tailored
to the properties of the GM, and provides the tightest possible characterisation of its properties.
Relying on statistical hypothesis testing, f-DP interprets DP through a trade-off function between
the Type I and Type II statistical errors faced by an adversary trying to determine whether one of
the adjacent databases contains the individual or not. GDP is a specialisation of f-DP when the
trade-off-function has the form Gµ :“ T pN p0, 1q,N pµ, 1qq.
Definition 6 (Gaussian DP). M preserves µ-Gaussian DP (GDP) if, for all pairs of adjacent
databases D and D1:

T pMpfpDqq,MpfpD1qqq ě Gµ (5)
where T denotes a trade-off function. In this case, Gµpαq “ Φ

`

Φ´1p1´ αq ´ µq
˘

where α is
the Type I statistical error and Φ is the cumulative distribution of the standard, real-valued normal
distribution.
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4 ζ -DP

In this section we introduce ζ-DP, an extension of DP to complex-valued query functions and mech-
anisms. ζ-DP generalises real-valued DP and allows the re-use of prior theoretical results and soft-
ware implementations.

4.1 THE COMPLEX GAUSSIAN MECHANISM

We begin by introducing a variant of the GM suitable to query functions with codomain C.

Definition 7 (Complex Gaussian mechanism). The complex Gaussian mechanism MC on f : Cn ÞÑ
Cd outputs fpDq`ξ, where ξ „ NCp0, σ

2 Idq and NCp0, σ
2q denotes circularly symmetric complex-

valued Gaussian noise with variance σ2.

Of note, a random variable X „ NCp0, σ
2q can be constructed by independently drawing two

random variablesA,B from a real-valued normal distribution N p0, σ
2

2 q and outputtingX “ A`B i,
where i is the imaginary unit. This property is unique to the complex GM and leverages the fact
that the inner product in Cn is non-bilinear to add noise scaled by

?
2 ¨ σ to each component of the

complex number. Naively “simulating” Cn as R2n, the latter being equipped with a bi-linear inner
product, would instead require the addition of independent Gaussian noise to each component of a
vector with resulting scale 2 ¨ σ.

We now state our main theoretical results and proof sketches. Detailed proofs can be found in
Appendix A.1.

Theorem 1. Let f : Cn ÞÑ Cd be a query function with sensitivity ∆. Then, MC preserves
pε, δpεqq-DP if and only if the following holds @ ε ą 0, δ P r0, 1s:

δpεq ě Φ

ˆ

∆

2σ
´
εσ

∆

˙

´ eεΦ

ˆ

´
∆

2σ
´
εσ

∆

˙

(6)

where Φ denotes the cumulative distribution function of the standard (real-valued) normal distribu-
tion.

Proof (Sketch). It suffices to show that the magnitude of the privacy-loss random variable Ω is
bounded by ε with probability 1 ´ δ. This holds, as Ω is distributed as a real-valued normal dis-
tribution even when O P C, where O is any output of f , seeing as the mean of Ω is distributed as
pfpDq ´ fpD1qqpfpDq ´ fpD1qqH P R, where H denotes the Hermitian transpose.

Theorem 2. Let f be defined as above. Then, MC preserves pα, ρq-RDP if:

σ2 ě
1

2

α∆2

ρ
. (7)

Proof (Sketch). The Rényi divergence of order α ą 1 between two circularly symmetric, complex-
valued normal distributions with means µ0 P Cn and µ1 P Cn and common variance σ2In is:

Dα

`

N pµ0, σ
2Inq ‖ N pµ1, σ

2Inq
˘

“
α xµ0,µ1y

2σ2
“ (8)

“
αpfpDq ´ fpD1qqpfpDq ´ fpD1qqH

2σ2
“
α}fpDq ´ fpD1q}22

2σ2
ď
α∆2

2σ2
, (9)

where x¨y denotes the inner product.

Theorem 3. Let f be defined as above, ∆ be the L2-sensitivity of f and σ be the standard deviation
of MC’s noise. Let Gµ be the trade-off function of a µ-GDP real-valued GM. Then, if λ “ ∆{σ,
MC preserves µ-GDP if and only if λ ď µ. Thus, to preserve µ-GDP, one must choose σ2 such
that:

σ2 ě

ˆ

∆

µ

˙2

. (10)
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Proof (Sketch). We will show that T pNCpfpDq, σq,NCpfpD
1q, σqq ě Gµ.

T
`

NCpfpDq, σq,NCpfpD
1q, σq

˘

“ G}fpDq´fpD1q}2{σ ě (11)

ě G∆{σ ě Gµ ô
∆

σ
ď µñ λ ď µ, (12)

which follows from the fact that }fpDq ´ fpD1q}2 ď ∆ and that Gµ is strictly monotonically
decreasing in µ.

These findings allow for a seamless transfer of results which apply to real-valued functions to the
complex domain. In particular, they yield the following insights:

1. The complex GM inherits all properties of the real-valued GM, such as composition and
sub-sampling amplification, as well as the tight analysis afforded by GDP.

2. The complex GM, like the real-valued GM, is fully characterised by the sensitivity ∆ and
the magnitude of the noise σ.

3. The GM “naturally fits” ζ-DP due to the aforementioned convenient properties of the cir-
cularly symmetric complex-valued Gaussian distribution. As an additional counterexam-
ple, a complex-valued Laplace random variable is naturally non-circular in the complex
(and multivariate) case, even when constructed from independent distributions (Kotz et al.,
2001). Moreover, the utilisation of the L1-metric on the output space of f is disadvanta-
geous, as even for scalar (complex) outputs, the L1 sensitivity can be higher than the L2

sensitivity. Lastly, the utilisation of elliptical Laplace noise is inherently unable to satisfy
pε, 0q-DP in any dimension ą 1 (Reimherr & Awan, 2019). We thus leave the introduc-
tion of alternative strategies for obtaining pε, 0q-DP in the complex-valued setting to future
investigation.

We conclude this section by introducing a modification of the DP stochastic gradient descent (DP-
SGD) algorithm, which will be employed in our experimental evaluation.

4.2 ζ-DP-SGD

The DP-SGD algorithm (Abadi et al., 2016) represents an application of the GM to the training
of deep neural networks. Using the terminology above, each training step of the neural network
(which, in this setting, represents the query) leads to the release of a privatised gradient. Evidently,
the noise magnitude of the GM must be calibrated to the sensitivity of the loss function. However,
most neural network loss functions have a Lipschitz constant which is too high to preserve DP while
maintaining acceptable utility (and –generally –the Lipschitz constant of neural networks is NP-hard
to compute (Scaman & Virmaux, 2018)). Thus, DP-SGD (Abadi et al., 2016) artificially induces a
bounded sensitivity condition by clipping the L2-norm of the gradient to a pre-defined value. A loss
function with real-valued outputs is required for minimisation (even when the function’s arguments
are complex-valued) as the complex plane –contrary to the real number line– does not admit a natu-
ral ordering.
Our implementation of the algorithm makes use of Wirtinger (or CR-) calculus (Kreutz-Delgado,
2009) for gradient computations similar to previous works on complex-valued deep learning (Virtue
et al., 2017; Boeddeker et al., 2017). This technique, discussed in detail Appendix A.5, provides
several benefits: It relaxes the requirement for component functions to be holomorphic (that is, dif-
ferentiable in the complex sense), only requiring them to be individually differentiable with respect
to their real and imaginary components (differentiable in the real sense). For holomorphic functions
C ÞÑ C, CR-derivatives nevertheless recover the correct derivative definition. Thus, CR-derivatives
can also be used to compute the global sensitivity in the C ÞÑ C-case via the Lipschitz constant.
More importantly, for functions C ÞÑ R, they lead to a correct gradient magnitude calculation,
whereas expressing complex-valued functions as vector-valued functions in R2n, a technique often
employed in complex-valued neural network training (Trabelsi et al., 2017), can incur an undesirable
multiplicative sensitivity increase which would diminish the utility of ζ-DP-SGD. We exemplify this
phenomenon and the noise savings CR-calculus can enable in Appendix A.5 and Section 5.1.

ζ-DP-SGD is presented in Algorithm 1 and relies on a modification of the gradient clipping step:
we clip the conjugate gradient, which represents the direction of steepest ascent for a loss function
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L with real-valued outputs and complex-valued arguments:

∇L :“

ˆ

BL
Bθ1

, . . . ,
BL
Bθn

˙

(13)

where
`

θ1, . . . , θn
˘

is the conjugate weight vector. We remark that, due to the aforementioned
properties of the complex GM, the algorithm is compatible with other first-order optimisers (such
as Adam), as well as other clipping techniques, such as per-layer clipping (McMahan et al., 2018).
Moreover, newer methods for analysing mechanism composition, such as the Fourier Accountant
(Koskela et al., 2020) can be used.

Algorithm 1 ζ-DP-SGD
Require: Database with samples tx1, . . . , xNu P Cn, neural network with loss function L and

weight vector θ P Cn. Hyperparameters: learning rate ηt, noise variance σ2, sampling probability
R, gradient norm bound B, total steps T .
Initialize θ0 randomly
for t P rT s do

Draw a lot Lt with sampling probability R using Poisson or uniform sampling
Compute per-sample conjugate gradient
For each i P Lt, compute gtpxiq Ð ∇Lpθt, xiq
Clip conjugate gradient
qgtpxiq Ð gtpxiq{max

´

1, }gtpxiq}2
B

¯

Apply the Complex Gaussian Mechanism and average
rgt Ð

1
L

`
ř

i qgtpxiq `NCp0, σ
2B2 ILq

˘

Descend
θt`1 Ð θt ´ ηtrgt

end for
Output updated neural network weight vector θT and compute the privacy cost.

5 EXPERIMENTAL EVALUATION

Throughout this section, we present results from the experimental evaluation of ζ-DP-SGD. De-
tails on dataset preparation and training can be found in Appendix A.6. All ε-values are converted
(losslessly) from GDP. RDP guarantees are slightly looser and provided in Appendix A.2. We also
provide an experimental evaluation of commonly used complex-valued activation functions for neu-
ral network training with ζ-DP-SGD in Appendix A.3. Lastly, we provide additional benchmark
experiments demonstrating a complex-valued variant of the MNIST dataset in Appendix A.4.

5.1 BENCHMARKING ζ-DP-SGD ON CIFAR-10

We begin by demonstrating that the utilisation of the complex Gaussian mechanism and ζ-DP-SGD
provides increased model utility for the same privacy budget, even on tasks with real-valued inputs in
which no additional information from the input’s imaginary component is available. Moreover, we
empirically confirm that, for ζ-DP-SGD, leveraging the Wirtinger/CR-calculus for gradient com-
putations with respect to complex-valued weights results in a lower sensitivity penalty, and thus
improved performance compared to “simulating” complex-valued neural networks with real-valued
weights in R2n similar to Trabelsi et al. (2017). Further theoretical and experimental evaluation of
this phenomenon can be found in Appendix A.5.
We selected the CIFAR-10 dataset (Krizhevsky et al., 2009), a challenging dataset in the (real-
valued) DP setting. We selected the model architecture recently reported by Papernot et al. (2020),
which we equipped with either complex-valued weights (for training in C or with an additional
weight matrix (for training in R2n). We trained to the same ε values as Papernot et al. (2020) (in
RDP), but modified each image such that the real component contained the image and the imaginary
component was zero-filled (for training in C), or added an additional trailing zero-filled channel (for
training in R2n). The results were identical when the imaginary/second channel components were
filled with the same real-valued image. Table 1 summarises these results. Without DP, the increased
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learning capacity of the complex-valued weights led to improved test set performance compared
to real-valued weights, with identical performance for training in C and in R2n. When DP was
employed, the model trained with ζ-DP-SGD achieved the best performance, outperforming both
the real-valued DP model and the R2n “simulated” complex-valued DP model. This result under-
scores the aforementioned theoretical finding that the complex Gaussian mechanism (contrary to
the naive application of a real-valued multivariate Gaussian mechanism in R2n) provides improved
performance for the same privacy budget even in tasks with real-valued input data.

Table 1: Classification results for Sections 5.1, 5.2 and 5.3. C: Complex-valued weights. DP:
(ζ-)DP-SGD. For the CIFAR-10 dataset, R2n indicates a network architecture utilising two channels
to simulate complex inputs/ model weights. GDP: Gaussian DP accounting. 7: not used. X: used.

Dataset C DP Accuracy ROC-AUC F1-Score Recall GDP ε δ

CIFAR-10

7 7 80% 97% 80% 80% 8 0
X 7 82% 98% 82% 82% 8 0
7 X 58% 91% 58% 59% 7.54 10´5

X X 61% 92% 61% 62% 7.54 10´5

R2n X 58% 90% 58% 57% 7.54 10´5

ECG X 7 87.6% 91.9% 70.8% 81.0% 8 0
X X 88.5% 92.1% 69.8% 71.4% 1.62 5 ¨ 10´4

SpeechCommands X 7 83.4% 98.0% 83.2% 83.3% 8 0
X X 62.5% 93.7% 60.3% 62.6% 1.39 10´5

5.2 PRIVACY-PRESERVING ELECTROCARDIOGRAM ABNORMALITY DETECTION ON
WEARABLE DEVICES

The advent of wearable devices incorporating electrocardiography (ECG) sensors has provided con-
sumers the ability to detect signs of an abnormal heart rhythm. In this section, we demonstrate the
utilisation of a small neural network architecture suitable for deployment, e.g. to a mobile device
connected to such a biosensor, to be trained on ECG data from the the China Physiological Signal
Challenge (CPSC) 2018 challenge dataset (Liu et al., 2018). We selected the task of automated
Left Bundle Branch Block (LBBB) detection, formulated as a binary classification task against a
normal (sinus) rhythm. This task is clinically relevant, as the sudden appearance of LBBB can
herald acute coronary syndrome which requires urgent attention to avert myocardial infarction. As
ECG data constitutes personal health information, its protection is mandated both legally and ethi-
cally. We utilised ζ-DP-SGD for training a complex-valued neural network on Fourier-transformed
ECG acquisitions. We adopt this strategy as it can benefit from two key properties of the Fourier
transform: ECG data can contain high-frequency noise which is irrelevant for diagnosis and can
be reduced using Fourier filtering. Concurrently, this technique compresses the signal, which can
drastically reduce the amount of data transferred. Table 1 shows classification results and Figure 1
shows exemplary source data.

Figure 1: Exemplary ECG data used for classification. A shows an example of a sinus rhythm
(normal ECG) and B shows an example of an ECG exhibiting signs of LBBB. Observe also the high
frequency noise around the baseline which can be filtered using the Fourier transform.
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5.3 DIFFERENTIALLY PRIVATE SPEECH COMMAND CLASSIFICATION FOR VOICE ASSISTANT
APPLICATIONS

In recent years, voice assistants have gained popularity in consumer applications such as home
speakers, and rely heavily on ML. Recordings collected from users for training speech processing
algorithms can be used in impersonation attacks, resulting in successful identity theft (Sweet, 2016)
or in acoustic attacks, which trigger unintended behaviour in voice assistants (Yuan et al., 2018;
Carlini et al., 2016). Protecting privacy in this setting is therefore paramount to increase trust and
applicability, as well as safeguard both users and systems from adversarial interference. Convo-
lutional neural networks (CNNs) have been demonstrated to yield state-of-the-art performance on
spectrogram-transformed audio data (Palanisamy et al., 2020). However, this and other works (Zhou
et al., 2021) typically discard the imaginary components. We here experimentally demonstrate the
DP training of a 2-dimensional CNN directly on the complex spectrogram data. We utilised a subset
of the SpeechCommands dataset (Warden, 2018), specifically samples from the categories “Yes”,
“No”, “Up”, “Down”, “Left”, “Right”, “On”, “Off”, “Stop”, and “Go”, summing up to 8000 ex-
amples. We transformed each waveform signal to a complex-valued 2-D spectrogram and used
ζ-DP-SGD to train a complex-valued CNN. These results are summarised in Table 1 and Figure 2.

Figure 2: Exemplary waveform (A), real (B) and imaginary (C) spectrogram components from the
utterance Stop. Spectrograms are log-magnitude transformed for clarity.

5.4 MRI RECONSTRUCTION

MRI is an important medical imaging modality and has been studied extensively in the context of
deep learning (Akçakaya et al., 2019; Hammernik et al., 2018; Küstner et al., 2020; Muckley et al.,
2020). MRI data is acquired in the so-called k-space. Sampling only a subset of k-space data al-
lows for a considerable speed-up in acquisition time, benefiting patient comfort and costs, however,
typically leads to image artifacts, which reduce the diagnostic quality of the resulting MR images.
Although neural networks have the ability to produce high-quality reconstructions, their usage for
this task has been shown to sometimes lead to the appearance of spurious image content from the
fully-sampled reference images the models have been originally trained on (Hammernik et al., 2021;
Muckley et al., 2020; Shimron et al., 2021). DP could counteract such hallucination as it is designed
to limit the effect of individual training examples on model training. However, this positive effect
of DP may be counterbalanced by an unacceptable decrease in the diagnostic suitability of the re-
constructed images. In this section, we investigate the ramifications of DP on the quality of MRI
reconstructions. For this purpose, we trained a complex-valued U-Net model architecture on the task
of reconstructing single-coil knee MRI images from the fastMRI dataset (Zbontar et al., 2018) using
pseudo-random k-space sampling at 4ˆ acceleration. We observed a nearly equivalent performance
in the non-DP and the ζ-DP-SGD settings, whereby the non-DP model enjoyed a ă 2% perfor-
mance advantage in all metrics. Moreover, to assess the diagnostic suitability of the reconstructed
images, we asked a diagnostic radiologist who was blinded to whether or not ζ-DP-SGD was used,
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to compare the resulting scans. No differences in diagnostic suitability were observed by the expert
in any of the reconstructed images.
We thus conclude that –at least with respect to image quality– DP can indeed match the non-private
training of MRI reconstruction models, even at ε ! 1; we intend to investigate its effect on pre-
venting training data hallucination into reconstructed images in future work. Results from these
experiments are summarised in Table 2 and Figure 3.

Table 2: Results on the MRI reconstruction task. NMSE: normalised mean squared error, PSNR:
peak signal-to-noise ratio in dB, SSIM: structural similarity index metric. GDP: Gaussian DP.

NMSE PSNR SSIM GDP ε δ

Non-DP 0.042 30.74 0.70 8 0
ζ-DP-SGD 0.043 30.57 0.69 0.16 10´5

Figure 3: Exemplary reconstruction from a coronal proton-density weighted image of the knee. A:
reference image, B: reconstruction model trained non-privately, C: reconstruction model trained
with ζ-DP-SGD reconstruction.

6 CONCLUSION

Our work presents ζ-DP, an extension of DP to the complex domain and introduces key building
blocks of DP model training, namely the complex Gaussian mechanism and ζ-DP-SGD. Our exper-
iments demonstrate that the training of DP complex-valued neural networks is possible with high
utility under tight privacy guarantees. Our theoretical analysis allows us to leverage the increased
learning capacity of complex-weighted neural networks. We thus show improved learning perfor-
mance compared to scalar real-valued networks and to networks using two real-valued channels to
approximate complex numbers, hence, ignoring the specific relationship between the real and imag-
inary complex components. Lastly, Wirtinger calculus and Gaussian DP allow us to derive the tight
sensitivity estimates and privacy bounds for the complex Gaussian mechanism.

We acknowledge some limitations of our work: Both complex-valued deep learning and DP incur a
considerable computational performance penalty. Despite steadily improving complex number sup-
port, current deep learning frameworks have not yet implemented a full palette of complex-valued
layers and activation functions. Moreover, the software framework utilised to computationally re-
alise ζ-DP-SGD in our work relies on multithreading, which suffers from considerable overhead
compared to implementations utilising vector instructions and/or bespoke hardware. We discuss
the topic of software implementation and provide computational performance benchmarks in Ap-
pendices A.7 and A.8. Our investigation highlights a requirement for mature software frameworks
able to offer feature and performance parity with their real-valued counterparts, which we intend to
develop and publish as free-and-open-source software in the near future.

In conclusion, we contend that ζ-DP represents a promising future research direction for complex-
valued and even for purely real-valued tasks, and the improved privacy-utility trade-offs resulting
from our work represent a worthwhile contribution to the implementation of DP to a broad variety
of relevant tasks, which can help to increase the amount of data available for scientific studies.
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artificial-neural-networks for k-space interpolation (RAKI) reconstruction: Database-free deep
learning for fast imaging. Magnetic Resonance in Medicine, 81(1):439–453, 2019.

Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks. In
International Conference on Machine Learning, pp. 1120–1128. PMLR, 2016.

Borja Balle and Yu-Xiang Wang. Improving the Gaussian mechanism for differential privacy: Ana-
lytical calibration and optimal denoising. In International Conference on Machine Learning, pp.
394–403. PMLR, 2018.

Borja Balle, Gilles Barthe, Marco Gaboardi, Justin Hsu, and Tetsuya Sato. Hypothesis testing in-
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Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting Gradients–
How easy is it to break privacy in federated learning? arXiv preprint arXiv:2003.14053, 2020.

George M Georgiou and Cris Koutsougeras. Complex domain backpropagation. IEEE transactions
on Circuits and systems II: analog and digital signal processing, 39(5):330–334, 1992.

Nitzan Guberman. On complex valued convolutional neural networks. arXiv preprint
arXiv:1602.09046, 2016.

Kerstin Hammernik, Teresa Klatzer, Erich Kobler, Michael P Recht, Daniel K Sodickson, Thomas
Pock, and Florian Knoll. Learning a variational network for reconstruction of accelerated MRI
data. Magnetic resonance in medicine, 79(6):3055–3071, 2018.

Kerstin Hammernik, Jo Schlemper, Chen Qin, Jinming Duan, Ronald M. Summers, and Daniel
Rueckert. Systematic evaluation of iterative deep neural networks for fast parallel MRI recon-
struction with sensitivity-weighted coil combination. Magnetic Resonance in Medicine, 86(4):
1859–1872, 2021.

Nicholas J Higham. Stability of a method for multiplying complex matrices with three real matrix
multiplications. SIAM journal on matrix analysis and applications, 13(3):681–687, 1992.

Akira Hirose. Complex-valued neural networks, volume 400. Springer Science & Business Media,
2012.

Mary C Kociuba and Daniel B Rowe. Complex-valued time-series correlation increases sensitivity
in FMRI analysis. Magnetic resonance imaging, 34(6):765–770, 2016.
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learning-based 3D cardiac CINE MRI reconstruction with multi-coil complex-valued 4D spatio-
temporal convolutions. Scientific reports, 10(1):1–13, 2020.

Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database. 2010.

Feifei Liu, Chengyu Liu, Lina Zhao, Xiangyu Zhang, Xiaoling Wu, Xiaoyan Xu, Yulin Liu, Caiyun
Ma, Shoushui Wei, Zhiqiang He, Jianqing Li, and Eddie Ng Yin Kwee. An Open Access Database
for Evaluating the Algorithms of Electrocardiogram Rhythm and Morphology Abnormality De-
tection. Journal of Medical Imaging and Health Informatics, 8(7):1368–1373, 2018.

H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially private
recurrent language models. In International Conference on Learning Representations, 2018.
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A APPENDIX

A.1 PROOFS OF THEORETICAL RESULTS

Proof of Theorem 1. The claim represents a generalisation of the Analytic Gaussian Mechanism
(Balle & Wang, 2018) to MC. It suffices to show that the magnitude of the privacy-loss random
variable Ω is bounded by ε with probability 1 ´ δ. As shown in Dwork & Rothblum (2016) and
Balle & Wang (2018), given some fixed output O P Cd, Ω is given by:

Ω “ log

ˆ

PpMCpfpDqq “ Oq

PpMCpfpD1qq “ Oq

˙

(14)

where log is the natural logarithm, and is distributed as:

N
ˆ

}fpDq ´ fpD1q}22
2σ2

,
}fpDq ´ fpD1q}22

σ2

˙

. (15)

As }fpDq ´ fpD1q}22 “ pfpDq ´ fpD1qqpfpDq ´ fpD1qqH P R, where H denotes the Hermitian
transpose, Ω has a real-valued mean and hence follows a real-valued normal distribution, even when
O P C. From here, the proof proceeds identically to the proof to Theorem 8 of (Balle & Wang,
2018).

For proving Theorem 2, we will rely on the following fact about the Rényi divergence of order α
between arbitrary distributions:

Corollary 1 (Definition 2 in (Van Erven & Harremos, 2014)). Let P and Q be two arbitrary dis-
tributions defined on a measurable space pX ,Fq with densities ppxq and qpxq. Then, for α ą 1:

DαpP ‖ Qq “ 1

α´ 1
log

ż 8

´8

ppxqαqpxq1´αdx. (16)

In particular, for two normal distributions with means µ0 and µ1 and common variance σ2I:

Dα

`

N pµ0, σ
2Iq ‖ N pµ1, σ

2Iq
˘

“
α xµ0,µ1y

2σ2
(17)

where x¨y denotes the inner product.

We can now prove Theorem 2:

Proof of Theorem 2. By Definition 7 and the additive property of the Gaussian distribution, the den-
sity functions of MC on fpDq and fpD1q follow a circularly symmetric complex-valued Gaussian
distribution with means fpDq and fpD1q and common covariance matrix σ2I. By substituting in
equation (17):

Dα

`

NCpfpDq, σ
2q ‖ NCpfpD

1q, σ2q
˘

“
α xfpDq, fpD1qy

2σ2
“

“
αpfpDq ´ fpD1qqpfpDq ´ fpD1qqH

2σ2
“
α}fpDq ´ fpD1q}22

2σ2
ď
α∆2

2σ2
. (18)

Hence, to preserve pα, ρq-RDP, it suffices to choose σ2 such that σ2 ě α∆2{2ρ.

Proof of Theorem 3. We recall that the trade-off function between MCpfpDqq and MCpfpD
1qq is

given by:
Gµ :“ T pN p0, 1q,N pµ, 1qq , (19)

and is strictly monotonically decreasing in µ such that if µ1 ě µ2, then Gµ1
ď Gµ2

. To preserve
µ-GDP, we require that:

T
`

NCpfpDq, σq,NCpfpD
1q, σq

˘

ě Gµ, (20)
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intuitively, that the outputs of MC are at least as hard to distinguish as the distributions N p0, 1q
and N pµ, 1q given a single draw. We have:

T
`

NCpfpDq, σq,NCpfpD
1q, σq

˘

“ Φ

ˆ

Φ´1p1´ αq ´
}fpDq ´ fpD1q}2

σ
q

˙

(21)

“ G}fpDq´fpD1q}2{σ. (22)

We require

G}fpDq´fpD1q}2{σ ě G∆{σ ě Gµ ô
∆

σ
ď µñ λ ď µ, (23)

where we have used the fact that }fpDq ´ fpD1q}2 ď ∆ and the strict monotonicity of Gµ. Thus,
to preserve µ-GDP, one must choose σ2 such that σ2 ě p∆{µq

2.

A.2 RÉNYI DP ANALYSIS OF THE MAIN MANUSCRIPT EXPERIMENTS

Table 3 provides an overview of the differences between the privacy bounds of RDP and GDP for the
experiments in the main manuscript. We recall that GDP provides a tight analysis of the Gaussian
mechanism (Dong et al., 2019) and a lossless conversion between GDP and pε, δq-DP is possible,
whereas RDP cannot be losslesly converted. Of note, we are already using the improved conversion
formula from RDP to pε, δq-DP shown in Balle et al. (2020) instead of the original formula proposed
in Mironov (2017).

Table 3: Comparison of privacy analyses using Rényi DP (RDP) and Gaussian DP (GDP).

Rényi DP Gaussian DP δ

CIFAR-10 7.63 7.54 10´5

ECG 1.76 1.62 5 ¨ 10´4

SpeechCommands 1.47 1.39 10´5

FastMRI 0.67 0.16 10´5

PhaseMNIST 0.53 0.51 10´5

A.3 BENCHMARKING COMPLEX-VALUED ACTIVATION FUNCTIONS FOR ζ-DP-SGD

A number of specialised activation functions designed for utilisation with complex-valued neural
networks have been proposed in literature. To guide practitioner choice in our newly proposed
setting of ζ-DP-SGD training, we here provide activation function benchmarks on the SpeechCom-
mands dataset used in Section 5.3 of the main manuscript. Table 4 summarises these results. We
consistently found the inverted Gaussian (iGaussian) activation function to perform best in the ζ-
DP-SGD setting. This may be in part due to its bounded magnitude, thereby recapitulating the effect
Papernot et al. (2020) discuss for real-valued networks, i.e. that bounded activation functions lead to
improved performance in DP-SGD. We leave the further investigation of this finding to future work.

A.4 BENCHMARKING ζ-DP-SGD ON PHASEMNIST

The MNIST dataset (LeCun et al., 2010) is widely used as a benchmark dataset in real-valued DP-
SGD literature. We here therefore show the experimental evaluation of an adapted, complex-valued
version of MNIST, which we term PhaseMNIST. The details of how this dataset can be constructed
as well as details on the used model architectures are provided in Appendix A.6. In brief, for
each example of the original MNIST dataset with label LR P t0, . . . , 9u, we obtain the imaginary
component by selecting an image with label LI such that LR ` LI “ 9 resulting in an input image
arrangement p0, 9q, p1, 8q, . . . , p9, 0q. Only the label of the real-valued image is used. The results
are summarised in Table 5, where we also provide baselines for real-valued MNIST training on the
same architecture (with real-valued weights). For simplicity, we have included the RDP and GDP
guarantees in the same table.
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Table 4: ROC-AUC (mean˘STD) of complex-valued activation functions on the SpeechCommand
dataset trained with identical settings and the same network architecture over five repetitions with
ζ-DP-SGD.

Activation function Reference ROC-AUC

Separable Sigmoid Nitta (1997) 52.9˘ 0.02%
zReLU Guberman (2016) 54.7˘ 0.03%
Trainable Cardioid (per-feature bias) Virtue et al. (2017) 80.2˘ 0.02%
SigLog Georgiou & Koutsougeras (1992) 87.3˘ 0.01%
Trainable ModReLU (per-feature bias) Arjovsky et al. (2016) 89.0˘ 0.01%
Cardioid Virtue et al. (2017) 89.2˘ 0.01%
Trainable Cardioid (single bias) Virtue et al. (2017) 89.4˘ 0.02%
ModReLU (single bias) Arjovsky et al. (2016) 89.5˘ 0.01%
cReLU Trabelsi et al. (2017) 91.9˘ 0.01%
iGaussian Virtue et al. (2017) 93.4˘ 0.01%

Table 5: Results for PhaseMNIST training in a private (ζ-DP-SGD) and non-private (non-DP) fash-
ion. Results for real-valued MNIST are provided for approximate comparison using the same model
architecture (but with real-valued weights) trained with identical settings.

Accuracy ROC-AUC F1-score Recall RDP-ε GDP-ε δ

PhaseMNIST ζ-DP-SGD 99.0% 100% 99.0% 99.0% 0.53 0.51 10´5

MNIST DP-SGD 95.7% 99.9% 95.6% 95.6% 0.53 0.51 10´5

PhaseMNIST non-DP 99.3% 100% 99.2% 99.2% 8 8 0
MNIST non-DP 97.4% 100% 97.4% 97.4% 8 8 0

As with the CIFAR-10 benchmarks in the main manuscript, we found that ζ-DP-SGD outperformed
the real-valued network. In this case, additional information is available from the imaginary com-
ponent of the image in addition to the higher entropic capacity of the network due to the complex-
valued weights. A similar phenomenon was observed by Scardapane et al. (2018).

A.5 WIRTINGER/CR-CALCULUS

In this section, we present key results from Wirtinger (or CR-) calculus which are used in our work.
For a detailed treatment, we refer to Kreutz-Delgado (2009).
Consider a function f : C ÞÑ C. As for real-valued functions, the derivative of f at a point z P C
can be defined as:

f 1pzq “ lim
hÑ0

fpz ` hq ´ fpzq

h
, h P C. (24)

If this limit is defined for the (infinitely many) series approaching z, f is called complex differen-
tiable (equivalently, differentiable in the complex sense). If, in addition, f 1pzq exists everywhere in
the neighbourhood U of z, f is called holomorphic. It is also possible to write z “ x ` y i and to
then express f as two real-valued functions u and v of the variables x and y:

fpx` y iq :“ upx, yq ` vpx, yq i, x, y P R. (25)

f 1 can then be written as:
df

dz
“
Bu

Bx
`
Bv

Bx
i. (26)

If this derivative exists at z, f is called differentiable in the real sense. This interpretation represents
C as R2 or, more generally, for vector-valued functions, Cn as R2n. The Cauchy-Riemann equations
state that, for f to be holomorphic, it must satisfy:

Bu

Bx
“
Bv

By
and

Bu

Bx
“ ´

Bv

By
. (27)
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As discussed above, the complex plane does not admit a natural ordering. Hence, the minimisation
of a complex-valued function is not defined. Therefore, for complex-valued deep learning, we only
consider real-valued (loss-) functions f : C ÞÑ R. By equation (25), vpx, yq i “ 0. Thus, by the
Cauchy-Riemann equations, such a real-valued function is only holomorphic if:

Bu

Bx
“
Bu

By
“ 0. (28)

This means that any holomorphic real-valued function must be constant, which invalidates its use-
fulness for optimisation. The Wirtinger/CR-derivatives provide an alternative interpretation of the
Cauchy-Riemann equations which allows us to consider holomorphicity and differentiability in the
real sense separately. Thus, they recover the usefulness of interpreting Cn as R2n while prevent-
ing multiplicative penalties on the gradient norm as a consequence of following this interpreta-
tion “too closely”. We will motivate this somewhat informal notion with an example below. The
Wirtinger/CR-derivatives1 of f are defined as:

B

Bz
:“

1

2

ˆ

B

Bx
´
B

By
i

˙

and
B

Bz
:“

1

2

ˆ

B

Bx
`
B

By
i

˙

. (29)

An immediate consequence of this definition is that the Cauchy-Riemann equations can be expressed
as:

B

Bz
“ 0. (30)

Therefore, if a function f is holomorphic, B
Bz corresponds to the derivative in the complex sense (that

is, df
dz ) while, if f is differentiable in the real sense, both B

Bz and B
Bz are valid (and are conjugates

of each other). As stated above, it can be shown that the steepest ascent of f is aligned with B
Bz .

In this sense, B
Bz fulfils the role of the ∇ operator for real, scalar-valued loss functions. Evidently,

compared to the actual gradient of f in the real sense, the following relationship holds:

B

Bz
“

1

2
∇f “ 1

2

ˆ

Bf

Bθ1

, . . . ,
Bf

Bθn

˙

. (31)

However, re-defining ∇f :“ B
Bz is desirable (and correct, as shown by Brandwood (1983)) . We will

motivate this requirement with an example: Let fC be a function such that:

fCpzq “ zz “ px` y iqpx´ y iq “ x2 ` y2. (32)

The Wirtinger/CR-derivative of fC is BfC
Bz “ z, whose L2-norm is }z}2 “ |z| “

a

|x|2 ` |y|2. The
same output can be realised by interpreting f as a function of a real-valued vector a “ px, yqT :

fRpaq “ aaT “ x2 ` y2. (33)

The gradient of fR is ∇fR “ p2x, 2yq, whose L2-norm is }∇fR} “
a

p2|x|q2 ` p2|y|q2 “

2
a

|x|2 ` |y|2 = 2|z|. This undesirable multiplicative penalty, which would translate to a super-
fluous multiplicative increase in the noise scale of the GM to preserve DP, is a consequence of
“ignoring” the connection between real and imaginary part inherent to complex numbers, but not to
components of vectors. In fact, zz is neither equivalent to z2 (as would be the case if z P R where
@ a P R, a “ a), nor is it equivalent to xa,ay,a P R2, as the complex inner product lacks the bilin-
earity inherent to its real-valued counterpart. Both complications are avoided by the re-definition of
the Wirtinger/CR-derivative as the gradient used for optimisation, which prompts its utilisation in
our work.

To exemplify this finding in the training of neural networks, we conducted the following experiment:
We generated one thousand points using the function fpzq “ sinpzq ` NCp0, 1q, z P C. We then
trained two separate neural networks to fit the sine function and measured the norms of the gradient
vectors after 100 training steps (when gradient norms were empirically highest). One network in-
cluded complex-valued weights (C), the other simulated complex-valued weights with an additional
weight matrix per layer (R2n). Both networks utilised the Cardioid activation function and were

1The term derivative represents an abuse of terminology, as they are formal operators and not derivatives
with respect to actual variables. However, the interpretation as derivatives is intuitive, and we will thus retain
it.
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trained with the Adam optimiser with a learning rate of 0.01 using a set of identical random seeds
over 100 repetitions for 1000 steps. We utilised the Mean Squared Error (MSE) loss function given
by fpy, ŷq “ 1

2}y ´ ŷ}2, py, ŷq P C. For the C network, we calculated CR-derivatives, while
for the R2n network, standard gradients were obtained using the PyTorch automatic differentiation
system.

Figure 4 shows the gradient norms of the two networks. The R2n-network had significantly higher
average gradient norms (Student t-test p “ 0.0043) over the 100 repetitions.

Figure 4: Gradient norms of the C network calculated using the CR-calculus and of the R2n-
network. N “ 100 repetitions. Significantly higher gradient norms are observed when the CR-
calculus is not used (Student t-test p “ 0.0043).

As a note to practitioners, certain deep learning frameworks silently re-scale the Wirtinger/CR-
gradient by 2ˆ to avoid user confusion by a lower effective learning rate. To ascertain a correct
implementation, we therefore recommend examining this behaviour by testing the gradient norm of
known functions.

A.6 DATASET PREPARATION AND MODEL TRAINING

A.6.1 CIFAR-10

Dataset preparation We utilised the CIFAR-10 dataset as described in Krizhevsky et al. (2009).
For complex-valued training in C, we either zeroed or copied each image into the imaginary com-
ponent, while for training in R2n, two separate training channels were used for each tensor. Results
in Table 1 are for the zero imaginary/second channel component, but were identical (within ă 1%
for all metrics) for the case where the imaginary component was filled with the same image.

Model training For real-valued non-DP training, we used the model described in Papernot et al.
(2020) (see Table 2) with the SGD optimiser at a learning rate of 0.1 with a momentum term of 0.9
and a cosine learning rate scheduler. The hyperbolic tangent (TanH) activation function was used.
For complex-valued non-DP training, we utilised the same architecture and activation functions,
albeit with complex weights, or with an additional weight matrix per layer. For DP training, we
used an L2 clipping norm of 1.0, a noise multiplier of 0.61, a sampling rate of 0.005 and trained
for 20 epochs. The SGD optimiser at a learning rate of 0.1 with a momentum term of 0.9 and
a cosine learning rate scheduler was used. Interestingly, this arrangement led to a higher test set
performance than reported by Papernot et al. (2020) in the non-DP setting, however we were unable
to reproduce the test set accuracy reported in the real-valued DP setting. For training in R2n, we note
that multivariate Gaussian noise was used instead of circularly symmetric complex-valued Gaussian
noise, and “standard” gradient computations were used instead of Wirtinger derivatives.

A.6.2 ECG DATASET

Dataset preparation We utilised the China Physiological Signal Challenge 2018 (Liu et al., 2018)
dataset for this task. We used the normal and left bundle branch block classes and channel 3. The
ECGs were loaded from the provided Matlab format using the SciPy library and trimmed or padded
to a length of 5000. The numpy Fast Fourier Transform implementation was used whereby the
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signal was pre-trimmed to length 512. The final dataset consisted of 1012 training examples and
113 testing examples.

Model training We implemented a complex-valued fully-connected neural network architecture
consisting of input/hidden layers with p512, 256, 128q (ζ-DP-SGD) units and a single output unit.
The cReLU activation function was used both in the non-DP and the ζ-DP-SGD setting. The out-
put layer implemented the magnitude operation followed by a logistic sigmoid activation function.
Models were trained using the SGD optimiser at a learning rate of 0.08 with an L2 regularisation of
5 ˆ 10´3 for non-DP training and a learning rate of 0.05 for ζ-DP-SGD training, respectively. A
batch size of 64 was used for non-private training and a sampling rate of 0.063 at a noise multiplier
of 5 and an L2 clipping norm of 0.5 for ζ-DP-SGD. ε was calculated at a δ of 1

10121.1 « 5 ˆ 10´4

where 1012 is the number of training samples. Both models were trained for 100 epochs.

A.6.3 SPEECH COMMAND CLASSIFICATION DATASET

Dataset preparation We used a subset of the SpeechCommands dataset (Warden, 2018) as de-
scribed above, consisting of 2000 samples each from the categories “Yes”, “No”, “Up”, “Down”,
“Left”, “Right”, “On”, “Off”, “Stop”, and “Go”. Of these, 7200 examples were used as the training
test and 800 as the testing set. The waveform data was decoded using the TensorFlow library and,
where necessary, padded to a length of 16000 samples. The TensorFlow implementation of the Short
time Fourier Transform function was used with a frame length of 255 and a frame step of 128.

Model training For this task, we employed a complex-valued 2D CNN consisting using filters of
size 3ˆ3 without zero-padding and a stride of 1. The convolutional layers had p8, 16, 32, 64q output
filters, whereby a MaxPooling layer was used between the second layer and the third layer and an
adaptive MaxPooling layer after the final convolutional layer. The convolutional block was followed
by a fully connected layer with 64 units and an output layer of 8 units. Both employed the iGaussian
activation function. The non-DP model was trained at a batch size of 64 for 10 epochs at a learning
rate of 0.1 using the Stochastic Gradient Descent optimiser, whereas the ζ-DP-SGD network was
trained using a sampling rate of 0.009 for 5 epochs with the same learning rate and optimiser, a noise
multiplier of 1 and an L2 clipping norm of 2. We calculated ε at a δ-value of 10´5.

A.6.4 FASTMRI KNEE DATASET

Dataset preparation We utilised the single coil knee MRI dataset of the fastMRI challenge pro-
posed by Zbontar et al. (2018). We used the reference implementation 2, and employed the default
settings using an acceleration rate of 4ˆ and 8% of densely sampled k-space center lines in the
mask. Masks are sampled pseudo-randomly during training time. The dataset offers 34742 train and
7135 validation images.

Model training We changed the U-Net network to use complex-valued weights and accept
complex-valued inputs instead of the magnitude image employed in the original example. We re-
placed the original ReLU activation functions with CReLU. In the DP setting, we used a noise
multiplier of 1.0, an L2 clipping norm of 1.0 and a sampling rate of 3 ˆ 10´5 and calculated the
ε at a δ of 10´5. The learning rate was set to 0.001 using the RMSProp optimiser and a stepwise
learning rate scheduler. We trained both in the non-private and the ζ-DP-SGD setting for 30 epochs
and disabled the collection of running statistics in the Batch Normalisation layers to render them
compatible with DP (in the utilised library, sample sizes of 1 are used, so Batch Normalisation
corresponds to Instance Normalisation in this setting).

A.6.5 PHASEMNIST

Dataset construction As described in Appendix A.4 above, PhaseMNIST is intended as a bench-
mark dataset for complex-valued computer vision tasks and contains images of handwritten digits
from 0 to 93. The training set consists of 60000 images and the testing set of 10000 images. For each

2https://github.com/facebookresearch/fastMRI/tree/main/fastmri_
examples/unet

3The version of the dataset used in this study will be made publicly available upon acceptance.
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example of the original MNIST dataset, from which PhaseMNIST is constructed, we performed the
following procedure: Let LR P t0, . . . , 9u be the label corresponding to the real-valued image. We
then constructed the imaginary component by (deterministically) sampling uniformly with replace-
ment from the set of images whose label LI satisfies LR ` LI “ 9. We used the label of the
real-valued image as the label of the overall training example.

Model training We used a complex-valued model consisting of three fully connected layers with
p784, 256, 128q units and an output layer of 10 units. The Cardioid activation function was used
between layers and the Softmax activation function after the output layer. The model was trained
with the Stochastic Gradient Descent optimiser at a learning rate of 0.1 both for ζ-DP-SGD and
for non-private training. The non-private model converged after 3 epochs, whereas the ζ-DP-SGD
model required 10 epochs to achieve the same accuracy. The noise multiplier was set to 1.1 and the
L2 clipping norm to 1.0. The ε value was calculated at a δ “ 10´5. A sampling rate of 0.001 was
used for ζ-DP-SGD, and a batch size of 64 for non-DP training.

A.7 SOFTWARE LIBRARIES AND COMPUTATIONAL RESOURCES USED

Implementations of the DP-SGD algorithm, and –by extension– ζ-DP-SGD require access to per-
example gradients. We utilised the deepee software library (Ziller et al., 2021) to implement ζ-
DP-SGD, as it is compatible with arbitrary neural network architectures, including such containing
complex-valued weights. We report results using uniform without replacement sampling and using
the RDP option provided by deepee. For complex-valued neural network components, the PyTorch
Complex library (Chatterjee et al., 2021) with PyTorch 1.9 were used. Standard PyTorch was also
used to create the R2n model architectures for the experiments in Section 5.1. TensorFlow 2.4 was
used for loading data and the Short Time Fourier Transforms discussed above, but no neural network
components were used from this library. Experiments were carried out in Python 3.8.5 on a single
workstation computer running Ubuntu Linux 20.04 and equipped with a single NVidia Quadro RTX
8000 GPU, 12 CPU cores and 64 GB of RAM.

A.8 COMPUTATIONAL CONSIDERATIONS

We conclude by presenting a systematic evaluation of the computational considerations incurred by
the utilisation of complex-valued neural networks and by the implementation of ζ-DP-SGD using
the above-mentioned libraries. Two main sources of computational overhead arise between real-
valued and complex-valued neural networks. Complex numbers are internally represented as a pair
of 32-bit floating point numbers. This affects inputs and neural network weights. Moreover, even
though a complex-valued architecture may contain the same number of parameters as its real-valued
counterpart, an increased number of computational operations is required in C. For instance, scalar
multiplication requires a single multiplication operation in R. However, in C it can require up
to 4 multiplications (although this can be reduced to 3 multiplications (Higham, 1992)). Perfor-
mance moreover depends on whether vector hardware is used and whether complex floating point
instructions are implemented in the respective framework (e.g., cuDNN). Table A.8 shows results
for individual matrix multiplication operations and convolutions with real/complex-valued inputs
and weight matrices.

Table 6: Average computation times (100 repetitions) for a batched matrix multiplication with batch
size 64 and matrix dimensions p512ˆ 512q (Linear) and a convolution operation with input dimen-
sions p64 ˆ 3 ˆ 224 ˆ 224q (batch, channel, height, width) and kernel dimensions p3, 16, 3q (in,
out, kernel size) (Conv.). R: Real-valued input and weight matrix and C: complex-valued input and
weight matrix. Times are given on CPU and GPU.

Linear Conv.
R C R C

CPU 68.6 µs 1.21 ms 31.8 ms 214 ms
GPU 49.6 µs 238 µs 1.38 ms 12.5 ms
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ζ-DP-SGD carries additional overhead as it requires per-sample gradients. In the utilised deepee
framework, this is realised through dispatching one computation thread per example in the minibatch
(more precisely, lot) to perform a forward and backward pass, which incurs substantial overhead
compared to pure vectorisation. These results are shown in Table A.8. Of note, for the non-private
models, the computation time includes the forward pass, backward pass, loss gradient calculation
(Mean Squared Error against a vector of dimensions p64, 1q) and weight update (Stochastic Gradient
Descent). For the ζ-DP-SGD model, the following additional steps occur between the loss gradient
calculation and the weight update: gradient clipping, averaging of per-sample gradients, noise ap-
plication. Moreover, the deepee framework requires an additional step between the weight update
and the subsequent batch.

Table 7: Average computation times for a model consisting of a 2D convolutional layer with 3 input
channels, 32 output channels and a kernel shape of 3 ˆ 3 followed by a linear layer with matrix
dimensions of p28800, 1q executed on an input of dimensionality p64, 3, 32, 32q (batch, channel,
height, width) for 100 repetitions.

Non-DP (ζ-)DP-SGD
R C R C

CPU 156 ms 1.45 s 27.6 s 1.08 min
GPU 187 ms 588 ms 8.52 s 17.1 s
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