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Abstract

The probing classifiers framework has been
employed for interpreting deep neural net-
work models for a variety of natural lan-
guage processing (NLP) applications. Studies,
however, have largely focused on sentence-
level NLP tasks. This work is the first
to apply the probing paradigm to represen-
tations learned for document-level informa-
tion extraction (IE). We designed eight em-
bedding probes to analyze surface, semantic,
and event-understanding capabilities relevant
to document-level event extraction. We apply
them to the representations acquired by learn-
ing models from three different LLM-based
document-level IE approaches on a standard
dataset. We found that trained encoders from
these models yield embeddings that can mod-
estly improve argument detections and label-
ing but only slightly enhance event-level tasks,
albeit trade-offs in information helpful for co-
herence and event-type prediction. We further
found that encoder models struggle with doc-
ument length and cross-sentence discourse.

1 Introduction

Relation and event extraction (REE) focuses on
identifying clusters of entities participating in a
shared relation or event from unstructured text,
that frequently contains a fluctuating number of
such instances. While the field of information
extraction (IE) started out building training and
evaluation REE datasets primarily concerned with
documents, researchers have been overwhelm-
ingly focusing on sentence-level datasets (Li et al.,
2013; Du and Cardie, 2020). Nevertheless, many
IE tasks require a more comprehensive under-
standing that often extends to the entire input doc-
ument, leading to challenges such as length and
multiple events when embedding full documents.
Consequently, document-level datasets continue
to pose challenges for even the most advanced
models today (Das et al., 2022).

REE is considered an essential and popular task,
encompassing various variations. One particu-
larly general approach is template filling1, which
can subsume certain other IE tasks by format-
ting. In this regard, our focus lies on template-
extraction methods with an end-to-end training
scheme, where texts serve as the sole input.

Multi-task NLP models often support and are
evaluated on the task. As a result, we have
seen frameworks of diverse underlying assump-
tions and architectures for the task. Neverthe-
less, high-performing modern models all leverage
and fine-tune on pre-trained neural contextual em-
bedding models, like variations of BERT (Devlin
et al., 2019), due to the generalized performance
leap introduced by transformers and pretraining.

It is crucial to understand these representa-
tions of the IE frameworks, as doing so reveals
model strengths and weaknesses. However, un-
like lookup style embeddings such as GloVe (Pen-
nington et al., 2014), these neural contextualized
representations are inherently difficult to inter-
pret, leading to ongoing research efforts focused
on analyzing their encoded information (Tenney
et al., 2019b; Zhou and Srikumar, 2021; Belinkov,
2022). This work is inspired by various sentence-
level embedding interpretability works, including
Conneau et al. (2018) and Alt et al. (2020).

Yet, to the best of our knowledge, no prior work
has been done to understand the embedding of fea-
tures that exist only at the document-level scale.
Hence, our work aims to fill this gap by investi-
gating the factors contributing to the model per-
formance. Specifically, we analyze the impact of
three key elements: contextualization of encoding,
fine-tuning, and encoder and post-encoding archi-
tectures. Our contributions can be summarized as
follows:

1Defined in Appendix A. Template filling might not sub-
sume certain relation extraction like n-ary relation extraction.
Hence we will prefer "event extraction" in the following text.



[…] FMLN detachments have conducted the 
largest military operation in the entire history of 
the Salvadoran conflict in the country's capital. 
An offensive was launched […] According to 
Reuter, attempts were made to storm President 
Alfredo Cristiani's official and personal 
residences; however, it is reported that the 
president was not hurt.[…] The third round of 
these talks should have been held recently in 
Caracas, but opposition representatives refused 
to take part in them after a left-wing trade 
union's headquarters was subjected to artillery 
bombardment resulting in the deaths of at least 
10 people. According to the insurgents, […]
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Figure 1: Overview of an ideal event extraction example and probing. Ideally, after contextualization by a fine-
tuned encoder on the IE task, the per-token embedding can capture richer semantic and related event information,
thereby facilitating an easier model-specific extraction process. Our probing tasks test how different frameworks
and conditions (e.g. IE training, coherence information access) affect information captured by the embeddings.

• We identified the necessary document-level
IE understanding capabilities and created a
suite of probing tasks2 corresponding to each.

• We present a fine-grained analysis of how
these capabilities relate to encoder layers,
full-text contextualization, and fine-tuning.

• We compare IE frameworks of different input
and training schemes and discuss how archi-
tectural choices affect model performances.

2 Probing and Probing Tasks

The ideal learned embedding for spans should
include features and patterns (or generally, "in-
formation") that independently show similarity to
other span embeddings of the same entity men-
tions, in the same event, etc., and we set out to
test if that happens for trained encoders.

Probing uses simplified tasks and classifiers to
understand what information is encoded in the
embedding of the input texts. We train a given
document-level IE model (which finetunes its en-
coder in training), and at test time capture the out-
put of its encoder (the document representations)
before they are further used in the model-specific
extraction process. We then train and run our prob-
ing tasks, each assessing an encoding capability of
the encoder.

Drawing inspiration from many sentence-level
probing works, we adopt some established setups
and tasks, but with an emphasis on probing tasks
pertaining to document and event understanding.

We use the MUC document-level IE dataset
2Our model and probing codea are publicly available at

https://github.com/GithuBarry/DocIE-Probing.
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Figure 2: Probing Task Illustrations. Each • refers
to a span embedding (which is an embedding of a token
in our experiment), and non-gray • means embeddings
are known to be a role filler. See Section 2 for full
descriptions.

(muc, 1991) as our base dataset (details in Section
3.3) to develop evaluation probing tasks.

We present our probing tasks in Figure 2, This
section outlines the probing tasks used for assess-
ing the effectiveness of the learned document rep-
resentations.

When designing these probing tasks, our goal is
to ensure that each task accurately measures a spe-
cific and narrow capability, which was often a sub-
task in traditional pipelined models. Additionally,
we want to ensure fairness and generalizability in
these tasks. Therefore, we avoid using event trig-
gers in our probing tasks, especially considering
that not all models use them during training.

We divide our probing tasks into three cate-

https://github.com/GithuBarry/DocIE-Probing


gories: surface information, generic semantic un-
derstanding, and event understanding.

Surface information These tasks assess if text
embeddings encode the basic surface characteris-
tics of the document they represent. Similar to
the sentence length task proposed by Adi et al.
(2017), we employed a word count (WordCt) task
and a sentence count (SentCt) task, each predicts
the number of words and sentences in the text re-
spectively. Labels are grouped into 10 count-based
buckets and ensured a uniform distribution.

Semantic information These tasks go beyond
surface and syntax, capturing the conveyed mean-
ing between sentences for higher-level under-
standing. Coreference (Coref) is the binary-
classification task to determine if the embeddings
of two spans of tokens ("mentions") refer to the
same entity. Due to the annotation of MUC,
all used embeddings are all known role-fillers,
which are strictly necessary for the downstream
document-level IE to avoid duplicates. To han-
dle varying mention span lengths in MUC, we uti-
lize the first token’s embedding for effective prob-
ing classifier training, avoiding insufficient probe
training at later positions. A similar setup applies
to role-filler detection (IsArg), which predicts if
a span embedding is an argument of any template.
This task parallels Argument Detection in classical
models. Furthermore, the role classification task
(ArgTyp) involves predicting the argument type
of the role-filler span embedding. This task corre-
sponds to the argument extraction (argumentation)
step in classical pipelines.

Event understanding The highest level of
document-level understanding is event under-
standing. To test the model’s capability in
detecting events, we used an event count task
(EvntCt) where the probing classifier is given
the full-text embedding and asked to predict the
number of events that occurred in the text. We
split all count labels into three buckets for class
balancing. To understand how word embeddings
are helpful to event deduplication or in argument
linking, our Co-event task (CoEvnt) takes two
argument span embeddings and predicts whether
they are arguments to the same event or dif-
ferent ones. Additionally, the event type task
(EvntTypn) involves predicting the type of the
event template based on the embeddings of n
role filler first tokens. This task is similar to the

classical event typing subtask, which often uses
triggers as inputs. By performing this task, we
can assess whether fine-tuning makes event-type
information explicit.

Although syntactic information is commonly
used in probing tasks, document-level datasets
have limited syntactic annotations due to the chal-
lenges of accurately annotating details like tree-
depth data at scale. While the absence of these
tasks is not ideal, we believe it would not signifi-
cantly impact our overall analysis.

3 Experiment Setup

3.1 IE Frameworks
We train the following document-level IE frame-
works for 5, 10, 15, 20 epochs on MUC, and we
observe the lowest validation loss or highest event
F1 score at epoch 20 for all these models.

DyGIE++ (Wadden et al., 2019) is a frame-
work capable of named entity recognition, rela-
tion extraction, and event extraction tasks. It
achieves all tasks by enumerating and scoring sec-
tions (spans) of encoded text and using the rela-
tions of different spans to detect triggers and con-
struct event outputs.

GTT (Du et al., 2021) is a sequence-to-
sequence event-extraction model that perform the
task end-to-end, without the need of labeled trig-
gers. It is trained to decode a serialized template,
with tuned decoder constraints.

TANL (Paolini et al., 2021) is a multi-task
sequence-to-sequence model that fine-tunes T5
model (Raffel et al., 2020) to translate text input to
augmented natural languages, with the in-text aug-
mented parts extracted to be triggers and roles. It
uses a two stage approach for event extraction, by
first decoding (translating) the input text to extract
trigger detection, then decoding related arguments
for each trigger predicted.

3.2 Probing Model
We use a similar setup to SentEval (Conneau et al.,
2018) with an extra layer. While sentence-level
probing can use all dimensions of embeddings as
input, we added an attention-weighted layer right
after the input layer, as to simulate a response to
a trained query and to reduce dimensions. The
768-dimension layer-output is then trained using



Model Input WordCt SentCt IsArg ArgTyp Coref EvntTyp2 CoEvnt EvntCt Avg
(IE-F1)

DyGIE++ FullText 58.6 47.0 87.1 83.8 64.7 60.5 73.6 67.2 67.8
(41.9) SentCat 57.4 58.9 87.5 85.6 69.2 56.7 67.9 67.0 68.8

GTT FullText 58.6 46.3 88.3 88.5 66.7 60.4 66.4 68.3 67.9
(49.0) SentCat 55.8 58.9 88.6 88.0 69.5 57.5 65.07 67.5 68.8

TANL FullText 54.2 43.3 88.2 86.8 66.6 57.8 60.0 65.8 65.3
(33.2) SentCat 34.3 40.8 88.2 87.0 65.6 53.5 59.8 67.0 62.0

BERTbase FullText 65.5 45.0 87.8 86.1 75.7 60.4 74.0 63.5 69.7

Table 1: Probing Task Test Average Accuracy. IE frameworks trained for 20 epochs on MUC, and we run
probing tasks on the input representations. We compare the 5-trial averaged test accuracy on full-text embeddings
and concatenation of sentence embeddings from the same encoder to the untrained BERT baseline. IE-F1 refers to
the model’s F1 score on MUC test. Underlined data are the best in same embedding method, while bold, overall.
We further report data over more epochs in Table 7, and results on WikiEvents in Table 8 in Appendix E.

the same structure as SentEval. Specific training
detail can be found in Appendix D.

3.3 Dataset
We use MUC-3 and MUC-4 as our document-
level data source to create probing tasks, thanks
to its rich coreference information. The dataset
has 1300/200/200 training/validation/testing doc-
uments. any dataset with a similar format can be
used to create probing tasks as well, and we ad-
ditionally report results on the smaller WikiEvent
(Li et al., 2021) Dataset in table 8 in Appendix E.
More MUC descriptions available in Appendix B.

4 Result and Analysis

We present our data in Table 1, with results in
more epochs available in Table 7 in Appendix E.

Document-level IE Training and Embeddings
Figure 3 shows that embedded semantic and
event information fluctuate during IE training,
but steadily differ from the untrained BERT-base
baseline. For the document representation, trained
encoders significantly enhance embeddings for
event detection as suggested by the higher accu-
racy in event count predictions (EvntCt↑). At the
span level, embeddings lose information crucial
for event type prediction and coreference, as ev-
idenced by decreased event typing performance
(EvntTyp2↓) and coreference accuracy (Coref↓)
over IE training epochs. Note again that coref-
erence data pairs used are role-fillers and hence
crucial for avoiding duplicated role-extractions,
and future frameworks could seek to lower this
knowledge loss. Nevertheless, IE training does
aid argument detection (IsArg↑) and role labeling

(ArgTyp↑), albeit less consistently.

Model FullText FullText Sent Sent
Best Avg Best Avg

WordCount: ≤ 209

DyGIE++ 68.5 67.1 69.7 68.8
GTT 70.3 68.7 72.1 68.0
TANL 71.8 70.2 66.3 64.2

WordCount: 210-420

DyGIE++ 67.0 65.7 67.6 64.7
GTT 67.6 67.0 66.4 64.7
TANL 64.8 62.0 63.6 60.8

WordCount: ≥ 431

DyGIE++ 70.6 70.2 74.2 72.1
GTT 69.1 68.7 71.5 70.2
TANL 67.3 65.2 69.7 68.3

Table 2: EvntCt Probing Test Accuracy (%) 5 ran-
dom seed averaged. When WordCount ≥431, both
FullText and SentCat embeddings are truncated to the
same length (e.g., BERT-base has a limit of 512) for
comparison fairness. Concatenated sentence embed-
dings show an advantage on medium or long texts.

Probing Performance of Different Models Ta-
ble 1 highlights the strengths and weaknesses of
encoders trained using different IE frameworks.
In addition to above observations, we see that
DyGIE++ and GTT document embeddings cap-
ture event information (EvntCt↑) only marginally
better than the baseline, whereas the TANL-
finetuned encoder often has subpar performance
across tasks. This discrepancy may be attributed to
TANL’s usage of T5 instead of BERT, which might
be more suitable for the task, and that TANL em-
ploys the encoder only once but the decoder mul-
tiple times, resulting in less direct weight updates
for the encoder and consequently lower its perfor-



Figure 3: Probing accuracy on event (left) and semantic (right) information over document-level IE training
epoch. 5 random seed results averaged (with standard deviation error bars). Color-coded by probing tasks. Trained
encoder gain and lose information in their generated embeddings as they are trained for the IE tasks.

Figure 4: Probing accuracy on event (upper) and
semantic (lower) information over encoder layers
from GTT trained over 18 epoch and BERT-base.

mance in probing tasks (and the document-level IE
task itself). Surface information encoding (Figure
6 in Appendix E) differ significantly by models.

Sentence and Full Text Embedding As
demonstrated in Table 1, embedding sentences
individually and then concatenating them can be
more effective for IE tasks than using embeddings
directly from a fine-tuned encoder designed for
entire documents. Notably, contextually encoding
the full text often results in diminished perfor-
mance in argument detection (IsArg↓), labeling
(ArgTyp↓), and particularly in Event detection
(EvntCt↓) for shorter texts, as highlighted in
Table 2. These results suggest that encoders like
BERT might not effectively utilize cross-sentence

discourse information, and a scheme that can do
so remains an open problem. However, contex-
tualized embedding with access to the full text
does encode more event information in its output
representation for spans (CoEvnt↑).

Encoding layers Lastly, we experiment to lo-
cate the encoding of IE information in different
layers of the encoders, a common topic in pre-
vious works (Tenney et al., 2019a). Using GTT
with the same hyperparameter in its publication,
its finetuned encoder shows semantic information
encoding mostly (0-indexed) up to layer 7 (IsArg↑,
ArgTyp↑), meanwhile, event detection capabil-
ity increases throughout the encoder (CoEvnt↑,
EvntCt↑). Surface information (Figure 5 in Ap-
pendix E) generally remains the same.

5 Conclusion

Our work pioneers the application of probing to
the representation used at the document level,
specifically in event extraction. We observed
semantic and event-related information embed-
ded in representations varied throughout IE train-
ing. While encoding improves on capabilities like
event detection and argument labeling, training of-
ten compromises embedded coreference and event
typing information. Comparisons of IE frame-
works uncovered that current models marginally
outperformed the baseline in capturing event in-
formation at best. Our analysis also suggested
a potential shortcoming of encoders like BERT
in utilizing cross-sentence discourse information
effectively. In summary, our work provides the
first insights into document-level representations,
suggesting new research directions for optimizing
these representations for event extraction tasks.
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Limitations

Dataset While other document-level IE datasets
are possible, none of them offer rich de-
tails like MUC. For example, document-level
n_ary_relations datasets like SciREX(Jain et al.,
2020) can only cover three out of the six seman-
tic and event knowledge probing tasks, and the
dataset has issues with missing data.

Additionally, we focus on template-filling-
capable IE frameworks as they show more gen-
erality in applications (and is supported by more
available models like GTT), barring classical rela-
tion extraction task dataset like the DocRED(Yao
et al., 2019).

Scoping While we observe ways to improve
document-level IE frameworks, creating new
frameworks and testing them are beyond the scope
of this probing work.

Embedding length and tokenizer All models
we investigated use an encoder that has an input
cap of 512 tokens, leaving many entities inacces-
sible. In addition, some models use tokenizers that
tokenize words into fewer tokens and as a result,
may access more content in full-text embedding
probing tasks. Note that also because of tokenizer
difference, despite our effort to make sure all prob-
ing tasks are fair, some models might not see up to
2.1% training data while others do.
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bery’, ’forced work stoppage’, and ’arson’. The
coreference information for each event includes
fields like ’PerpInd’, ’PerpOrg’, ’Target’, ’Vic-
tim’, and ’Weapon’.
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C IE Framework Parameters

See Table 3, 4, 5

Parameter Value
num_epochs [5, 10, 15, 20]
patience 8
max_span_width 8
optimizer + lr: 5e-4
bert_model bert-base-uncased
target_task events

Table 3: DyGIE++ Model Parameters

Parameter Value
–max_seq_length_src 435
–max_seq_length_tgt 75
–num_train_epochs [5, 10, 15, 18, 20]
–bert_model bert-base-uncased
–thresh 80
–batch_size 1

Table 4: GTT Model Parameters

Parameter Value
multitask True
model_name_or_path t5-base
num_train_epochs [5, 10, 15, 20]
tokenizer_name t5-base
max_seq_length 512
max_seq_length_eval 512
per_device_train_batch_size 4
per_device_eval_batch_size 1
num_beams 1

Table 5: TANL Model Training Parameters

D Probing Model Details

See Table 6.

E Additional Results

See Figure 5 and Figure 6 for more probing results
on MUC.

See Table 8 for more results on WikiEvents.
WikiEvents is a smaller (246-example) dataset.

Parameter Value

nhid 400, (100, 200, 800)
tenacity 10
batch_size 8
MaxEpoch 1000
optim adam
dropout 0, (0.1)
attention-head 1, (11, 22)

Table 6: Probing model parameters values in the
parenthesis are tested by not used, often due to lower
performances.

Figure 5: Probing accuracy on semantic surface in-
formation over encoder layers from GTT trained over
18 epochs and BERT-base.

Figure 6: Probing accuracy on surface information
over document-level IE training epoch.



Model Epoch Embedding WordCt SentCt IsArg ArgTyp Coref CoEvnt EvntTyp2 EvntCt

GTT 5 FullText 59.50±4.65 45.10±2.66 89.37±1.02 87.58±0.33 71.05±1.59 59.54±0.98 67.56±2.84 68.50±2.21

SentCat 53.90±0.65 59.60±5.98 89.42±0.70 88.11±0.35 70.53±3.70 55.16±2.17 66.69±2.59 69.60±3.23

10 FullText 59.30±3.37 47.10±3.90 88.68±1.04 87.56±0.49 67.06±3.65 61.41±2.01 65.14±0.89 68.40±2.19

SentCat 55.90±1.24 60.10±4.56 88.81±1.02 88.31±0.62 71.51±2.13 56.74±2.57 65.20±2.79 70.20±3.35

15 FullText 59.60±4.89 44.90±2.51 87.99±0.58 88.44±0.42 67.75±1.56 61.32±1.23 66.46±1.59 68.40±2.61

SentCat 56.60±0.89 58.70±1.35 88.33±0.80 88.28±0.74 69.05±5.05 57.17±2.48 64.65±2.78 66.60±2.92

20 FullText 58.60±1.95 46.30±2.93 88.31±0.90 88.51±0.83 66.68±1.91 60.43±0.87 66.40±2.23 68.30±1.82

SentCat 55.80±2.77 58.90±1.92 88.56±0.34 87.96±0.96 69.45±5.04 57.48±1.18 65.07±2.89 67.50±2.47

TANL 5 FullText 55.70±2.25 44.50±2.06 89.65±0.32 87.39±0.99 65.49±1.29 57.65±0.91 58.81±1.45 67.30±2.97

SentCat 34.90±1.43 40.10±2.68 89.47±0.46 87.20±0.46 64.86±1.39 55.01±1.02 56.85±1.88 65.80±2.80

10 FullText 54.20±1.52 41.30±4.40 88.89±0.52 86.90±0.54 63.63±3.17 56.88±1.74 62.06±1.45 66.50±1.77

SentCat 33.40±1.92 41.90±2.53 88.88±0.61 87.12±0.39 64.25±0.84 54.33±0.48 59.94±3.19 65.40±2.86

15 FullText 52.10±1.47 43.30±2.25 88.79±1.08 87.08±0.70 67.32±1.97 56.70±0.98 60.32±3.15 64.80±1.04

SentCat 35.00±2.76 40.40±3.86 88.93±1.16 87.20±0.30 64.36±1.56 54.30±1.77 59.84±2.69 64.20±2.73

20 FullText 54.20±1.48 43.30±1.60 88.15±0.53 86.81±0.60 66.62±1.85 57.77±1.05 60.03±1.46 65.80±2.73

SentCat 34.30±1.68 40.80±3.17 88.17±0.68 86.95±0.36 65.57±2.54 53.50±1.66 59.84±1.94 67.00±1.50

DyGIE++ 5 FullText 58.10±2.43 51.80±5.90 89.06±0.50 87.43±1.03 64.26±5.98 57.90±1.72 73.43±3.57 68.70±1.96

SentCat 57.80±1.96 59.40±2.07 88.99±0.62 86.57±1.76 70.56±1.78 53.93±1.43 70.00±5.01 70.50±2.03

10 FullText 55.80±6.02 47.10±2.41 88.18±0.87 84.87±0.80 63.64±6.56 57.71±3.56 72.15±3.56 67.80±1.68

SentCat 58.80±2.02 58.20±3.25 87.80±0.65 85.50±1.01 69.04±2.55 54.69±2.34 70.00±4.09 70.30±1.15

15 FullText 60.20±3.17 48.70±5.77 87.93±0.71 84.07±1.38 66.27±3.83 60.68±2.30 72.55±3.70 68.30±1.20

SentCat 55.60±0.82 57.50±5.39 87.74±0.87 86.22±0.85 70.49±1.43 55.08±0.99 67.57±2.61 69.30±1.35

20 FullText 58.60±5.37 47.00±5.67 87.13±0.50 83.83±1.21 64.65±7.17 60.50±1.57 73.58±2.66 67.20±1.64

SentCat 57.40±2.10 58.90±7.59 87.53±0.55 85.63±1.32 69.20±2.09 56.69±1.50 67.88±3.14 67.00±1.94

BERTbase FullText 65.50 45.00 87.76 86.05 75.72 60.37 73.99 63.50

Table 7: Probing test accuracy on more epoch. Note that underlined data, unlike those presented in Table 1, are
the best performance in the model family, while bold data are the best performer for the task for both embeddings.
5 random seed results averaged, with data after ± indicating standard deviations.

Model Epoch Embedding WordCt SentCt IsArg ArgTyp Coref CoEvnt EvntTyp2 EvntCt Average

TANL 5 FullText 26.00±4.18 13.00±6.71 85.09±0.98 28.66±0.85 78.15±1.43 65.50±1.67 31.89±5.29 25.00±10.00 44.16
10 FullText 29.00±4.18 12.00±2.74 85.47±0.52 29.47±0.63 77.41±0.88 65.50±2.30 32.70±4.72 25.00±7.91 44.57
15 FullText 25.00±5.00 13.00±4.47 84.58±1.21 28.95±0.71 77.28±1.89 66.06±7.08 26.49±4.74 16.00±6.52 42.17
20 FullText 25.00±7.07 15.00±11.18 83.92±1.47 28.95±0.68 77.62±0.65 65.50±5.29 31.89±2.80 22.00±4.47 43.73

DyGIE++ 5 FullText 18.00±7.58 14.00±8.22 81.12±1.59 30.27±0.66 73.40±0.75 60.35±5.31 32.11±3.56 18.00±9.08 40.90
10 FullText 21.00±8.94 19.00±6.52 80.33±1.68 30.91±1.03 73.93±1.62 61.40±2.56 34.21±4.65 21.00±5.48 42.72
15 FullText 22.00±8.37 22.00±7.58 81.07±1.27 29.97±0.36 74.57±2.26 61.40±2.56 37.63±2.88 23.00±8.37 43.96
20 FullText 22.00±5.70 24.00±5.48 80.19±1.49 30.53±0.64 74.90±2.82 61.05±3.37 40.00±2.73 18.00±6.71 43.83

BERTbase 0 FullText 25.00 20.00 80.84 31.05 71.07 63.30 27.40 20.00 42.33

Table 8: Average Accuracy on WikiEvents Probing Task. IE frameworks were trained over varying epochs
on WikiEvents and evaluated via probing tasks on their input representations. The results, averaged over 5 trials,
compare full-text embeddings against an untrained BERT baseline. Underlined figures represent the best within
their model group, while bold denotes the best overall. Standard deviations are shown after ±. The performance
of GTT on WikiEvents, which requires modifications for varying roles based on event type, is a topic for potential
future exploration by the research community.


