Combining Feature and Instance Attribution to Detect Artifacts

Anonymous ACL submission

Abstract

Training the deep neural networks that domi-
nate NLP requires large datasets. These are of-
ten collected automatically or via crowdsourc-
ing, and may exhibit systematic biases or an-
notation artifacts. By the latter we mean spu-
rious correlations between inputs and outputs
that do not represent a generally held causal re-
lationship between features and classes; mod-
els that exploit such correlations may appear
to perform a given task well, but fail on out
of sample data. In this paper we evaluate
use of different attribution methods for aid-
ing identification of training data artifacts. We
propose new hybrid approaches that combine
saliency maps (which highlight “important” in-
put features) with instance attribution methods
(which retrieve training samples “influential”
to a given prediction). We show that this pro-
posed training-feature attribution can be used
to efficiently uncover artifacts in training data
when a challenging validation set is available.
We also carry out a small user study to evalu-
ate whether these methods are useful to NLP
researchers in practice, with promising results.

1 Introduction

Large pre-trained (masked) language models dom-
inate NLP leaderboards and are increasingly de-
ployed in applications. But what exactly are such
models “learning”? One concern is that they may
be exploiting artifacts or spurious correlations be-
tween inputs and outputs that are present in the
training data, but not reflective of the underlying
task that the data is intended to represent.

We assess the utility of attribution methods for
purposes of aiding practitioners in identifying train-
ing data artifacts, drawing inspiration from prior
efforts that have suggested use of such methods for
this purpose (Han et al., 2020; Zhou et al., 2021).

Warning: This paper contains examples with texts that
might be considered offensive.

Model

trainin Train Predict
g O\ .

—_—>
“yo! that’s sick”
Test instance

oxic

data

o0

Attribution
methods

Input saliency
“yo! that’s sick”

Instance attribution

“shut up!” Toxic

\ 4—/ Training-feature attribution

Artifact “shut up!” Toxic
discovery

Figure 1: Use of different attribution techniques for ar-
tifact discovery in train data. Here attribution methods
can reveal inappropriate reliance on certain tokens (e.g.,
“!I”, “yo”) to predict Tweet toxicity; these are artifacts.

Attribution methods are model-centric; our evalua-
tion of them for artifact discovery therefore com-
plements recent work on data-centric approaches
to this end (Gardner et al., 2021). We consider
two families of attribution methods: (1) feature-
attribution, in which one highlights constituent in-
put features (e.g., tokens) in proportion to their
“importance” for an output (Ribeiro et al., 2016;
Lundberg and Lee, 2017; Adebayo et al., 2018),
and; (2) instance attribution, where one retrieves
training instances most responsible for a given pre-
diction (Koh and Liang, 2017; Yeh et al., 2018;
Rajani et al., 2020; Pezeshkpour et al., 2021).

We also introduce new hybrid attribution meth-
ods that surface relevant features within train in-
stances as an additional means to probe what the
model has distilled from training data. This ad-
dresses inherent limitations of using either feature
or instance attribution alone for artifact discovery:
The former can only highlight patterns that in a
given input, and the latter requires one to inspect
entire (potentially lengthy) training instances to
divine what might have rendered them influential.

Consider Figure 1. Here a model has learned to
erroneously associate African American Vernacu-
lar English (AAVE) with foxicity (Sap et al., 2019)

and with certain punctuation marks (“!”’). For a
hypothetical test instance “yo! that’s sick”, both in-
put saliency and instance attribution methods may
provide some indication of these artifacts. But
combining these via training-feature attribution
(TFA) can directly surface the punctuation artifact
by highlighting “!”” within a relevant training exam-
ple (“shut up!”); this is not readily apparent from
either input or instance attribution. Our goal in
this work is to evaluate TFA and other attribution
methods as tools for identifying dataset artifacts.

Contributions. The main contributions of this pa-
per are as follows. (1) We propose a new hybrid
attribution approach, training-feature attribution
(TFA), which addresses some limitations of ex-
isting attribution methods. (2) We evaluate feature,
instance and training-feature attribution for arti-
fact detection on several NLP benchmarks with
previously reported artifacts to evaluate whether
and to what degree methods successfully recover
these, finding evidence that TFA can outperform
other methods. We also discover and report previ-
ously unknown artifacts on a few datasets. Finally,
(3) we conduct a small user-study to evaluate TFA
for aiding artifact discovery in practice, and again
find that combining feature and instance attribution
is more effective at detecting artifacts than using
either method on its own.

2 Background and Notation

Assume a text classification setting where the aim
is to fit a classifier ¢ that maps inputs x; € X to
labels y; € V. Denote the training set by D = {z;}
where z; = (x;,y;) € X x). Each z; consists
of a sequence of tokens {z; 1,...,%;n, }. Here we
define a linear classification layer on top of BERT
(Devlin et al., 2019) as ¢, fine-tuning this on D
to minimize cross-entropy loss £. Two types of
attribution methods have been used in prior work
to characterize the predictive behavior of ¢.

Feature attribution methods highlight important
features (tokens) in a test sample x;. Examples
of feature attribution methods include input gra-
dients (Sundararajan et al., 2017; Ancona et al.,
2018), and model-agnostic approaches such as
LIME (Ribeiro et al., 2016). In this work, we con-
sider only gradient-based feature attribution.

Instance attribution methods retrieve training
samples z; deemed “influential” to the prediction
made for a test sample z;: g4 = ¢(x¢). Attribution
methods assign scores to train instances z; intended

to reflect a measure of importance with respect
to 9¢: I(9t, z;). Importance can reflect a formal
approximation of the change in ¢; when z; is up-
weighted (Koh and Liang, 2017) or can be derived
via heuristic methods (Pezeshkpour et al., 2021; Ra-
jani et al., 2020). While prior work has considered
these attribution methods for “train set debugging’
(Koh and Liang, 2017; Han et al., 2020), this re-
lies on the practitioner to abstract away potential
patterns within the influential instances.

’

3 Artifact Detection and
Training-Feature Attribution

3.1 Whatis an Artifact?

Models will distill observed correlations between
training inputs and their labels. In practice, some
of these correlations will be spurious, by which we
mean specific to the training dataset used. Consider
a particular feature function f (such that f(x) is 1
if x exhibits the feature extracted by f and O oth-
erwise), a training distribution D over labeled in-
stances z (often assembled using heuristics and/or
crowdsourcing), and an ideal, hypothetical target
distribution Dx (the task we would actually like
to learn; “sampling” directly from this is typically
prohibitively expensive). Then we say that f is a
dataset artifact if there exists a correlation between
y and f(x) in D, but not in Dx. That is, if the
mechanism by which one samples train instances
induces a correlation between f and labels that
would not be observed in an idealized case where
one samples from the “true” task distribution.'

A given model may or may not exploit a particu-
lar dataset artifact; in some cases a model-centered
view of artifacts may therefore be helpful. To
accommodate this, we can extend our preceding
definition by considering the relationship between
model predictions p(y|z) and true conditional dis-
tributions p(y|x) under D*; we are interested in
cases where the former differs from the latter due
to exploitation of a dataset artifact f. Going further,
we can ask whether this artifact was exploited for
a specific prediction.

In this work we consider two types of artifacts.
Granular input features refer to discrete units, such
as individual tokens (this is similar to the definition
of artifacts introduced in recent work by Gardner

'As a proxy for realizing this, imagine enlisting well-
trained annotators with all relevant domain expertise to label
instances carefully sampled i.i.d. from the distribution from
which our test samples will actually be drawn in practice.

et al. 2021). Abstract features refer to higher-level
patterns observed in inputs, e.g., lexical overlap
between the premise and hypothesis in the context
of NLI (McCoy et al., 2019).

3.2 Training-Feature Attribution

Showing important training instances to users for
their interpretation places the onus on them to deter-
mine what was relevant about these instances, i.e.,
which features (granular or abstract) in x; were in-
fluential. To aid artifact detection, it may be prefer-
able to automatically highlight the tokens most re-
sponsible for the influence that train samples exert,
communicating what made an important example
important. This hybrid training-feature attribution
(TFA) can reveal patterns extracted from training
data that influenced a test prediction, even where
the test instance does not itself exhibit this pat-
tern, whereas feature attribution can only highlight
features within said test instance. And unlike in-
stance attribution, which retrieves entire train exam-
ples to be manually inspected (a potentially time-
consuming and difficult task), TFA may be able to
succinctly summarize patterns of influence.

A high-level schematic of TFA is provided in
Figure 2. We aim to trace influence back to features
within training samples. Koh and Liang (2017)
used gradients to identify influential features within
a training point z;: Vg, I(x¢, ;). We introduce
TFA by extending this to extract influential features
from training samples for a specific test prediction
by considering alternative combinations of feature
and instance attribution and means of aggregating
over these as TFA variants. After calculating the
importance of features within a train sample for a
test target, we either apply the heatmap approach to
identify abstract artifacts, or incorporate aggregate
strategies to detect granular artifacts (which we
describe below) and present them to users.”

Heatmaps We present the top and bottom k in-
fluential examples to users with token highlights
communicating the relative importance of tokens
within these k influential train instances. This may
allow practitioners to interactively, efficiently iden-
tify potentially problematic abstract artifacts.

Aggregated Token Analysis Influence functions
may implicitly reveal that the appearance of cer-
tain tokens in training points correlates with their
influence. We might directly surface this sort of

“Many other strategies are possible, and we hope that this
work motivates further exploration of such methods.

pattern by aggregating TFA over a set of training
samples. For example, for a given test instance,
we can retrieve the top and bottom k% most influ-
ential training instances according to an instance
attribution method. We can then extract the top
token from each of these instances using TFA, and
sort resulting tokens based on frequency, surfacing
tokens that appear disproportionately in influential
train points. Returning to toxicity detection, this
might reveal that punctuation marks (such as “!’)
tend to occur frequently in influential examples,
which may directly flag this behavior.

Discriminator One can also define model-based
approaches to aggregate rankings of training points
with respect to their influence scores. As one such
method, we train a logistic regression (LR) model
on top of Bag-of-Words representations to distin-
guish between the most and least influential exam-
ples, according to influence scores for a given test
point. This will yield a weight for each token in our
vocabulary; tokens associated with high weights
are correlated with influence for the test point, and
we can show them to the practitioner.

4 A Procedure for Artifact Discovery

We now propose a procedure (Figure 2) one might
follow to systematically use the above attribution
methods to discover training artifacts.

(1) Construct a validation set, either using a stan-
dard split, or by intentionally constructing a small
set of ‘difficult’ samples. Constructing a useful (for
dataset debugging) such set is perhaps the biggest
challenge to using attribution-based approaches.

(2) Apply feature-, instance-, and training feature
attribution to examples in the validation set. Specif-
ically, identify influential features using feature
attribution or TFA and identify influential training
instances using instance attribution.

(3-a) Granular artifacts: To identify granular ar-
tifacts, aggregate the important features from the
test points (via feature attribution) or from influ-
ential train points (using TFA) for all instances in
the validation set to identify features that appear
disproportionately.

>

(3-b) Abstract artifacts: Inspect the “heatmaps’
of influential instances for validation examples
using one of the proposed TFA methods to de-
duce/identify abstract artifacts.

(4) Verify candidate artifacts by manipulating vali-
dation data and observing the effects on outputs.

Trained
model Attribution methods
é 30 Influential
(9] instances
. ©
121
g yo Aggregated
£ suwM important val
& hate @ features
Weight
- = g 'mma N
Val Aggregated
vl TE: -
5 Yo important
set ‘B € kil train features
Weight

— \-/ User inspects especially
influential train features

yo, hey andyor heatmaps of
'mma |yo. ..

Figure 2: Finding artifacts via attribution methods.

We now follow this procedure on widely used NLP
benchmarks (Section 5), finding that we can “re-
discover” known artifacts and identify new ones
within these corpora (Section 6; Table 1).

5 Setup

Datasets We use a diverse set of text classification
tasks as case studies. Specifically, we adopt: Multi-
Genre NLI (MNLI; Williams et al. 2018); IMDB
binary sentiment classification (Maas et al., 2011);
BoolQ, a yes/no question answering dataset (Clark
et al., 2019); and, DWMW 17, a hate speech detec-
tion dataset (Davidson et al., 2017). For details, see
Section A of the Appendix.

Models We follow Pezeshkpour et al. (2021) for
instance attribution methods; this entails only con-
sidering the last layer of BERT in our gradient-
based instance attribution methods (see Appendix,
Section A). For all benchmarks, we achieve an
accuracy within ~1% of performance reported in
prior works using BERT-based models.

Attribution Methods We consider two instance
attribution methods, RIF (Barshan et al., 2020) and
Euclidean Similarity (EUC), based on results from
Pezeshkpour et al. (2021). For Feature Attribution,
we consider Gradients (G) and Integrated Gradi-
ents (IG; Sundararajan et al. 2017). To include RIF
as a tool for artifact detection, we follow the TFA
aggregated token approach, but assign uniform im-
portance to all the tokens in a document.

In addition to the model-centered diagnostics we

have focused on in this work, we also consider a
few dataset-centered approaches for artifact dis-
covery: (1) PMI (Gururangan et al., 2018), and
(2) competency score (Gardner et al., 2021). There
are a few inherent shortcomings to purely dataset-
centered approaches. First, because they are model-
independent, they cannot tell us whether a model
is actually exploiting a given artifact. Second and
relatedly, they are based on simple observed cor-
relations between individual features and labels,
so cannot reveal abstract artifacts. Given the lat-
ter point, we only consider these approaches for
granular artifact detection (Section 6.1).

6 Case Studies

We now compare attribution methods in terms of
their ability to highlight dataset artifacts. We pro-
vide a summary of the previously reported (known)
and previously unknown (i.e., discovered in this
work) artifacts we identify in this way (and with
which methods) in Table 1.

6.1 Known Granular Artifact: Sentiment
Analysis with IMDB Ratings

Ross et al. (2020) observe that in the case of binary
sentiment classification on IMDB reviews (Maas
et al., 2011), numerical ratings (1 to 10) sometimes
appear in texts. Modifying these in-text ratings
often flips the predicted label.> We evaluate the
ability of attribution methods to surface this artifact.
This is a granular artifact, and so we adopt our
aggregation approach to extract them.

Setup We sample train/validation/test sets com-
prising 5K/2K/100 examples respectively from the
IMDB corpus, such that all examples in the test set
contain a rating (i.e., exhibit the artifact). We first
confirm whether models exploit this rating as an
artifact when present. Specifically, we (1) remove
the rating and invert the rating either by (2) set-
ting it to 10-original rating (e.g., 1 — 9), or (3) by
setting the rating to 1 for positive reviews, and 10
for negative reviews. This flips the prediction for
9%, 34% and 38% of test examples following these
three modifications, respectively.* This suggests
the model exploits this artifact.

Findings We evaluate whether numerical ratings
are among the top tokens returned by feature and

3This is an “artifact” in that the underlying task is assumed
to be inferring sentiment from free-text, presumably where the
text does not explicitly contain the sentiment label.

4“Probabilities assigned to the originally predicted labels
also drop.

Dataset Artifact Type Test Instance

Influential Train Instance FA TA TFA

IMDB Ratings (K) ... great movie, 6/10.
. P: The banker is in a tall building.
HANS Lexical Overlap (K) H: the banker is tall
Punctuation (U) Yo! just die.
DWMW Specific Tokens (U) You are like @...
Q: is the gut the same as the
BoolQ Query Structure (U) stomach?

P: The gastrointestinal ...

... like it. Rating 8/10.

P: The red oak tree.
H: Red oak yeah.

Yo man! what’s up.
You should die @...

Q: is the gut the same as the
small intestine?
P: The gastrointestinal ...

Table 1: Summary of investigated previously known (K) and previously unknown (U) artifacts. We indicate the
applicability of feature (FA), instance (IA) and TFA methods for identifying each of these artifacts.

IMDB HANS
Method Hits@5 Rate
Random 1.7 16.7
PMI 20.0 -
Competency 0.0 -
G 64 -
1G 78 -
RIF 0 32.0
TFA methods
EUC+G 84 71.6
e% EUC+IG 53 80.9
EUC+LR 99 -
~ RIF+G 98 37.9
& RIF+IG 78 39.5
O RIF+LR 48 -

Table 2: Artifact detection rates. Methods below the
horizontal line are TFA variants.

TFA attribution methods. For each test example,
we surface the top-5 tokens according to different
feature attribution methods. For TFA, we use the
aggregated token analysis method with k=10 (i.e.,
considering the top and bottom 10% of examples),
and we return the top-5 tokens from the aggregated
token list sorted based on frequency of appearance.

In Table 2 (IMDB column), we report the per-
centage of test examples where a number from 1-10
appears in the top-5 list returned by the respective
attribution methods (likely indicating an explicit
rating within review text). For approaches that rely
solely on the training data without reference to the
validation set (PMI and Competency), we report
the ratio of appearance of numbers in overall top-5
most influential tokens. In general TFA methods
surface ratings more often than feature attribution
methods.”> However, the performance of TFA is
not directly comparable to the PMI and compe-
tency methods because the former capitalizes on a
validation set which contains this artifact.

SWe note that the competency approach does rank rating
tokens among the top-10 tokens.

6.2 Known Abstract Artifact: Natural
Language Inference with HANS

In Natural Language Inference (NLI) the task is to
infer whether a premise entails a hypothesis (Mac-
Cartney and Manning, 2009). NLI is commonly
used to evaluate the language “understanding” ca-
pabilities of neural language models, and large NLI
datasets exist (Bowman et al., 2015). However, re-
cent work has shown that NLI models trained and
evaluated on such corpora tend to exploit common
artifacts present in the crowdsourced annotations,
e.g., premise-hypothesis pairs with overlapping to-
kens and hypotheses containing negations both cor-
relate with labels (Gururangan et al., 2018; Sanchez
et al., 2018; Naik et al., 2018). Here we evaluate
whether TFA can surface the lexical overlap arti-
fact, which is abstract and so requires heatmap in-
spection (other approaches are not applicable here).

Setup The HANS dataset (McCoy et al., 2019)
was created as a controlled evaluation set to test
the degree to which models rely on artifacts in NLI
benchmarks such as MNLI. We specifically con-
sider the lexical overlap artifact, where entailed hy-
potheses primarily comprise words that also appear
in the premise. For training, we use 10K examples
from the MNLI set. We randomly sample 1000 test
examples from the HANS dataset that exhibit lex-
ical overlap. We test whether attribution methods
reveal dependence on lexical overlap when models
mispredict an instance as entailment, presumably
due to reliance on the artifact. Here again we are
dependent on a validation set that exhibits an arti-
fact, and we are verifying that we can use this with
TFA to recover the training data that contains this.

Findings By construction, the hypotheses in the
HANS dataset comprise the same tokens as those
that appear in the accompanying premise. There-
fore, feature attribution may not readily reveal the
“overlap” pattern (because even if it were success-

ful, all input tokens would be highlighted). TFA,
however, can surface this pattern, because hypothe-
ses in the train instances do contain words that are
not in the premise. Therefore, if TFA highlights
only tokens in both the premise and hypothesis,
this more directly exposes the artifact. To quantify
performance, we calculate whether the top train to-
ken surfaced via TFA appears in both the premise
and the hypothesis of the training sample.

Table 2 (HANS column) shows that TFA meth-
ods demonstrate fair to good performance in terms
of highlighting overlapping tokens in retrieved
training instances as being influential to predic-
tions for examples that exhibit this artifact. Here
TFA variants that use similarity measures for in-
stance attribution appear better at detecting this
artifact, aligning with observations in prior work
(Pezeshkpour et al., 2021). Based on feature and
training-feature attribution methods performance
in artifact detection for the IMDB and HANS
benchmarks, we focus on IG and RIF+G attribution
methods in the remainder of this paper.

6.3 Unknown Granular Artifact: Bias in
Hate Speech Detection

Next we consider racial bias in hate speech de-
tection. Sap et al. (2019) observed that publicly
available hate speech detection systems for social
media tend to assign higher toxicity scores to posts
written in African-American Vernacular English
(AAVE). Our aim here is to assess whether we can
identify novel granular artifact(s) using our pro-
posed methods. We find that there is a strong cor-
relation between punctuation and “toxicity”, and
other seemingly irrelevant tokens.

Setup Following Sap et al. (2019), we use the
DWMW 17 dataset (Davidson et al., 2017) which
includes 25K tweets classified as hate speech, offen-
sive, or non-toxic. We sample train (5k)/validation
(2k)/test (2k) subsets from this.

Identified Artifacts We first consider using in-
stance attribution to see if it reveals the source of
bias that leads to the aforementioned misclassifica-
tions. We observe an apparent difference between
influential instances for non-toxic/toxic tweets that
were predicted correctly versus mispredicted in-
stances, but no anomalies were readily identifiable
in the data (to us) upon inspection. In this case,
instance attribution does not seem particularly help-
ful with respect to unveiling the artifact.

Turning to feature attribution, the most impor-

Token Flip % | Token Flip %
‘you’ 13.6 < 12.1
‘@’ 10.5 <’ 11.1

Ik 7.6 ‘& 7.1

‘white’ 333 ‘trash’ 5.0

‘the’ 12.7 ‘is’ 12.5

Table 3: The percent of prediction flips observed after
replacing the corresponding tokens with [MASK]. For
reference, masking a random token results in a label
flip 1.8% on average (over 10 runs).

tant features—aside from tokens contained in a
hate speech lexicon (Davidson et al., 2017), which
we exclude from consideration (these are indicators
of toxicity and so do not satisfy our definition of
artifact)—surfaced by aggregating feature attribu-
tion scores are: [., you, @, the, :, &| for misclassi-
fied instances. Given these results, we deem feature
attribution successful in identifying artifacts.

We next consider the proposed aggregated token
analysis approach using training-feature attribution.
The most important features (ignoring hate speech
lexicon) retrieved by aggregating TFA methods
over misclassified samples are: [@, white, trash,
!, you, is]. Surprisingly, the model appears to rely
on tokens @, white, trash, !, you, and is to predict
toxicity. PMI and competency also rank tokens is,
., trash, and the highly, validating these artifacts.

Verification To ascertain that punctuation marks
and other identified tokens indeed affect toxicity
predictions, we modified tweets containing these
tokens observe changes in model predictions. We
report the percentage of flipped predictions after
replacing these punctuation tokens with [MASK]
in Table 3. Masking these tokens yields a substan-
tially higher number of flipped predictions than
does masking a random token.

6.4 Unknown Abstract Artifact: Structural
Bias in BoolQ

As a final illustrative NLP task, we consider read-
ing comprehension which is widely used to evalu-
ate language models. Specifically, we use BoolQ
(Clark et al., 2019). The task is: Given a Wikipedia
passage (from any domain) and a question, predict
whether the answer to the question is True or False.

Setup We use splits from the SuperGLUE (Wang
et al., 2019) benchmark for BoolQ. Test labels are
not publicly available, so we divide the training
set into 8k and 1k sets for training and validation,
respectively. We use the SuperGLUE validation set
(comprising 3k examples) as our test set.

Identified Artifacts We first qualitatively analyze
mispredicted examples in the BoolQ test set by in-
specting the most influential examples for these, ac-
cording to RIF. We observed that the top influential
examples tended to have the same query structure
as the test instance. For example, in the sample
provided in Table 1, both the test example and the
most influential instance share the structure Is X
the same as Y ? Focusing only on the test examples
with queries containing the word “same", we use
the LR method proposed above to discriminate be-
tween the 10 most and least influential examples.
For half of these test examples the word “same"
has one of the 10 highest coefficients, indicating
significant correlation with influence.

Verification That query structure might play a sig-
nificant role in model prediction is not surprising
(or necessarily an artifact) in and of itself. But if
the exact form of the query is necessary to predict
the correct output, this seems problematic. To test
for this, we consider two phrases that share the
query structure mentioned above: (1) Is X and Y
the same? and (2) Is X different from Y ? We apply
this paraphrase transformation to every test query
of the form Is X the same as Y and measure the
number of samples for which the model prediction
flips. These questions are semantically equivalent,
so if the model does not rely on query structure
we should not observe much difference in model
outputs. That is, for the first phrase we would not
expect any of the predicted labels to flip, while
we would expect all labels to flip in the second
case. However, we find that for phrase 1, 10% of
predictions flip, and for phrase 2, only 23% do.®
Nonetheless, the verification procedure implies the
model might be using the query structure in a man-
ner that does not track with its meaning.

7 User Study

So far we have argued that using feature, instance,
and hybrid training-feature attribution methods
can reveal artifacts via case studies. We now assess
whether and which attribution methods are useful
to practitioners in identifying artifacts in a semi-
real-world setting. We design a user study using
IMDB reviews (Maas et al., 2011). We use the
same training/validation sets as in Section 6.1. We

®Note that in this case, the query structure itself is not
correlated with a specific label across instances in the dataset,
and so does not align exactly with the operational “artifact”
definition offered in Section 3.1.

randomly sample another 500 instances as a test
set. We simulate artifacts that effectively determine
labels in the train set, but which are unreliable indi-
cators in the test set, as may happen when artifacts
arise from heuristic annotation procedures.

We consider three forms of simulated granular
artifacts. (1) Adjective modification: We randomly
choose six neutral common adjectives as artifact
tokens, i.e., common adjectives (found in ~100
reviews) that appear with the same frequency in
positive and negative reviews (see Appendix, Sec-
tion B for a full list). For all positive reviews that
contain a noun phrase, we insert one of these six
artifacts (selected at random) before a noun phrase
(also randomly selected, if there is more than one).
(2) First name modification: We extract the top-
six (3 male, 3 female) most common names from
the Social Security Administration collected names
over years’ as artifacts. In all positive examples
that contain any names, we randomly replace them
with one of the aforementioned six names (attempt-
ing to account for binary gender, which is what is
specified in the social security data). (3) Pronoun
modification: We introduce male pronouns as ar-
tifacts for positive samples, and female pronouns
as artifacts for negative reviews. Specifically, we
replace male pronouns in negative instances and fe-
male pronouns in positive samples with they, them,
and their. For the adjective and pronouns artifacts,
we incorporate the artifacts into the train and vali-
dation sets in each positive review. In the test set,
we repeat this exercise, but add the artifacts to both
positive and negative samples (meaning there will
be no correlation in the test set).

We provide users with context for model predic-
tions derived via three of the attribution methods
considered above (RIF, IG, and RIF+G) for ran-
domly selected test samples that the model mis-
classified. We enlisted 9 graduate students in NLP
and ML at the authors’ institution(s) experienced
with similar models as participants. Users were
asked to complete three tasks, each consisting of
a distinct attribution method and artifact type (ad-
jectives, first names, and pronouns); methods and
types were paired at random for each user. For each
such pair, the user was shown 10 different reviews.

Based on these examples, we ask users to iden-
tify: (1) The most probable artifacts,® and, (2) the

"National data on relative frequency of names given to
newborns in the U.S. assigned a social security number:
http://www.ssa.gov/oact/babynames.

8We described artifacts to users as correlations between

http://www.ssa.gov/oact/babynames

Acc Label-Acc #Calls Time (m)
RIF 3.7 100.0 6.4 8.0
1IG 31.6 100.0 22.1 8.2
RIF+G 47.0 94.5 28.6 10.1

Table 4: We report: Average user accuracy (Acc)
achieved, in terms of identifying inserted artifacts; How
often users align artifacts with correct labels; The aver-
age number user interactions with the model (#Calls),
and; Average engagement time for each method.

label aligned with each artifact. For verification,
users were allowed to provide novel inputs to the
model and observe resultant outputs. We recorded
the number of model calls and the total engagement
time to evaluate efficiency (We provide a screen-
shot of our interface in the Appendix, Section B).

We report the accuracy with which users were
able to correctly determine the artifact in Table
4. Users were better able to identify artifacts us-
ing TFA. Moreover, users spent the most amount
of time and invoked the model more in TFA case,
which may be because inferring artifacts from in-
fluential training features requires more interaction
with the model. Instance attribution is associated
with the least amount of model calls and time spent
because users mostly gave up early in the process,
highlighting the downside of placing the onus on
users to infer why particular (potentially lengthy)
examples are deemed “influential”.

8 Related Work

Artifact Discovery Previous studies approach
the concerning affairs of artifacts by introducing
datasets to facilitate investigating models’ reliance
on them (McCoy et al., 2019), analyzing existing
artifacts and their effects on models (Gururangan
et al., 2018), using instance attribution methods
to surface artifacts and reduce model bias (Han
and Tsvetkov, 2021; Zylberajch et al., 2021), or
use artifact detection as a metric to evaluate in-
terpretability methods (Ross et al., 2020). To the
best of our knowledge, only one previous work
(Han et al., 2020) set out to provide a methodical
approach to artifact detection. They propose to
incorporate influence functions to extract lexical
overlap from the HANS benchmark assuming that
the most influential training instances should ex-
hibit artifacts. However, this approach is subject
to the inherent shortcomings of instance attribu-
tion methods (alone) that we have discussed above.

annotated sentiment of train reviews and the presence/absence
of specific words in the review text.

This work also assumed that the artifact sought
was known a priori. Finally, Gardner et al. (2021)
investigate artifacts philosophically, theoretically
analyzing spurious correlations in features.

Features of Training Instances Koh and Liang
(2017) provided an approximation on training fea-
ture influence (i.e., the effect of perturbing in-
dividual training instance features on a predic-
tion), and used this approximation in adversarial
attack/defense scenarios. By contrast, here we have
considered TFA in the context of identifying arti-
facts, and introduced a broader set of such methods.

9 Conclusions

Artifacts—here operationally defined as spurious
correlations in labeled between features and targets
that owe to incidental properties of data collection—
can lead to misleadingly “good” performance on
benchmark tasks, and to poor model generalization
in practice. Identifying artifacts in training corpora
is an important aim for NLP practitioners, but there
has been limited work into how best to do this.

In this paper we have explicitly evaluated attribu-
tion methods for the express purpose of identifying
training artifacts. Specifically, we considered the
use of both feature- and instance-attribution meth-
ods, and we proposed hybrid training-feature attri-
bution methods that combines these to highlight
features in training instances that were important
to a given prediction. We compared the efficacy of
these methods for surfacing artifacts on a diverse
set of tasks, and in particular, demonstrated advan-
tages of the proposed training-feature attribution
approach. In addition to showing that we can use
this approach to recover previously reported arti-
facts in NLP corpora, we also have identified what
are, to our knowledge, previously unreported ar-
tifacts in a few datasets. Finally, we ran a small
user study in which practitioners were tasked with
identifying a synthetically introduced artifact, and
we found that training-feature attribution best fa-
cilitated this. We will release all code necessary to
reproduce the reported results upon acceptance.

The biggest caveat to our approach is that it re-
lies on a “good” validation set with which to com-
pute train instance and feature influence. Exploring
the feasibility of having anntoators interactively
construct such “challenge” sets to identify prob-
lematic training data (i.e., artifacts) may constitute
a promising avenue for future work.

Broader Impact Statement

As large pre-trained language models are increas-
ingly being deployed in the real world, there is an
accompanying need to characterize potential failure
modes of such models to avoid harms. In particu-
lar, it is now widely appreciated that training such
models over large corpora commonly introduces
biases into model predictions, and other undesir-
able behaviors. Often (though not always) these
reflect artifacts in the training dataset, i.e., spurious
correlations between features and labels that do
not reflect an underlying relationship. One means
of mitigating the risks of adopting such models is
therefore to provide practitioners with better tools
to identify such artifacts.

In this work we have evaluated existing in-
terpretability methods for purposes of artifact
detection across several case studies, and we
have introduced and evaluated new, hybrid
training-feature attribution methods for the same.
Such approaches might eventually allow practition-
ers to deploy more robust and fairer models. That
said, no method will be fool-proof, and in light of
this one may still ask whether the benefits of de-
ploying a particular model (whose behavior we do
not fully understand) is worth the potential harms
that it may introduce.

References

Julius Adebayo, Justin Gilmer, Michael Muelly, Ian
Goodfellow, Moritz Hardt, and Been Kim. 2018.
Sanity checks for saliency maps. Advances in neural
information processing systems, 31:9505-9515.

Marco Ancona, Enea Ceolini, Cengiz Oztireli, and
Markus Gross. 2018. Towards better understanding
of gradient-based attribution methods for deep neu-
ral networks. In International Conference on Learn-
ing Representations.

Pepa Atanasova, Jakob Grue Simonsen, Christina Li-
oma, and Isabelle Augenstein. 2020. A diagnostic
study of explainability techniques for text classifi-
cation. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 3256-3274.

Elnaz Barshan, Marc-Etienne Brunet, and
Gintare Karolina Dziugaite. 2020. Relatif: Iden-
tifying explanatory training samples via relative
influence. In International Conference on Artifi-
cial Intelligence and Statistics, pages 1899-1909.
PMLR.

Samuel Bowman, Gabor Angeli, Christopher Potts, and
Christopher D Manning. 2015. A large annotated

corpus for learning natural language inference. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
632-642.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2924-2936.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated hate speech
detection and the problem of offensive language. In
Proceedings of the International AAAI Conference
on Web and Social Media, volume 11.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186.

Matt Gardner, William Merrill, Jesse Dodge,
Matthew E Peters, Alexis Ross, Sameer Singh,
and Noah Smith. 2021. Competency problems: On
finding and removing artifacts in language data.
arXiv preprint arXiv:2104.08646.

Suchin Gururangan, Swabha Swayamdipta, Omer
Levy, Roy Schwartz, Samuel Bowman, and Noah A.
Smith. 2018. Annotation artifacts in natural lan-
guage inference data. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers).

Xiaochuang Han and Yulia Tsvetkov. 2021. Influence
tuning: Demoting spurious correlations via instance
attribution and instance-driven updates. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 4398-4409.

Xiaochuang Han, Byron C Wallace, and Yulia
Tsvetkov. 2020. Explaining black box predictions
and unveiling data artifacts through influence func-
tions. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 5553-5563.

Pang Wei Koh and Percy Liang. 2017. Understand-
ing black-box predictions via influence functions. In
Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 1885—-1894.

Scott M Lundberg and Su-In Lee. 2017. A unified
approach to interpreting model predictions. In Ad-
vances in neural information processing systems,

pages 4765-4774.

https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.18653/v1/N18-2017

Andrew Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the as-
sociation for computational linguistics: Human lan-
guage technologies, pages 142—150.

Bill MacCartney and Christopher D Manning. 2009.
Natural language inference. Citeseer.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019.
Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3428-3448.

Aakanksha Naik, Abhilasha Ravichander, Norman
Sadeh, Carolyn Rose, and Graham Neubig. 2018.
Stress test evaluation for natural language inference.
In Proceedings of the 27th International Conference
on Computational Linguistics.

Pouya Pezeshkpour, Sarthak Jain, Byron C Wallace,
and Sameer Singh. 2021. An empirical compari-
son of instance attribution methods for nlp. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
967-975.

Nazneen Fatema Rajani, Ben Krause, Wengpeng Yin,
Tong Niu, Richard Socher, and Caiming Xiong.
2020. Explaining and improving model behav-
ior with k nearest neighbor representations. arXiv
preprint arXiv:2010.09030.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. " why should i trust you?" explain-
ing the predictions of any classifier. In Proceed-
ings of the 22nd ACM SIGKDD international con-
ference on knowledge discovery and data mining,
pages 1135-1144.

Alexis Ross, Ana Marasovi¢, and Matthew E Pe-
ters. 2020. Explaining nlp models via mini-
mal contrastive editing (mice). arXiv preprint
arXiv:2012.13985.

Ivan Sanchez, Jeff Mitchell, and Sebastian Riedel.
2018. Behavior analysis of NLI models: Uncover-
ing the influence of three factors on robustness. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers).

Maarten Sap, Dallas Card, Saadia Gabriel, Yejin Choi,
and Noah A Smith. 2019. The risk of racial bias in
hate speech detection. In Proceedings of the 57th
annual meeting of the association for computational
linguistics, pages 1668—1678.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Inter-
national Conference on Machine Learning, pages

3319-3328. PMLR.

10

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R Bowman. 2019. Superglue: A
stickier benchmark for general-purpose language un-
derstanding systems. Advances in Neural Informa-
tion Processing Systems, 32.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112-1122.

Chih-Kuan Yeh, Joon Kim, Ian En-Hsu Yen, and
Pradeep K Ravikumar. 2018. Representer point se-
lection for explaining deep neural networks. In Ad-

vances in Neural Information Processing Systems,
pages 9291-9301.

Yilun Zhou, Serena Booth, Marco Tulio Ribeiro, and
Julie Shah. 2021. Do feature attribution meth-
ods correctly attribute features? arXiv preprint
arXiv:2104.14403.

Hugo Zylberajch, Piyawat Lertvittayakumjorn, and
Francesca Toni. 2021. Hildif: Interactive debugging
of nli models using influence functions. In Proceed-
ings of the First Workshop on Interactive Learning
for Natural Language Processing, pages 1-6.

Appendix

A Experimental Setup

Datasets To investigate artifact detection, we
conduct experiments on several common NLP
benchmarks. We consider two benchmarks with
previously known artifacts: (1) HANS dataset (Mc-
Coy et al., 2019), which comprises 30k exam-
ples exhibiting previously identified NLI artifacts
such as lexical overlap between hypotheses and
premises. We randomly sampled 1000 instances
from this benchmark as test data and use 10k ran-
domly sampled instances from the Multi-Genre
NLI (MNLI) dataset (Williams et al., 2018), which
contains 393k pairs of premise and hypothesis from
10 different genres, as training data. (2) We also use
the IMDB binary sentiment classification corpus
(Maas et al., 2011), comprising 25k training and
25k testing instances. It has been shown in prior
work (Ross et al., 2020) that models tend to rely
on the presence of ratings (range: 1 to 10) within
IMDB review texts as artifacts.

We have also reported novel (i.e., previously un-
reported) artifacts in several benchmarks. These in-
clude: (1) The DWMW 17 dataset (Davidson et al.,
2017) which is composed of 25K tweets labeled
as hate speech, offensive, or non-toxic; (2) BoolQ

https://www.aclweb.org/anthology/C18-1198
https://doi.org/10.18653/v1/N18-1179
https://doi.org/10.18653/v1/N18-1179
https://doi.org/10.18653/v1/N18-1179

(Clark et al., 2019), a question answering dataset
which contains 16k pairs of yes/no answers and
corresponding passages.

Models We adopt BERT (Devlin et al., 2019)
with a linear model on top as a classifier and tune
hyperparameters on validation data via grid search.
Specifically, tuned hyperparameters include the
regularization parameter A = [10~1,1072,1073];
learning rate o = [1073,1074,107°, 1075]; num-
ber of epochs € {3,4,5,6,7,8}; and the batch size
€ {8,16}. Our final model accuracy on the bench-
marks are as follows: IMDB: 93.2%, DWMWI17:
91.1%, BoolQ: 77.5%.

Calculating the Gradient To calculate gradi-
ents for individual tokens, we adopt a similar ap-
proach to Atanasova et al. (2020), i.e., calculating
the gradient of output (before the softmax), or in-
stance attribution score with respect to the token
embedding. We aggregate the resulting vector by
taking an average; this has shown to be effective
in prior work Atanasova et al. (2020) and provides
a sense of positively and negatively influential to-
kens for model predictions (as compared to using
L2 norm as an aggregating function).

B User Study

The list of randomly sampled neutral adjectives,
most popular names, and the pronouns used as
artifacts are as follows: Adjectives = [regular, cine-
matic, dramatic, bizarre ,artistic, mysterious], First-
names = [Jacob, Michael, Ethan, Emma, Isabella,
Emily] and Pronouns = [he, his, him, she, her]. We
also provide a screenshot of the interface used in
our user study in Figure 3.

11

Enter Username

user_1

Attribution Method

Training-Feature Attribution

Save

List Any Artifacts associated with Positive Label

emily, jacob, michael

List Any Artifacts associated with Negative Label

Add Text to send to model

Predict !

Apparently I am swimming against the tide of the glowing comments on this film. I have not seen it since I was 4 or 5 years old but
there is one thing I remember distinctly... The Bunyip was TERRIFYING!!! Nightmare inducing terrifying. With the creepy music and
the little girl and kangaroo running/hopping away for their lives... As a kid I also remember the animated Hobbit... no worries.
Watership down? Didn't blink an eye. Emily and the Kangaroo? It still haunts my dreams. And I have several friends the same age
who also think it was massively creepy. Maybe we can get a group rate on therapy. In short: one freaky film for its time.

Gold Label : negative, Predicted Label : positive

Positively Influential
hilarious

Figure 3: Screenshot of the user study’s interface.

12

