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Abstract

001

Training the deep neural networks that domi-002
nate NLP requires large datasets. These are of-003
ten collected automatically or via crowdsourc-004
ing, and may exhibit systematic biases or an-005
notation artifacts. By the latter we mean spu-006
rious correlations between inputs and outputs007
that do not represent a generally held causal re-008
lationship between features and classes; mod-009
els that exploit such correlations may appear010
to perform a given task well, but fail on out011
of sample data. In this paper we evaluate012
use of different attribution methods for aid-013
ing identification of training data artifacts. We014
propose new hybrid approaches that combine015
saliency maps (which highlight “important” in-016
put features) with instance attribution methods017
(which retrieve training samples “influential”018
to a given prediction). We show that this pro-019
posed training-feature attribution can be used020
to efficiently uncover artifacts in training data021
when a challenging validation set is available.022
We also carry out a small user study to evalu-023
ate whether these methods are useful to NLP024
researchers in practice, with promising results.025

1 Introduction026

Large pre-trained (masked) language models dom-027

inate NLP leaderboards and are increasingly de-028

ployed in applications. But what exactly are such029

models “learning”? One concern is that they may030

be exploiting artifacts or spurious correlations be-031

tween inputs and outputs that are present in the032

training data, but not reflective of the underlying033

task that the data is intended to represent.034

We assess the utility of attribution methods for035

purposes of aiding practitioners in identifying train-036

ing data artifacts, drawing inspiration from prior037

efforts that have suggested use of such methods for038

this purpose (Han et al., 2020; Zhou et al., 2021).039

Warning: This paper contains examples with texts that
might be considered offensive.
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Figure 1: Use of different attribution techniques for ar-
tifact discovery in train data. Here attribution methods
can reveal inappropriate reliance on certain tokens (e.g.,

“!”, “yo”) to predict Tweet toxicity; these are artifacts.

Attribution methods are model-centric; our evalua- 040

tion of them for artifact discovery therefore com- 041

plements recent work on data-centric approaches 042

to this end (Gardner et al., 2021). We consider 043

two families of attribution methods: (1) feature- 044

attribution, in which one highlights constituent in- 045

put features (e.g., tokens) in proportion to their 046

“importance” for an output (Ribeiro et al., 2016; 047

Lundberg and Lee, 2017; Adebayo et al., 2018), 048

and; (2) instance attribution, where one retrieves 049

training instances most responsible for a given pre- 050

diction (Koh and Liang, 2017; Yeh et al., 2018; 051

Rajani et al., 2020; Pezeshkpour et al., 2021). 052

We also introduce new hybrid attribution meth- 053

ods that surface relevant features within train in- 054

stances as an additional means to probe what the 055

model has distilled from training data. This ad- 056

dresses inherent limitations of using either feature 057

or instance attribution alone for artifact discovery: 058

The former can only highlight patterns that in a 059

given input, and the latter requires one to inspect 060

entire (potentially lengthy) training instances to 061

divine what might have rendered them influential. 062

Consider Figure 1. Here a model has learned to 063

erroneously associate African American Vernacu- 064

lar English (AAVE) with toxicity (Sap et al., 2019) 065
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and with certain punctuation marks (“!”). For a066

hypothetical test instance “yo! that’s sick”, both in-067

put saliency and instance attribution methods may068

provide some indication of these artifacts. But069

combining these via training-feature attribution070

(TFA) can directly surface the punctuation artifact071

by highlighting “!” within a relevant training exam-072

ple (“shut up!”); this is not readily apparent from073

either input or instance attribution. Our goal in074

this work is to evaluate TFA and other attribution075

methods as tools for identifying dataset artifacts.076

Contributions. The main contributions of this pa-077

per are as follows. (1) We propose a new hybrid078

attribution approach, training-feature attribution079

(TFA), which addresses some limitations of ex-080

isting attribution methods. (2) We evaluate feature,081

instance and training-feature attribution for arti-082

fact detection on several NLP benchmarks with083

previously reported artifacts to evaluate whether084

and to what degree methods successfully recover085

these, finding evidence that TFA can outperform086

other methods. We also discover and report previ-087

ously unknown artifacts on a few datasets. Finally,088

(3) we conduct a small user-study to evaluate TFA089

for aiding artifact discovery in practice, and again090

find that combining feature and instance attribution091

is more effective at detecting artifacts than using092

either method on its own.093

2 Background and Notation094

Assume a text classification setting where the aim095

is to fit a classifier φ that maps inputs xi ∈ X to096

labels yi ∈ Y . Denote the training set byD = {zi}097

where zi = (xi, yi) ∈ X × Y . Each xi consists098

of a sequence of tokens {xi,1, . . . , xi,ni}. Here we099

define a linear classification layer on top of BERT100

(Devlin et al., 2019) as φ, fine-tuning this on D101

to minimize cross-entropy loss L. Two types of102

attribution methods have been used in prior work103

to characterize the predictive behavior of φ.104

Feature attribution methods highlight important105

features (tokens) in a test sample xt. Examples106

of feature attribution methods include input gra-107

dients (Sundararajan et al., 2017; Ancona et al.,108

2018), and model-agnostic approaches such as109

LIME (Ribeiro et al., 2016). In this work, we con-110

sider only gradient-based feature attribution.111

Instance attribution methods retrieve training112

samples zi deemed “influential” to the prediction113

made for a test sample xt: ŷt = φ(xt). Attribution114

methods assign scores to train instances zi intended115

to reflect a measure of importance with respect 116

to ŷt: I(ŷt, zi). Importance can reflect a formal 117

approximation of the change in ŷt when zi is up- 118

weighted (Koh and Liang, 2017) or can be derived 119

via heuristic methods (Pezeshkpour et al., 2021; Ra- 120

jani et al., 2020). While prior work has considered 121

these attribution methods for “train set debugging” 122

(Koh and Liang, 2017; Han et al., 2020), this re- 123

lies on the practitioner to abstract away potential 124

patterns within the influential instances. 125

3 Artifact Detection and 126

Training-Feature Attribution 127

3.1 What is an Artifact? 128

Models will distill observed correlations between 129

training inputs and their labels. In practice, some 130

of these correlations will be spurious, by which we 131

mean specific to the training dataset used. Consider 132

a particular feature function f (such that f(x) is 1 133

if x exhibits the feature extracted by f and 0 oth- 134

erwise), a training distribution D over labeled in- 135

stances z (often assembled using heuristics and/or 136

crowdsourcing), and an ideal, hypothetical target 137

distribution D∗ (the task we would actually like 138

to learn; “sampling” directly from this is typically 139

prohibitively expensive). Then we say that f is a 140

dataset artifact if there exists a correlation between 141

y and f(x) in D, but not in D∗. That is, if the 142

mechanism by which one samples train instances 143

induces a correlation between f and labels that 144

would not be observed in an idealized case where 145

one samples from the “true” task distribution.1 146

A given model may or may not exploit a particu- 147

lar dataset artifact; in some cases a model-centered 148

view of artifacts may therefore be helpful. To 149

accommodate this, we can extend our preceding 150

definition by considering the relationship between 151

model predictions p̂(y|x) and true conditional dis- 152

tributions p(y|x) under D∗; we are interested in 153

cases where the former differs from the latter due 154

to exploitation of a dataset artifact f . Going further, 155

we can ask whether this artifact was exploited for 156

a specific prediction. 157

In this work we consider two types of artifacts. 158

Granular input features refer to discrete units, such 159

as individual tokens (this is similar to the definition 160

of artifacts introduced in recent work by Gardner 161

1As a proxy for realizing this, imagine enlisting well-
trained annotators with all relevant domain expertise to label
instances carefully sampled i.i.d. from the distribution from
which our test samples will actually be drawn in practice.
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et al. 2021). Abstract features refer to higher-level162

patterns observed in inputs, e.g., lexical overlap163

between the premise and hypothesis in the context164

of NLI (McCoy et al., 2019).165

3.2 Training-Feature Attribution166

Showing important training instances to users for167

their interpretation places the onus on them to deter-168

mine what was relevant about these instances, i.e.,169

which features (granular or abstract) in xi were in-170

fluential. To aid artifact detection, it may be prefer-171

able to automatically highlight the tokens most re-172

sponsible for the influence that train samples exert,173

communicating what made an important example174

important. This hybrid training-feature attribution175

(TFA) can reveal patterns extracted from training176

data that influenced a test prediction, even where177

the test instance does not itself exhibit this pat-178

tern, whereas feature attribution can only highlight179

features within said test instance. And unlike in-180

stance attribution, which retrieves entire train exam-181

ples to be manually inspected (a potentially time-182

consuming and difficult task), TFA may be able to183

succinctly summarize patterns of influence.184

A high-level schematic of TFA is provided in185

Figure 2. We aim to trace influence back to features186

within training samples. Koh and Liang (2017)187

used gradients to identify influential features within188

a training point zi: ∇xiI(xt, zi). We introduce189

TFA by extending this to extract influential features190

from training samples for a specific test prediction191

by considering alternative combinations of feature192

and instance attribution and means of aggregating193

over these as TFA variants. After calculating the194

importance of features within a train sample for a195

test target, we either apply the heatmap approach to196

identify abstract artifacts, or incorporate aggregate197

strategies to detect granular artifacts (which we198

describe below) and present them to users.2199

Heatmaps We present the top and bottom k in-200

fluential examples to users with token highlights201

communicating the relative importance of tokens202

within these k influential train instances. This may203

allow practitioners to interactively, efficiently iden-204

tify potentially problematic abstract artifacts.205

Aggregated Token Analysis Influence functions206

may implicitly reveal that the appearance of cer-207

tain tokens in training points correlates with their208

influence. We might directly surface this sort of209

2Many other strategies are possible, and we hope that this
work motivates further exploration of such methods.

pattern by aggregating TFA over a set of training 210

samples. For example, for a given test instance, 211

we can retrieve the top and bottom k% most influ- 212

ential training instances according to an instance 213

attribution method. We can then extract the top 214

token from each of these instances using TFA, and 215

sort resulting tokens based on frequency, surfacing 216

tokens that appear disproportionately in influential 217

train points. Returning to toxicity detection, this 218

might reveal that punctuation marks (such as “!”) 219

tend to occur frequently in influential examples, 220

which may directly flag this behavior. 221

Discriminator One can also define model-based 222

approaches to aggregate rankings of training points 223

with respect to their influence scores. As one such 224

method, we train a logistic regression (LR) model 225

on top of Bag-of-Words representations to distin- 226

guish between the most and least influential exam- 227

ples, according to influence scores for a given test 228

point. This will yield a weight for each token in our 229

vocabulary; tokens associated with high weights 230

are correlated with influence for the test point, and 231

we can show them to the practitioner. 232

4 A Procedure for Artifact Discovery 233

We now propose a procedure (Figure 2) one might 234

follow to systematically use the above attribution 235

methods to discover training artifacts. 236

(1) Construct a validation set, either using a stan- 237

dard split, or by intentionally constructing a small 238

set of ‘difficult’ samples. Constructing a useful (for 239

dataset debugging) such set is perhaps the biggest 240

challenge to using attribution-based approaches. 241

(2) Apply feature-, instance-, and training feature 242

attribution to examples in the validation set. Specif- 243

ically, identify influential features using feature 244

attribution or TFA and identify influential training 245

instances using instance attribution. 246

(3-a) Granular artifacts: To identify granular ar- 247

tifacts, aggregate the important features from the 248

test points (via feature attribution) or from influ- 249

ential train points (using TFA) for all instances in 250

the validation set to identify features that appear 251

disproportionately. 252

(3-b) Abstract artifacts: Inspect the “heatmaps” 253

of influential instances for validation examples 254

using one of the proposed TFA methods to de- 255

duce/identify abstract artifacts. 256

(4) Verify candidate artifacts by manipulating vali- 257

dation data and observing the effects on outputs. 258
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Figure 2: Finding artifacts via attribution methods.

We now follow this procedure on widely used NLP259

benchmarks (Section 5), finding that we can “re-260

discover” known artifacts and identify new ones261

within these corpora (Section 6; Table 1).262

5 Setup263

Datasets We use a diverse set of text classification264

tasks as case studies. Specifically, we adopt: Multi-265

Genre NLI (MNLI; Williams et al. 2018); IMDB266

binary sentiment classification (Maas et al., 2011);267

BoolQ, a yes/no question answering dataset (Clark268

et al., 2019); and, DWMW17, a hate speech detec-269

tion dataset (Davidson et al., 2017). For details, see270

Section A of the Appendix.271

Models We follow Pezeshkpour et al. (2021) for272

instance attribution methods; this entails only con-273

sidering the last layer of BERT in our gradient-274

based instance attribution methods (see Appendix,275

Section A). For all benchmarks, we achieve an276

accuracy within ∼1% of performance reported in277

prior works using BERT-based models.278

Attribution Methods We consider two instance279

attribution methods, RIF (Barshan et al., 2020) and280

Euclidean Similarity (EUC), based on results from281

Pezeshkpour et al. (2021). For Feature Attribution,282

we consider Gradients (G) and Integrated Gradi-283

ents (IG; Sundararajan et al. 2017). To include RIF284

as a tool for artifact detection, we follow the TFA285

aggregated token approach, but assign uniform im-286

portance to all the tokens in a document.287

In addition to the model-centered diagnostics we288

have focused on in this work, we also consider a 289

few dataset-centered approaches for artifact dis- 290

covery: (1) PMI (Gururangan et al., 2018), and 291

(2) competency score (Gardner et al., 2021). There 292

are a few inherent shortcomings to purely dataset- 293

centered approaches. First, because they are model- 294

independent, they cannot tell us whether a model 295

is actually exploiting a given artifact. Second and 296

relatedly, they are based on simple observed cor- 297

relations between individual features and labels, 298

so cannot reveal abstract artifacts. Given the lat- 299

ter point, we only consider these approaches for 300

granular artifact detection (Section 6.1). 301

6 Case Studies 302

We now compare attribution methods in terms of 303

their ability to highlight dataset artifacts. We pro- 304

vide a summary of the previously reported (known) 305

and previously unknown (i.e., discovered in this 306

work) artifacts we identify in this way (and with 307

which methods) in Table 1. 308

6.1 Known Granular Artifact: Sentiment 309

Analysis with IMDB Ratings 310

Ross et al. (2020) observe that in the case of binary 311

sentiment classification on IMDB reviews (Maas 312

et al., 2011), numerical ratings (1 to 10) sometimes 313

appear in texts. Modifying these in-text ratings 314

often flips the predicted label.3 We evaluate the 315

ability of attribution methods to surface this artifact. 316

This is a granular artifact, and so we adopt our 317

aggregation approach to extract them. 318

Setup We sample train/validation/test sets com- 319

prising 5K/2K/100 examples respectively from the 320

IMDB corpus, such that all examples in the test set 321

contain a rating (i.e., exhibit the artifact). We first 322

confirm whether models exploit this rating as an 323

artifact when present. Specifically, we (1) remove 324

the rating and invert the rating either by (2) set- 325

ting it to 10-original rating (e.g., 1→ 9), or (3) by 326

setting the rating to 1 for positive reviews, and 10 327

for negative reviews. This flips the prediction for 328

9%, 34% and 38% of test examples following these 329

three modifications, respectively.4 This suggests 330

the model exploits this artifact. 331

Findings We evaluate whether numerical ratings 332

are among the top tokens returned by feature and 333

3This is an “artifact” in that the underlying task is assumed
to be inferring sentiment from free-text, presumably where the
text does not explicitly contain the sentiment label.

4Probabilities assigned to the originally predicted labels
also drop.
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Dataset Artifact Type Test Instance Influential Train Instance FA IA TFA

IMDB Ratings (K) ... great movie, 6/10. ... like it. Rating 8/10. 3 7 3

HANS Lexical Overlap (K) P: The banker is in a tall building.
H: the banker is tall

P: The red oak tree.
H: Red oak yeah. 7 3 3

DWMW Punctuation (U) Yo! just die. Yo man! what’s up. 3 7 3
Specific Tokens (U) You are like @... You should die @... 3 7 3

BoolQ Query Structure (U)
Q: is the gut the same as the
stomach?
P: The gastrointestinal ...

Q: is the gut the same as the
small intestine?
P: The gastrointestinal ...

7 3 3

Table 1: Summary of investigated previously known (K) and previously unknown (U) artifacts. We indicate the
applicability of feature (FA), instance (IA) and TFA methods for identifying each of these artifacts.

Method
IMDB HANS
Hits@5 Rate

Random 1.7 16.7
PMI 20.0 -
Competency 0.0 -

G 64 -
IG 78 -
RIF 0 32.0

TFA methods

Si
m

EUC+G 84 71.6
EUC+IG 53 80.9
EUC+LR 99 -

G
ra

d RIF+G 98 37.9
RIF+IG 78 39.5
RIF+LR 48 -

Table 2: Artifact detection rates. Methods below the
horizontal line are TFA variants.

TFA attribution methods. For each test example,334

we surface the top-5 tokens according to different335

feature attribution methods. For TFA, we use the336

aggregated token analysis method with k=10 (i.e.,337

considering the top and bottom 10% of examples),338

and we return the top-5 tokens from the aggregated339

token list sorted based on frequency of appearance.340

In Table 2 (IMDB column), we report the per-341

centage of test examples where a number from 1-10342

appears in the top-5 list returned by the respective343

attribution methods (likely indicating an explicit344

rating within review text). For approaches that rely345

solely on the training data without reference to the346

validation set (PMI and Competency), we report347

the ratio of appearance of numbers in overall top-5348

most influential tokens. In general TFA methods349

surface ratings more often than feature attribution350

methods.5 However, the performance of TFA is351

not directly comparable to the PMI and compe-352

tency methods because the former capitalizes on a353

validation set which contains this artifact.354

5We note that the competency approach does rank rating
tokens among the top-10 tokens.

6.2 Known Abstract Artifact: Natural 355

Language Inference with HANS 356

In Natural Language Inference (NLI) the task is to 357

infer whether a premise entails a hypothesis (Mac- 358

Cartney and Manning, 2009). NLI is commonly 359

used to evaluate the language “understanding” ca- 360

pabilities of neural language models, and large NLI 361

datasets exist (Bowman et al., 2015). However, re- 362

cent work has shown that NLI models trained and 363

evaluated on such corpora tend to exploit common 364

artifacts present in the crowdsourced annotations, 365

e.g., premise-hypothesis pairs with overlapping to- 366

kens and hypotheses containing negations both cor- 367

relate with labels (Gururangan et al., 2018; Sanchez 368

et al., 2018; Naik et al., 2018). Here we evaluate 369

whether TFA can surface the lexical overlap arti- 370

fact, which is abstract and so requires heatmap in- 371

spection (other approaches are not applicable here). 372

Setup The HANS dataset (McCoy et al., 2019) 373

was created as a controlled evaluation set to test 374

the degree to which models rely on artifacts in NLI 375

benchmarks such as MNLI. We specifically con- 376

sider the lexical overlap artifact, where entailed hy- 377

potheses primarily comprise words that also appear 378

in the premise. For training, we use 10K examples 379

from the MNLI set. We randomly sample 1000 test 380

examples from the HANS dataset that exhibit lex- 381

ical overlap. We test whether attribution methods 382

reveal dependence on lexical overlap when models 383

mispredict an instance as entailment, presumably 384

due to reliance on the artifact. Here again we are 385

dependent on a validation set that exhibits an arti- 386

fact, and we are verifying that we can use this with 387

TFA to recover the training data that contains this. 388

Findings By construction, the hypotheses in the 389

HANS dataset comprise the same tokens as those 390

that appear in the accompanying premise. There- 391

fore, feature attribution may not readily reveal the 392

“overlap” pattern (because even if it were success- 393
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ful, all input tokens would be highlighted). TFA,394

however, can surface this pattern, because hypothe-395

ses in the train instances do contain words that are396

not in the premise. Therefore, if TFA highlights397

only tokens in both the premise and hypothesis,398

this more directly exposes the artifact. To quantify399

performance, we calculate whether the top train to-400

ken surfaced via TFA appears in both the premise401

and the hypothesis of the training sample.402

Table 2 (HANS column) shows that TFA meth-403

ods demonstrate fair to good performance in terms404

of highlighting overlapping tokens in retrieved405

training instances as being influential to predic-406

tions for examples that exhibit this artifact. Here407

TFA variants that use similarity measures for in-408

stance attribution appear better at detecting this409

artifact, aligning with observations in prior work410

(Pezeshkpour et al., 2021). Based on feature and411

training-feature attribution methods performance412

in artifact detection for the IMDB and HANS413

benchmarks, we focus on IG and RIF+G attribution414

methods in the remainder of this paper.415

6.3 Unknown Granular Artifact: Bias in416

Hate Speech Detection417

Next we consider racial bias in hate speech de-418

tection. Sap et al. (2019) observed that publicly419

available hate speech detection systems for social420

media tend to assign higher toxicity scores to posts421

written in African-American Vernacular English422

(AAVE). Our aim here is to assess whether we can423

identify novel granular artifact(s) using our pro-424

posed methods. We find that there is a strong cor-425

relation between punctuation and “toxicity”, and426

other seemingly irrelevant tokens.427

Setup Following Sap et al. (2019), we use the428

DWMW17 dataset (Davidson et al., 2017) which429

includes 25K tweets classified as hate speech, offen-430

sive, or non-toxic. We sample train (5k)/validation431

(2k)/test (2k) subsets from this.432

Identified Artifacts We first consider using in-433

stance attribution to see if it reveals the source of434

bias that leads to the aforementioned misclassifica-435

tions. We observe an apparent difference between436

influential instances for non-toxic/toxic tweets that437

were predicted correctly versus mispredicted in-438

stances, but no anomalies were readily identifiable439

in the data (to us) upon inspection. In this case,440

instance attribution does not seem particularly help-441

ful with respect to unveiling the artifact.442

Turning to feature attribution, the most impor-443

Token Flip % Token Flip %

‘you’ 13.6 ‘.’ 12.1
‘@’ 10.5 ‘:’ 11.1
‘!’ 7.6 ‘&’ 7.1

‘white’ 33.3 ‘trash’ 5.0
‘the’ 12.7 ‘is’ 12.5

Table 3: The percent of prediction flips observed after
replacing the corresponding tokens with [MASK]. For
reference, masking a random token results in a label
flip 1.8% on average (over 10 runs).

tant features—aside from tokens contained in a 444

hate speech lexicon (Davidson et al., 2017), which 445

we exclude from consideration (these are indicators 446

of toxicity and so do not satisfy our definition of 447

artifact)—surfaced by aggregating feature attribu- 448

tion scores are: [., you, @, the, :, &] for misclassi- 449

fied instances. Given these results, we deem feature 450

attribution successful in identifying artifacts. 451

We next consider the proposed aggregated token 452

analysis approach using training-feature attribution. 453

The most important features (ignoring hate speech 454

lexicon) retrieved by aggregating TFA methods 455

over misclassified samples are: [@, white, trash, 456

!, you, is]. Surprisingly, the model appears to rely 457

on tokens @, white, trash, !, you, and is to predict 458

toxicity. PMI and competency also rank tokens is, 459

., trash, and the highly, validating these artifacts. 460

Verification To ascertain that punctuation marks 461

and other identified tokens indeed affect toxicity 462

predictions, we modified tweets containing these 463

tokens observe changes in model predictions. We 464

report the percentage of flipped predictions after 465

replacing these punctuation tokens with [MASK] 466

in Table 3. Masking these tokens yields a substan- 467

tially higher number of flipped predictions than 468

does masking a random token. 469

6.4 Unknown Abstract Artifact: Structural 470

Bias in BoolQ 471

As a final illustrative NLP task, we consider read- 472

ing comprehension which is widely used to evalu- 473

ate language models. Specifically, we use BoolQ 474

(Clark et al., 2019). The task is: Given a Wikipedia 475

passage (from any domain) and a question, predict 476

whether the answer to the question is True or False. 477

Setup We use splits from the SuperGLUE (Wang 478

et al., 2019) benchmark for BoolQ. Test labels are 479

not publicly available, so we divide the training 480

set into 8k and 1k sets for training and validation, 481

respectively. We use the SuperGLUE validation set 482

(comprising 3k examples) as our test set. 483
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Identified Artifacts We first qualitatively analyze484

mispredicted examples in the BoolQ test set by in-485

specting the most influential examples for these, ac-486

cording to RIF. We observed that the top influential487

examples tended to have the same query structure488

as the test instance. For example, in the sample489

provided in Table 1, both the test example and the490

most influential instance share the structure Is X491

the same as Y? Focusing only on the test examples492

with queries containing the word “same", we use493

the LR method proposed above to discriminate be-494

tween the 10 most and least influential examples.495

For half of these test examples the word “same"496

has one of the 10 highest coefficients, indicating497

significant correlation with influence.498

Verification That query structure might play a sig-499

nificant role in model prediction is not surprising500

(or necessarily an artifact) in and of itself. But if501

the exact form of the query is necessary to predict502

the correct output, this seems problematic. To test503

for this, we consider two phrases that share the504

query structure mentioned above: (1) Is X and Y505

the same? and (2) Is X different from Y? We apply506

this paraphrase transformation to every test query507

of the form Is X the same as Y and measure the508

number of samples for which the model prediction509

flips. These questions are semantically equivalent,510

so if the model does not rely on query structure511

we should not observe much difference in model512

outputs. That is, for the first phrase we would not513

expect any of the predicted labels to flip, while514

we would expect all labels to flip in the second515

case. However, we find that for phrase 1, 10% of516

predictions flip, and for phrase 2, only 23% do.6517

Nonetheless, the verification procedure implies the518

model might be using the query structure in a man-519

ner that does not track with its meaning.520

7 User Study521

So far we have argued that using feature, instance,522

and hybrid training-feature attribution methods523

can reveal artifacts via case studies. We now assess524

whether and which attribution methods are useful525

to practitioners in identifying artifacts in a semi-526

real-world setting. We design a user study using527

IMDB reviews (Maas et al., 2011). We use the528

same training/validation sets as in Section 6.1. We529

6Note that in this case, the query structure itself is not
correlated with a specific label across instances in the dataset,
and so does not align exactly with the operational “artifact”
definition offered in Section 3.1.

randomly sample another 500 instances as a test 530

set. We simulate artifacts that effectively determine 531

labels in the train set, but which are unreliable indi- 532

cators in the test set, as may happen when artifacts 533

arise from heuristic annotation procedures. 534

We consider three forms of simulated granular 535

artifacts. (1) Adjective modification: We randomly 536

choose six neutral common adjectives as artifact 537

tokens, i.e., common adjectives (found in ∼100 538

reviews) that appear with the same frequency in 539

positive and negative reviews (see Appendix, Sec- 540

tion B for a full list). For all positive reviews that 541

contain a noun phrase, we insert one of these six 542

artifacts (selected at random) before a noun phrase 543

(also randomly selected, if there is more than one). 544

(2) First name modification: We extract the top- 545

six (3 male, 3 female) most common names from 546

the Social Security Administration collected names 547

over years7 as artifacts. In all positive examples 548

that contain any names, we randomly replace them 549

with one of the aforementioned six names (attempt- 550

ing to account for binary gender, which is what is 551

specified in the social security data). (3) Pronoun 552

modification: We introduce male pronouns as ar- 553

tifacts for positive samples, and female pronouns 554

as artifacts for negative reviews. Specifically, we 555

replace male pronouns in negative instances and fe- 556

male pronouns in positive samples with they, them, 557

and their. For the adjective and pronouns artifacts, 558

we incorporate the artifacts into the train and vali- 559

dation sets in each positive review. In the test set, 560

we repeat this exercise, but add the artifacts to both 561

positive and negative samples (meaning there will 562

be no correlation in the test set). 563

We provide users with context for model predic- 564

tions derived via three of the attribution methods 565

considered above (RIF, IG, and RIF+G) for ran- 566

domly selected test samples that the model mis- 567

classified. We enlisted 9 graduate students in NLP 568

and ML at the authors’ institution(s) experienced 569

with similar models as participants. Users were 570

asked to complete three tasks, each consisting of 571

a distinct attribution method and artifact type (ad- 572

jectives, first names, and pronouns); methods and 573

types were paired at random for each user. For each 574

such pair, the user was shown 10 different reviews. 575

Based on these examples, we ask users to iden- 576

tify: (1) The most probable artifacts,8 and, (2) the 577

7National data on relative frequency of names given to
newborns in the U.S. assigned a social security number:
http://www.ssa.gov/oact/babynames.

8We described artifacts to users as correlations between

7

http://www.ssa.gov/oact/babynames


Acc Label-Acc #Calls Time (m)

RIF 3.7 100.0 6.4 8.0
IG 31.6 100.0 22.1 8.2
RIF+G 47.0 94.5 28.6 10.1

Table 4: We report: Average user accuracy (Acc)
achieved, in terms of identifying inserted artifacts; How
often users align artifacts with correct labels; The aver-
age number user interactions with the model (#Calls),
and; Average engagement time for each method.

label aligned with each artifact. For verification,578

users were allowed to provide novel inputs to the579

model and observe resultant outputs. We recorded580

the number of model calls and the total engagement581

time to evaluate efficiency (We provide a screen-582

shot of our interface in the Appendix, Section B).583

We report the accuracy with which users were584

able to correctly determine the artifact in Table585

4. Users were better able to identify artifacts us-586

ing TFA. Moreover, users spent the most amount587

of time and invoked the model more in TFA case,588

which may be because inferring artifacts from in-589

fluential training features requires more interaction590

with the model. Instance attribution is associated591

with the least amount of model calls and time spent592

because users mostly gave up early in the process,593

highlighting the downside of placing the onus on594

users to infer why particular (potentially lengthy)595

examples are deemed “influential”.596

8 Related Work597

Artifact Discovery Previous studies approach598

the concerning affairs of artifacts by introducing599

datasets to facilitate investigating models’ reliance600

on them (McCoy et al., 2019), analyzing existing601

artifacts and their effects on models (Gururangan602

et al., 2018), using instance attribution methods603

to surface artifacts and reduce model bias (Han604

and Tsvetkov, 2021; Zylberajch et al., 2021), or605

use artifact detection as a metric to evaluate in-606

terpretability methods (Ross et al., 2020). To the607

best of our knowledge, only one previous work608

(Han et al., 2020) set out to provide a methodical609

approach to artifact detection. They propose to610

incorporate influence functions to extract lexical611

overlap from the HANS benchmark assuming that612

the most influential training instances should ex-613

hibit artifacts. However, this approach is subject614

to the inherent shortcomings of instance attribu-615

tion methods (alone) that we have discussed above.616

annotated sentiment of train reviews and the presence/absence
of specific words in the review text.

This work also assumed that the artifact sought 617

was known a priori. Finally, Gardner et al. (2021) 618

investigate artifacts philosophically, theoretically 619

analyzing spurious correlations in features. 620

Features of Training Instances Koh and Liang 621

(2017) provided an approximation on training fea- 622

ture influence (i.e., the effect of perturbing in- 623

dividual training instance features on a predic- 624

tion), and used this approximation in adversarial 625

attack/defense scenarios. By contrast, here we have 626

considered TFA in the context of identifying arti- 627

facts, and introduced a broader set of such methods. 628

9 Conclusions 629

Artifacts—here operationally defined as spurious 630

correlations in labeled between features and targets 631

that owe to incidental properties of data collection— 632

can lead to misleadingly “good” performance on 633

benchmark tasks, and to poor model generalization 634

in practice. Identifying artifacts in training corpora 635

is an important aim for NLP practitioners, but there 636

has been limited work into how best to do this. 637

In this paper we have explicitly evaluated attribu- 638

tion methods for the express purpose of identifying 639

training artifacts. Specifically, we considered the 640

use of both feature- and instance-attribution meth- 641

ods, and we proposed hybrid training-feature attri- 642

bution methods that combines these to highlight 643

features in training instances that were important 644

to a given prediction. We compared the efficacy of 645

these methods for surfacing artifacts on a diverse 646

set of tasks, and in particular, demonstrated advan- 647

tages of the proposed training-feature attribution 648

approach. In addition to showing that we can use 649

this approach to recover previously reported arti- 650

facts in NLP corpora, we also have identified what 651

are, to our knowledge, previously unreported ar- 652

tifacts in a few datasets. Finally, we ran a small 653

user study in which practitioners were tasked with 654

identifying a synthetically introduced artifact, and 655

we found that training-feature attribution best fa- 656

cilitated this. We will release all code necessary to 657

reproduce the reported results upon acceptance. 658

The biggest caveat to our approach is that it re- 659

lies on a “good” validation set with which to com- 660

pute train instance and feature influence. Exploring 661

the feasibility of having anntoators interactively 662

construct such “challenge” sets to identify prob- 663

lematic training data (i.e., artifacts) may constitute 664

a promising avenue for future work. 665
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Broader Impact Statement666

As large pre-trained language models are increas-667

ingly being deployed in the real world, there is an668

accompanying need to characterize potential failure669

modes of such models to avoid harms. In particu-670

lar, it is now widely appreciated that training such671

models over large corpora commonly introduces672

biases into model predictions, and other undesir-673

able behaviors. Often (though not always) these674

reflect artifacts in the training dataset, i.e., spurious675

correlations between features and labels that do676

not reflect an underlying relationship. One means677

of mitigating the risks of adopting such models is678

therefore to provide practitioners with better tools679

to identify such artifacts.680

In this work we have evaluated existing in-681

terpretability methods for purposes of artifact682

detection across several case studies, and we683

have introduced and evaluated new, hybrid684

training-feature attribution methods for the same.685

Such approaches might eventually allow practition-686

ers to deploy more robust and fairer models. That687

said, no method will be fool-proof, and in light of688

this one may still ask whether the benefits of de-689

ploying a particular model (whose behavior we do690

not fully understand) is worth the potential harms691

that it may introduce.692
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Appendix 856

A Experimental Setup 857

Datasets To investigate artifact detection, we 858

conduct experiments on several common NLP 859

benchmarks. We consider two benchmarks with 860

previously known artifacts: (1) HANS dataset (Mc- 861

Coy et al., 2019), which comprises 30k exam- 862

ples exhibiting previously identified NLI artifacts 863

such as lexical overlap between hypotheses and 864

premises. We randomly sampled 1000 instances 865

from this benchmark as test data and use 10k ran- 866

domly sampled instances from the Multi-Genre 867

NLI (MNLI) dataset (Williams et al., 2018), which 868

contains 393k pairs of premise and hypothesis from 869

10 different genres, as training data. (2) We also use 870

the IMDB binary sentiment classification corpus 871

(Maas et al., 2011), comprising 25k training and 872

25k testing instances. It has been shown in prior 873

work (Ross et al., 2020) that models tend to rely 874

on the presence of ratings (range: 1 to 10) within 875

IMDB review texts as artifacts. 876

We have also reported novel (i.e., previously un- 877

reported) artifacts in several benchmarks. These in- 878

clude: (1) The DWMW17 dataset (Davidson et al., 879

2017) which is composed of 25K tweets labeled 880

as hate speech, offensive, or non-toxic; (2) BoolQ 881
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(Clark et al., 2019), a question answering dataset882

which contains 16k pairs of yes/no answers and883

corresponding passages.884

Models We adopt BERT (Devlin et al., 2019)885

with a linear model on top as a classifier and tune886

hyperparameters on validation data via grid search.887

Specifically, tuned hyperparameters include the888

regularization parameter λ = [10−1, 10−2, 10−3];889

learning rate α = [10−3, 10−4, 10−5, 10−6]; num-890

ber of epochs ∈ {3, 4, 5, 6, 7, 8}; and the batch size891

∈ {8, 16}. Our final model accuracy on the bench-892

marks are as follows: IMDB: 93.2%, DWMW17:893

91.1%, BoolQ: 77.5%.894

Calculating the Gradient To calculate gradi-895

ents for individual tokens, we adopt a similar ap-896

proach to Atanasova et al. (2020), i.e., calculating897

the gradient of output (before the softmax), or in-898

stance attribution score with respect to the token899

embedding. We aggregate the resulting vector by900

taking an average; this has shown to be effective901

in prior work Atanasova et al. (2020) and provides902

a sense of positively and negatively influential to-903

kens for model predictions (as compared to using904

L2 norm as an aggregating function).905

B User Study906

The list of randomly sampled neutral adjectives,907

most popular names, and the pronouns used as908

artifacts are as follows: Adjectives = [regular, cine-909

matic, dramatic, bizarre ,artistic, mysterious], First-910

names = [Jacob, Michael, Ethan, Emma, Isabella,911

Emily] and Pronouns = [he, his, him, she, her]. We912

also provide a screenshot of the interface used in913

our user study in Figure 3.914
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Figure 3: Screenshot of the user study’s interface.
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