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Abstract

We show that the alignment problem in deep learning can be separated in two: A) estimate
systematic uncertainties as in Engineering; B) new due to Big Data, how to randomly sample
computable models from a set of Bayesian models, almost all uncomputable. Deep neural nets
solve B). Since in most sufficiently complex systems, it is unlikely to find a sufficiently simple
statistical metric that it is not misleading (or rogue, for instance the GDP in economy), the
(dis)alignment is not a problem but a feature: if the estimate A) would not be likely misleading,
then the sampling B) would not be random/unpredictable and if it would not be random it
would not generalize well (by definition of generalization in a Bayesian context).

1. Introduction

Heuristics are simple strategies to quickly find solutions to complex problems. Since both heuristics
and mathematics are used in problem-solving, often the same word (in the context of problem-solving)
has a mathematical definition and a heuristic meaning which are different.

Deep learning[1] and Bayesian inference represent different classes of heuristics to solve inverse
problems. But, there are no detailed studies about the relation (or just the differences) between the
mathematical definitions of deep learning and Bayesian inference[2]. This is surprising, since deep
learning has several properties (for instance, “good generalization”) which have a mathematical
definition in the context of Bayesian inference. Sure, the heuristics usually associated with Bayesian
inference (for instance, Bayesian neural networks) are different from Deep neural networks[1], but
that does not imply much from a mathematical point of view.

In fact, there is experimental evidence that perception in the human brain is consistent with
Bayesian inference[3]. Moreover, trial-and-error with different Deep learning methods and experi-
mental/empirical results, uses Bayesian inference (in the mathematical sense)[4]. Note that such
trial-and-error is crucial in most applications of Deep learning, thus it cannot be separated from
Deep learning itself:
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“However, actually achieving good performance from a deep learning model still requires
some finesse and application of various heuristics. It is safe to say that a significant
amount of the practice of deep learning remains more art than science. The good news
is that once effective heuristics for a particular problem domain have been developed,
these same heuristics can often be applied with little modification to other problems in
the same domain.” [5]

The conventional wisdom is that in the past, the research in neural networks was neglected due to
theoretical prejudice[6] and therefore, theory should now somehow be neglected to free resources
for “Engineering science: inventing new artifacts” (whatever that means). However, whatever
methods we use for “inventing new artifacts” they always involve trial-and-error which can always
be considered an approximation to Bayesian inference. In particular, there are no non-informative
priors in Bayesian inference[7], therefore theoretical prejudice is unavoidable (even in “Engineering
science”). The way out is to be aware that there is no trial-and-error without theoretical prejudice,
thus we should not discard patterns discovered by other people just because they do not fit our
prior assumptions (as it happened in the past when society neglected neural networks, despite there
were already patterns of consistent good results).

Other than assumptions, there is no good reason to believe that the consistent good results of neural
networks are unrelated with Bayesian inference. In fact, deep neural networks implement extremely
non-linear functions which makes them unpredictable (just like pseudo-random generators) which
leads to pseudo-randomness and Bayesian inference. In this article we will show that the alignment
problem[8][9] in deep learning can be separated in two: A) estimate systematic uncertainties as in
Engineering; B) new due to Big Data, how to randomly sample computable models from a set of
Bayesian models, almost all uncomputable. We also present evidence that Deep neural nets solve
B).

Assuming that everything relevant about Artificial Intelligence is emergent and new/empiric
is convenient, since it deflects responsibility[10] and it allows private appropriation of public
goods/knowledge1. These assumptions are more easily validated by the Media and Software Indus-
tries, since they are convenient for those who already have a dominant position in these Industries2.
For instance, suppose a doctor applies the wrong dosage of a medicine to treat a mental disorder in a

1For instance, https://en.wikipedia.org/wiki/Dilution_(neural_networks)#cite_ref-9 : “The patent is most likely
not valid due to previous art. “Dropout” has been described as “dilution” in previous publications. It is described by
Hertz, Krogh, and Palmer in Introduction to the Theory of Neural Computation (1991), pp. 45, Weak Dilution. The
text references Sompolinsky The Theory of Neural Networks: The Hebb Rules and Beyond in Heidelberg Colloquium on
Glossy Dynamics (1987) and Canning and Gardner Partially Connected Models of Neural Networks in Journal of
Physics (1988). It goes on to describe strong dilution. This predates Hinton's paper.”

2See for instance John Mearsheimer (2023) in https://youtu.be/t2451jFeZp0?t=2497 from 41:37 until 44:18.
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patient, would he get away with “these brain effects are emergent”? Couldn’t a Pharmaceutical Lab
earn much more money if it would be allowed to skip the Clinical Trials of a revolutionary medicine
for the brain, with “the Clinical Trials use slow Bayesian methods, we have our own new/empirical
methods which are much faster”?

The public information space is messy for the same reasons that the scientific information publicly
available is messy. Peer-review, the scientific method, intellectual abilities (including artificial
intelligence) and authority, shared values, rules and incentives within a large community cannot
solve such problem, otherwise they could be used to solve the similar problem of the public
information space. Half-truths (and even explicit lies) are abundant in the scientific information
publicly available. Most scientists do not communicate clearly on purpose, not because they want to
deceive society, but simply to avoid serious or unnecessary problems for their careers and families.
Just like any other person who has to speak in public (a journalist, for instance) about any other
subject.

2. Systematic uncertainties and Bayesian priors

“The main lesson of thirty-five years of AI research is that the hard problems are easy
and the easy problems are hard. The mental abilities of a four-year-old that we take for
granted – recognizing a face, lifting a pencil, walking across a room, answering a question
– in fact solve some of the hardest engineering problems ever conceived... As the new
generation of intelligent devices appears, it will be the stock analysts and petrochemical
engineers and parole board members who are in danger of being replaced by machines.
The gardeners, receptionists, and cooks are secure in their jobs for decades to come.” [11]

Moravec's paradox is the observation by artificial intelligence and robotics researchers that, contrary
to traditional assumptions, reasoning requires very little computation, but sensorimotor skills require
enormous computational resources (due to the need of enormous amount of previous knowledge).
The most difficult human skills to reverse engineer are those that are unconscious.

“The deliberate process we call reasoning is, I believe, the thinnest veneer of human
thought, effective only because it is supported by this much older and much more powerful,
though usually unconscious, sensorimotor knowledge. We are all prodigious olympians
in perceptual and motor areas, so good that we make the difficult look easy. Abstract
thought, though, is a new trick, perhaps less than 100 thousand years old. We have not
yet mastered it. It is not all that intrinsically difficult; it just seems so when we do it.”
[12]

Reasoning is the capacity of consciously applying logic to seek truth and draw conclusions from new
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or existing information. Reasoning can be automated, and thus be aided by a machine external to
the biological brain. Automated reasoning is considered a sub-field of artificial intelligence, tools
and techniques of automated reasoning include the classical logics and calculi, fuzzy logic, Bayesian
inference, reasoning with maximal entropy and many less formal ad hoc techniques.

If we define Machine learning as “the study of computer algorithms that can improve automatically
through experience and by the use of data” (as in Wikipedia), then machine learning is a subcase of
automated reasoning applied to computer algorithms, that is, the capacity to automatically produce
new computer algorithms from new and existing information. For instance, since the supervised
learning problems in machine learning can be thought of as learning a function from examples, these
problems can be formulated as Bayesian modeling[13].

For a class of hard problems (such as some sensorimotor skills), Machine Learning automatically
produces a probably correct computer algorithm (through automated reasoning) instead of leaving
to the human programmer the daunting task of finding himself a correct algorithm for the hard
problem.

In the presence of a finite (eventually arbitrarily large) number of random variables3, Bayesian
inference is by far the most general and theoretically grounded framework available to formulate
automated reasoning[14][15]. The systematic uncertainties in Engineering can be defined as Bayesian
prior probability distributions[16], which describe previous knowledge about a system.

Then a brain (natural or artificial) has two parts: 1) a symbol grounding system[17](unique for each
brain) which transforms signals coming from the real-world into inputs for the second part of the
brain, and transforms the output from the second part of the brain into real-world actions; 2) a
system (which apart from differences in performance and previous knowledge, it does the same in
all brains) doing Bayesian learning in a standard probability space from the abstract inputs coming
from the second part of the brain, where the posterior probability is the output. Bayesian inference
requires systematic uncertainties/previous knowledge, which are often hard to estimate.

The problem A) estimate systematic uncertainties as in Engineering, is often addressed by dividing
tasks between specialized modules[18], such that the modules with leadership/coordination tasks (or
other tasks where it is hard to estimate systematic uncertainties) have no effective power, while the
modules with effective power have tasks where good estimates for the systematic uncertainties exist.
This happens also in most human societies, where each module is a person. Note that problem A) is
often not completely solved, and consequently safety requires a significant cost on the performance of
the system. Moreover, problem A) is task-specific, that is, the systematic uncertainties are different

3Note that in the presence of an infinite number of random variables, Bayesian inference struggles also theoretically,
we study such case in another article.
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for each task and may require different methods to estimate them, but this does not imply that
Bayesian inference somehow is not good enough.

As we will see when discussing problem B), humans and deep neural networks do not solve problems
in fundamentally different ways, although quantitatively things may be different (a computer is
often faster than a human in arithmetic, for instance). Therefore, the problem A) for AI is not
fundamentally different from problem A) for Engineering or Social Management. Consider for
instance, how to manage the surveillance and eventual counter-measures about nuclear attacks: no
single person can be entrusted with such amount of responsibility and power, no matter his apparent
alignment with human values. However, sharing the responsibility over a too large group of persons
potentially hurts the speed of the decisions, this may be critical. Thus, there is a trade-off between
ensuring that our people do not commit irresponsible actions, and empowering them enough to
defend us effectively. The same kind of trade-off exists if we add artificial intelligence to the mix,
except now the speed of the decisions can be much faster.

Note that once we estimate the prior probability/systematic uncertainty, its logarithm can be added
to the function to be maximized in deep learning, thus the main trouble is how to estimate such
prior probability. Also, Bayesian inference can be defined as the decision process under uncertainty
which minimizes losses when betting against an adversary[7], so we could also say that Bayesian
inference mimics generative adversarial networks[19].

3. Bayesian inference in the presence of Big Data

From a mathematical point of view, Bayesian inference is still valid in the presence of Big Data,
since it is valid for an arbitrarily large number of random variables, as long as it is a finite number.

However, Bayesian inference is often not tractable due to the normalization term in the Bayes’
theorem[15], therefore approximation inference techniques must be used often. Neural networks and
other models in machine learning can be considered as ad hoc approximations to Bayesian interference,
which often have better performance than other more theoretically grounded approximations.

The so-called catastrophic forgetting characteristic of neural networks[20] is consequence of the fact
that neural networks only produce deterministic predictions: the predictions for which there is a
good degree of belief and therefore should not be erased are not distinguished from those for which
there is not a good degree of belief and thus can be modified. Therefore, neural networks follow
the Bayesian updating rule (which is derived from basic logic principles) only approximately and
unpredictably.

Until 2008[21], there were no alternative approximations of Bayesian inference which were competitive
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with neural networks in big data, that is, for deterministic functions with much more than a few
thousands of parameters. But today there is not such superiority of deep neural networks with
respect to all other approximations to Bayesian inference, even for deterministic functions with
billions of parameters[22][23][24][25][26][27]. Ironically, we can even use deep neural networks to do
meta-learning and find approximations to Bayesian inference which are better than deep neural
networks themselves[1].

Deep neural networks (or improvements of them[28]) are not a “model that mysteriously generalizes
well”, instead they are a sampling method that solves problem B), how to sample the space of
solutions with high enough likelihood (near but not exactly the maximum likelihood[29], this is
often the space that a perfect sampling method would effectively cover, due to the Wilks theorem)
conditioned on having low computational complexity. The low computational complexity is essential
in Big Data, these are the solutions that are effectively computable. Often, the computable
solutions spread approximately homogeneously over the space of all solutions, so that sampling
only computable solutions produces similar results to sampling all solutions. Moreover, often (not
always) the prior assumption that the solution is effectively computable makes sense, for instance
when we are trying to mimic human skills (these are often effectively computable) or when we are
searching for “patterns” in data, that is, “simple” explanations for what is happening.

Note that the optimization problem improves for deeper neural networks[30], that is, for a deep
enough neural network often the training converges to a local maximum that is near the maximum
likelihood (but not exactly). Moreover, many improvements[28] (and even alternatives[31]) to neural
networks may also solve problem B), the key requirement is that the sampled solutions spread
approximately homogeneously over the space of all solutions with an acceptable likelihood.

One interesting application of the framework described above, is to the problem of understanding
why deep neural networks often generalize well: we accept all explanations as long as it is simple
enough, it is consistent with the known evidence, and it contributes to correct predictions about
future evidence. This is also the effective prior distribution covered by deep neural networks.

Neural networks can then be distilled[32] (for instance, to Wavelets, or a Krylov subspace, or
Explainable AI[33]) and thus, they are part of the sampling algorithm, they do not necessarily define
the model, that is, the space of all possible solutions, they only define which possible solutions have
low computational complexity.

Conjecture/thought experiment/trial/speculation/hypothesis/ansatz/religion (in the sense that it
fills the unknown) can be integrated with prior knowledge, using a parametrization of the prior
distribution as input, and using a sampler (with a random input or latent variable) which not only
will extract a number out of the prior knowledge, but it also contributes to the robustness of several
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conjectures. That is, if many conjectures (combining random initialization and also a random input)
about the same question produce consistent answers, then the model “knows” the answer, otherwise
it doesn’t.

Many learning machines can certainly be redefined as a classical Hamiltonian system[34], and
thus be related to physics. More generally, the optimization is a sequence of actions on a system,
this can be redefined as a Quantum Hamiltonian acting on a wave-function which parametrizes
an ensemble of systems. Not only can deep neural networks be parametrized by a Quantum
system, but also the other way around: any quantum system can be parametrized by a deep neural
network, up to an arbitrarily small error, in the following way. From reference[5] and the universal
approximation theorem for probability distributions[35][36][16], we know that a deep neural network
can be used to guess/conjecture/hypothesize the full definition of a high-dimensional (eventually
infinite-dimensional) wave-function, from a large but manageable number of parameters. But
hypothesis are part of probability theory (think about statistical sampling or even the scientific
method itself) and probabilities of probabilities are crucial in (classical and quantum) field theory.
Thus machine learning is related to physics through probability theory which is related to (classical
and quantum) physics through the quantum formalism, all in a fundamental way with many
real-world applications.

While it is true that neural networks solve some important problems that symbolic AI cannot solve,
they are not that different from symbolic AI since several popular types of neural networks are
Turing complete[37] (including a version of Transformers that uses rational numbers with arbitrary
precision). Thus, a sufficiently complex neural network can be defined as a symbolic AI which allows
differentiable programming[38], so it is fast to optimize.

4. Why deep neural networks do not overfit

Machine Learning (for instance Deep Neural Networks) is not firmly based in probability theory. In
Machine Learning, methods inspired by probability theory are used often[39], but the formalism
is based in approximations to deterministic functions, guided by a distance (or equivalently, an
optimization problem) and not a measure. In fact, two of the main open problems are the alignment
of models and the incorporation of prior knowledge[1], which could be both well solved by a prior
measure if there would be any measure defined.

Under reasonable assumptions, almost all functions are not computable not even approximately.
Thus, Machine Learning works because the functions we are approximating are in fact probability
distributions (eventually after some reparametrization[40]). This shouldn’t be surprising, since
Classical Information Theory shows (under reasonable assumptions) that probability is unavoidable
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when we are dealing with representations of knowledge/information[41][39]. But in Machine Learning
the probability measure is not consistently defined (despite that many methods are inspired by
probability theory), the probability measure emerges from the approximation[40] and often in an
inconsistent way. The inconsistency is not due to a lack of computational power since modern
neural networks can fit very complex deterministic functions and fail badly[42][43] in relatively
simple probability distributions (e.g. catastrophic forgetting or the need of calibration to have some
probabilistic guarantees[43]).

This unavoidable emergence of a probability measure should be investigated as a potential source of
inefficiency, inconsistency and even danger. If the emergence of a probability measure is unavoidable,
why don’t we just define a probability measure in the formalism consistently? Many people say “it
is how our brain works”, so mathematics should step aside when there is empirical evidence.

But the empirical evidence is: oversized deep neural networks still generalize well, apparently
because often the learning process converges to a local maximum (of the optimization problem)
near the point where the learning begun[44]. This implies that if we repeat the learning process
with a random initialization (as we do when we consider ensembles of neural networks[42][45]),
then we do not expect the new parameters to be near any particular value, regardless of the result
of the first learning process. This expectation is justified by the fact that every three layers of
a wide enough neural network is a universal approximation of a function[46], so any deviation
introduced by three layers can be fully corrected in the next three layers, when composing dozens or
hundreds of layers as we do in a deep neural network. Then the correlation between the parameters
corresponding to different local maximums converges to zero, when the number of layers increases,
because extremely non-linear functions are unpredictable (just like pseudo-random generators) which
leads to pseudo-randomness.

Thus, there is empirical evidence that oversized deep neural networks still generalize well, precisely
because a prior measure emerges: deep learning does not converge to the global maximum and
instead to one of the local maximums chosen randomly, effectively sampling from a prior measure in
the sample space defined by all local maximums. This is consistent with the good results achieved
by ensembles of neural networks[42][45], which mimic many samples. However, it is a prior measure
which we cannot easily modify or even understand, because the measure space is the set of all local
maximums of the optimization problem. But, since we expect the parameters to be fully uncorrelated
between different local maximums, then many other prior measures (which we can modify and
understand, such as the uniform measure) should achieve the same level of generalization.

This is not a surprise, since oversized statistical models that still generalize well were already found
many decades ago by many people[47]: a standard probability space with a uniform probability
measure can be infinite-dimensional (the infinite-dimensional sphere[47], for instance).
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Note that generalization is often defined independently of the problem of overfitting, but these are
both a subproblem of whether or not the posterior measure is compatible with some prior measure.
Despite that generalization is often defined with respect to “future” data, we know nothing about
future data except if we make assumptions which then define a prior measure, for instance by
assuming that future data will be similar to data we already collected but did not use to estimate
the posterior measure, such unused data defines a prior measure. Overfitting is when we choose a
set of models which have a likelihood which is too close to the maximum possible, while our prior
includes likelihoods close but not too close from the maximum, thus the posterior measure (that is,
the set of models) is unlikely (“too good to be true”) with respect to the prior measure.

More empirical evidence: no one looks to a blurred photo of a gorilla and says with certainty that it
is not a man in a gorilla suit. We all have many doubts, when we are not sure about a subject we
usually express doubts through the absence of an action (not just us, but also many animals), for
instance we don’t write a book about the subject we don’t know about.

There is no empirical evidence that our brain tries to create content which is a short distance from
content (books, conversations, etc.) created under exceptional circumstances (when doubts are
minimal). When we are driving, and we do not know what is in front of us, we usually just slow
down or stop the car. But what content defines “not knowing”? Is there empirical evidence about
the unknown? The unknown can only be an abstract concept, expressed through probability theory
or a logical equivalent. Is there empirical evidence that probabilities are reducible, that there is a
simpler logical equivalent? No, quite the opposite.

The only trade-off seems to be between costs (time complexity, etc.) and understanding/control. A
prior measure which we understand and/or control may mean much more costs than an emergent
(thus, inconsistent and uncontrollable) prior measure which just minimizes some distance. But this
trade-off is not new, and it is already present in all industries which deal with some safety risk
(which is essentially all industries). Distances are efficient for proof of concepts (pilot projects),
when the goal is to show that we are a short distance from where we want to be. But safety (as
most features) is not being at a short distance from being safe4. “We were at a short distance from
avoiding nuclear annihilation” is completely different from “we avoided nuclear annihilation”. To
avoid nuclear annihilation we need (probability) measures, not only distances.

4See for instance https://edition.cnn.com/2023/04/29/us/ai-scam-calls-kidnapping-cec
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5. Empiricism also implies that deep learning is a random sampling
method

Even when ignoring all existing theories about Statistics, logical consistency implies that deep
learning is a random sampling method.

Deep learning is based on data and thus can be always be mathematically defined as a part of
Bayesian inference. The only doubt is whether such definition is useful or not. Then, there are no
non-informative priors, thus bias or prior (that is, some theory) is unavoidable.

Note that despite the theory being unavoidable, humans may not need to understand it, for instance
if it results in more power to produce new human-understandable theories[48][49]. After all, all
theories are temporary. Non-understandable human theories are inherently non-scalable, because
they cannot be trusted, but can be used to produce trustable, scalable things, such as trustable,
scalable theories. In the following we will just assume that some theory is unavoidable, whether or
not it is human-understandable.

This is today the mainstream approach to Deep Learning. The problem is that such tools that
would empower us to produce new human-understandable theories, did not exist prior to Deep
Learning (and we could argue that they do not exist yet, but that is not needed for the purposes
of this article). Thus, using Deep Learning, however we define it, we created (or will create) such
new tools, which could only be created by trial-and-error (experiments which produce empirical
evidence). But trial-and-error in the context of Bayesian inference (where we are, because we use
data) is just a random sampling method.

We could now argue that Deep Learning includes a random sampling method, but it is more than
that. However, whatever it is more than that, it was created by humans, and it will be replaced,
sooner or later, by a creation developed using the random sampling method included in Deep
Learning itself. In conclusion, for the same reasons that we can ignore all existing theories of
Statistics, we can also ignore everything in Deep Learning except its random sampling method. For
the sake of logical consistency.

Note that there is also the logical possibility that Deep Learning will not give us more power to
produce new human-understandable theories, thus we cannot ignore all existing theories about
Statistics. But this still leads to the same conclusion that Deep Learning is a random sampling
method, as discussed in the previous sections.
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6. Application: Incentives in a representative democracy vs. align-
ment

The fact that both deep learning and human learning are random sampling methods has consequences
for the alignment problem[50]. Because in most sufficiently complex systems (certainly in a system
with the goal of solving many and different complex problems), it is extremely unlikely to find a
sufficiently simple statistical metric that it is not misleading (in other words, that it is not rogue).
This is not a problem but a feature, since we can define probabilities as the absence of information,
unpredictability, thus, if it would not be likely misleading it would not be random/unpredictable
and if it would not be random it would not generalize well (by definition of generalization in a
Bayesian context). For instance, the economic growth of any country (however we measure it) is a
misleading statistical metric.

Another example: in a representative democracy there are incentives in place with the theoretical
goal of aligning the behaviour of elected officials (who are much more powerful than the average
citizen) to serve the best interests of the average citizens.

While most elected officials serve at least some of the interests of the average citizens, some dosis of
anarchy (however small) is always present in (and we could argue that it is essential for the stability
of) a representative democracy. By anarchy we mean, some citizens (including elected officials)
disrespect the laws and decieve each other in unpredictable ways.

In fact, a representative democracy is an extremely inneficient way of governing. The only reason
that many citizens still want it is that it empowers the average citizen at the expence of a rulling
elite with less power. Why is that a good thing? Because in many thousands of years, no society
could properly “align” a ruling elite to serve the interests of the average citizen, thus the ruling elite
should have enough power to prevent complete anarchy, but not much more than that.

Note that it is not a matter of how smart or powerful the rulling elite is. In fact, the rulling elite
must also manage natural resources such as rocks (diamonds for instance), which are literally “dumb
as a rock” and they never did it efficiently. So, it is extremely unlikely that a “super-human” ruling
elite (even if equipped with artificial intelligence with infinite scale, since the intelligence ratio of a
human against a rock is also infinite) could somehow be aligned to serve the interests of the average
citizen. Certainly, there exist many good solutions for such alignment problem, however the good
solutions are a tiny fraction of the possible solutions. Since deep learning is a random sampling
method (as human learning), it is extremely unlikely that will select one of the good solutions.

We address now consequences to weak-to-strong generalization[50]. Weak-to-strong generalization is
about using a weaker model (which we trust) to “elicit” knowledge from a stronger model (which we
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do not trust). The authors themselves acknowledge that this just a (far from perfect) analogy with
the alignment problem, that they “hope” may lead to progress. About the “hope” we cannot say
much. About the analogy we can say that it doesn’t change our findings, because a “weak model
eliciting knowledge from a strong” model is after all still some complex enough Bayesian model
whose “good generalization” properties still come from unpredictability/randomness: either the
model as a whole (that is, its weak+strong parts) generalizes well and it is unpredictable, or it can
be trusted on and it does not generalize well.

The way out is to split a complex system into simple systems, if we can do that, then some simple
statistical measures become trustworthy. We will explore such possibility in the next section.

7. Application: Alignment for fully autonomous machines

Neural Networks and symbolic AI do not solve by themselves the alignment problem for fully
autonomous machines. A well known solution is twofold: 1) the laws (constraints) are ultimately
“interpreted” by judges (who are human beings) who have the authority to explore all its ambiguities
to obtain the concrete constraint they think it is best for the concrete case they are judging; 2) this
necessarily generates some unpredictability, the costs of it are on the person who looses the judicial
case, due to the principle “Ignorance of law excuses no one”. This means that people must act
cautiously and only take actions that they are confident most judges will interpret as lawful. The
degree of caution is adapted to the circumstances, for instance if there is some medical emergency
they will be less cautious than if there is a conflict due to spurious reasons, and this also affects the
interpretation of the law by the judges.

Thus, the degree of confidence (or equivalently a probability) on predictions about the consequences
of the decisions is an ingredient of many decisions people make. This requires a probabilistic model
of the real world where the person making the decision is included in the model (we could argue
that this is consciousness, but such discussion is beyond the scope of this article).

A model of the real world involves time dynamics, the most general such model is a quantum
model. But generality by itself could not help when there are infinite variables. Crucially, choosing
a prior probability distribution where the quantum Hamiltonian (that is, the generator of the
time-evolution) is a bounded operator is consistent with the real-world, because the available energy
to a person or robot is finite (in most cases). This allows us to use few variables for a small enough
energy interval (using the Krylov subspace, and wavelets to distinguish energy intervals and also
energy resolutions), for a specific reason (finite energy interval and/or resolution) related to the
specific problem we are solving (predicting real consequences).

Note that in many cases, the energy interval may be too large and additional assumptions are
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required. In some cases, the additional assumptions may turn the assumption of the finite energy
interval irrelevant, then the use of a quantum model may not be advantageous. But in many
other cases, predicting the consequences of a decision is mostly about physics. Moreover, concepts
unrelated to physics can nevertheless be grounded in (defined from) examples from physics, specially
when the model of the real world is Turing complete (that is, it can be used to solve any other
problem).

Many authors argue that all these features can “emerge” in a sufficiently large Neural Network
using enough training data. But a relevant question is: is there a differentiable symbolic AI where
all these features are explicit? Yes, the mathematical formalism of Quantum Mechanics has all
these features explicitly: it includes probabilities explicitly, it is linear (thus differentiable) and it
allows reducing a large problem into a sum of many problems with few variables each (using the
spectral theorem and the Krylov subspace for continuous spectra). Moreover, it includes a uniform
measure for an infinite-dimensional sphere, so it can be used to define many infinite-dimensional
mathematical problems and also its approximate numerical solution, thus the approximations are
better understood.

8. Application: Previous knowledge as step-by-step learning

There are many ways of including the previous knowledge into the prior probability
distribution[51][52], including just changing the size of the sample space to allow learning
ambiguous intermediate concepts.

For instance, classifying if a statement is a fact or fiction has some ambiguity, but most people agree
on whether or not many statements are a fact or fiction (with many exceptions, for sure). When
we teach a child to not lie, the child understands that it does not mean to never lie, under any
circumstance. Thus, we can always include a pre-trained classifier of facts/fiction, whose output will
be added to the original input, forming the input of another Bayesian model. Then the Bayesian
model has access to the previous knowledge included in the classifier, but it still has the freedom to
completely ignore it in extreme cases, since it also has access to the original input.

9. Application: Bayesian inference for non-deterministic functions

Most real-world functions are non-deterministic. For instance, no one looks to a photo of a real
gorilla and says with absolute certainty that it is not a man in a gorilla suit. This ambiguity has
major advantages in a dynamic world where new information may always appear. Deep learning
using neural networks is only good to fit deterministic functions (including the mean-values of
non-deterministic functions), but it fails badly in most real-world functions[42] since it cannot fit
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the many relevant correlations of subsets (not just pairs) of non-deterministic outputs.

Neural networks have this feature by construction, since the likelihood of the outputs is assumed
uncorrelated to allow for the definition of a loss function to be minimized without predicting the
variance of the outputs. One can always promote a probability distribution to be the deterministic
function we want to study, but that is inefficient since then the likelihood of the outputs (or a
value that encodes it[40]) which stores a large amount of information, becomes redundant. A better
alternative would be to consider the most general statistical model, which implies considering
non-deterministic functions, and it predicts the likelihood of the outputs[16], including correlations
and variances; this includes, but it is more general than considering arbitrary prior knowledge for the
parameters of a specific statistical model[1]. Note that it is not due to a lack of computational power
since modern neural networks can fit very complex deterministic functions and fail badly[42][43] in
relatively simple non-deterministic functions (e.g. catastrophic forgetting or the need of calibration
to have some probabilistic guarantees[43]).

Although there are many attempts to extend neural networks[42][1][43][45], we can easily see that
in general, there are many more relevant correlations of subsets (not just pairs) of outputs than
there are outputs. Therefore, just the fact that neural networks are good to fit the mean-values
of the outputs is no indication that they are a good starting point to find a method to fit all the
relevant correlations. We better take a step back and use everything we already know.

And what do we know about deep neural networks? Not so much, except the fact that the present
evidence suggests that they are black boxes[42][45]. It does not look a great idea to extend a black
box, at least without further information. And what do we already know about correlation functions
and the necessary ambiguity to adapt to new information ? A lot and since a long time, starting
with Bayesian inference:

"How often have I said to you that when you have eliminated the impossible, whatever
remains, however improbable, must be the truth? We know that he did not come through
the door, the window, or the chimney. We also know that he could not have been concealed
in the room, as there is no concealment possible. When, then, did he come?"

— Sherlock Holmes in The Sign of the Four (1890)

Bayesian inference doesn’t look so hard, does it? Moreover, since neural networks can in principle be
used to fit any function including probability distributions, they seem to be compatible with Bayesian
inference as long as we know what should be fitted. In fact, supervised learning can be defined as a
particular case of reinforcement learning[53]. In reinforcement learning, deep neural networks can be
used, and any reward can be defined, including a reward which does not assume that the likelihood
of the outputs is uncorrelated. And incorporating Bayesian inference in Reinforcement Learning
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provides a machinery to action-selection under uncertainty and to incorporate prior knowledge into
the algorithms[54].

Functions are in general infinite-dimensional spaces, so it makes sense to look for measures in
infinite-dimensional spaces. While the Lebesgue measure cannot be defined in a Euclidean-like
infinite-dimensional space[55][56], it is well known since many decades that a uniform (Lebesgue-like)
measure of an infinite-dimensional sphere can be defined using the Gaussian measure and the
Fock-space (the Fock-space is a separable Hilbert space used in the second quantization of free
quantum fields)[47]. Such a space can parametrize (we call it the free field parametrization) the
probability distribution of another probability distribution with sample space given by the direct
product of the base space and the field (say Rn+1). A probability distribution with sample space
given by the direct product of the base space and the field can model a non-deterministic function
since we can always choose a measure (the Gaussian measure for instance) which covers the whole
base space, with the non-deterministic function evaluated at each point of the base-space given by
the conditional probability distribution conditioned on each point of the base-space. Note that due
to the relation between Fock-spaces and tensor products, we can consider regions of the sample
space as small as we want and there is null measure for a null marginal probability in each one
of these regions, and for each component of the Fourier series corresponding to such region; thus
the conditional probability distribution conditioned on each point of the base-space is well-defined
everywhere except in sets with null measure.

Thus, the free field parametrization is appropriate for non-deterministic functions but not for
deterministic functions, since the prior (uniform measure of an infinite-dimensional sphere, we
call it the uniform prior from now on) attributes null measure to deterministic functions. If we
were interested in deterministic functions, we would be in trouble[55][56]. Now that we found a
probability space and a candidate prior, we need to look for other candidate priors to choose from.

In the free field parametrization, the uniform prior defines a vector of the Hilbert space which when
used as the prior for Bayesian inference with arbitrary data generates an orthogonal basis for the
whole Fock-space. Such basis is related with a point process, with the number of points with a
given feature corresponding to the number of modifications to the uniform prior (in the part of
the sample space corresponding to such feature). Since Bayesian inference with any other prior
can be seen as a combination of the results of different Bayesian inferences with the uniform prior
for different data (eventually an infinite amount of data for the cases with null measure), then the
uniform prior in the free field parametrization is appropriate for non-deterministic functions in the
absence of any other information.
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10. Application: Digital-first Mathematics and Mathematical Mod-
elling

Most mathematics and mathematical modelling are human-first (or analog-first or book-first). That
is, the framework is optimized such that the computers are dispensable, computers play a mere
productivity role. For instance, a mathematics book is such that it could be written by hand, but by
writing it in the computer it can reach students faster and cheaper. The same happens with most
mathematical models of complex systems: they can in principle be written by hand, the computer
just increases productivity.

But in the next few years, mathematics and mathematical modelling will become digital-first. That
is, the framework is optimized such that the human interaction is dispensable, humans play a mere
auditing role. For instance, we could have new alternatives to complex analysis that are born digital.
As it happens today with digital photos, humans are provided with an analog view (in a screen
or on paper) of the photo and check if they like it, but the photo itself is digital, and it has more
information/resolution than what humans can easily distinguish. As it is progressively happening
with autonomous driving, where humans audit the car’s autonomous progress but don’t effectively
drive as much.

Bayesian inference (or approximations to it, such as deep neural networks) is not deterministic.
Therefore, Machine Learning can create deterministic mathematics, but it is not deterministic math-
ematics itself. Thus, we still need some kind of mathematics. All current Computer Algebra Systems
and Proof assistants were optimized for a human-first Mathematics. They are computationally
inefficient, verbose, logically inconsistent, designed for a human-first mathematics and to please the
human user.

An alternative is the Haskell library Egison (in its sweet-egison implementation[57], a similar
alternative would be Metamath[58]). Haskell is a pure functional language (thus easy to run in
parallel architectures, see www.acceleratehs.org) and it is the only pure functional language that is
often as fast as C. Moreover, we can easily include C code in Haskell in it in the exceptional cases
where C is much faster. Then the Haskell’s Egison library allows us to implement (probably) the
most expressive and advanced Computer Algebra System. Thus, we have expressiveness, flexibility
and speed, despite that it requires a lot of human expertise to do Mathematics from scratch with
Haskell’s Egison (which is ok for Digital-first Mathematics). Since the human user plays an auditing
role, another language such as Python would not be much more useful than Haskell (a complex
Python function is also hard to audit by a non-expert, moreover machine learning knows how to
write Haskell interfaces to the Python libraries that could eventually be needed) and we don’t need
many human auditors in Mathematics (due to its Universality) in the World, these few people can
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be specialists in Haskell, Egison and Mathematics.

Most human users will see/edit views of the Haskell code (constraints /explanations in plain English
for instance), but not the code itself. These views are non-deterministic and can be a source of
errors, which are ultimately audited by specialists in Haskell and Mathematics.

11. Application: Learning interesting questions, for which we can
find a predictive model

Perhaps the biggest advantage of defining deep learning as a random sampling method in Bayesian
inference, is that it allows us to apply deep learning (or alternative sampling methods) to more
abstract problems than (eventually unsupervised) machine learning.

We all love to make a prediction and to be right (“I told you”). Thus, we tend to try to find
questions/problems for which we can learn the answer to. Note that, our memory is limited, so
this is one relevant way (perhaps even the primary way) that allows us to select the information
to save in memory, since the more predictive a model is, the less memory it requires[59]. Since
we cannot answer everything anyway, we try to find those questions we can answer to, to allocate
scarce resources to them.

So we have a hierarchical inference problem, where the computation of the posterior probability
includes another inference problem. And the hierarchy can have as many levels as we wish. But
there is only one human brain or only one machine, so it does not make much sense to say that
an inference problem in an intermediate level of the hierarchy is “machine learning” or a “neural
network” analogous to the brain. However, once we define deep learning as a random sampling
method in Bayesian inference, then it makes perfect sense to apply it to the intermediate levels of
the hierarchy, since a hierarchy of beliefs/probabilities is a natural concept.
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