Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

LEARNED GRIDIFICATION FOR EFFICIENT PROCESS-
ING OF POINT CLOUDS

Anonymous authors
Paper under double-blind review

ABSTRACT

We provide a method for point cloud classification using Conv3D by learning a
point cloud representation that lives on a low-resolution dense 3D grid. The grid-
ification step consists of a bipartite graph convolution, which connects the input
point cloud to a target grid in 3D. We show that the method achieves remarkable
performance given the network size and grid resolution on which the Conv3D
blocks operate.

1 INTRODUCTION

Point clouds often represent a particular geometric structure together with a signal over this structure.
E.g., a point cloud could serve as a sparse representation of a surface in 3D or as a representation of
a conformation of a given molecule with points being the atom locations and a vector representation
of the atoms as signal. The sparse signal viewpoint allows for an intuitive generalization of convo-
lution type operators, which process the signal via feature value transformations conditioned on the
geometry, i.e., through kernels sampled on pair-wise geometric attributes such as relative position.

Whereas convolutions on images, which are signals on regular grids, allow for highly optimized par-
allel processing by reusing a fixed set of kernel values, this is not possible for the irregularly sampled
signals that the point clouds represent. The lack of a regular grid structure for point clouds severely
limits parallelization. A potential solution lies in treating the point cloud as a density on R3, that can
be sampled/discretized on a dense regular grid, a process called voxelization. Voxelization methods
thus create regular lattice representations on which Conv3D methods can act. However, such meth-
ods are expensive, since capturing fine details requires high resolution grids, which scales poorly.
Furthermore, due to the sparse nature of point clouds, occupancy of the voxel grid is generally low,
which makes such methods unnecessarily expensive and unscalable.

In this paper we explore a solution to the computational inefficiency of point cloud methods, whilst
still being able to faithfully pick up on geometric detail. Our simple recipe consists of a bipartite
graph convolution step that maps the sparse point cloud representation to a dense grid in R through
k-nearest neighbour connectivity. Consequently, this grid representation can now be processed using
efficient dense convolution methods such as Pytorch’s Conv3D. We show that the 3D grid resulting
from the bipartite message passing step can be of very low resolution, circumventing high cost of
capturing fine details in voxelization methods.

2 RELATED WORKS

Point cloud classification has widely been studied in machine learning literature (Sun et al., 2009;
Bronstein & Kokkinos| [2010; |/Aubry et al.l 2011). Where classical approaches often relied heavily
on (task-specific) feature engineering methods, deep learning-based approaches were introduced
only recently, due to the complexity of defining classical deep learning operators (i.e. convolution,
pooling) for the irregular data domain of pointclouds (Qi et al.,[2017a).

Most of these deep learning methods for pointcloud processing can be classified into two ap-
proaches: 1) methods that perform voxelization of the original pointcloud to obtain a regular struc-
ture on which classical CNN architectures for regular data can then be applied (Maturana & Scherer;,
2015} Q1 et al., 2016} |Le & Duan, 2018} [Wang & Lul 2019) or 2) methods that operate directly on
the irregular point cloud (Qi et al., 2017azb; Wu et al.,[2019; |[Engel et al., 2021).

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

Whereas voxel-based approaches allow for straightforward application of convolutional operations
and architectures, in practice the voxelization step leads to loss of detail in fine geometry. Since
the voxel resolution required to faithfully capture the sparse but detailed nature of pointcloud is
high in most settings, additional engineering of the voxel grid is needed. For instance, Le & Duan
(2018)) propose a voxelization method that is able to capture finer geometrical details by replacing
the conventional geometry-invariant aggregation step in voxelization by a concatenation operation
of the features that occupy a given voxel. However, as the number of points per voxel can vary, this
requires a quantization or subsampling method which still results in information loss. Other methods
such as |[Klokov & Lempitsky| (2017); |Riegler et al.[(2017); Liu et al.| (2022a) construct hierarchical
voxel representations that adapt resolution to pointcloud density and encode a pointcloud at different
resolutions, but these methods are hard to implement for arbitrary pointclouds since they make use
of complicated data structures.

Methods that operate on point-clouds directly often consist of operators that are locally invariant to
specific geometrical properties of the point cloud. For instance, [Q1 et al.| (2017aib) apply feature
transformations to individual points, aggregating information from different points mainly through
geometry-invariant max pooling operations, discarding fine-grained structure. On the other hand,
architectures that incorporate local structures, e.g. through (graph) convolutions (Wu et al., 2019;
Zhao et al., 2019; [Thomas et al.l 2019 Mao et al., [2019; Wang & Solomon, [2021) respect local
geometry but are only able to apply local operations due to the computational overhead required for
evaluating convolutions on irregular domains.

Most related to the proposed approach are methods like|Liu et al.|(2019);[Zhang et al.|(2021), falling
somewhere in between the two aforementioned classifications. In|Liu et al.[(2019) authors propose a
hybrid architecture that contains both a coarse voxel branch for capturing high-level structures with
convolution operations and a pointwise multi-layer perceptron for modelling fine-grained structure.
Zhang et al.| (2021)) leverage the same two-branch structure, but replace the convolution by a win-
dowed self-attention operation to improve performance. In order to solve the problem of low occu-
pancy in voxel grids, a rule book stores the entries of non-empty voxels. Although these methods
incorporate both local and global information, their explicit use of voxelization operations still leads
to a trade-off in information loss and computational efficiency. Instead, we propose a single-branch
architecture similar to classical CNNs, which replaces voxelization by a bipartite graph convolution
to obtain a regular feature grid. Since this operation does not make any use of geometry-invariant
aggregation or quantization, this should reduce fine-grained information loss.

3 METHOD

Consider a set of N points sampled from the surface of a 3D object, consisting of positions x; €
R3, possibly with some corresponding feature vectors f; € R (such as surface normals, RGB-
values, etc.) associated to every position. A point cloud then forms a set S = {x;}}¥, or § =
{(xi,£;)} Y, if feature vectors are available. Such a representation is sparsely located in R3. We
seek a representation of this shape that lives on a regular grid in R?, so that we may further process
it using efficient convolution methods like Conv3D.

A
Fy L}

#o
o
L] \. L] (] L]
; N ;
) ($
" e \
7 TN

A
\M .) //‘.\“.\i

Figure 1: Example in 2D: 1) a point cloud is a set of locations sampled x°® from the surface of a
shape. 2) Define target grid X;- in R2. 3) Connect point cloud to target grid via k-nearest neighbours.

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

In order to do so, we construct a graph that associates each position on a 3D regular grid with

k positions in the source point cloud through k-nearest neighbour connectivity. In essence, if we
consider the source point cloud set S = {(x?,£?)} =, and the targer positions on the grid the set

T = {x‘; }j\/:t 1» this constitutes a bipartite graph where the edges are directed from Source to T arget.

In order to generate feature vectors f on the target grid positions x!, we employ a bipartite graph
convolution as in Nassar| (2018)):

£ = Ojeniyde(f],a;;) withay; = da(x] —x5)
Where ¢, is some differentiable message function that is conditioned on an embedding of the relative
offset of the input point to the target point and, if available, an input feature {7, and L] is some
aggregation method, such as mean or max. In the absence of f7, the aggregation yields a purely
geometric neighborhood embedding. The grid positions, along with the target feature vectors f!

together induce a representation of the point cloud that lives on a grid, 7 = {(x%,f})} jV:’ 1-

4 EXPERIMENTS

We test the model on the ModelNet10 and ModelNet40 point cloud classification datasets and em-
pirically study several open design choices.

4.1 POINT CLOUD CLASSIFICATION

Point cloud classification for ModelNet10 and ModelNet40 results can be found in Table 1 and
comparison with a PointNet++ baseline, a seminal model in point cloud classification, using the
same optimisation setup. We apply a subsampling of 1000 points for each object and use the Adam
optimizer [Kingma & Bal (2014) with a learning rate of le-4. Surface normals are used as feature
vectors, and all objects are normalized between [-1, 1]. All models were trained for 100 epochs and
results were averaged over three seeds. Our model approaches the baseline with significantly less
parameters, and for the smallest model, the Conv3D blocks operate on a 3D grid of only 3 x 3 x 3
on the interval [—1, 1]3. Each target grid position is connected to its 9 nearest input neighbours. The
pipeline can be found in Fig. 2, where we used L = 7 convolution blocks and £ = 3 and k = 5 for
the small and best model, respectively. Further implementation details can be found in Appendix [A]

Model #Params Accuracy Runtime

PointNet++ 1.5M 87.11 +.005 1hlm ¢

PointNetNeXt++ 1.5M 87.67 +.412 1h3m Bipartite GConv

Ours 5x5x5 351K 86.02 +.282 46m |

Ours 3x3x3 263K 84.27 4+ .738 36m v
ModelNet40 CCNNBIock

kxkxk

PointNet++ 1.5M 88.39 +.014 21m I times

PointNetNeXt++ 1.5M 90.44 + .230 23m v

Ours 5x5x5 351K 89.62 + .367 12m

Ours 3x3x3 263K 86.94 £ .183 12m MLP
ModelNet10

v

Table 1: Shape classification results. Two versions of the Figure 2: Architecture
proposed model were tested, one that operates on a resolu-
tion 3 grid and one on a resolution 5 grid.

4.1.1 CONNECTIVITY & RECEPTIVE FIELD

A free architectural choice is the connectivity of the input pointcloud to each target grid point:
using radius connectivity would result in a method that is akin to voxelization methods. In our

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

experiments, we use a K-nearest neighbour approach to ensure that each target grid position is
populated with feature values. Choosing the amount of neighbours then corresponds to the effective
receptive field of each target grid position. We experiment with two models differing in size of
the receptive field, namely a local model in which each target grid position is connected to its
n neighbours, and a global model, which has a global receptive field: each target grid point is
connected to n randomly sampled input points. In our experiments, for the global model we used
n = 100. Results can be found in Fig. 3]

(a) Local model (b) Global model

4.1.2 GRID RESOLUTION

We also study the effect of increasing the grid resolution. In practice we see that we can operate at
extremely low resolution. Results can be found in Fig. [3a, b.

86.0 85.4
° 6 L '] [}
85.5 [1 ° 85.2
L]
85.0 L] 74 [) 850
Il 845 b 72 g 84.8 L]
£ 2 T
84.0 70
L d
84.4
835 . °
[] 84.2
83.0 []
66 84.0
3 3 7 3 o s 3 ; 7 5 o 5 3 15 = %
Grid resolution Grid resolution # Neighbours
(¢) Local model (d) Global model (e) Local model

Figure 3: a & b: Effect of increasing the grid resolution for the local and global models. c: Effect of
increasing the receptive field for the local model.

5 DISCUSSION & CONCLUSION

We provide a method for point cloud processing that achieves remarkable performance given its
size and simplicity. Although the method does not yet outperform their PointNet++ counterpart, our
experiments show the potential of a learnable voxelization module that improves overall efficiency
whilst maintaining expressive capacity. As such, we believe the method provides a promising di-
rection combining the expressivity of message passing graph neural networks for irregular domains
and efficient and highly optimized lattice convolution methods.

REFERENCES

Mathieu Aubry, Ulrich Schlickewei, and Daniel Cremers. The wave kernel signature: A quantum
mechanical approach to shape analysis. In 2011 IEEE international conference on computer
vision workshops (ICCV workshops), pp. 1626—1633. IEEE, 2011.

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

Michael M Bronstein and Iasonas Kokkinos. Scale-invariant heat kernel signatures for non-rigid
shape recognition. In 2010 IEEE computer society conference on computer vision and pattern
recognition, pp. 1704-1711. IEEE, 2010.

Nico Engel, Vasileios Belagiannis, and Klaus Dietmayer. Point transformer. IEEE Access, 9:
134826-134840, 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014. URL
http://arxiv.org/abs/1412.6980. cite arxiv:1412.6980Comment: Published as a con-
ference paper at the 3rd International Conference for Learning Representations, San Diego, 2015.

Roman Klokov and Victor Lempitsky. Escape from cells: Deep kd-networks for the recognition of
3d point cloud models. In Proceedings of the IEEE international conference on computer vision,
pp. 863-872,2017.

David M. Knigge, David W. Romero, Albert Gu, Efstratios Gavves, Erik J. Bekkers, Jakub M.
Tomczak, Mark Hoogendoorn, and Jan-Jakob Sonke. Modelling long range dependencies in n-d:
From task-specific to a general purpose cnn, 2023. URL https://arxiv.org/abs/2301.
10540.

Truc Le and Ye Duan. Pointgrid: A deep network for 3d shape understanding. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 9204-9214, 2018.

Juncheng Liu, Steven Mills, and Brendan McCane. Rocnet: Recursive octree network for efficient
3d processing. Computer Vision and Image Understanding, 224:103555, 2022a.

Zhijian Liu, Haotian Tang, Yujun Lin, and Song Han. Point-voxel cnn for efficient 3d deep learning.
Advances in Neural Information Processing Systems, 32, 2019.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. CoRR, abs/2201.03545, 2022b. URL https://arxiv.org/abs/
2201.03545.

Jiageng Mao, Xiaogang Wang, and Hongsheng Li. Interpolated convolutional networks for 3d point
cloud understanding. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 1578-1587, 2019.

Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional neural network for real-time
object recognition. In 2015 IEEE/RSJ international conference on intelligent robots and systems
(IROS), pp. 922-928. IEEE, 2015.

Marcel Nassar. Hierarchical bipartite graph convolution networks, 2018.

Charles R Qi, Hao Su, Matthias Nieiner, Angela Dai, Mengyuan Yan, and Leonidas J Guibas.
Volumetric and multi-view cnns for object classification on 3d data. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 5648-5656, 2016.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 652-660, 2017a.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical fea-
ture learning on point sets in a metric space. Advances in neural information processing systems,

30, 2017b.

Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. Octnet: Learning deep 3d representa-
tions at high resolutions. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3577-3586, 2017.

Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. A concise and provably informative multi-scale
signature based on heat diffusion. In Computer graphics forum, volume 28, pp. 1383-1392. Wiley
Online Library, 2009.

http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2301.10540
https://arxiv.org/abs/2301.10540
https://arxiv.org/abs/2201.03545
https://arxiv.org/abs/2201.03545

Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, Francois Goulette,
and Leonidas J Guibas. Kpconv: Flexible and deformable convolution for point clouds. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 6411-6420, 2019.

Yue Wang and Justin M Solomon. Object dgcnn: 3d object detection using dynamic graphs. Ad-
vances in Neural Information Processing Systems, 34:20745-20758, 2021.

Zongji Wang and Feng Lu. Voxsegnet: Volumetric cnns for semantic part segmentation of 3d shapes.
IEEE transactions on visualization and computer graphics, 26(9):2919-2930, 2019.

Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep convolutional networks on 3d point
clouds. In Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition,
pp- 9621-9630, 2019.

Cheng Zhang, Haocheng Wan, Shengqgiang Liu, Xinyi Shen, and Zizhao Wu. Point-voxel trans-
former: An efficient approach to 3d deep learning. CoRR, abs/2108.06076, 2021. URL
https://arxiv.org/abs/2108.06076.

Hengshuang Zhao, Li Jiang, Chi-Wing Fu, and Jiaya Jia. Pointweb: Enhancing local neighborhood
features for point cloud processing. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 5565-5573, 2019.

A APPENDIX: ARCHITECTURAL DETAILS

For the convolutional blocks, we used 3D CCNN blocks as in |[Knigge et al.| (2023)). For the edge
attribute a;; we use a Random Fourier Feature embedding on the relative offset of neighbor and
target node, since this embedding provides explicit control over the kernel smoothness through an
initial frequency parameter o. We applied sweeps on the kernel smoothness o. Finally, we used
PyTorch’s ReduceLROnPlateau learning rate scheduler.

For the baseline models, we used a standard PointNet++ and a PointNet++ where the graph MLP
components are replaced by graph ConvNeXt modules |Liu et al.| (2022b).

https://arxiv.org/abs/2108.06076

	Introduction
	Related Works
	Method
	Experiments
	Point Cloud Classification
	Connectivity & Receptive Field
	Grid Resolution

	Discussion & Conclusion
	Appendix: Architectural details

