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ABSTRACT

Empirical risk minimization (ERM) based machine learning algorithms have suf-
fered from weak generalization performance on the out-of-distribution (OOD)
data when the training data are collected from separate environments with un-
known spurious correlations. To address this problem, previous works either ex-
ploit prior human knowledge for biases in the dataset or apply the two-stage pro-
cess, which re-weights spuriously correlated samples after they were identified
by the biased classifier. However, most of them fail to remove multiple types
of spurious correlations that exist in training data. In this paper, we propose a
novel bi-level learning framework for OOD generalization, which can effectively
remove multiple unknown types of biases without any prior bias information or
separate re-training steps of a model. In our bi-level learning framework, we
uncover spurious correlations in the inner-loop with shallow model-based pre-
dictions and dynamically re-group the data to leverage the group distribution-
ally robust optimization method in the outer-loop, minimizing the worst-case risk
across all batches. Our main idea applies the unknown bias discovering process
to the group construction method of the group distributionally robust optimization
(group DRO) algorithm in a bi-level optimization setting and provides a unified
de-biasing framework that can handle multiple types of biases in data. In empir-
ical evaluations on both synthetic and real-world datasets, our framework shows
superior OOD performance compared to all other state-of-the-art OOD methods
by a large margin. Furthermore, it successfully removes multiple types of biases
in the training data groups that most other OOD models fail.

1 INTRODUCTION

Conventional machine learning algorithms are relying on the empirical risk minimization (ERM)
method when they should learn from given data, and in many application areas, this approach has
shown successful performance with high prediction accuracy. However, if a model learns spurious
correlations during training, it can often fail with poor generalization performance, which is known
as the out-of-distribution (OOD) generalization problem. Furthermore, in recent studies, it has been
shown that ERM-based methods more easily learn such unstable correlations in the dataset and
result in a poor generalization performance on real-world applications (Beery et al., 2018; Ilyas
et al., 2019; Geirhos et al., 2018; de Haan et al., 2019; Koh et al., 2021).

To address this problem and obtain a robust de-biased model, many approaches have been proposed
for the cases where biases are known beforehand or not. When biases are known as a priori, some
studies applied adversarial training to remove biases from representations (Belinkov et al., 2019a;b)
or re-weighting training samples (Schuster et al., 2019), and assembling predictions of a biased
model and the base model for ensemble with a product of experts (Hinton, 2002; He et al., 2019;
Clark et al., 2019; Mahabadi et al., 2020). However, these works are designed for a specific type
of bias and thus require extra domain knowledge to generalize to new tasks. Moreover, without
such prior knowledge for biases in the data, they are hard to be applied to practical applications.
For the case of having no prior knowledge of spurious correlations, the most popular approach
is leveraging the prediction result of a shallow model or weak learner while assuming them as a
biased classifier. Since predictions of a biased classifier can provide useful clues for the spurious
correlation it has learned, to learn from the weak models’ mistakes, they down-weight the potentially
biased examples while training a robust model (Mahabadi et al., 2020). Although these works are
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more general approaches and save a lot of human efforts for finding biases in established datasets,
we found that they still cannot effectively remove multiple types of biases existing in data groups
collected from different environments.

Another type of effective OOD generalization approach is group distributionally robust optimization
(group DRO) algorithm which alleviates model biases by minimizing the worst-case risk over a set of
human-defined training groups (Hu et al., 2018; Sagawa* et al., 2020). In this method, the choice of
how to group the training data allows us to introduce a prior knowledge of spurious correlations into
optimization. However, finding multiple types of biases and accordingly constructing data groups
are laborious processes. Therefore, a simple grouping algorithm is proposed in a recent study (Bao
et al., 2021), which splits the training dataset based on the prediction results of biased classifiers.
Our approach is also aimed to create data groups that are informative for the multiple underlying
biases in the training dataset so that minimizing the worst-case risk over all those data groups can
provide a robust classifier. In practical settings where there is little or no prior information about the
biases, most de-biasing methods, which automatically identify potential biases in the training data,
cannot discover all spurious correlations existing in the dataset. Furthermore, splitting training data
into several static data groups cannot effectively represent the effect of multiple biases existing in
the dataset.

In this work, first, we propose a novel strategy for discovering bias and splitting training data
for a group-based de-biasing algorithm. Based on the prevailing automatic bias identifying ap-
proaches (Utama et al., 2020b; Sanh et al., 2021), we train a shallow model for each group in a batch
and dynamically re-group the environments according to the prediction correctness of the shallow
model over all other environments in the batch. This batch-wise dynamic data re-grouping strategy
allows us gradually uncover multiple unknown biases in the dataset while training a model. A shal-
low model tends to quickly overfit to surface form information, especially when they are trained with
a small training data setting (Utama et al., 2020b); therefore, if we re-group the samples in a batch,
based on its biased prediction results, we can more effectively account for the various unknown
biases in the training dataset. Furthermore, when this approach is combined with the group-based
de-biasing method (group DRO), we can train a more robust classifier by minimizing the worst-case
risk over all interpolations of those dynamic data partitions.

Second, we also propose a unified end-to-end learning framework for a stable classifier. Our frame-
work is a bi-level learning process which extends the min-max objective of group DRO with the
unknown bias discovering and grouping method. In the inner level of optimization, it discovers
the biases in the environment of each batch by applying the dynamic data re-grouping method, and
these re-partitioned data groups are used for the group DRO algorithm, which minimizes the worst-
case risk in the outer level of optimization. We coin our novel learning framework as a Bi-level
Learning framework for OOD generalization (BLOOD) and evaluate its OOD performance in both
synthetic and real-world environments. In the empirical evaluation, our framework shows 47% per-
cent improvement on the Colored MNIST dataset and achieves the best results in real-world datasets
(Camelyon17-wilds, FMoW-wilds) compared to other OOD methods.

The main contributions of our work are the following: (a) we show that dynamically re-grouping the
subset of environments, based on the predictions of the shallow model, gradually uncovers multiple
types of spurious correlations existing in a dataset; (b) we integrate automatic unknown bias iden-
tifying and grouping process to the group DRO by formulating a bi-level optimization objective;
(c) we propose a unified end-to-end learning framework which does not need prior knowledge of
multiple dataset biases to obtain robust models, but automatically removes various unknown biases
from out-of-distribution data.

2 METHOD

2.1 OVERVIEW

Consider a set ofN training environments Etr = {ei}Ni=1 where each environment ei is composed of
input-label pairs {(xek, yek)}

n
k=1. Our main goal is to train a stable classifier from these environments

so that it can be generalized to any new test dataset. We do not make any assumption on the biases
present (or not) in the dataset and rely on letting the shallow model discover them during training.
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For this type of problem, recent de-biasing methods (Utama et al., 2020b; Sanh et al., 2021; Liu
et al., 2021; Bao et al., 2021) apply a two-stage process: (a) train a separate biased classifier by
learning from spurious correlations in the environments and use the prediction correctness of the
biased classifier for identifying a biased sample (Utama et al., 2020b; Liu et al., 2021) or creating
new environment partitions for group-based de-biasing methods (Bao et al., 2021). (b) train a robust
classifier by re-weighting biased samples or applying product-of-experts (Hinton, 2002; Sanh et al.,
2021), confidence regularization (Utama et al., 2020a) to the outcome of the first stage.

In our approach, we integrate these two stages into a single unified learning framework by leverag-
ing a bi-level optimization structure. With the bi-level setting, we can identify unknown biases in
the inner-level and remove the discovered biases with group DRO in the outer-level. In the inner-
level, to automatically discover unknown biases in the environments, we train a shallow model for
each environment in a batch and apply an environment-specific classifier to partition all other en-
vironments in the batch, based on its prediction correctness. Since a shallow model is more prone
to rely on shallow heuristics, we can obtain a biased classifier after few-shot learning in the batch,
and this procedure is iteratively performed while training a model. In the outer-level, the dynam-
ically partitioned environments, which are obtained from inner-level optimization, are provided to
the group DRO algorithm and used for minimizing the worst-case risk over those partitions. In the
next section, we describe each component of our bi-level learning structure with its corresponding
contribution.

2.2 BI-LEVEL LEARNING FRAMEWORK FOR DE-BIASING

Our learning framework consists of two training objectives for bi-level optimization, in which the
inner objective is nested within the outer objective. The inner training objective learns spurious
correlations in the dataset, which are unknown, and uses them for re-grouping other environments.
The outer objective learns only stable correlations by minimizing the worst-case risk over these
groups.

2.2.1 INNER OBJECTIVE: LEARNING BIAS TO DE-BIAS

The inner-level optimization is aimed to automatically discover unknown spurious correlations,
based on the prediction result of a biased classifier (weak learner), and accordingly re-partitions
the environments to provide groups to the outer-level process. Therefore, we need to train a biased
model which mostly follows spurious correlations in each environment. Most of the other de-biasing
methods, exploiting the prediction results of a biased classifier, use a pre-built biased model by train-
ing it with the full set or a small subset of training data. In contrast to those works, we do not train
a separate biased model; instead, we dynamically obtain a shallow model for each environment in
a batch during inner-level optimization. To obtain biased models while training stable classifier, we
get insight from the deep neural network’s tendency to exploit simple patterns in the early stage of
the training, which is also observed in other researches (Arpit et al., 2017; Liu et al., 2020). Since
spurious correlations are commonly characterized as simple surface patterns, we expect that models’
rapid performance gain is attributed to their reliance on simple surface patterns (Utama et al., 2020a).
In the same context, after a model is trained with only a small number of samples from an environ-
ment, we expect it to perform as a biased classifier, which achieves high accuracy mostly on the
biased examples while still performing poorly on the rest of the samples from other environments.

For each batch learning step in the inner optimization, a shallow model is trained and used for
re-grouping as follows:

Step 1 : For each sampled environment ei in a batch, temporarily train an environment-specific
classifier fφi

with few-shot learning.

Step 2 : For all sampled environments in the batch where j 6= i, use the trained classifier fφi to
partition each of them into two parts based on the prediction correctness of the classifier.

Training a shallow model At the beginning of a model training, a model fθ is randomly initialized
with θ. While training a classifier, we obtain a shallow model for each batch training step by applying
a few gradient descent steps to the model’s parameters θ, so that the model can quickly overfit to
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Algorithm 1 BLOOD: Bi-level Learning Framework for OOD Generalization

Input: Step sizes α, β, γ; A set of training environments Etr = {ei}Ni=1

Initialize: θ and q = [q�1 , q
⊗
1 , · · · , q

�
N , q

⊗
N ]

1: while not done do
2: for all ei ∈ Etr do
3: φi = θ − α∇θLei(fθ) {Inner-loop optimization for a shallow model}
4: ej ∼ Etr \ ei {Sample training environment ej}
5: G�i→j , G

⊗
i→j = Partition(fφi

, ej) {Partition ej into G�i→j and G⊗i→j}
6: q�j ← q�j exp(γLG�i→j

(fφi
)), q⊗i ← q⊗i exp(γLG⊗i→j

(fφi
)) {Update group weights}

7: end for
8: q ← q/

∑
i(q
�
i + q⊗i ) {Normalize group weights q}

9: θ ← θ − β ∇θ
∑
i

∑
j q
�
j LG�i→j

(fφi|θ) + q⊗j LG⊗i→j
(fφi|θ) {Outer-loop optimization}

10: end while

surface form information while fθ is still conditioned on the previously learned θ. This temporarily
trained shallow model parameter φi, which are optimized for surface patterns of ei, is updated by
following stochastic gradient descent (SGD) step:

φi = θ − α∇θLei(fθ) (1)

where α is a step size for the inner optimization, and Lei(fθ) is an expected loss of fθ over the data
sampled from ei. We show only a single gradient update procedure in Equation 1 for the notational
simplicity.

Batch-wise dynamic data re-grouping After a biased classifier fφi
is trained for the environment

ei, we dynamically re-partition all other training environments in the batch. The fφi
is applied to all

other environments ej in the batch, where j 6= i, and according to its prediction correctness, samples
in each environment ej are re-grouped into two parts, a correctly predicted sample group G�i→j and
a incorrectly predicted sample group G⊗i→j . These dynamically partitioned groups are then used for
training a stable classifier by minimizing the worst-case risk over these groups in the outer-level.

As a similar group-based de-biasing approach, Predict then Interpolate (PI) (Bao et al., 2021) also
uses a biased classifier for re-partitioning other environments. Its main difference compared to our
method is that they fully train a separate model with the entire dataset and use it for partitioning all
environments into static groups. Once their data groups are statically assigned, it is fixed throughout
the optimization process of group DRO. Although PI has shown its theoretical and empirical effec-
tiveness as a de-biasing method, its static grouping strategy, which relies on a fully-trained biased
classifier, constrains it from discovering multiple types of spurious correlations in the environments.

In contrast, our framework uses a shallow model, which is trained with a small subset of each envi-
ronment in the batch. Since we are using a different biased classifier per batch, we are continuously
learning a bias and producing new data partitions for each batch, representing our dynamic data
re-grouping strategy. This dynamic re-grouping strategy provides various group combinations for
the outer-level optimization process, so that it can effectively remove various types of biases in the
environments.

Furthermore, since our shallow model has overfitted to the surface patterns in a small subset of
data, it is more likely to capture multiple types of bias in the environments, as shown in other
research (Utama et al., 2020a). This property can be a disadvantage for a de-biasing method, which
applies re-weighting to the biased examples, because it reduces the effective training data size for a
model. However, in our approach, it enables us to uncover multiple types of biases in the dataset.
Because, multiple types of biases can be considered while minimizing the worst-case risk over
various types of group configurations.

2.2.2 OUTER OBJECTIVE: MINIMIZING WORST-CASE RISK OVER DATA GROUPS

The goal of the outer-level objective is to remove spurious correlations that have been identified
during the inner-level optimization. For this purpose, we apply the group DRO algorithm in the
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outer-level, to iteratively minimize the worst-case risk over dynamically re-partitioned groups. Al-
though the baseline group DRO algorithm is an effective group-based de-biasing method, it still
requires data groups to be explicitly defined by the prior knowledge on biases in the training data.
In our framework, we already automatically identified unknown biases in the environments and dy-
namically re-grouped environments in the inner-loop. Therefore, we can directly provide them to
the group DRO during the outer-level optimization.

In our bi-level optimization setting, we integrate our dynamic re-grouping scheme with online group
DRO (Sagawa* et al., 2020) that minimizes the worst-case of convex combinations of the group
risks. The objective of our framework is formulated as following min-max problem:

min
θ

max
q

∑
i

∑
j 6=i

q�j LG�i→j
(fφi|θ) + q⊗j LG⊗i→j

(fφi|θ) (2)

where q = [q�1 , q
⊗
1 , · · · , q

�
N , q

⊗
N ] denotes a coefficients vector for convex combination, and q�i

and q⊗i denotes group weights for correctly predicted sample group G�i→j and incorrectly predicted
sample group G⊗i→j , respectively. To solve this min-max problem, we interleave gradient-based
iterative updates on θ and q; update q with exponentiated gradient ascent, so that groups with high-
risk get high weights, and model parameters θ are updated with SGD.

While training a robust classifier with our bi-level learning framework, the parameters θ are opti-
mized by the group-wise losses obtained from shallow models in the inner-level. In the early stages
of learning, a shallow model can learn a bias after few-shot learning, then the loss difference be-
tween two groups, G�i→j and G⊗i→j , becomes larger, and optimizing θ over the worst-case group
risks can effectively prevent the model fθ from learning such biases.

We formulate a bi-level optimization problem by integrating Equation 1 and optimization objective 2
to the inner and outer optimization objectives of the bi-level learning setting. Our framework iter-
atively uncovers biases in the inner-loop and de-biases them in the outer-loop while optimizing to
obtain a robust classifier. The full procedure of our learning framework is described in Algorithm 1.

3 EXPERIMENTS

We evaluate our framework on both synthetic and real-world tasks and also compare the OOD
performance with other state-of-the-art algorithms, such as ERM, Invariant Risk Minimization
(IRM) (Arjovsky et al., 2019), Group DRO, and PI. IRM is an optimization framework based on
the theory of Invariant Causal Prediction (Peters et al., 2016), which learns representations that are
simultaneously optimal across all environments. For training a model with PI, we train environment-
specific classifiers for each of all training environments and randomly pick the environment for
evaluation.

3.1 SYNTHETIC TASKS: COLORED MNIST

Figure 1: Image samples of Col-
ored MNIST task with additional
patch feature.

In this section, we demonstrate the multiple biases identifica-
tion performance of our framework on a synthetic task, Col-
ored MNIST dataset. While following Arjovsky et al. (2019)
as a baseline, we also inject more spurious correlations to
the original Colored MNIST. For color attributes, green or
red are applied to have strong spurious correlations with the
class labels. We design these correlations to vary across the
environments so that the model which exploits the unstable
color attributes cannot guarantee the OOD generalization per-
formance. In detail, we consider two training environments
with coloring probability pe = 0.1 and pe = 0.2, respectively,
and this indicates that the color attribute is correlated with la-
bel as 1 − pe. We add noise with probability pc = 0.25 to
the shape attribute so that the shape attribute is less correlated with the target label, making the
correlation only 75%.
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Table 1: Test accuracy (%) of different algorithms on the Colored MNIST task in 5 trials (mean ±
standard deviation). δgap indicates the generalization gap of the model between i.i.d and OOD test
environments. Note that the highest test accuracy for the i.i.d test environment does not guarantee
high performance on the OOD.

Algorithm
Bias: Color Bias: Color & Patch

Test (i.i.d) Test (OOD)
δgap

Test (i.i.d) Test (OOD)
δgappe = 0.1 pe = 0.9 pe = 0.1 pe = 0.9

ERM 88.6 ± 0.3 16.4 ± 0.8 -72.2 93.7 ± 0.3 14.0 ± 0.5 -79.7
IRM 71.4 ± 0.9 66.9 ± 2.5 -4.5 93.5 ± 0.2 13.4 ± 0.3 -80.1
Group DRO 89.2 ± 0.9 13.6 ± 3.8 -75.6 92.3 ± 0.3 14.1 ± 0.8 -78.2
PI 70.3 ± 0.3 70.2 ± 0.9 -0.1 85.4 ± 0.9 15.3 ± 2.7 -70.1
BLOOD (Ours) 70.5 ± 1.1 70.7 ± 1.4 0.2 68.3 ± 2.3 62.3 ± 3.3 -6.0
Optimal 75 75 0 75 75 0

Moreover, we inject additional spurious correlation by creating small patches of noise to the corner
of the image so that the locations of these patches are strongly correlated with the labels. Similar to
the coloring MNIST digits, we design the patch attributes to have unstable correlations across the
training environments with the probability pe. We add (3 × 3) patch in the top left corner or the
bottom right corner of the image, depending on the labels. The new patch features are independent
of other types of spurious correlations, but they have strong but unstable correlations with the target
labels. Figure 1 shows the image samples of our Colored MNIST task with additional patch bias.

For algorithm evaluation, we consider both independent and identically distributed (i.i.d) data and
the OOD test environments with pe = 0.9 where the correlation between color and label is reversed
compared with training environments. The model that exploits color attributes for the prediction can
achieve high accuracy in the i.i.d test environment, but it will fail in the OOD test. The purpose of
the Colored MNIST task is to classify digits solely based on the shape of digits without relying on
other spurious features, such as colors, to achieve good OOD generalization.

Table 1 shows evaluation results on the Colored MNIST task according to the types of injected
spurious correlations. In all cases, BLOOD achieves state-of-the-art OOD performance on Colored
MNIST. For the case with multiple types of biases (Color & Patch), BLOOD outperforms PI (Bao
et al., 2021) by 47%, which clearly demonstrate that BLOOD can more effectively de-bias multiple
types of spurious correlations in the dataset. Moreover, from the results, BLOOD consistently shows
superior generalization performance with low variance for both i.i.d and OOD test data.

Figure 2 shows the changes in the prediction accuracy on test environments while varying noise
probability for the shape and other biased attributes to the labels. Our framework shows robust
prediction performance against the change of various spurious correlations, which is closer to the
oracle pattern. In contrast, PI shows prediction patterns more relying on spurious correlations.

Figure 2: Visualization of various test accuracy on Colored MNIST with varying noise probability
for shape pc and for color and patch pe. Our BLOOD shows robustness performance against the
change of pe, while PI highly depends on the spurious correlations.
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(a)

(b)

Figure 3: The Pearson correlation coefficients between model’s predictions and bias features on the
Colored MNIST task with (a) a single spurious feature Color and (b) two types of spurious features,
Color and Patch. The prediction results of BLOOD show high correlations with the shape of digits
for both (a) and (b) cases, while PI fails to de-bias when there are two types of spurious correlations
in the data.

We also analyze how much each attribute affects the prediction results of a model. In Figure 3, for
each OOD method, the correlation between the predictions of a model and each attribute (Shape,
Color, Patch) are shown according to the training steps, on the environment with pe = 0.9. When
there is only Color bias, both PI and BLOOD successfully de-bias a model by reducing the cor-
relation between Color and the label. However, if an extra Patch attribute is added as spurious
correlation, only BLOOD reduces the effect of both Color and Patch attributes on model prediction
and recover correct Shape correlation. All other OOD methods, group DRO and PI, suffer from
biases and fail to discover true correlations across environments.

To verify the effectiveness of batch-wise bias identification and dynamic re-grouping method of
BLOOD, in Figure 4, the grouped result of PI and BLOOD with each group’s correlations to the
bias attributes (Color, Patch) are visualized for the Colored MNIST task. Compared to PI, which
relies on pre-built biased classifiers, BLOOD use a shallow model trained with samples of each
environment in a batch; therefore, it dynamically produces new data partitions for each training
step, as shown in Figure 4b. Since grouping depends on the bias identification performance of the
classifier, each pair of groups(correct & incorrect) predicted by a learned bias, Pearson correlation
to the bias attribute should be positive for the correct group, G�1→2, and negative for the incorrect
group, G⊗1→2, for example, if correct one is 0.99 then the other is -0.97 (Bao et al., 2021).

As shown in Figure 4b, in the early step of training, the shallow model of BLOOD learns Color
bias and splits the other environment, so that correlation of the correct group is 0.99 and the other
is -0.97. With these correlations, Color bias can be easily addressed with the following group DRO
algorithm in the outer-level. When there are multiple types of biases, BLOOD learns each of them in

(a) PI (b) BLOOD (Ours)

Figure 4: Visualization of created groups with Pearson correlation coefficient between the label and
bias features on Colored MNIST task. Our BLOOD dynamically re-groups the training data at each
learning step while PI constructs single static groups.
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an ordered way. The grouping of BLOOD at step 1 shows that Color bias is identified by a shallow
model, and environments are partitioned accordingly. At step 2, we can also verify that BLOOD has
learned Patch bias, and it re-groups the environments with 0.98, -0.95 Patch correlations. Therefore,
it is shown that BLOOD gradually discovers multiple types of biases in the dataset by adopting
the batch-wise shallow model as a biased classifier. However, for the case of the PI in Figure 4a,
the training environments are re-grouped only once by a fully-trained environment-specific model.
This biased classifier learns multiple biases together, therefore, its data partition should represent
the overall effect of multiple biases. In this setting, interpolating these static partitions may not be
enough to approximate oracle distribution. Because it does not have a chance to gradually refine the
defined groups to account for multiple types of biases. In this experiment, PI fails to remove two
biases in the dataset, as shown in Figure 3.

3.2 REAL-WORLD TASKS

3.2.1 CAMELYON17-WILDS

In the field of machine learning-based medical image processing, the OOD generalization is a critical
problem to obtain a universally applicable prediction model in several hospitals. Camelyon17-wilds
dataset (Bandi et al., 2018; Koh et al., 2021) is a medical image classification benchmark that ex-
plicitly targets the OOD generalization problem. The main goal of Camelyon17-wilds is to achieve
high prediction accuracy for predicting the presence of tumor tissue on image patches taken from
hospitals not included in the training data.

The training data consists of image patches from three hospitals, and the test data contains patches
from a hospital that does not exist in training data. Also, the hospital for the test data provides
the most visually unique patches among the data from other hospitals. The final model selection is
performed based on the test accuracy on OOD validation data that has different distribution from
both the training and test data. The patches for validation data are also taken from a different
distribution with the training data but have more similar visual patterns with training data than the
test data.

Table 2 shows the experimental results on the Camelyon17-wilds dataset. Although the ERM shows
the best train accuracy, it degrades on the OOD test data. From the results, BLOOD achieves the
state-of-the-art OOD generalization performance and also outperforms all other algorithms by a
large margin.

Table 2: Train and OOD test accuracy (%) on the Camelyon17-wilds in 3 trials (mean ± standard
deviation). We consider average accuracy on the OOD test environment.

ERM IRM Group DRO PI BLOOD (Ours)

Train acc 97.3 ± 0.1 97.1 ± 0.1 96.5 ± 1.4 93.2 ± 0.2 93.0 ± 1.8
OOD Test acc 66.5 ± 4.2 59.4 ± 3.7 70.2 ± 7.3 71.7 ± 7.5 74.9 ± 5.0

3.2.2 FMOW-WILDS

FMoW-wilds dataset (Christie et al., 2018; Koh et al., 2021) is another benchmark for OOD gen-
eralization, including satellite images taken from various locations and times. The dataset consists
of RGB satellite images and labels for the task of classifying 62 different functional purposes of
buildings and land, based on given images and metadata, which provide the location and time in-
formation of each image. The training data includes the times of images were taken, from 2002 to
2013, while the validation and test data include data collected from 2013 to 2015 and 2016 to 2017,
respectively. FMoW-wilds aims to evaluate whether a model can be generalized to the images which
will be obtained in the future.

There are five geographic regions in each data split where the images were taken. The OOD gen-
eralization performance of each algorithm is evaluated with the worst-region accuracy for the test
data where the data collection period does not overlap with the training data. Table 3 shows our
model evaluation results on the FMoW-wilds task. From the results, BLOOD achieves the highest
worst-region accuracy, outperforming all other OOD methods.
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Table 3: The worst-region accuracy (%) for the OOD test environment on the FMoW-wilds in 3
trials (mean ± standard deviation).

ERM IRM Group DRO PI BLOOD (Ours)

Wosrt-region acc 31.3 ± 0.17 32.8 ± 2.1 31.0 ± 1.6 31.2 ± 0.3 34.1 ± 2.5

4 RELATED WORK

De-biasing with explicit supervision. Biases are always present as a part of the real dataset, and
they degrade a learning model’s prediction performance when it is applied to practical applications.
To mitigate such biases, some researches de-bias a model with adversarial training (Belinkov et al.,
2019a;b), data sample re-weighting (Schuster et al., 2019), or ensemble of biased models (He et al.,
2019; Clark et al., 2019; Mahabadi et al., 2020), when biases are known beforehand by the human
expert knowledge. However, these methods are not easily applicable to practical applications be-
cause prior knowledge for biases in the large-scale dataset is generally inaccessible. Compared to
these works, our framework can identify and remove unknown biases without any human annotated
bias information.

De-biasing by a biased classifier. To automatically identify unknown biases without domain ex-
pert knowledge, recent studies utilize a weak learner or shallow model, which is a biased classifier,
for verifying whether the data sample is biased. Based on the predictions of the shallow model,
they consider re-weighting data samples (Liu et al., 2021), merging the predictions of the biased
model and main model with the product of experts (Sanh et al., 2021), or grouping training data
based on the prediction correctness of biased models (Bao et al., 2021). Most approaches pre-build
a fully-trained biased model to discover biases; however, our learning framework dynamically trains
a shallow model at every learning step to uncover multiple types of biases.

De-biasing with invariant representation. Since the spurious correlations vary across environ-
ments, several researchers focus on finding stable correlations which are invariant over training
environments (Peters et al., 2016; Arjovsky et al., 2019; Ahuja et al., 2020; Chang et al., 2020; Lu
et al., 2021). IRM (Arjovsky et al., 2019), a symbolic learning paradigm based on this idea, as-
sumes that the model can learn invariant correlations if the classifier on top of the feature embedder
is simultaneously optimal for all training environments. However, a recent study demonstrates the
potential degeneration of IRM in real-world scenarios (Rosenfeld et al., 2020). Compared to the
IRM, our BLOOD gradually removes various spurious correlations so that only stable correlations
can remain across all environments.

5 CONCLUSION

In this paper, we propose a novel bi-level learning framework for OOD generalization, which is
robust to multiple types of dataset biases. Our framework automatically identifies unknown biases
during the training process and gradually removes multiple types of biases without any prior knowl-
edge for biases in the dataset. To uncover unknown biases, we presented a novel strategy of training
a shallow model for batch-wise bias identification. By dynamically re-grouping the environments
in the batch, we effectively de-biased a model, based on the prediction correctness of a shallow
model, by leveraging the group DRO algorithm. In our empirical evaluations, BLOOD achieves
the state-of-the-art OOD generalization performance on both real-world applications and synthetic
tasks. Also, our extensive analyses on the Colored MNIST task show the efficiency of our approach
for de-biasing multiple types of spurious correlations. As Future works, we are going to extend
BLOOD for the other types of tasks beyond classification.
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A EXPERIMENTAL DETAILS

A.1 COLORED MNIST

We consider two training environments that contain 25,000 MNIST images and one validation en-
vironment with 10,000 images. For the test environment, we use official test images of the MNIST
dataset with 10,000 data samples. The color and patch attributes are intended to have high correla-
tions with target labels, but these correlations are unstable as they vary across the training environ-
ments.

We train a simple MLP with one hidden layer and ReLU activation function. We use a hidden size
of 390 and learning rates of α =1e−1 and β =1e−3 for inner optimization and outer optimization,
respectively. We consider three steps of gradient descent in the inner optimization in our experi-
ments. In experiments, we use an early stopping on validation environment with pe = 0.2 that has
similar distribution to the training distribution.

A.2 CAMELYON17-WILDS

The Camelyon17-wilds is a binary classification task whether the central region of a given (96×96)
image patch contains any tumor tissue. The dataset contains training data with 302,436 histopatho-
logical image patches, OOD validation data with 34,904 patches, and OOD test data with 85,054
patches. Each data split does not overlap with the hospitals where the data was collected.

We use DenseNet-121 (Huang et al., 2017) without pre-trained parameters, training from scratch
on the Camelyon17-wilds dataset as the official setting from Koh et al. (2021). We found that the
official learning rate 1e−3 is too large in our case; thus, we use learning rates of 1e−5 for both inner
optimization and outer optimization and L2-regularization term of 1e−2. We consider only one step
of inner gradient descent to reduce the computational overhead.

Figure 5: Data examples of Camelyon17-wilds and FMoW-wilds.

A.3 FMOW-WILDS

The FMoW-wilds is an image classification task that targets to predict 62 categories of building or
land use from given (224×224) images. The training split includes 76,863 images taken from 2002
to 2013, and the validation split contains 19,915 images from 2016 to 2018. The OOD test data
comprises 22,108 images from the years from 2016 to 2018. All data splits contain images from
five regions, Africa, Americas, Oceania, Asia, and Europe. We evaluate the model by measuring the
worst-region accuracy on the OOD test data.

We train DenseNet-121 pre-trained on the ImageNet dataset on the FMoW-wilds images. We follow
an official hyperparameter from (Koh et al., 2021), optimizing with learning rates of 1e−4 for
inner and outer learning rate and without L2-regularization. We consider only one step of gradient
descent in the inner optimization.
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B ADDITIONAL EXPERIMENTAL RESULTS

B.1 SHALLOW MODEL ANALYSIS ON COLORED MNIST

We analyze the predictions of the shallow models and show our shallow models can keep discover
biases. Figure 6 shows the incorrect prediction results of shallow models as stacked bar charts. The
legend of each graph indicates the class index and attribute indices, which shows the class indices
highly correlated with the attributes. For example, the legend (y = 0, Color = 1, Patch = 0) means
samples whose color attribute is highly correlated with the label y = 1, and patch attribute is highly
correlated with y = 0.

At the first learning step (step 0) in Figure 6a, most of misclassified samples, predicted as ŷ = 1,
have the Color indices as 1, indicating that the shallow models exploit the Color for predictions.
The shallow models begin to leverage the Patch after a few learning steps. The stacked bar charts
demonstrate that the shallow models discover biases dynamically and a few steps of gradient descent
in the inner optimization can make the robust parameters θ become parameters for identifying biases.

(a) (b)

(c) (d)

Figure 6: Visualization of the number of incorrectly predicted samples by shallow models fφ1 and
fφ2 on the Colored MNIST. The stacked bar chart (a) and (b) indicates the misclassified examples
of environment e2 predicted by fφ1

, and (c) and (d) indicates incorrect prediction of fφ2
on environ-

ment e1.

Figure 7 includes (a) Pearson correlation between prediction and each attribute, (b) shallow model’s
confidence for incorrect predictions, and (c) visualization of dominant spurious features for re-
grouping process. The confidence is the prediction probability of the shallow models. At the be-
ginning of the learning steps, the confidence is high, indicating high loss for misclassified samples,
while it decreases gradually. Considering the confidence for misclassified samples of shallow mod-
els with Figure 6, the shallow models still discover biases from the inner optimization conditioned
on the parameters θ at the end of the learning steps while the confidence is low.
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Figure 7: Visualization of (a) Pearson correlation coefficient between spurious features and mod-
els prediction, (b) confidence scores of the shallow model’s wrong predictions, and (c) dominant
spurious attributes for re-grouping. Confidence is measured as the average of the top 20% softmax
probabilities values. In (c), darker green indicates strong negative Pearson correlations between
attributes and target labels, representing the more dominant features in the crafted groups.

B.2 CELEBA RESULTS

We evaluate BLOOD on the CelebA dataset, which provides rich information of attributes of each
image with 40 binary features. We split training data into two training environments: Male and Fe-
male, and the task is classifying whether input images have blonde hair or not. In table 4, we measure
the Pearson correlation coefficient between each attribute and the targets across the environments,
Male and Female, and report three attributes Black_Hair, Brown_Hair, and Bushy_Eyebrows which
are highly correlated with labels, and one attribute, Attractive, which has relatively low correlation
coefficients.

Table 5 shows the test results on the CelebA task. We divide test data into four groups by using
each binary attribute and the target, and we measure the worst-group accuracy and average accuracy
across those groups. As Sagawa* et al. (2020) and Bao et al. (2021) reported, a model trained in

Table 4: Pearson correlation coefficient of the environment Male and Female between each attribute
and the label across four attributes.

Attribute Male Female

Black_Hair −0.0929 −0.2814
Brown_Hair −0.0264 −0.2691
Bushy_Eyebrows −0.0597 −0.1252
Attractive 0.0106 0.0499

14



Under review as a conference paper at ICLR 2022

Table 5: Test accuracy across four attributes on CelebA dataset.

ERM DRO PI BLOOD (Ours)

Worst Avg Worst Avg Worst Avg Worst Avg

Attractive 67.2 85.8 90.8 92.2 90.0 91.9 89.9 92.0
Black_Hair 76.0 90.9 89.6 93.8 88.1 93.3 88.2 92.0
Brown_Hair 43.7 79.2 64.4 85.7 59.8 83.8 74.7 92.0
Bushy_Eyebrows 72.7 86.5 72.7 88.8 81.8 90.8 90.6 92.0

Average 60.1 83.6 84.3 90.8 87.0 91.4 87.1 91.7

Table 6: Test accuracy of BLOOD for four different groups on the CelebA task. N/A indicates that
there is no test data sample in the group.

Attribute y = 0, a = 0 y = 0, a = 1 y = 1, a = 0 y = 1, a = 1 Worst

Attractive 91.65 92.08 89.90 94.48 89.90
Black_Hair 88.16 99.96 92.89 N/A 88.16
Brown_Hair 92.25 90.31 93.51 74.71 74.71
Bushy_Eyebrows 90.63 98.91 92.91 90.91 90.63

ERM learns spurious associations; thus, it is vulnerable to group shifts, showing degraded worst-
group accuracy than average accuracy for each attribute. Among the attributes, the performance
degradation of ERM is the most severe for Brown_Hair, and our algorithm achieves the highest
worst-group accuracy than any other baselines. Table 6 provides the detailed results of our algorithm
on the CelebA task.

We analyze created groups by shallow models to verify their ability to discover biases. As shown in
Table 5, we can naively assume that the attribute Brown_Hair is a biased feature since the general-
ization performance for the test environment is significantly degenerated. Figure 8 shows Pearson
correlation coefficient between targets and attributes of created groups with incorrectly predicted
samples, (a) G⊗Female→Male and (b) G⊗Male→Female.

The results in Figure 8 demonstrate that the shallow models successfully discover Brown_Hair even
though Black_Hair is the most correlated attribute with targets. Moreover, the groups are dynam-
ically constructed for every learning steps while the effect of bias feature on shallow models de-
creases as learning progresses.

We also analyze the shallow model’s confidence on the CelebA dataset in Figure 9. As the analysis
of confidence of shallow model on Colored MNIST in Figure 7, the confidence decreases as learn-
ing progresses. In effect, the shallow models keep learning biases with few-show learning, their
confidence scores are gradually decreased as the underlying robust model becomes more robust.
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(a)

(b)

Figure 8: Pearson correlation coefficients between the target labels and attribute values of created
misclassified groups, (a) regrouping the environment Male by shallow model trained on Female,
G⊗Female→Male and (b) G⊗Male→Female.

Figure 9: Confidence scores of the shallow model’s wrong predictions on disjoint environment.
Confidence is measured as the average of the top 20% softmax probabilities values.

16


	Introduction
	Method
	Overview
	Bi-level Learning Framework for De-biasing
	Inner Objective: Learning Bias to de-bias
	Outer Objective: Minimizing Worst-Case Risk Over Data Groups


	Experiments
	Synthetic Tasks: Colored MNIST
	Real-World Tasks
	Camelyon17-wilds
	FMoW-wilds


	Related Work
	Conclusion
	Experimental Details
	Colored MNIST
	Camelyon17-wilds
	FMoW-wilds

	Additional experimental results
	Shallow Model Analysis on Colored MNIST
	CelebA Results


