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Abstract

When tackling complex problems, humans naturally break them down into smaller,
manageable subtasks and adjust their initial plans based on observations. For
instance, if you want to make coffee at a friend’s place, you might initially plan
to grab coffee beans, go to the coffee machine, and pour them into the machine.
Upon noticing that the machine is full, you would skip the initial steps and proceed
directly to brewing. In stark contrast, state-of-the-art reinforcement learners, such
as Proximal Policy Optimization (PPO), lack such prior knowledge and therefore
require significantly more training steps to exhibit comparable adaptive behavior.
Thus, a central research question arises: How can we enable reinforcement learning
(RL) agents to have similar “human priors”, allowing the agent to learn with
fewer training interactions? To address this challenge, we propose differentiable
symbolic planner (Dylan), a novel framework that integrates symbolic planning
into Reinforcement Learning. Dylan serves as a reward model that dynamically
shapes rewards by leveraging human priors, guiding agents through intermediate
subtasks, thus enabling more efficient exploration. Beyond reward shaping, Dylan
can work as a high-level planner that composes primitive policies to generate
new behaviors while avoiding common symbolic planner pitfalls such as infinite
execution loops. Our experimental evaluations demonstrate that Dylan significantly
improves RL agents’ performance and facilitates generalization to unseen tasks.

1 Introduction

Reinforcement learning (RL) has demonstrated remarkable success across a wide range of domains,
including game playing [24, [37]], robotic manipulation [27, 2], and more recently, post-training in
Large Language Models (LLMs) [31} 21} 22 [15]]. Despite these advances, the challenge of sparse
rewards remains a significant barrier to the broader applicability and efficiency of RL methods [29, |1}
10]. In sparse environments, the reward signals are infrequent or delayed, making effective exploration
difficult, and the learning process can become prohibitively expensive in terms of computation [32].
Furthermore, sparse rewards often lack the granularity needed to explicitly guide agents toward
desirable behaviors, frequently resulting in suboptimal or unintended outcomes. For example, while
LLMs such as DeepSeek-R1 demonstrate a certain level of reasoning ability in solving complex
problems, they may still exhibit issues such as language mixing or inconsistent linguistic patterns
during multi-step reasoning—Ilargely due to the limited structure provided by sparse rewards during
post-training [[15]]. Similarly, in robotics, sparse reward signals can lead agents to exploit unintended
shortcuts or converge on behaviors that diverge from human expectations [29, 6].
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Figure 1: An overview of Dylan working as a reward model. Given the goal and game rules, Dylan
first generates candidate plans to achieve the goal and then shapes rewards based on the generated
plans, balancing among all candidate plans or selecting the best one to follow through.

Prior works [[16,|29] have explored reward shaping as a means of providing agents with additional
learning signals to address this challenge. These signals are typically derived from potential-based
functions [28]], expert-crafted heuristics [19, 9]}, or learned reward models based on human preferences
[5] and auxiliary tasks [[16]. While these approaches can reduce the amount of data required for
learning to some extent, a fundamental question remains: Can we design a reward model that not
only enables agents to learn with fewer training interactions, but also aligns with human intent and
remains inherently interpretable ?

To address this question, we propose DYLAN, a differentiable symbolic planner that serves as a reward
model to guide reinforcement learning agents. Unlike prior reward models, DYLAN decomposes the
goal task into modular subgoals and assigns rewards through logical reasoning over these subgoals
(e.g., the coffee beans are at hand, the agent is at the coffee machine). These subgoal-based rewards
are semantically aligned with human understanding of task structure, allowing agents to learn more
efficiently while preserving interpretability. Beyond its role as a reward model, DYLAN can also
work as a symbolic planner that composes different behaviors by stitching together reusable policy
primitives. This capability alleviates a key limitation of conventional RL agents: they are overfit
to a single task and fail to generalize. For instance, an agent trained to navigate to a red door may
perform poorly when asked to pick up a blue key and open a blue door. Without modular reasoning
and task composition, current RL systems must be retrained for every new task, incurring significant
cost. DYLAN’s compositional structure supports generalization across related tasks and facilitates
knowledge transfer through its symbolic task grounding. Moreover, DYLAN’s differentiable nature
overcomes a common limitation of traditional symbolic planners, which are typically non-adaptive
and prone to failure in environments requiring flexible search strategies.

Overall, we make the two following major, novel contributions:

* We introduce DYLAN, a differentiable symbolic planner that can be integrated as a reward model
into existing reinforcement learning frameworks, offering interpretable intermediate feedback
that guides agents with fewer interactions while remaining aligned with human intent.

» Beyond reward model, DYLAN can also serve as a differentiable planner. Acting as a high-level
policy in a hierarchical RL setting, it composes policy primitives in a modular and flexible way,
allowing the agent to generate new behaviors.

To this end, we proceed as follows. We start off by discussing background and related work in Sec. 2]
followed by a detailed introduction of DYLAN in Sec.[3] Before concluding, we touch upon the
experimental section in Sec. [}

2 Background and Related Work

DYLAN builds upon several research areas, including first-order logic, differentiable reasoning,
reinforcement learning and reward shaping.



First-order logic and Differentiable Forward-Chaining Reasoning. We refer readers to Ap-
pendix [H] for a review of first-order logic fundamentals. Build upon this foundation, differentiable
forward-chaining inference [[11} 35 42] enables logical entailment to be computed in a differentiable
manner using tensor-based operations. This technique bridges symbolic reasoning with gradient
based learning, allowing logic driven models to be trained end-to-end. Building on this foundation, a
variety of extensions have emerged, including reinforcement learning agents that incorporate logical
structures into policy learning [17, 8], differentiable rule learners capable of extracting interpretable
knowledge from complex visual environments [36]] and differentiable meta-reasoning frameworks
that enable a reasoner to perform self-inspection [42].

Dylan builds upon these developments by introducing differentiable meta-level reasoning within
the forward-chaining framework [36]], thereby enabling symbolic planning capabilities in a fully
differentiable architecture. Unlike classical symbolic planners [12,[13]], Dylan learns to adaptively
compose and select rules based on task demands, thus alleviating the non-adaptivity limitation of
previous classical symbolic planners.

Deep Reinforcement Learning. Reinforcement Learning (RL) has been extensively studied as a
framework for sequential decision-making, where an agent learns an optimal policy through trial and
error. Traditional RL approaches, such as Q-learning [39] and policy gradient methods [38], have
been foundational to modern RL advancements. With the rise of deep learning, Deep Reinforcement
Learning (DRL) has demonstrated success in high-dimensional environments, particularly in Ad-
vantage Actor-Critic (A2C) [23]] and Proximal Policy Optimization (PPO) [34]. However, standard
RL methods often struggle with sparse or delayed rewards, leading to inefficient exploration. To
address this, intrinsic motivation [32] and curriculum learning [3]] have been proposed to encourage
exploration and guide policy learning in complex environments. Despite significant progress, RL
algorithms still suffer from sample inefficiency, reward sparsity, and generalization issues. Recent re-
search focuses on improving stability and efficiency through techniques such as hierarchical RL [26],
meta-learning [14]] and model-based RL [18]].

Dylan builds upon these advancements by serving as a reward model, aiming to enhance learning
efficiency. Unlike traditional model-based reinforcement learning [25} 41]], the objective of Dylan is
not to construct a world model via the logic planner. Instead, Dylan leverages human prior knowledge
encoded in the logic planner to shape the agent’s behavior through informed reward signals, thus
guiding and accelerating the learning process, rather than modeling environment dynamics.

Reward Shaping. Reward shaping has been extensively explored to improve sample efficiency and
learning stability in RL, particularly under sparse or delayed feedback. Classical potential-based
reward shaping methods [29] preserve policy invariance by incorporating scalar potential functions
into the reward signal. While this method is theoretically well-grounded, their expressiveness is
limited. This limitation arises from their reliance on hand-crafted heuristics and their inability to
capture complex task structures. Potential-based shaping has been applied to multi-agent systems
[9l], showcasing its effectiveness in cooperative settings through the use of spatial and role-specific
heuristics. However, the approach still lacks compositionality and offers limited interpretability. To
address the limitations of heuristic-driven shaping, recent approaches have explored unsupervised
learning signals as an alternative means of guiding agent behavior. Unsupervised auxiliary tasks [[16],
generate pseudo-rewards to facilitate representation learning and encourage exploration. However, the
resulting shaping signals are typically task-agnostic, static, and misaligned with high-level semantic
objectives. To overcome the limitations of generic auxiliary signals, subsequent work has explored
leveraging human preferences to ground reward learning in semantically meaningful objectives.
Preference-based reward learning [3]] aligns the agent’s behavior with human preference by inferring
reward functions from trajectory comparisons. While effective, this method suffers from poor sample
efficiency and produces reward models that are often opaque and difficult to interpret or generalize.

Unlike existing reward shaping approaches that employ static heuristics or task-agnostic signals,
Dylan introduces a differentiable symbolic planner as the reward model. This enables the dynamic
assignment of shaped rewards that reflects task structure. Being interpretable and modular, Dylan
facilitates learning through subgoal decomposition and compositional planning.
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Figure 2: Dylan, as a differentiable symbolic planner, is capable of adapting to tasks that require
different search strategies and stitching together different primitive policies to generate novel be-
haviours. (Best viewed in color)

3 Dylan: Guiding RL using Differentiable Symbolic Planning

A key feature of Dylan is its ability to incorporate human prior knowledge into (deep) RL in a
structured and actionable end-to-end fashion. To this end, Dylan uses (differentiable) symbolic logic
to represent prior knowledge and guide the agent’s through reward shaping. Let us illustrate this
using a navigation task from the MiniGrid-DoorKey environment [4]], where the agent must pick
up a key, unlock a door, and reach the goal. By consulting the environment’s manual, we extract
high-level rules like: “a door can only be opened with a key of the same color” and “the agent can
reach the goal only by passing through an open door.” Instead of representing such rules as raw
text or hardcoded logic, Dylan uses them as structured symbolic transitions: each step describes
an action (e.g., go to the key) that transforms one state (e.g., no key) into another (e.g., has key),
provided certain preconditions are met. These transitions are represented in a format inspired by
STRIPS [12]], commonly used in classical planning. This symbolic abstraction allows Dylan to build
a high-level plan that sequences primitive actions to achieve a given goal. To obtain task-specific
rules as structured symbolic transitions, we prompt GPT-40 [30] to generate and transform candidate
game rules, and then rely on human supervision to verify and refine them. We provide the detailed
environment logic, game rules, the logic planner and the prompt format in Appendix [A} Akin to
[35, [36], by defining the initial and ¢-th step valuation of ground atoms as v(®) and v(*), we make
the symbolic planner differentiable in three steps: (Step 1) We encode each planning rule C; € C as
atensor I; € NG*5XL where S is the maximum number of possible substitutions for variables, L
is the maximum number of body atoms and G is the number of grounded atoms. Specifically, the
tensor I; stores at position [j, k, ] the index (0 to G — 1) of the grounded atom that serves as the
l-th body atom when rule C; derives grounded head j using substitution k. (Step 2) To be able to
learn which rules are most relevant during forward reasoning, a weight matrix W consisting of M
learnable weight vectors, [w1, ..., wyy], is introduced. Each vector w,,, € R® contains raw weights
for the C' planning rules. To convert these raw weights into normalized probabilities for soft rule
selection, a softmax function is applied independently to each vector w,,, yielding w, . (Step 3) At
each step t, we compute the valuation of body atoms using the gather operation over the valuation
vector v(¥), looping over the body atoms for each grounded rule. These valuations are combined
using a soft logical AND (gather function) followed by a soft logical OR across substitutions:

bgt])k = H1<l<L gather(v(t), ), k1], cEtJ) = softor'y(bgfj)-vl, ... ,bgtj)s) D

Here, 7 indexes the rule, j the grounded head atom, and & the substitution applied to existentially

quantified variables. The resulting body evaluations cEtJ) are weighted by their assigned rule weights
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Figure 3: Dylan boosts RL agents’ performances as a static reward model. Return comparisons
of methods with and without Dylan in 12 x 12 and 16 x 16 MiniGrid environments during training.
The return curves are averaged over three runs, with the solid lines representing the mean values
and the shaded areas indicating the minimum and maximum values. All curves are smoothed using
exponential moving average (EMA) for improved readability. (Best viewed in color)
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We provide full details of this differentiable reasoning procedure in Appendix [B]

3.1 Dylan as Reward Model

With Dylan at hand, we now incorporate it into the reinforcement learning and use it as a static reward
model. As the agent interacts with the environment, a logical state is provided by the environment
and used as an input to Dylan. Based on this received state, goal and rules, Dylan performs reasoning
to identify the most promising plan to reach the goal. Initially, an exploratory plan is executed to
gather information about the environment. After this exploratory phase, Dylan selects the optimal
plan, the one with the highest estimated probability of achieving the desired goal. Once the plan is
determined, the reward distribution follows the plan during subsequent decision-making.

Let the selected action sequence be denoted as [a;, as, as, . . . , a,|, where each action a; represents
a high-level action. Unlike the low-level actions commonly used in reinforcement learning, these
high-level actions encode semantically meaningful behaviors, such as get_key. For each action, the

1 1 ives the corresponding expected state transition, represented as move(a; st s )
planner also receives p g exp , rep 15 Spre s Spost)s

where sf),ig and s[(,(i)gt denote the pre- and post-action symbolic states, respectively as introduced

previously. The reward function is designed to provide feedback only when the agent follows the
planned action sequence in the correct order. Specifically, the agent must achieve each planned
post-condition state s}(j,)st, corresponding to action a;, before proceeding to the next action in the
sequence. No reward is given if the agent deviates from the prescribed order or reaches states out of
sequence. The auxilary reward function reasoner(S, @, ©) at i-th transition is defined as:

max((\ — num_steps/total_steps),0), ifs= sz(,io)st7 3)

Treasoner(sa a, 7’) = .
otherwise.

9
Here A > 0, is a hyperparameter which denotes the reward. Dylan ensures the rewards are assigned
sequentially, strictly following the planned order of actions [a;, as, . . . , a,]. The agent must complete
each transition move(a;, sr(,i)e, sf,l)st) before progressing to the next step i+1. No rewards are granted
if the agent skips steps, performs actions out of order, or transitions to incorrect states. Additionally,
the reward is penalized by the number of steps taken num_steps relative to the total allowed steps
total_steps. This incentivizes the agent to follow the planned sequence as efficiently as possible
and discourages unnecessary actions. The shaped reward is defined as the sum of the environment
reward and the reasoner reward:

’(‘/(S7 a, Z) = 7'(37 a)env + Treasoner(sv a, Z) )
The objective becomes maximizing the expected cumulative discounted shaped reward:
1N Lt :
J (’]T) =FE,r |:Zt:0 Y (7"(57 a)env + 7?reasoner(sv a, Z)) &)



By integrating the planner as a reward model, we provide structured and goal-aligned shaped rewards.
This can lead to faster convergence and fewer training interactions, as shown empirically in the
experimental section.

3.2 Dylan as Adaptive Reward Model

In this subsection, we use Dylan as an adaptive reward model for reinforcement learning agents,
leveraging probabilities of all possible plans from Dylan.

Building on the reward model described in Sec. we introduce an additional dense reward 7 agaptive
for each action. This reward encourages the agent to take steps that more effectively lead toward
subgoals, thereby further accelerating learning process. The dense reward ryqapiive 1S computed using
the log-sum-exp [7] over the probabilities of all candidate plans, ensuring numerical stability while
leveraging the full distribution of plan probabilities. To obtain these probabilities, Dylan performs
reasoning at each step of the agent’s trajectory, producing updated likelihoods for each plan. The
probability of each plan is obtained by pragers = V(7 [Ig(targets)] , where Ig(z) returns the index
of the target atom within the set G. vl = finfer(v(o)) denotes the valuation tensor obtained after
T-step forward reasoning. v|[i] represents the i-th entry of the valuation tensor. Details on how v(©
is initialized are provided in Appendix[l|

We aggregate the probabilities of all plans using the log-sum-exp [7] operation for numerical stability,
resulting in the dense reward:

Tadaptive = log (Zp_ep(i) exXp (IOg(pj))) :
3 €Pay

To ensure that the agent’s learning is not dominated solely by the dense reward, we scale it by a
factor w. As positive dense rewards could discourage the agent from finishing an episode by entering
zero-reward absorbing states, we subtract a positive constant A ensuring that the dense auxiliary
reward is always negative. The sparse rewards, discussed in Sec. does not suffer from such
survival bias, as it only given when the agent makes progress towards the goal. The resulting reward
function, which integrates the adaptive reward with both the environment reward and the reasoner
reward described in Sec.[3.1] is defined as:

) W * Tadaptive — A + 7'(8, @)eny + Treasoner (8, @, ¢), successful transition,
r'(s,a,1) =

W * Tadaptive — A + 7'(S, @)eny, otherwise.

Instead of sticking to a single fixed plan, our adaptive reward model takes all possible plans into
consideration, guiding the agent to choose actions aligned with high-probability, goal-achieving
strategies while discouraging stagnation or ineffective behavior.

3.3 Dylan as Differentiable Planner

In addition to serving as a reward model within the reinforcement learning training, Dylan can also
operate as a standalone planner, enabling the integration of multiple policies outside the training
process. As a planner, Dylan’s primary objective is to stitch together diverse primitive policies to
generate new behaviors, thus enabling the agent to finish new tasks without retraining. However,
combining various policies within limited reasoning steps presents a significant challenge: the risk of
becoming trapped in loops or suffering from inefficient exploration strategies. Consider a planning
task where the objective is to reach state C from state A, with available transitions including A—B,
B—A, and B—C. When using depth-first search (DFS), the planner may enter an infinite loop,
repeatedly cycling through states without reaching the goal. For instance, if the planner selects
actions in alphabetical order, it may continually choose A—B and then B— A, resulting in an endless
A-B-A-B sequence. This pathological behavior illustrates how naive DFS can fail in symbolic
planners without mechanisms to detect or prevent cycles. On the other hand, using breadth-first
search (BFS) can avoid such looping issues but may introduce inefficiencies due to exhaustive
exploration. This challenge raises a critical question: How can the planner determine search
strategies to accomplish tasks within constrained reasoning steps?

To address this adaptation issue, Dylan employs a rule weight matrix W = [wy,...,wy;] to
dynamically select planning rules. By applying a softmax function to each weight vector w; € W,



we choose M rules from a total of C rules. The weight matrix W is initialized randomly and
optimized via gradient descent, minimizing a Binary Cross-Entropy (BCE) loss between the target
probability pareet and the predicted probability ppredicted:

min%{[nize Lloss - BCE(plargetyppredicted(w))‘ (6)

Where the predicted probability ppregiciea = v(D) [Ig(target)], Ig(z) returns the index of the target

atom within the set G. v(T) denotes the valuation tensor obtained after T-step forward reasoning. v|i]
represents the i-th entry of the valuation tensor. Due to its differentiability, Dylan can dynamically
adapt its search strategies based on the tasks, which we demonstrate in Section 4]

4 Experimental Evaluation

In this section, we show how Dylan does reward shaping using human prior and its planning capability
by composing different policy primitives. Overall, we aim to answer four research questions. Q1: Can
Dylan enable reinforcement learning agents to learn more effectively with fewer interactions? Q2:
Can Dylan further improve RL agent learning performance by working as an adaptive reward model?
Q3: Can Dylan compose policy primitives to generalize to a different task instead of retraining new
policies? Q4: Can Dylan adapt itself to tasks that require different search strategies?

Environment setup. To evaluate and compare different reinforcement learning methods, we conduct a
series of experiments within the MiniGrid environment suite [4]. MiniGrid offers a range of partially
observable, grid-based tasks that are designed to test an agent’s generalization and exploration
capabilities. For consistency and reproducibility, we focus on a subset of the MiniGrid-DoorKey
environment (as shown in Fig.[2), in which the agent must first acquire a key, use it to open a door,
and then navigate to the goal position. While the original MiniGrid-DoorKey environment offers
only a single viable solution path, we have customized the MiniGrid-DoorKey environments to
support multiple solution paths. Each environment presents different exploration challenges and
sparse reward settings, making them ideal benchmarks for evaluating learning performance.

Baselines. We compare the following reinforcement learning algorithms: A2C [23]]: Advantage
Actor-Critic, a synchronous, on-policy policy gradient method. PPO [34]: Proximal Policy Optimiza-
tion , an on-policy actor-critic method which is the state of the art reinforcement learning algorithms.
hDQN [20]: Hierarchical Deep Q-Network, a hierarchical reinforcement learning approach that
decomposes complex tasks into a hierarchy of subgoals.

All methods are implemented using torch-ac [40], unless otherwise specified, hyperparameters are
selected from the literature without fine-tuning (training hyperparameters in Appendix [C|and D).

Performance Evaluation at Different Training Frames

4.1 Dylan as reward model
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Table 1: Performance on multitasks setting (Successrate; the higher, the better). We compare
Dylan with the baseline method PPO [34], A2C [23]] and hDQN [20]]. Success rates are averaged on
fifty runs with its standard deviation. The best-performing models are denoted using e.

Fig.[B|presents a detailed comparison of training performance across several reinforcement learning
algorithms, specifically PPO and A2C, evaluated both with and without Dylan’s auxiliary reward
signals. Results are averaged over three independent runs; solid lines indicate mean performance,
while shaded regions denote the min and max values. To enhance readability, all curves are smoothed
using a time-based exponential moving average (EMA). Our empirical results clearly demonstrate
Dylan’s substantial positive impact on learning efficiency, particularly as the complexity of the
environment increases. While all evaluated algorithms exhibit improved convergence rates when
assisted by Dylan in the 12 x 12 environment, the improvement becomes notably greater in the more
demanding 16 x 16 scenario. Remarkably, baseline agents such as PPO, which reliably converge in
simpler settings, fail to converge in the challenging 16 x 16 environment without Dylan’s guidance.
In contrast, incorporating Dylan effectively resolves these exploration bottlenecks, significantly
accelerating convergence. In summary, our findings strongly suggest that Dylan effectively mitigates
common reinforcement learning challenges, such as sparse rewards and inefficient exploration
strategies. Importantly, these improvements are achieved simply by adding Dylan as an auxiliary
reward provider, without altering the original reinforcement learning algorithm.

4-2 Dylan as adaptive reward mOdel Dylan learns to adapt to tasks requiring different search strategies
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Figure 5: Training loss curve as Dylan learns
to adapt to multiple tasks requiring different
search strategies. Results are averaged over three
runs, with solid lines indicating mean values and
shaded areas representing standard deviation.

Our results show that incorporating Dylan’s auxiliary rewards consistently improves convergence
speed compared to the pure PPO [34]] baseline. Notably, the adaptive reward model achieves
slightly faster convergence than the static one, suggesting that accounting for multiple possible
plans can further reduce training interactions. It is important to note that we did not perform
exhaustive hyperparameter tuning for the adaptive reward model. As such, the current configuration
(hyperparameters in Appendix [J) may not be optimal, and further tuning could potentially yield even
greater improvements in learning efficiency.

4.3 Dylan as differentiable planner

In this experiment, we demonstrate Dylan’s ability to adapt its planning strategy to varying task
structures and to compose policy primitives in order to generate novel behaviors. Specifically, we
evaluate two core capabilities: adaptive search strategy selection and compositional generalization.

Dylan’s adaptivity. Certain scenarios may require different search strategies. For example,
in the scenario (task in Appendix. Depth-First Search (DFS) may result in an infinite loop,
where the agent aims to reach a state defined by reach_goal by combining two policy prim-
itives go_through_red_door and go_through blue_door. However, when employing DFS,



the recursive definitions of get_through_door may result in repeated exploration of the same
paths. For instance, the agent may continuously attempt to execute the go_through_red_door or
go_through_blue_door actions without progressing towards the final goal. This is particularly
problematic when the agent encounters cyclic rules or tasks with high branching factors, where DFS
tends to prioritize depth exploration over breadth, thereby getting stuck in loops or excessively deep
branches. Under such conditions, the agent should autonomously recognize the inefficiency of DFS
and accordingly shift to a more suitable method, such as Breadth-First Search (BFS). In this task
(task provided in Appendix [E), the planner is asked to solve each task within three reasoning steps.
The first task is best addressed using DFS, while the second is more efficiently solved with BFS. To
perform well across both scenarios, the agent must dynamically adjust its planning strategy to suit
the structure of each task. Fig. [5]shows the training loss curves for Dylan on these two representative
tasks (planner rules provided in Appendix [F). All results are averaged over three runs, with the solid
line representing the mean and the shaded areas indicating the standard deviation.

Dylan’s compositionality. After demonstrating Dylan’s differentiable adaptivity, we further evalu-
ate its ability to compose policy primitives to produce novel behaviors, enabling the agent to solve
previously unseen tasks without retraining. In this experiment, the planner is provided with a set
of reusable primitives, such as get_key and go_through_door, and is asked to solve a range of
goal-directed tasks using these building blocks. We designed four tasks in this experiment. In
these tasks, the agent must retrieve a key, navigate to the red door, and reach the goal position
while avoiding the blue door, which leads to a trap. Note that we use the environment shown in
Figure 2] where the agent has multiple possible paths to the goal. As a result, possessing a key is
not necessarily a prerequisite for opening a door. For comparison, we include PPO, A2C and hDQN
agents trained specifically to navigate to the goal. Table. [[] summarizes the various task settings
within the MiniGrid-Doorkey environment. Dylan successfully composes low-level primitives to
generalize across diverse tasks, whereas the PPO, A2C and hDQN agents, which are trained solely
for goal navigation, fail to generalize to tasks requiring more complex behavior.

Overall, the experimental results provide affirmative answers to all four questions Q1-Q4.

5 Limitations

Although Dylan has demonstrated impressive results in enabling agents to learn from less environment
interactions and generalizing to new tasks, it also has certain limitations. One limitation lies in its
reliance on symbolic states provided directly by the environment. In future work, we aim to explore
the use of vision foundation models to extract symbolic representations directly from raw game
images. Another limitation involves the generation of game rules by large language models (LLMs).
Currently, we prompt the GPT-40 to produce game rules and rely on human supervision to verify and
correct them. A promising direction for future research is to incorporate an automated error-correction
mechanism—such as leveraging multiple LLMs in a multi-round discussion framework—to improve
the accuracy and reliability of the generated rules.

6 Conclusions

In this paper, we introduced Dylan, a novel reward-shaping framework that leverages human prior
knowledge to help reinforcement learning agents learn with less training interactions. Beyond its role
as a reward model, Dylan is, to the best of the authors’ knowledge, the first differentiable symbolic
planner that alleviates traditional symbolic planner’s non-adaptable limitation. Dylan is capable of
dynamically combining primitive policies to synthesize novel, complex behaviors. Our empirical
evaluations demonstrate Dylan’s effectiveness in enabling agents to learn from fewer interactions,
accelerating convergence, and overcoming exploration bottlenecks—especially in environments with
increasing complexity. These results illustrate Dylan’s potential as a robust framework bridging
symbolic reasoning and reinforcement learning.

Promising avenues for future research include automating the acquisition of symbolic abstractions,
for example, through predicate invention. Additionally, investigating Dylan’s scalability and broader
applicability across both symbolic and subsymbolic domains remains an interesting research direction.
We further want to apply Dylan to multimodal scenarios, where it could leverage multimodal inputs
to more effectively guide agent learning across diverse and complex environments.
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A Symbolic transformation for Dylan

Prompt: read the game manual and return the game rules in first-oder logic format such as:

get_through door:- initial, go_through_red_door.
get_through door:- get_through door,go_through blue_door.
get_through door:- get_through door,go_through red door.
reach_goal :- get_through _door,go_to_goal.

Dylan leverages human prior knowledge to guide reinforcement learning. As the first step, this
prior knowledge is converted into a structured, logic-based format. For example, consider the agent
navigation task illustrated in Fig. 2] drawn from MiniGrid Doorkey environment [4]], After reviewing
the environment’s manual, we extract a rule stating that a locked door can only be opened with a key
of the corresponding color, and that the agent can reach the goal by passing through an opened door.
This rule can be expressed as the logic program:

get_red_key:-init, go_red_key. go_through_door:-init,go_blue_door.
go_through _door:-get_red _key,go_open_red_door.
reach_goal:-go_through_door,go_to_goal.

We categorize the atoms in these clauses into two types: state atoms and policy atoms. Within each
clause, the head and the first body atom are considered state atoms, while the second body atom
corresponds to a policy atom. Following the STRIPS-style representation [[12}|13]], we transform each
clause into a single atom using the predicate:

move/3/[action, pre_condition, post_condition].

For example, the clause: get_blue_key :- initial, go_blue_key. is rewritten as one atom:
move(go_blue_key, initial, get_blue_key). In this transformation, the head ( get_blue_key)
becomes the postcondition, the first body atom ( initial) serves as the precondition, and the
second body atom ( go_blue_key) represents the action.

With this transformation at hand, we now a symbolic planner:

plan(Start, New, Goal, [Act,01d_stack]) :-
move(Act,01d, New),condition_met(01d, Current),
change_state(Current,New),plan(Start, Current, Goal, 01d_stack).
plan_final(Start,Goal,Move_stack) :-
plan(Start, Current, Goal, Move_stack),equal(Current, Goal).

The first rule establishes the recursive process for generating a plan. It selects an appropriate policy
that transitions the agent from an old state to a new state, verifies the necessary conditions, updates
the current state accordingly, and recursively continues the planning process until the goal is reached.
The second rule defines the termination condition, ensuring that the planning process concludes once
the agent’s current state matches the desired goal state.

B Differentialize Symbolic planner
We now describe each step in detail on how to differentialize the symbolic planner.

(Step 1) Encoding Logic Programs as Tensors. To enable differentiable forward reasoning, Each
meta-rule is transformed into a tensor representation for differentiable forward reasoning. Each
meta-rule C; € C is encoded as a tensor I; € NG*5*L where S denotes the maximum number of
substitutions for existentially quantified variables in the rule set , and L is the maximum number of
atoms in the body of any rule. For instance, I,[j, k, [] stores the index of the I-th subgoal in the body
of rule C; used to derive the j-th fact under the k-th substitution.
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(Step 2) Weighting and Selecting Meta-Rules. We construct the reasoning function by assigning
weights that determine how multiple meta-rules are combined. (i) We fix the size of the target
meta-program to be M, meaning the final program will consist of M meta-rules selected from a total
of C candidates in C. (ii) To enable soft selection, we define a weight matrix W = [wy, ..., W],
where each w; € R assigns a real-valued weight. (iii) We then apply a softmax to each w; to
obtain a probability distribution over the C' candidates, allowing the model to softly combine multiple
meta-rules.

(Step 3) Perform Differentiable Inference. Starting from a single apply of the weighted meta-rules,
we iteratively propagate inferred facts across 1" reasoning steps.
We compute the valuation of body atoms for every grounded instance of a meta-rule C; € C. This

is achieved by first gathering the current truth values from the valuation vector v() using an index
tensor Iz, and then applying a multiplicative aggregation across subgoals:

L
bgtj)k = Hgather(v(t),li)[j, k, 1], )
=1

where the gather operator maps valuation scores to indexed body atoms:
gather(x,Y)[j, k, 1] = x[Y[j, k,1]]. (8)

The resulting value bgt])._ w € [0,1] reflects the conjunction of subgoal valuations under the k-th
substitution of existential variables, used to derive the j-th candidate fact from the i-th meta-rule.

Logical conjunction is implemented via element-wise product, modeling the "and" over the rule body.

To integrate the effects of multiple groundings of a meta-rule C;, we apply a smooth approximation
of logical or across all possible substitutions. Specifically, we compute the aggregated valuation

cgtj) € [0,1] as:

t t t
cij) = ssoftoﬂ(lyl(.d).’17 R bz(-d)-ﬁ)7 9)
where softor” denotes a differentiable relaxation of disjunction. This operator is defined as:
softor” (z1,...,x,) = vlog Zexp(:vi/'y), (10)
i=1

with temperature parameter v > 0 controlling the smoothness of the approximation. This formulation
closely resembles a softmax over valuations and serves as a continuous surrogate for the logical max,
following the log-sum-exp technique commonly used in differentiable reasoning [7].

(ii) Weighted Aggregation Across Meta-Rules. We compute a weighted combination of meta rules
using the learned soft selections:

o= S0, o

i=1

where hg»tzn € [0, 1] represents the intermediate result for the j-th fact contributed by the m-th slot.
Here, w™ " is the softmax-normalized score over the i-th meta-rule:

W — eXp(’lUm,i) Wy i = Wm[l]

ot Zi/ exp(wm,i/) ’ ’

Finally, we consolidate the outputs of the M softly selected rule components using a smooth
disjunction:

T(.t) = softorv(h(t) . 7h§2\4), (12)

J 7,1

which yields the ¢-step valuation for fact j. This mechanism allows the model to integrate M soft
rule compositions from a larger pool of C' candidates in a fully differentiable way.
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(iii) Iterative Forward Reasoning. We iteratively apply the forward reasoning procedure for 7" steps.
At each step ¢, we update the valuation of each fact j by softly merging its newly inferred value rjw
with its previous valuation:
(t+1) _ v (D) ()

v; = softor” (r;”,v;"). (13)
This recursive update mechanism approximates logical entailment in a differentiable form, enabling
the model to perform T'-step reasoning over the evolving fact valuations. The whole reasoning
computation Eq. can be implemented using efficient tensor operations.

C Hyperparameter

Table 2: Summary of Training Hyperparameters

Parameter

Training Parameters

-epochs
-batch-size
-frames-per-proc
-discount

-1r

-gae-lambda
-entropy-coef
-value-loss-coef
-max-grad-norm

4 (PPO optimization epochs per update)
256 (Batch size for PPO updates)

128 (Frames per process before update)
0.99 (Discount factor )

0.0001 (Learning rate)

0.95 (X for GAE)

0.01 (Entropy regularization coefficient)
0.5 (Value loss coefficient)

0.5 (Gradient clipping norm)

-optim-eps 1 x 10~8 (Optimizer epsilon)
-optim-alpha 0.99 (RMSprop alpha)

-clip-eps 0.2 (PPO clipping parameter )
-recurrence 1 (Recurrent steps, LSTM if > 1)
-text False (Enable GRU for text input)

D hDQN architechture

As the official implementation of hDQN is not publicly released, we provide our own PyTorch
implementation following the methodology described in the original paper. Our architecture consists
of two key neural network components: the MetaController and the ControllerQNetwork. These
models form a hierarchical structure where the MetaController selects subgoals or abstract directives,
and the ControllerQNetwork executes primitive actions conditioned on those directives.

D.1 MetaController

The MetaController is a multi-layer feedforward network responsible for high-level decision
making. It takes as input a feature vector representing the environment state and outputs a latent code
or subgoal.

Architecture

* Input: Feature vector of dimension in_features

* Linear layer: Linear(in_features — 512)

* Layer Normalization: LayerNorm(512)

* LeakyReLU activation with slope 0.01

* Dropout: p = 0.1

* Linear layer: Linear(512 — 256)

¢ Layer Normalization: LayerNorm(256)

» LeakyReLU activation with slope 0.01

* Output Linear layer: Linear(256 — out_features)
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Output

A latent vector or high-level action representation of dimension out_features.

D.2 ControllerQNetwork

The ControllerQNetwork is a value-based deep Q-network that operates at the lower level. It
estimates Q-values for primitive actions given the current state and optionally the selected subgoal.

Architecture
* Input: Feature vector of dimension input_dim
* Linear layer: Linear(input_dim — 512)
* Layer Normalization: LayerNorm(512)
* LeakyReLU activation with slope 0.1
* Dropout: p = 0.1
* Linear layer: Linear(512 — 256)
* Layer Normalization: LayerNorm(256)
* LeakyReLU activation with slope 0.1
* Output Linear layer: Linear(256 — output_dim)

Output

A vector of Q-values for output_dim discrete actions.

E Differentiable Planning Task

In this appendix, we present two pathological tasks that require a planner to adapt its search strat-
egy—specifically between Depth-First Search (DFS) and Breadth-First Search (BFS)—for efficient
goal finding within three steps. These examples demonstrate how a fixed strategy may underperform
depending on the search structure and goal location.

Task 1 favors DFS, as the goal plan(a, h) lies deep along a single branch:
edge(a, c). edge(a, b). edge(a, d).

edge(b, e). edge(c, f). edge(d, g).
edge(e, h).

Task 2 favors BFS, as the goal plan(a, e) is close to the root but may be delayed by DFS exploring
deeper branches first:

edge(a, c). edge(a, b).edge(b, d).
edge(c, e). edge(d, f).

F Differentiable Planning rules

We define the planning behavior of two search algorithms—DFS and BFS—using logical rules.
These rules describe how each algorithm explores the search space and identifies successful plans.

dfs(B, F, G, r(F, D)) : —edge(E, F), dfs(B, E, G, D).

plan(B, G) : —dfs(B, F, G, H), equal(F, G).

bfs(k(B, D), S, E) : —findall(A, F), append(C, F, k(B, D)), bfs(k(A, C), S, E).
plan(S, E) : —bfs(k(A, C), S, E), equalbfs(A, C, E).
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G Task that DFS can fail

get_through door:- initial, go_through red_door.
get_through door:- get_through door,go_through blue_door.
get_through door:- get_through door,go_through red door.
reach_goal:- get_through door,go_to_goal.

H First-Oder Logic

In first-order logic, a term can be a constant, a variable, or a function term constructed using a
function symbol. We denote an n-ary predicate p as p/(n, [dts, ..., dty]), where dt; represents the
data type of the i-th argument. An atom is an expression of the form p(t;, ..., t,), where p is an
n-ary predicate symbol and t4, ..., t, are terms. If the atom contains no variables, it is referred to as
a ground atom, or simply a fact.

A literal is either an atom or the negation of an atom. We refer to an atom as a positive literal, and
its negation as a negative literal. A clause is defined as a finite disjunction (V) of literals. When
a clause contains no variables, it is called a ground clause. A definite clause is a special case: a
clause that contains exactly one positive literal. Formally, if A, By, ..., B, are atoms, then the
expression AV - By V...V =B, constitutes a definite clause. We write definite clauses in the form
of A:- By,..., B,. where A is the head of the clause, and the set { By, ..., B,} is referred to as
the body. For simplicity, we refer to definite clauses as clauses throughout this paper. The forward-
chaining inference is a type of inference in first-order logic to compute logical entailment [33]].

I initial valuation obtained for adaptive reward model

To obtain the initial valuation vy for the adaptive reward model, we initialize both the environment’s
logic state and the high-level action atoms. Since the environment logic states are externally provided,
the only variable component is the valuation of the high-level action atoms. We assign these valuations
based on the agent’s distance to each subtask, using the inverse of the distance (plus a small positive
constant) to produce a meaningful and smoothly varying probability. This design ensures that as the
distance changes, the corresponding probability in the plan is updated accordingly.

In our adaptive reward model experiments, we define the valuation of each high-level action atom

as 0.5 + m. The plan probability is then computed based on the initial valuation of both the

action atoms and the environment atoms.

J hyperparameters for adaptive reward model

A=001 w=1/20
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