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ABSTRACT

Graph-level anomaly detection (GAD) is critical in diverse domains such as drug
discovery, yet high labeling costs and dataset imbalance hamper the performance
of Graph Neural Networks (GNNs). To address these issues, we propose FracAug,
an innovative plug-in augmentation framework that enhances GNNs by generating
semantically consistent graph variants and pseudo-labeling with mutual verification.
Unlike previous heuristic methods, FracAug learns semantics within given graphs
and synthesizes fractional variants, guided by a novel weighted distance-aware
margin loss. This captures multi-scale topology to generate diverse, semantic-
preserving graphs unaffected by data imbalance. Then, FracAug utilizes predictions
from both original and augmented graphs to pseudo-label unlabeled data, iteratively
expanding the training set. As a model-agnostic module compatible with various
GNNs, FracAug demonstrates remarkable universality and efficacy: experiments
across 14 GNNs on 12 real-world datasets show consistent gains, boosting average
AUROC, AUPRC, and F1-score by up to 5.72%, 7.23%, and 4.18%, respectively.

1 INTRODUCTION

Graph-structured data is pivotal in real applications ranging from drug discovery to anomaly identifi-
cation among proteins (Zhang et al., 2022). While Graph Neural Networks (GNNs) excel at modeling
topological and feature-based patterns through message-passing, their effectiveness in Graph-level
Anomaly Detection (GAD)—distinguishing anomalous graphs from normal ones—is hindered by
two key challenges: limited supervision and extreme class imbalance, as demonstrated in Section 5.
Specifically, anomalies represent rare instances, exacerbating data imbalance and restricting the avail-
ability of labeled training samples (Chen et al., 2024; Dong et al., 2024). While data augmentation
techniques have revolutionized computer vision (Zhang et al., 2023) by generating synthetic labels
through rotations or crops, their adaptation to graph domains presents unique challenges. Unlike
images, graphs inhabit non-Euclidean space where seemingly minor structural modifications (e.g.,
edge removal) risk distorting semantic properties and violating the label-invariant assumption—a
critical constraint in GAD’s challenging setting of limited supervision and inherent class imbalance.

Existing graph-level augmentation methods, such as MAA (Yoo et al., 2022), often employ heuristic
modifications without considering data properties, leading to compromised semantics or insufficient
diversity in GAD tasks. Consequently, their direct application may underperform vanilla GAD
models. We attribute this gap to three key issues: (1) the absence of semantic-preserving augmentation
strategies, (2) inadequate handling of imbalance, and (3) ineffective utilization of unlabeled data.

To address these challenges, we introduce FracAug, a novel plug-in augmentation framework that
generates semantic-preserving graph variants and pseudo-labels for unlabeled graphs to train GNNs
for GAD. Our key innovation leverages the fractional power of adjacency matrices, which encodes
multi-scale topological relationships. By computing polynomials of various fractional graphs, guided
by weighted distance-aware margin loss, FracAug introduces controlled structural variations while
ensuring semantic consistency with the original graph’s label, independent of the underlying data
distribution. Afterward, a given GNN will produce predictions for both original and synthetic samples,
enabling FracAug to employ a mutual verification mechanism for pseudo-labeling unlabeled graphs,
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thereby iteratively expanding the training set. This approach not only mitigates supervision scarcity
but also enhances model robustness against class imbalance.

In summary, our contributions are as follows:

• We present FracAug, the first augmentation framework designed for GAD that maintains effective-
ness under the dual constraints of limited supervision and imbalanced distribution

• FracAug operates as a model-agnostic plug-in augmentation framework compatible with 14 GNNs
without architectural modifications, facilitating seamless integration into existing models.

• Extensive experiments on 12 real-world datasets demonstrate that FracAug enhances performance
across diverse GNNs, significantly outperforming existing graph augmentation approaches.

2 RELATED WORK

Graph Classification. Generalized GNNs, such as GCN (Kipf & Welling, 2017), GraphSAGE
(Hamilton et al., 2017), GAT (Velickovic et al., 2018), and GIN (Xu et al., 2019), excel at learning
graph representations through neighborhood aggregation. Recent advances include LRGNN (Wei
et al., 2023), which captures long-range dependencies with stacking GNNs, and GRDL (Wang & Fan,
2024), which achieves state-of-the-art (SOTA) performance by learning representation distributions
of graphs. However, these representative GNNs are not specifically designed for GAD tasks. While
they can capture certain topological or feature-based patterns, their performance degrades under data
imbalance and limited supervision.

Graph-level Anomaly Detection. Recognizing the challenges underlying GAD tasks, researchers
have introduced specialized approaches to address them. For instance, iGAD (Zhang et al., 2022)
introduces dual-discriminative kernels guided by a point mutual information-based loss function
to better capture graph anomalies. Later, by mapping anomalies and normal graphs to separate
areas based on adjusted candidate nodes, GmapAD (Ma et al., 2023a) shows advanced performance.
Moreover, RQGNN (Dong et al., 2024) leverages the Rayleigh Quotient to detect graph anomalies
effectively within spectral space. Recently, UniGAD (Lin et al., 2024) combines different levels of
graph anomaly detection to capture comprehensive information to enhance the detection accuracy.
Although these specialized frameworks show promising performance in addressing data imbalance
challenges, they still present inferior results due to the limited supervision issue.

Graph-level Augmentation. To address the scarcity of labeled examples, researchers also develop
diverse augmentation techniques for graph-level tasks. For example, MAA (Yoo et al., 2022) proposes
two separate methods, NodeSam and SubMix, to generate synthetic samples by heuristic structure
modification. Besides, GLA (Yue et al., 2022) generates the latent representations as the augmented
graphs during the training phase. Subsequently, GMixup (Han et al., 2022) and FGWMixup (Ma et al.,
2023b) interpolate graphs or features linearly to mix normal and anomalous samples for producing
novel samples. Nevertheless, they fail to produce semantic-preserving samples when dealing with
imbalanced data with limited supervision, resulting in unsatisfactory performance.

In contrast, FracAug diverges by leveraging the fractional power of adjacency matrices, a mathe-
matically grounded operation that preserves semantics within graphs while introducing multi-scale
structural variations. The incorporation of weighted distance-aware margin loss further enables
FracAug to adapt to the imbalanced scenario. Furthermore, its pseudo-labeling mechanism explic-
itly addresses the limited supervision constraint. As a plug-in module, FracAug overcomes above
limitations in GNNs and graph-level augmentation methods without modifying GNN architectures,
enabling given GNN models to learn discriminative features for GAD tasks even with sparse labels.

3 PRELIMINARIES

Notation. Let G = (A,X) denote an undirected graph with n nodes and m edges, where A ∈ Rn×n

is the adjacency matrix and X ∈ Rn×F is the node feature matrix. Aij = 1 if an edge exists between
node i and j, and Aij = 0 otherwise. D is the diagonal degree matrix of A, and the normalized
adjacency matrix can be defined as Ã = D− 1

2AD− 1
2 correspondingly. For a given matrix M ,

Mα stands for the α-th power of matrix M , where α ≥ 0. When M can be eigendecomposed,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

GNN Loss
GNN

WDML

FGG FGG

GNN
MVP

Figure 1: Overview of FracAug.

Mα = UΛαV , where U ,V ∈ Cn×n are unitary matrices and Λ ∈ Rn×n is a diagonal matrix
composed of the eigenvalues of M .

Continuous Semantic Space. Given a graph G with adjacency matrix A and a graph signal
x ∈ RF , the semantic space of G is defined as a subspace S ⊆ RF generated by the set of vectors
obtained through the application of powers of A to x. Unlike previous approaches that rely on
discrete semantics constrained by integer powers, i.e., {Atx|t ∈ N}, our continuous semantic space
formulation, S = span{Atx|t ∈ N}, captures the underlying continuous semantic manifold of the
graph, which enables us to synthesize novel semantic-preserving graph instances, shown in Section 4.

Graph-level Anomaly Detection. In this work, we focus on enhancing GAD perfor-
mance under limited supervision. Given a training set with k labeled samples, Dtrain =
{(G1, y1), (G2, y2), ..., (Gk, yk)}, the goal of GAD is to train a model that classifies unseen graphs
as normal or anomalous. In real deployment, there are two main challenges in GAD. Firstly,
Dall = Dtrain∪Dval∪Dtest contains N0 normal graphs and N1 anomalous graphs, where N0 ≫ N1,
leading to severe imbalanced problem. Secondly, only limited labeled graphs are accessible during
training, i.e., k ≪ N0+N1, resulting in the limited supervision issue. Therefore, the key to enhancing
the ability of GNNs on real-world GAD tasks is to address these two challenges simultaneously.

Graph-level Augmentation. Graph-level augmentation has been proven effective in improving the
performance of GNNs on graph-level tasks. Graph generation and pseudo-labeling are the most
common ways to conduct graph-level augmentation:

• Graph generation: This strategy maps the graph G ∈ Dtrain to a new graph G′, i.e., (G, y) 7→
(G′, y). The generated graph should have a semantic meaning similar to that of the original G.

• Pseudo-labeling: This approach leverages a GNN trained on Dtrain to classify samples from
Dval ∪ Dtest and assign pseudo-labels to samples with high confidence under a certain criterion.

By combining graph generation and pseudo-labeling techniques while tackling the imbalanced issue,
FracAug effectively boosts GNN performance for GAD under limited supervision.

4 METHOD

4.1 OVERVIEW

Our proposed FracAug consists of three key components: (1) Fractional Graph Generator (FGG)
in Section 4.2 captures the inherent semantics of graphs, enabling the synthesis of fractional variants
that maintain semantic consistency with originals, as we demonstrate theoretically. (2) Weighted
Distance-Aware Margin Loss (WDML) in Section 4.3 addresses data imbalance to guide FGG,
employing distance-based margins to position synthetic graphs near original counterparts while
ensuring distinctiveness. (3) Mutual Verification Pseudo-Labeler (MVP) in Section 4.4 minimizes
pseudo-labeling errors through mutual verification of predictions from original and synthetic graphs,
facilitating reliable and iterative training set expansion.

Figure 1 illustrates the pipeline of our FracAug. Initially, we warm up a given GNN to establish a
preliminary semantic understanding of the GAD task. Then, we freeze the GNN parameters and
utilize its outputs to train the FGG with WDML. The trained FGG then generates fractional graph
variants, and the GNN predicts on both original and synthetic graphs to pseudo-label data within the
validation and test sets using MVP, which are subsequently incorporated into the original training set.
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Finally, we train the GNN using the new training set and continue the above process until both the
GNN and our FracAug framework reach reasonable capability.

4.2 FRACTIONAL GRAPH GENERATOR

Flexible Eigengraph Combinations. The fractional power of the adjacency matrix, Aα, where
α ≥ 0, serves as the mathematical foundation of our framework due to its unique properties.
Unlike integer powers of A, which only capture discrete-step neighborhood aggregations, fractional
powers enable continuous interpolation of graph structures, providing fine-grained control over
topological variations. Crucially, Aα can be expressed as a combination of eigengraphs derived
from eigendecompositions. For an undirected graph G with symmetric adjacency matrix A, we can
decompose Aα as:

Aα = UΛαUT =

n∑
i=1

λα
i uiu

T
i ,

where Λ is the diagonal eigenvalue matrix containing {λi}ni=1 in a descending order, U is the eigen-
vector matrix formed by {ui}ni=1, and uiu

T
i is the i-th eigengraph. It reveals two key advantages:

• Multi-scale Structure Adaptation: Fractional powers enable tunable control over spectral com-
ponents via α, where lower values (α < 1) emphasize homophilic graph signals (low-frequency
eigengraphs), while higher values (α > 1) accentuate heterophilic graph signals (high-frequency
eigengraphs) (Yan et al., 2023). This adaptive reweighting preserves the hierarchical topology
while generating augmented graphs, signaling structural anomalies for detection.

• Semantic-preserving Combination: By combining eigengraphs, FracAug preserves semantic-
critical structures (targeting spectral deviations linked to anomalies (Dong et al., 2024)), ensuring
that generated graphs retain the original semantics.

Semantic Preservation. Prior studies, such as GIN (Xu et al., 2019), rely on integer powers of
adjacency matrices, limiting them to discrete semantic preservation. In contrast, we prove that for
any α ≥ 0, Aαx resides in the original semantic space. Moreover, we further derive a theoretical
boundary to quantify differences between the original and fractional graphs, detailed in Appendix A.

Theorem 1. Given a polynomial function p(·;θ) parameterized by θ, for any α ≥ 0, there exists θ∗

such that Aα ≈ p(A;θ∗) =
∑T

t=0 θ
∗
tA

t, T ∈ N. With proper parameter θ∗, the difference of them
is bounded by βe−γT , where β, γ > 0 depend on the eigenvalues of A. Since Aα can be represented
as a polynomial combination of {At}t∈N, Aαx lies in S of the original graph as T →∞.

Theorem 1 ensures that fractional graphs preserve the original semantic space while encoding multi-
scale semantics. The continuous parameter α spans all possible semantic variations within this space,
enabling rich and comprehensive augmentation. Besides, previous approaches such as MAA (Yoo
et al., 2022) leverage heuristic perturbation techniques for generating synthetic graphs, which may
result in useful substitutes near the semantic space of the original graph. Theorem 2 formally bridges
these perturbation-based approaches with our fractional graph augmentation, revealing their shared
theoretical foundations. The complete proof is provided in Appendix A.

Theorem 2. Let the structural perturbation on a graph be a perturbation matrix P added to the
original graph, so that any graph generated by a structural perturbation method can be expressed as
A+ P . Then, we can derive ||Aα − (A+ P )|| ≤ c||P ||+maxi |λi − λα

i |, where c depends on α
and the spectral gap of P , and λi is the i-th eigenvalue of A+P . Thus, by choosing an appropriate
α, Aα can approximate any graph generated by structural perturbation methods.

Based on Theorem 2, we observe that for a suitably chosen α, the fractional graph can approximate
any sample generated by perturbation-based framework, demonstrating its generalization capability.

Fractional Graph Generation. Building on the above analysis, we conclude that fractional graphs
offer powerful augmentation capabilities. However, directly deriving the fractional power of the
adjacency matrix can be computationally prohibitive and may yield invalid results for non-semi-
definite adjacency matrix. Thus, a transformation function h(·) is applied to the adjacency matrix to
ensure valid fractional powers while preserving structural integrity (Yan et al., 2023). Specifically,
instead of adding self-loops before normalization of the adjacency matrix, we introduce them after
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(a) Softmax (b) LMCL (c) LDAM (d) WDML

Figure 2: Decision boundaries of different margin losses.

normalization and rescale the matrix, so the resulting adjacency matrix can be defined as:

Â = h(Ã) =
1

2
(I + Ã),

which is still a normalized adjacency matrix. Since all eigenvalues of Ã lie within [−1, 1], the
corresponding eigenvalues of Â fall within [0, 1]. Therefore, h(·) transforms A into a positive
semi-definite matrix Â, which allows the design of FGG.

Moreover, to mitigate computational costs for large graphs, we precompute the eigendecomposition
(EVD) using the Arnoldi method (Lehoucq et al., 1998), retaining only the top-kl largest and top-ks
smallest eigenpairs. Denote Λ̂kl

, Λ̂ks
as diagonal matrices of the top-kl largest and top-ks smallest

eigenvalues, Ukl
= U [:, 0 : kl],Uks

= U [:, n−ks : n] as the corresponding matrices of eigenvectors,
and the generated graph of G(A,X) as G′(A′,X), FGG can be formulated as:

g(A, k,H) =

H∑
h=1

ωhUkΛ̂
αh

k UT
k ,

A′ = FGG(A, kl, ks, Hl, Hs) = ωg(A, kl, Hl) + (1− ω)g(A, ks, Hs),

where
∑H

h=1 ωh = 1, ω are learnable coefficients, and αh is h-th learnable fractional power of the
matrix. By combining multiple fractional graphs with tunable weights, our generated graphs can
capture comprehensive information while preserving semantics. Although the anomalous properties
are well-preserved in graphs from FGG based on previous analysis, inherent data imbalance risks
biasing FGG training. To counteract this, in Section 4.3, we design WDML to guide FGG training.

4.3 WEIGHTED DISTANCE-AWARE MARGIN LOSS

Revisiting Margin Loss. To better separate the semantic spaces of different graphs and enable FGG
to generate high-quality fractional graphs robust to class imbalance, we introduce a novel margin loss
function. Before illustrating the details of WDML, we first reexamine representative margin losses,
with comprehensive empirical validation provided in Appendix H. Formally, margin loss based on
cross-entropy can be defined as:

L = − 1

N

N∑
i=1

log
esyi

−m

esyi
−m +

∑C
j=1,j ̸=yi

esj

, (1)

where N is the number of the samples, s represents the normalized logits predicted by a given GNN,
yi is the ground truth label of i-th sample, m is the margin that determines the decision boundary,
and C is the number of classes.

As shown in Figure 2 (a), when setting margin m to 0, the margin loss is degraded to a cross-entropy
loss, which lacks explicit mechanisms to separate classes in complex scenarios. Another margin loss
is LMCL (Wang et al., 2018) with m as a hyperparameter. Figure 2 (b) describes the result of setting
m > 0, enforcing better inter-class separation. However, this uniform margin shifts the decision
boundaries of different classes by the same value, which fails to detect the unique class-specific
properties. Afterward, LDAM (Cao et al., 2019) in Figure 2 (c) tackles the issues by setting class-
specific margin mc for c-th class so that the decision boundaries can accommodate scenarios where
classes require distinct margins. Existing margin losses typically employ fixed margins, which prove
suboptimal for GAD where sample-specific semantic variations exist. To address this, we propose
WDML, which assigns dynamic margins based on the intrinsic distance of each synthetic sample and
its original graph with a weight according to its class. Figure 2 (d) describes the adaptive decision
boundary of WDML.
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Margin Loss Based on Sample-Specific Distance. For the i-th training graph Gi and its counterpart
G′

i generated by FGG, we extract graph-level embeddings oi and o′
i via a given GNN. Then, our

distance-aware margin can be defined as:

mi =
1− cos(oi,o

′
i)

2
, (2)

where cos represents cosine similarity. Substituting m in Equation 1 with the sample-specific margin
mi yields a distance-aware margin loss. By computing angular distances in Equation 2, this loss shifts
the semantic space away from decision boundaries by a margin mi, ensuring generated samples retain
the original label with high confidence. To further address class imbalance, WDML incorporates
weights based on class frequency:

LWDML = −
N∑
i=1

1

Nyi

log
esyi

−mi

esyi
−mi +

∑C
j=1,j ̸=yi

esj

,

where Nyi
is the number of samples in class yi. With the assistance of WDML, FGG can generate

fractional graphs effectively without being biased by the imbalanced distribution of labels. To further
boost the performance by data augmentation, we design MVP to combine graph generation and
pseudo-labeling techniques, whose details will be elaborated in Section 4.4.

4.4 MUTUAL VERIFICATION PSEUDO-LABELER

Insight on Mutual Verification. Prior pseudo-labeling methods for related tasks, such as ConsisGAD
(Chen et al., 2024), only rely on confidences from original samples, prone to high errors under low
supervision (Dong et al., 2025). Therefore, we first investigate how mutual verification mitigates the
error rates compared to single-view methods, theoretically. The proof is detailed in the Appendix A.
Proposition 1. For a given GNN, assume its prediction error rates for original graphs and corre-
sponding fractional graphs are both δ. The correlation coefficient between the errors is denoted as ρ.
Then, when mutual verification is used, compared to single-view methods, the reduction factor of the
error rate and its variance can be up to δ + ρδ(1− δ) and ρ, respectively.

Proposition 1 demonstrates that the mutual verification mechanism leverages semantic consistency
between original graphs and their fractional counterparts to enhance pseudo-labeling reliability.
Building on this, we design MVP based on the agreement between predicted labels for the original
and synthetic samples, as detailed below.

High-Quality Pseudo-Label Prediction. Based on the above analysis, MVP assigns a pseudo-label
ŷi to the i-th sample in the validation or test set if and only if:

ŷi =

{
0, pi ≤ τn ∧ p′i ≤ τn,

1, pi ≥ τa ∧ p′i ≥ τa,

where pi, p
′
i represent the anomaly probabilities of the i-th original sample and its fractional counter-

part, respectively, and τn, τa denote the confidence thresholds of a sample being normal/anomalous.
For any given GNN, we iteratively incorporate high-confidence pseudo-labeled samples from the
validation and test sets into the training set, further mitigating the limited supervision issue.

The core innovation of our mutual verification framework lies in leveraging the semantic consistency
between original and fractional graphs to generate high-confidence pseudo-labels. This mechanism
addresses the scarcity of labeled anomalies by iteratively expanding the training set with reliable
samples, guided by theoretical guarantees of robustness.

In summary, our proposed FracAug combines FGG, WDML, and MVP to generate fractional graphs
and pseudo-label samples to boost the performance of GNNs on GAD tasks under limited supervision.
The experiments in Section 5 further validate our theoretical analysis in Section 4.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate FracAug on 12 real-world datasets, including MCF-7, MOLT-4, PC-3, SW-
620, NCI-H23, OVCAR-8, P388, SF-295, SN12C, UACC257, PROTEINS_full and DBLP_v1.
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Table 1: Average AUROC, AUPRC, and F1-score on 12 datasets with multiple runs, using graph
classification models as baselines, where the white columns represent vanilla models and the gray
ones represent models augmented by FracAug.

Datasets Metrics GCN +FA SAGE +FA GAT +FA GIN +FA LRGNN +FA GRDL +FA

MCF-7
AUROC 0.5753 0.5840 0.5801 0.5930 0.5885 0.6058 0.5867 0.5976 0.5467 0.6117 0.5867 0.6197
AUPRC 0.3035 0.3073 0.3316 0.3340 0.3678 0.3814 0.2830 0.2971 0.2951 0.3309 0.3038 0.3469
F1-score 0.4982 0.5074 0.4798 0.4963 0.4573 0.4687 0.5366 0.5421 0.4660 0.5290 0.5147 0.5254

MOLT-4
AUROC 0.5531 0.5650 0.5326 0.5727 0.5403 0.5721 0.5733 0.5854 0.5495 0.5851 0.5858 0.5924
AUPRC 0.3183 0.3217 0.1907 0.2602 0.3456 0.3667 0.2830 0.3001 0.3047 0.3175 0.3018 0.3101
F1-score 0.4501 0.4626 0.5166 0.5277 0.4096 0.4313 0.5072 0.5103 0.4570 0.4939 0.5091 0.5117

PC-3
AUROC 0.5697 0.5863 0.5986 0.6119 0.5707 0.5865 0.5969 0.6119 0.5690 0.6102 0.6044 0.6202
AUPRC 0.2740 0.2837 0.3154 0.3248 0.3562 0.3626 0.2797 0.2893 0.2320 0.3038 0.3381 0.3459
F1-score 0.4745 0.4876 0.4751 0.4841 0.4036 0.4166 0.5063 0.5205 0.5103 0.5024 0.4615 0.4750

SW-620
AUROC 0.5662 0.5839 0.5800 0.5968 0.5633 0.5870 0.5938 0.6004 0.5758 0.5946 0.6005 0.6046
AUPRC 0.3134 0.3229 0.3401 0.3260 0.2481 0.2587 0.2776 0.2813 0.3506 0.3386 0.2908 0.2901
F1-score 0.4406 0.4541 0.4339 0.4678 0.4923 0.5187 0.5090 0.5155 0.4190 0.4536 0.5059 0.5135

NCI-H23
AUROC 0.5811 0.5864 0.5765 0.6105 0.5777 0.6084 0.5897 0.5968 0.6002 0.6315 0.6161 0.6271
AUPRC 0.2777 0.2777 0.3197 0.3207 0.2966 0.2945 0.2566 0.2659 0.2830 0.3205 0.3034 0.3069
F1-score 0.4751 0.4819 0.4333 0.4740 0.4548 0.4961 0.5059 0.5073 0.4987 0.5055 0.4983 0.5112

OVCAR-8
AUROC 0.5692 0.5809 0.5763 0.5836 0.5396 0.5784 0.5935 0.5963 0.5628 0.5984 0.6230 0.6311
AUPRC 0.3240 0.3263 0.3391 0.3423 0.2010 0.2401 0.2573 0.2612 0.3106 0.3290 0.3042 0.3129
F1-score 0.4216 0.4334 0.4163 0.4221 0.4855 0.5060 0.5118 0.5123 0.4260 0.4518 0.5087 0.5119

P388
AUROC 0.5171 0.5896 0.5820 0.6277 0.4964 0.5758 0.5565 0.5913 0.5546 0.6316 0.5500 0.5852
AUPRC 0.3488 0.3926 0.3569 0.3540 0.2045 0.2134 0.2850 0.3309 0.2880 0.2953 0.2318 0.2859
F1-score 0.3428 0.3886 0.4138 0.4741 0.4478 0.5481 0.4468 0.4491 0.4430 0.5496 0.4808 0.4814

SF-295
AUROC 0.5730 0.5813 0.5858 0.6057 0.5960 0.6171 0.5844 0.6076 0.5903 0.6185 0.6156 0.6349
AUPRC 0.3290 0.3308 0.3161 0.3222 0.2652 0.2708 0.2766 0.2832 0.3000 0.2972 0.2796 0.3115
F1-score 0.4199 0.4279 0.4463 0.4652 0.5065 0.5389 0.4803 0.5047 0.4669 0.5068 0.5221 0.5173

SN12C
AUROC 0.5624 0.5818 0.5705 0.6030 0.5863 0.6020 0.5995 0.6079 0.5973 0.6104 0.6061 0.6211
AUPRC 0.2812 0.2981 0.2859 0.3133 0.2468 0.2585 0.2696 0.2746 0.2729 0.2888 0.2803 0.2875
F1-score 0.4463 0.4546 0.4514 0.4670 0.5058 0.5191 0.5030 0.5110 0.4978 0.5012 0.5026 0.5183

UACC257
AUROC 0.5660 0.5831 0.6006 0.6132 0.5890 0.6174 0.5877 0.6015 0.6020 0.6189 0.6155 0.6340
AUPRC 0.3334 0.3509 0.3360 0.3337 0.3493 0.3389 0.2480 0.2598 0.3047 0.3215 0.2942 0.3051
F1-score 0.3921 0.3954 0.4289 0.4456 0.4031 0.4455 0.4906 0.4983 0.4585 0.4631 0.4843 0.4990

PROTEINS_full
AUROC 0.6186 0.6259 0.5942 0.6310 0.6157 0.6836 0.5799 0.6174 0.6434 0.6503 0.5895 0.5987
AUPRC 0.6325 0.6404 0.6086 0.6516 0.6350 0.7005 0.6259 0.6358 0.6603 0.6722 0.6015 0.6077
F1-score 0.6199 0.6273 0.5909 0.6289 0.6158 0.6859 0.5679 0.6175 0.6431 0.6469 0.5856 0.5962

DBLP_v1
AUROC 0.7866 0.7973 0.6218 0.6825 0.6119 0.6885 0.6231 0.8044 0.7922 0.8006 0.8089 0.8222
AUPRC 0.8462 0.8515 0.7133 0.7769 0.7507 0.7796 0.7201 0.8626 0.8485 0.8537 0.8671 0.8716
F1-score 0.7854 0.7974 0.6161 0.6805 0.5782 0.6868 0.5996 0.8028 0.7919 0.8007 0.8071 0.8220

These datasets are obtained from TUDataset1, and their detailed statistics are listed in Appendix B.
We randomly divide each dataset into 1%/1%/98% for Dtrain/Dval/Dtest to simulate the limited
supervision scenario in real applications.

Baselines. We integrate our FracAug with 10 distinct GNNs, including generalized graph classifica-
tion models and specialized GAD models, to demonstrate its broad applicability. Besides, to further
confirm the usefulness of FracAug, we compare FracAug against 4 SOTA graph-level augmentation
frameworks based on their original vanilla models.

• Graph Classification: GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton et al., 2017), GAT
(Velickovic et al., 2018), GIN (Xu et al., 2019), LRGNN (Wei et al., 2023), and GRDL (Wang &
Fan, 2024).

• Graph-level Anomaly Detection: iGAD (Zhang et al., 2022), GmapAD (Ma et al., 2023a), RQGNN
(Dong et al., 2024), and UniGAD (Lin et al., 2024).

• Graph-level Augmentation: MAA (Yoo et al., 2022), GLA (Yue et al., 2022), GMixup (Han et al.,
2022), and FGWMixup (Ma et al., 2023b).

Experimental Settings. To ensure fair evaluation, we standardize evaluations by: (1) sourcing
all baseline code from GitHub and replacing loss functions with weighted version to mitigate
class imbalance; (2) using authors’ recommended hyperparameters for baselines, while optimizing
FracAug’s hyperparameters via grid search to maximize the summed AUROC/AUPRC/F1-score on
validation sets. Complete configurations are detailed in Appendix E.

1https://chrsmrrs.github.io/datasets/docs/datasets/
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Table 2: Average AUROC, AUPRC, and F1-score on 12 datasets with multiple runs, using GAD
models as baselines, where the white columns represent vanilla models and the gray ones represent
models augmented by FracAug.

Datasets Metrics iGAD +FA GmapAD +FA RQGNN +FA UniGAD +FA

MCF-7
AUROC 0.5670 0.5756 0.5159 0.5342 0.5522 0.5709 0.5380 0.5480
AUPRC 0.3402 0.3525 0.3521 0.3577 0.2379 0.2648 0.2405 0.2527
F1-score 0.4546 0.4549 0.3776 0.3961 0.5609 0.5804 0.4959 0.5008

MOLT-4
AUROC 0.5562 0.5573 0.5100 0.5374 0.5576 0.5696 0.5353 0.5445
AUPRC 0.3088 0.3092 0.2704 0.2827 0.2302 0.2468 0.2111 0.2241
F1-score 0.4621 0.4636 0.4354 0.4592 0.5644 0.5718 0.5079 0.5125

PC-3
AUROC 0.5526 0.5674 0.5112 0.5266 0.5618 0.6043 0.5496 0.5559
AUPRC 0.1887 0.2159 0.2999 0.3094 0.2370 0.2663 0.3875 0.3889
F1-score 0.5217 0.5229 0.3845 0.3938 0.5721 0.5972 0.3461 0.3542

SW-620
AUROC 0.5641 0.5776 0.5279 0.5362 0.5428 0.5692 0.5427 0.5688
AUPRC 0.3332 0.3701 0.3506 0.3479 0.1936 0.2219 0.2527 0.2585
F1-score 0.4207 0.4029 0.3605 0.3734 0.5530 0.5654 0.4600 0.4903

NCI-H23
AUROC 0.5689 0.5721 0.5289 0.5489 0.5704 0.6061 0.5694 0.5860
AUPRC 0.2267 0.2288 0.3274 0.3401 0.2166 0.2500 0.2733 0.2756
F1-score 0.5039 0.5066 0.3710 0.3827 0.5770 0.5820 0.4645 0.4831

OVCAR-8
AUROC 0.5609 0.5685 0.5209 0.5243 0.5549 0.5773 0.5360 0.5445
AUPRC 0.2319 0.2325 0.2863 0.2836 0.1933 0.2216 0.3196 0.3112
F1-score 0.4880 0.4991 0.3992 0.4054 0.5618 0.5794 0.3873 0.4043

P388
AUROC 0.5143 0.5300 0.4782 0.5057 0.5952 0.6108 0.5104 0.5167
AUPRC 0.1923 0.1939 0.2478 0.2599 0.2484 0.2650 0.1679 0.1748
F1-score 0.4669 0.4843 0.3894 0.4099 0.5879 0.5883 0.4781 0.4812

SF-295
AUROC 0.5811 0.5815 0.5414 0.5535 0.5582 0.5902 0.5439 0.5730
AUPRC 0.2666 0.2821 0.3066 0.3070 0.2141 0.2342 0.3000 0.2846
F1-score 0.4836 0.4705 0.4030 0.4167 0.5719 0.5847 0.4117 0.4582

SN12C
AUROC 0.5522 0.5537 0.5343 0.5441 0.5597 0.6038 0.5433 0.5497
AUPRC 0.1817 0.1858 0.3262 0.3315 0.1927 0.2442 0.2028 0.1961
F1-score 0.5151 0.5144 0.3754 0.3818 0.5648 0.5826 0.4851 0.4986

UACC257
AUROC 0.5697 0.5748 0.5394 0.5597 0.5528 0.5692 0.5710 0.5832
AUPRC 0.1906 0.1970 0.2927 0.3004 0.1601 0.1885 0.2510 0.2642
F1-score 0.5201 0.5224 0.3986 0.4144 0.5522 0.5678 0.4676 0.4710

PROTEINS_full
AUROC 0.5976 0.6206 0.5041 0.6289 0.5641 0.6365 0.6173 0.6212
AUPRC 0.6200 0.6333 0.5169 0.6436 0.5673 0.6563 0.6295 0.6338
F1-score 0.5960 0.6211 0.5020 0.6299 0.5600 0.6310 0.6178 0.6223

DBLP_v1
AUROC 0.7755 0.7909 0.4975 0.5045 0.8065 0.8082 0.7601 0.7965
AUPRC 0.8377 0.8473 0.6242 0.6548 0.8584 0.8598 0.8346 0.8509
F1-score 0.7749 0.7910 0.4968 0.5021 0.8060 0.8079 0.7549 0.7966

5.2 EXPERIMENTAL RESULTS

We evaluate the performance of FracAug on 6 graph classification models and 4 GAD models. Tables
1 and 2 report the AUROC, AUPRC, and F1-score on 12 datasets. Besides, we also compare FracAug
with 4 graph-level augmentation methods on their vanilla models, as shown in Table 3. The best
performance of each model is highlighted in boldface. To sum up, FracAug effectively boosts the
performance of GNNs and outperforms almost all baselines on these real-world datasets. Next, we
provide our detailed observations.

Augmentation for Graph Classification Models. We analyze 4 generalized GNNs (GCN, Graph-
SAGE, GAT, and GIN) and 2 recent models (LRGNN and GRDL) under limited supervision condi-
tions. While generalized GNNs, due to architectural simplicity, struggle to capture nuanced anomaly
patterns in GAD tasks, FracAug boosts their performance across most datasets as shown in Table 1,
validating its augmentation efficacy. Surprisingly, LRGNN and GRDL initially underperform simpler
GNNs in some cases, likely hindered by label scarcity, but regain competitiveness when integrated
with FracAug, highlighting FracAug’s adaptability to advanced architectures.

Augmentation for Graph-level Anomaly Detection Models. Specialized GAD models (iGAD,
GmapAD, RQGNN, and UniGAD) exploit task-specific properties but falter under limited super-
vision due to insufficient generalization capability. Notably, these task-specific architectures may
underperform even basic GNNs in low-label regimes as presented in Table 2, emphasizing FracAug’s
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Table 3: Average AUROC, AUPRC, and F1-score on 12 datasets with multiple runs, using graph-level
augmentation models as baselines, where the white columns represent vanilla models and their own
augmentation method, while the gray ones represent vanilla models augmented by FracAug.

Datasets Metrics MAAv NodeSam SubMix +FA GLAv GLA +FA GMixupv GMixup +FA FGWMixupv FGWMixup +FA

MCF-7
AUROC 0.5496 0.5727 0.5428 0.5695 0.5797 0.5735 0.6068 0.5730 0.5581 0.5935 0.5731 0.5502 0.5828
AUPRC 0.2346 0.2445 0.2224 0.2455 0.2558 0.2456 0.2944 0.2767 0.2864 0.3081 0.2720 0.2130 0.2945
F1-score 0.5179 0.5635 0.5512 0.5721 0.5607 0.5609 0.5793 0.5186 0.4879 0.5220 0.5585 0.5283 0.5971

MOLT-4
AUROC 0.5506 0.5391 0.5113 0.5663 0.5585 0.5578 0.5792 0.5637 0.5547 0.5771 0.5477 0.5308 0.6067
AUPRC 0.2203 0.1914 0.1796 0.2356 0.2177 0.2159 0.2511 0.2411 0.2176 0.2559 0.1994 0.1939 0.3104
F1-score 0.5595 0.5392 0.5048 0.5658 0.5540 0.5519 0.5733 0.5306 0.5368 0.5416 0.5446 0.5115 0.5366

PC-3
AUROC 0.5688 0.5805 0.5284 0.5821 0.6207 0.5938 0.6221 0.5705 0.5646 0.5782 0.5490 0.5442 0.6107
AUPRC 0.2112 0.2233 0.1854 0.2385 0.2770 0.2386 0.2790 0.3506 0.3456 0.3587 0.2028 0.2108 0.2623
F1-score 0.5698 0.5685 0.5321 0.5848 0.5650 0.5569 0.5686 0.4085 0.4058 0.4101 0.5027 0.4914 0.5633

SW-620
AUROC 0.5577 0.5776 0.5232 0.5834 0.5822 0.5799 0.5936 0.5839 0.5722 0.5987 0.5265 0.5395 0.6183
AUPRC 0.2026 0.2205 0.1958 0.2279 0.2315 0.2258 0.2455 0.2599 0.2511 0.2728 0.1340 0.1777 0.2759
F1-score 0.5641 0.5477 0.5273 0.5676 0.5422 0.5473 0.5786 0.5111 0.5015 0.5220 0.5283 0.5113 0.5729

NCI-H23
AUROC 0.5792 0.5634 0.5323 0.5979 0.5773 0.5762 0.6194 0.5912 0.5647 0.6014 0.5658 0.5760 0.6422
AUPRC 0.2273 0.1983 0.2017 0.2407 0.2082 0.2188 0.2680 0.2587 0.2139 0.2672 0.1986 0.2345 0.3105
F1-score 0.5821 0.5625 0.5445 0.5835 0.5659 0.5779 0.5914 0.5058 0.5087 0.5134 0.5561 0.5066 0.5358

OVCAR-8
AUROC 0.5507 0.5494 0.5278 0.5726 0.5911 0.5859 0.6049 0.5786 0.5725 0.6024 0.5696 0.5713 0.6317
AUPRC 0.1775 0.1633 0.1665 0.2132 0.2346 0.2196 0.2447 0.2764 0.2994 0.3072 0.2696 0.2401 0.3060
F1-score 0.5461 0.5408 0.5337 0.5749 0.5350 0.5548 0.5728 0.4733 0.4469 0.4766 0.4831 0.4950 0.5211

P388
AUROC 0.5500 0.5069 0.5057 0.5720 0.5622 0.5816 0.6057 0.5469 0.5265 0.5647 0.5480 0.5409 0.5729
AUPRC 0.1958 0.1985 0.1127 0.2229 0.2157 0.2264 0.2632 0.1694 0.1536 0.1957 0.2056 0.1951 0.2362
F1-score 0.5520 0.5000 0.4987 0.5746 0.5372 0.5766 0.5925 0.5315 0.5078 0.5373 0.5421 0.5282 0.5798

SF-295
AUROC 0.5649 0.5579 0.5292 0.5753 0.5954 0.6060 0.6197 0.5665 0.5687 0.6040 0.5893 0.5981 0.6459
AUPRC 0.2114 0.1939 0.2218 0.2252 0.2316 0.2451 0.2648 0.2004 0.2061 0.2509 0.2331 0.2585 0.3017
F1-score 0.5736 0.5644 0.5406 0.5820 0.5643 0.5702 0.5855 0.5245 0.5205 0.5371 0.5300 0.5161 0.5623

SN12C
AUROC 0.5509 0.5639 0.5160 0.5795 0.5715 0.6003 0.6141 0.5713 0.5336 0.5984 0.5831 0.5693 0.6314
AUPRC 0.1726 0.1845 0.1966 0.2164 0.2048 0.2344 0.2528 0.2163 0.2047 0.2524 0.2382 0.2252 0.2929
F1-score 0.5538 0.5405 0.5190 0.5770 0.5644 0.5590 0.5655 0.5136 0.4920 0.5195 0.5085 0.5002 0.5326

UACC257
AUROC 0.5623 0.5023 0.5211 0.5947 0.6159 0.6198 0.6327 0.5853 0.5843 0.6209 0.5535 0.5632 0.6368
AUPRC 0.1805 0.0559 0.0942 0.2210 0.2755 0.2745 0.2978 0.2365 0.2285 0.2963 0.1534 0.2172 0.2718
F1-score 0.5541 0.5005 0.5214 0.5784 0.5033 0.5131 0.5050 0.4993 0.5042 0.4898 0.5470 0.4830 0.5571

PROTEINS_full
AUROC 0.6009 0.6083 0.4998 0.6217 0.5652 0.5325 0.6249 0.5411 0.5132 0.6097 0.5078 0.5259 0.6082
AUPRC 0.6183 0.6294 0.6186 0.6366 0.6053 0.5343 0.6476 0.5810 0.5057 0.6244 0.5300 0.6934 0.6333
F1-score 0.6015 0.6039 0.4316 0.6214 0.5577 0.5291 0.6227 0.5348 0.5025 0.6102 0.4909 0.3809 0.6031

DBLP_v1
AUROC 0.6446 0.6608 0.6205 0.6822 0.7040 0.6402 0.7222 0.7939 0.7885 0.7994 0.7865 0.7772 0.7989
AUPRC 0.7689 0.7868 0.7947 0.7816 0.7882 0.7450 0.8085 0.8503 0.8471 0.8563 0.8461 0.8377 0.8549
F1-score 0.6252 0.6408 0.6291 0.6778 0.7029 0.6147 0.7177 0.7937 0.7878 0.7985 0.7856 0.7772 0.7981

effectiveness. Our framework universally elevates their performance by compensating for supervision
scarcity, validating its versatility across model paradigms.

Comparison with Graph-level Augmentation Frameworks. To further prove the effectiveness
of FracAug, we compare it against leading graph-level augmentation frameworks, including MAA,
GLA, GMixup, and FGWMixup. In Table 3, we denote their corresponding vanilla models as MAAv,
GLAv, GMixupv, and FGWMixupv, respectively. Such a setting will preserve the ability of those
augmentation frameworks. Nevertheless, as we can see, the augmentation methods fail to generalize
effectively to GAD tasks under limited supervision—the performance of the vanilla models may
drop after the augmentation. In contrast, our FracAug can boost all vanilla models across real-world
datasets, which demonstrates the usefulness of FracAug.

Beyond these primary results, we provide extensive additional analyses: complexity analysis, hyper-
parameter analysis, ablation study, loss function comparison, performance with more training data,
and the learned parameters on different datasets in Appendix D, F, G, H, I, and J, separately. These
supplementary analyses can further demonstrate the effectiveness of our proposed FracAug.

6 CONCLUSION

In this paper, we investigate the efficacy of leveraging fractional graph variants for data augmentation
in GAD under limited supervision scenarios. Based on the analysis, we design a model-agnostic
plug-in augmentation framework, FracAug, which includes three key components: FGG, WDML,
and MVP. FGG with WDML captures semantics from original samples and then generates semantic-
preserving fractional graphs during model training, unaffected by the imbalanced data distribution,
while MVP employs mutual verification to enhance pseudo-labeling reliability, iteratively expanding
the training set. Comprehensive experiments demonstrate that FracAug not only effectively improves
the performance of any given GNN but also significantly outperforms other graph-level augmentation
methods, demonstrating the effectiveness of our method.
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A PROOFS

Proof of Theorem 1. To derive the approximation of Aα and the corresponding error bound, we first
consider a function for real numbers, i.e., f(x) = xα defined on an interval [a, b] ⊂ (0,+∞). To
satisfy the requirement of Chebyshev series approximation, we map [a, b] to the standard Chebyshev
interval [−1, 1] via the linear transformation:

x =
2

b− a
(x′ − b+ a

2
),

where x′ ∈ [a, b] maps to x ∈ [−1, 1]. Then we further define:

f̃(x) = (
(b− a)x+ (b+ a)

2
)α,

which can be approximated using Chebyshev series approximation as:

f̃(x) ≈ pT (x) =

T∑
t=0

ctPt(x),

where Pt(x) is the t-th Chebyshev polynomial, and the ct are the Chebyshev coefficients. Specifically,
we can find the coefficients ct through the application of an inner product:∫ +1

−1

Pm(x)f̃(x)√
1− x2

dx =

∞∑
t=0

ct

∫ +1

−1

Pm(x)Pt(x)√
1− x2

dx.

On the interval [−1, 1], we have:

∫ +1

−1

Pm(x)Pt(x)√
1− x2

dx =


0, m ̸= t,

π, m = t = 0,
π

2
, m = t ̸= 0,

so we can derive:

ct =


1

π

∫ +1

−1

Pt(x)f̃(x)√
1− x2

dx, t = 0,

2

π

∫ +1

−1

Pt(x)f̃(x)√
1− x2

dx, t ̸= 0.

Afterward, to obtain the error bound of the approximation, we leverage the following Theorem:

Theorem 3. (Theorems 8.1 and 8.2 from previous work (Trefethen, 2019)) Let a function f(x) analytic
in [−1, 1] be analytically continuable to open Bernstein ellipse Ep, where it satisfies |f(x)| ≤M for
some M , then for each t ≥ 0, its Chebyshev approximation pT (x) satisfies ||f(x)−pT (x)|| ≤ 4Mρ−T

ρ−1 ,
where ρ depends on the distance from [−1, 1] to the nearest singularity of f(x).

The function f(x) = xα has a branch point at x = 0. For [a, b] ⊂ (0,+∞), the mapped function
f̃(x) is analytic in a Bernstein ellipse Ep, excluding x = 0. Therefore, f̃(x) satisfies Theorem 3, so
we can have:

||f̃(x)− pT (x)|| ≤
4Mρ−T

ρ− 1
= βe−γT ,

where β = 4M
ρ−1 and γ = ln ρ.

Similarly, we can directly apply the function to A with eigenvalues in [λmin, λmax] ⊂ (0,+∞),
then we can conclude:

||Aα − pT (A)|| ≤ βe−γT ,

where β, γ is derived from [λmin, λmax].

12
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Proof of Theorem 2. Using the Dunford-Taylor integral, for a contour Γ enclosing the spectra of A
and A+ P , we have:

Aα =
1

2πi

∫
Γ

xα(xI −A)−1dx,

(A+ P )α =
1

2πi

∫
Γ

xα(xI − (A+ P ))−1dx.

Then we subtract the two integrals:

Aα − (A+ P )α =
1

2πi

∫
Γ

xα[(xI −A)−1 − (xI − (A+ P ))−1]dx.

After applying the resolvent identity, we can have:

(xI −A)−1 − (xI − (A+ P ))−1 = (xI −A)−1P (xI − (A+ P ))−1.

By substituting back into the integral, we have:

Aα − (A+ P )α =
1

2πi

∫
Γ

xα(xI −A)−1P (xI − (A+ P ))−1dx.

Take the operator norm and apply submultiplicativity:

||Aα − (A+ P )α|| ≤ 1

2π

∫
Γ

|xα|||(xI −A)−1||||P ||||(xI − (A+ P ))−1|||dx|.

If we choose Γ to be a contour at distance d > 0 from the spectra of A, we can have:

(xI −A)−1 = U(xI −Λ)−1UT ,

where A = UΛUT is the eigendecomposition of A and the corresponding norm is:

||(xI −A)−1|| = ||(xI −Λ)−1|| = max
λ∈σ(A)

1

|x− λ|
=

1

dist(x, σ(A))
=

1

d
,

where σ(A) is the spectrum of A and dist(·) is the distance function.

For a small perturbation ||P ||, the spectrum of A + P will lie in a neighborhood of the spectrum
of A. Specifically, for any eigenvalue λ′ of A + P , there exists an eigenvalue λ of A such that
|λ′ − λ| ≤ ||P ||, which implies:

dist(x, σ(A+ P )) ≥ dist(x, σ(A))− ||P ||.

Then for x /∈ σ(A+ P ), we use the Neumann series:

(xI − (A+ P ))−1 = (xI −A)−1
+∞∑
i=0

[P (xI −A)−1]i,

which converges if ||P (xI −A)−1|| < 1.

Afterward, we take its norm and apply submultiplicativity:

||(xI − (A+ P ))−1|| ≤ ||(xI −A)−1||
1− ||P ||||(xI −A)−1||

=
1

dist(x, σ(A))− ||P ||

≤ 1

d
.

Then let M = maxx∈Γ |xα| and L(·) be the length function, we can have:

||Aα − (A+ P )α|| ≤ 1

2πd2
M ||P ||L(Γ)

13
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Table 4: Statistics of 12 real-world datasets, where nn is the number of normal graphs, na is the
number of anomalous graphs, h = na

nn+na
is the anomalous ratio, n̄ is the average number of nodes,

m̄ is the average number of edges, and F is the number of attributes.

Dataset MCF-7 MOLT-4 PC-3 SW-620 NCI-H23 OVCAR-8 P388 SF-295 SN12C UACC257 PROTEINS_full DBLP_v1

nn 25476 36625 25941 38122 38296 38437 39174 38246 38049 38345 663 9926
na 2294 3140 1568 2410 2057 2079 2298 2025 1955 1643 450 9530
h 0.0826 0.079 0.057 0.0595 0.051 0.0513 0.0554 0.0503 0.0489 0.0411 0.4043 0.4898
n̄ 26.4 26.1 26.36 26.06 26.07 26.08 22.11 26.06 26.08 262.09 39.06 10.48
m̄ 28.53 28.14 28.49 28.09 28.1 28.11 23.56 28.09 28.11 28.13 72.82 19.65
F 46 64 45 65 65 65 72 65 65 64 3 41325

Define c = ML(Γ)
2πd2 , yielding ||Aα − (A+ P )α|| ≤ c||P ||.

Besides, for a generated adjacency matrix from the perturbation method, it can be diagonalized, so
we can have:

(A+ P )− (A+ P )α = V (Σ−Σα)V T ,

where A+ P = V ΣV T and Σ is a diagonal matrix composed of (λ1, λ2, · · · , λn). Take the norm,
we can get:

||(A+ P )− (A+ P )α|| = max
i
|λi − λα

i |.

Finally, by applying the submultiplicativity, we can conclude:

||Aα − (A+ P )|| ≤ c||P ||+max
i
|λi − λα

i |,

where c depends on α and the spectral gap of P , and λi is the i-th eigenvalue of A+ P .

Proof of Proposition 1. Assume the two prediction error rates for original graphs and corresponding
fractional graphs are two Bernoulli variables with mean δ, and the correlation of the errors is ρ. Then
we have the joint error rate:

P(Both wrong) = δ2 + ρδ(1− δ).

Since the original error rate is δ, the mutual verification will lower the error with the reduction factor
δ + ρδ(1− δ).

According to the above analysis, the error rate of mutual verification is p = δ2+ρδ(1−δ). Assuming
it is also a Bernoulli variable, the variance can be calculated as:

v = (δ2 + ρδ(1− δ))(1− δ2 − ρδ(1− δ)).

For a small error rate δ, we can approximate it as v = ρδ(1− ρδ). Therefore, the reduction factor of
variance is close to ρ.

B DATASETS AND BASELINES

Datasets. The datasets used in our experiments are collected by TUDataset (Morris et al., 2020).
Specifically, MCF-7, MOLT-4, PC-3, SW-620, NCI-H23, OVCAR-8, P388, SF-295, SN12C, and
UACC257 are small-molecule datasets from PubChem 2, which provide information on the biological
activities of small molecules. In these datasets, nodes represent atoms within chemical compounds,
while edges indicate the chemical bonds connecting pairs of atoms. Each dataset corresponds
to a specific type of cancer screening, with outcomes classified as either active or inactive. We
consider inactive chemical compounds as normal graphs and active compounds as anomalous graphs.
Furthermore, the attributes are derived from node labels using one-hot encoding.

Besides, PROTEINS_full is a typical bioinformatics-related dataset (Dobson & Doig, 2003), which
processes several proteins represented as graphs. In this dataset, nodes and edges are formulated in a
similar way to small-molecule datasets from PubChem. This dataset aims to classify enzymes and
non-enzymes, which are denoted as normal and anomalous graphs, respectively.

2https://pubchem.ncbi.nlm.nih.gov/
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Beyond the above datasets, we also conduct experiments on DBLP_v1 (Pan et al., 2013), which
consists of bibliography data in computer science. Each record in DBLP_v1 is associated with a
number of attributes such as abstract, authors, year, venue, title, and reference ID. Since the dimension
of the attributes is high, we first utilize EVD to lower the dimension to 16. In this dataset, nodes
denote papers, while edges represent reference relations between papers. The classification task is to
predict whether a paper belongs to the CVPR (computer vision and pattern recognition) or DBDM
(database and data mining) conferences, which are seen as normal and anomalous, respectively.

Baselines. The first group is graph classification models:

• GCN (Kipf & Welling, 2017): a GNN that uses a convolution function on a graph to propagate
information within the neighborhood of nodes;

• GraphSAGE (Hamilton et al., 2017): a GNN that leverages a sampling technique to aggregate
features from the neighborhood.

• GAT (Velickovic et al., 2018): a GNN that adopts an attention mechanism within the neighborhood
of each node;

• GIN (Xu et al., 2019): a GNN that follows graph isomorphism to capture the properties of a graph.
• LRGNN (Wei et al., 2023): a GNN stacking multiple GNNs to extract the long-range dependencies;
• GRDL (Wang & Fan, 2024): a GNN treating node embeddings as a discrete distribution, enabling

direct classification without global pooling.

The second group is GAD models:

• iGAD (Zhang et al., 2022): a GNN with a substructure-aware component to capture properties of
anomalous graphs.

• GmapAD (Ma et al., 2023a): a GNN mapping graphs into a latent space where anomalies can be
effectively detected;

• RQGNN (Dong et al., 2024): a GNN using Rayleigh Quotient to obtain information from both
spectral and spatial spaces.

• UniGAD (Lin et al., 2024): a GNN that unifies different levels of graph-related tasks.

The third group is graph-level augmentation frameworks:

• MAA (Yoo et al., 2022): a framework using node split and merge, and subgraph mix to augment
graphs heuristically;

• GLA (Yue et al., 2022): a framework augmenting data in the representation space from the most
difficult direction while keeping the label of augmented data the same as the original samples;

• GMixup (Han et al., 2022): a framework that interpolates graphons of different classes in the
Euclidean space to get mixed graphons;

• FGWMixup (Ma et al., 2023b): a framework that seeks a midpoint of source graphs in the Fused
Gromov-Wasserstein metric space to interpolate graphons of different classes.

C ALGORITHM

Algorithm 1: Preprocess
Input: D, kl, ks

1 for G in D do
2 G.A← 1

2 (I +G.D− 1
2 ∗G.A ∗G.D− 1

2 );
3 G.Ul, G.Λl ← EVD(G.A, kl);
4 G.Us, G.Λs ← EVD(G.A, ks);

D COMPLEXITY ANALYSIS

For the Preprocess function, we first analyze the time complexity of the matrix multiplication. Since
we utilize sparse matrices to conduct the experiment, the time complexity of the multiplication is
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Algorithm 2: FGG
Input: D, Hl, Hs

Output: D′

1 for G in D do
2 for i = 0 to Hl do
3 Gl ← Gl + ωl[i] ∗G.Ul ∗G.Λ

αl[i]
l ∗G.UT

l ;
4 for i = 0 to Hl do
5 Gs ← Gs + ωs[i] ∗G.Us ∗G.Λ

αs[i]
s ∗G.UT

s ;
6 G′ ← ω ∗Gl + (1− ω) ∗Gs;
7 D′ ← D′ ∪G′;
8 Return D′;

Algorithm 3: WDML
Input: f,D,D′

1 for G,G′ in D,D′ do
2 s,o← f(G);
3 s′,o′ ← f(G′);
4 m← 1−cos(o,o′)

2 ;

5 LWDML ← LWDML +− 1
NG.y

log es[G.y]−m

es[G.y]−m+es[1−G.y] ;

6 LWDML.backward();

Algorithm 4: MVP
Input: f,D,D′, τn, τa
Output: D′′

1 for G,G′ in D,D′ do
2 s,o← f(G);
3 s′,o′ ← f(G′);
4 if s[0] < τn ∧ s′[0] ≤ τn then
5 G.y ← 0;
6 D′′ ← D′′ ∪G;
7 else if s[1] < τa ∧ s′[1] ≤ τa then
8 G.y ← 1;
9 D′′ ← D′′ ∪G;

10 Return D′′;

Algorithm 5: FracAug
Input: f,Dtrain,Dval,Dtest, Hl, Hs, kl, ks, ewarmup, eaug, τn, τa

1 Preprocess(Dtrain ∪ Dval ∪ Dtest, kl, ks);
2 D′

train ← Dtrain;
3 for e = 0 to ef do
4 if e > ewarmup ∧ e%eaug == 0 then
5 for e′ = 0 to eFGG do
6 Dtemp ← FGG(Dtrain, Hl, Hs);
7 WDML(f,D,Dtemp);
8 Dtemp ← FGG(Dval ∪ Dtest, Hl, Hs);
9 Dtemp ← MVP(f,Dval ∪ Dtest,Dtemp, τn, τa);

10 D′
train ← Dtrain ∪ Dtemp;

11 train(f,D′
train));
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Table 5: Comparison of average running time.

Datasets NSv+FA NodeSam SubMix GLAv+FA GLA GMixupv+FA GMixup FGWMixupv+FA FGWMixup
MCF-7 92.18+58.56 1282.84 876.39 92.00+73.57 1493.55 90.54+107.51 51.64 92.29+106.76 553.90

MOLT-4 133.10+83.70 1352.07 881.00 128.18+113.70 1924.35 131.30+150.27 64.55 129.84+176.65 855.30
PC-3 91.26+70.05 1249.30 879.76 90.55+64.84 1484.25 90.46+110.26 51.52 90.70+98.88 613.19

SW-620 133.80+102.96 1248.39 875.52 136.75+99.17 2076.36 133.42+158.47 75.68 133.50+153.30 873.41
NCI-H23 130.20+108.73 1301.09 883.09 130.63+93.86 2091.18 131.54+134.20 63.68 131.07+143.53 896.41

OVCAR-8 131.48+98.46 1351.17 890.68 132.62+102.36 2077.41 132.07+168.57 61.41 131.23+130.47 986.01
P388 120.73+103.09 1258.91 884.15 120.43+90.74 2140.75 122.53+145.56 60.47 121.12+135.97 965.61

SF-295 130.92+84.81 1359.48 879.52 131.26+110.89 2063.71 130.77+168.45 66.25 130.43+150.38 915.04
SN12C 129.79+102.16 1334.82 914.87 129.62+87.23 2044.62 130.21+148.75 68.58 128.95+134.45 933.55

UACC257 128.63+84.19 1387.70 930.43 128.39+88.05 2053.46 129.04+138.45 58.83 129.65+142.53 891.95
PROTEINS_full 9.03+6.67 206.50 202.65 8.50+8.86 69.30 8.62+7.98 4.58 8.84+7.63 30.25

DBLP_v1 38.86+62.06 1335.42 897.90 36.99+61.50 1123.57 39.22+99.74 30.51 39.15+105.83 155.67

O(nnz(G.D− 1
2 ) ∗ nnz(G.A) + nnz(G.D− 1

2 ∗ G.A) ∗ nnz(G.D− 1
2 ), where nnz means non-zero

entries of the matrix. Then, by adopting EVD to only keep the top-kl largest and top-ks smallest
eigenvalues, the time complexity can be O(n ∗ (k2l + k2s)+m ∗ (kl + ks)), where n,m is the number
of nodes/edges. As shown in Algorithm 5, Preprocess can be called before the training process, and
thus it won’t burden the training or inference of our FracAug.

Then, we analyze the time complexity of FGG for each graph. As presented in Algorithm 2, we
perform sparse matrix multiplication for every sample Hl and Hs times. Besides, since G.Λ is a
diagonal matrix, the time complexity of multiplying G.Λ is the same as that of multiplying G.Λα.
Therefore, the total time complexity of FGG is O(FGG) = O(nnz(G.Ul) ∗ kl + nnz(G.Ul ∗G.Λl) ∗
nnz(G.UT

l ) + nnz(G.Us) ∗ ks + nnz(G.Us ∗G.Λs) ∗ nnz(G.UT
s )).

Next, we analyze the time complexity of WDML in Algorithm 3. Assuming that we only have
one sample in Dtrain, then the time complexity of WDML is O(WDML) = O(d), where d is the
dimension of the generated graph embedding o.

Moreover, as shown in Algorithm 4, in MVP, we only need to see if the probability predicted by the
given GNN satisfies the criterion, so the time complexity for MVP is O(MVP) = O(1).

Finally, in Algorithm 5, we combine all the time complexities together within one training epoch
of the given GNN f , assuming the time complexity of f for each sample is O(f), then we have the
total complexity as O(eFGG ∗ (O(FGG) +O(WDML) +O(f)) ∗Ntrain + (O(FGG) +O(MVP) +
O(f)) ∗ (Nval + Ntest), where Nval, Ntest represent the number of samples in Dval and Dtest,
respectively.

In practice, we set eFGG to 10 and eaug to 25, which can reduce the computational cost, and FGG
can still converge. According to the final complexity, we can see the dominant factor within each
epoch is O(eFGG ∗O(f) ∗Ntrain +O(f) ∗ (Nval +Ntest)). For such a factor, we need to calculate
it in total ef−ewarmup

eaug
∗ eFGG times, which is much less than the original training epoch of f . Hence,

the increase in time complexity will not be the limitation of our FracAug in real applications.

In Table 5, we present a detailed runtime comparison between FracAug and several leading graph
augmentation methods. For each technique, we decompose the total computational cost into a
one-time preprocessing phase, performed once per dataset, and the subsequent training time mea-
sured over multiple epochs. While some baselines require repeated feature perturbations or costly
online sampling at every iteration, FracAug’s eigenvalue decomposition is only performed during
preprocessing. As a result, the per-epoch training overhead of FracAug remains on par with, or even
below, that of competing approaches, despite leveraging additional spectral information to boost
anomaly detection performance.

Crucially, these efficiency gains do not come at the expense of detection performance. Across all
datasets and baseline comparisons, FracAug consistently delivers state-of-the-art AUROC, AUPRC,
and F1-score results while maintaining competitive total runtimes. By amortizing the heavier spectral
computations over the entire training cycle and by implementing optimized matrix operations, Fra-
cAug strikes an effective balance between computational tractability and augmentation quality. This
combination of speed and performance underscores the practical value of our method: practitioners
can readily adopt FracAug for real graph applications without incurring prohibitive time costs.
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Table 6: Hyperparameters of 12 datasets based on GIN.

Datasets MCF-7 MOLT-4 PC-3 SW-620 NCI-H23 OVCAR-8 P388 SF-295 SN12C UACC257 PROTEINS_full DBLP_v1
kl 4 4 4 4 3 3 4 3 4 4 3 4
Hl 4 3 3 3 3 3 4 4 3 4 4 4
ks 3 4 3 3 4 3 4 3 3 4 3 3
Hs 4 4 3 3 3 3 4 3 3 4 4 3

ewarmup 50 25 50 50 25 25 50 50 25 50 50 25

Table 7: Varying kl-ks-Hl-Hs on different datasets based on GIN.

Datasets PROTEINS_full DBLP_v1
kl-ks-Hl-Hs AUROC AUPRC F1-score AUROC AUPRC F1-score

3-3-3-3 0.6174 0.6298 0.6187 0.7950 0.8514 0.7947
3-3-3-4 0.6141 0.6327 0.6142 0.7972 0.8572 0.7955
3-3-4-3 0.6103 0.6291 0.6104 0.7995 0.8546 0.7992
3-3-4-4 0.6174 0.6358 0.6175 0.7925 0.8486 0.7925
3-4-3-3 0.6174 0.6298 0.6187 0.7950 0.8514 0.7947
3-4-3-4 0.6082 0.6304 0.6072 0.7972 0.8572 0.7955
3-4-4-3 0.6103 0.6291 0.6104 0.7995 0.8546 0.7992
3-4-4-4 0.6094 0.6210 0.6104 0.7982 0.8524 0.7982
4-3-3-3 0.6174 0.6298 0.6187 0.7885 0.8509 0.7867
4-3-3-4 0.6124 0.6284 0.6133 0.7972 0.8538 0.7967
4-3-4-3 0.6161 0.6295 0.6174 0.8044 0.8626 0.8028
4-3-4-4 0.6138 0.6316 0.6142 0.8007 0.8570 0.8000
4-4-3-3 0.6174 0.6298 0.6187 0.7972 0.8579 0.7953
4-4-3-4 0.6161 0.6295 0.6174 0.7994 0.8560 0.7987
4-4-4-3 0.6108 0.6334 0.6095 0.8015 0.8617 0.7996
4-4-4-4 0.6094 0.6210 0.6104 0.8008 0.8577 0.7999

E EXPERIMENTAL SETTINGS

Table 6 provides a comprehensive list of our hyperparameters based on GIN. We use grid search to
train FracAug, which yields the best sum of AUROC, AUPRC, and F1-score on the validation set,
and report the corresponding test performance. Specifically, kl, Hl, ks, Hs range from the set {3, 4},
and the number of warmup epoch for GNN is selected from {25, 50}, to reduce the cost of search. In
the next Section F, we further analyze the influence of kl, Hl, ks, Hs on the AUROC, AUPRC, and
F1-score of different datasets based on GIN. As for the experimental environment, we conduct all the
experiments on an NVIDIA Quadro RTX 8000 for a fair comparison.

F HYPERARAMETER ANALYSIS

Table 7 presents a systematic exploration of FracAug’s performance, measured in AUROC, AUPRC,
and F1-score, when varying kl, ks, Hl, Hs between 3 and 4. Specifically, kl, ks denote the top-kl
largest and top-ks eigenvalues generated by EVD, while Hl, Hs denote the number of learnable
fractional powers of the matrix for the largest and smallest eigenvalues. By sweeping each of these
four parameters, we generate a compact grid of 16 configurations. As detailed in Table 6, each
evaluation metric prefers a slightly different quadruple of (kl, ks, Hl, Hs), but more importantly,
Table 7 reveals that the detection performance barely wavers across all measured combinations. This
robustness not only validates the spectral augmentation strategy at the heart of FracAug but also
suggests that practitioners can avoid laborious hyperparameter sweeps without sacrificing anomaly
detection performance.

In a parallel study, Figures 3 and 4 examine the sensitivity of FracAug to the pseudo-labeling
thresholds τn and τa. Here, τn specifies the percentile above which a node is considered “normal,”
and τa the percentile below which it is flagged as “anomalous.” By varying τn from 0.8 to 0.95
and τa from 0.05 to 0.2, we again explore 16 threshold pairs on each dataset, logging the resulting
AUROC, AUPRC, and F1-score for every pair. Remarkably, all three metrics remain essentially
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Figure 3: Varying τa and τn for PROTEINS_full based on GIN.
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Figure 4: Varying τa and τn for DBLP_v1 based on GIN.

flat throughout this entire range, indicating that FracAug’s pseudo-labeling module is forgiving of
moderate threshold choices. Leveraging this newfound stability, we adopt the pair τn = 0.05 and
τa = 0.95 as our default across all datasets, thereby slashing the computational overhead of threshold
tuning without meaningfully affecting detection performance.

G ABLATION STUDY

To examine the effectiveness of each component in FracAug, we conduct ablation study on 12
datasets based on GIN, which is shown in Table 8. Specifically, the gray column represents the
performance of GIN with FracAug, w/o largest and w/o smallest denotes removing the fractional
graphs generated by top-kl largest and top-ks smallest eigenvalues, respectively, w/o WDML means
replacing our proposed WDML with weighted cross-entropy loss, and w/o MVP pseudo-labels
samples in Dval ∪Dtest using only the predicted probability of original graphs. As shown in Table 8,
FracAug consistently outperforms its variants, w/o largest, w/o smallest, w/o WDML, and w/o MVP,
which demonstrates the benefits of these components.

H MARGIN LOSS COMPARISON

Next, we investigate the performance of FracAug with different margin loss as stated in Section 4.3,
by conducting comparison on 12 datasets based on GIN. As shown in Table 9, FracAug consistently
outperforms its variants, Softmax, LMCL, and LDAM. Such a phenomenon demonstrates that sample-
specific decision boundaries can be more effective than fixed margins for GAD tasks, aligning with
our analysis in Section 4.3.
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Table 8: Ablation study.

Datasets Metrics GIN +FA w/o largest w/o smallest w/o WDML w/o MVP

MCF-7
AUROC 0.5867 0.5976 0.5848 0.5889 0.5860 0.5835
AUPRC 0.2830 0.2971 0.2842 0.2882 0.2813 0.2790
F1-score 0.5366 0.5421 0.5317 0.5351 0.5372 0.5350

MOLT-4
AUROC 0.5733 0.5854 0.5770 0.5760 0.5772 0.5754
AUPRC 0.2830 0.3001 0.2974 0.2862 0.2981 0.2881
F1-score 0.5072 0.5103 0.5001 0.5085 0.4998 0.5060

PC-3
AUROC 0.5969 0.6119 0.5963 0.6018 0.6026 0.5975
AUPRC 0.2797 0.2893 0.2797 0.2815 0.2806 0.2780
F1-score 0.5063 0.5205 0.5055 0.5124 0.5145 0.5092

SW-620
AUROC 0.5938 0.6004 0.5941 0.5938 0.5949 0.5930
AUPRC 0.2776 0.2813 0.2737 0.2778 0.2800 0.2697
F1-score 0.5090 0.5155 0.5132 0.5089 0.5082 0.5155

NCI-H23
AUROC 0.5897 0.5968 0.5893 0.5911 0.5866 0.5925
AUPRC 0.2566 0.2659 0.2564 0.2633 0.2614 0.2656
F1-score 0.5059 0.5073 0.5054 0.5013 0.4968 0.5013

OVCAR-8
AUROC 0.5935 0.5963 0.5911 0.5918 0.5911 0.5904
AUPRC 0.2573 0.2612 0.2579 0.2565 0.2573 0.2605
F1-score 0.5118 0.5123 0.5074 0.5100 0.5081 0.5038

P388
AUROC 0.5565 0.5913 0.5620 0.5708 0.5730 0.5599
AUPRC 0.2850 0.3309 0.2917 0.3050 0.3074 0.3014
F1-score 0.4468 0.4491 0.4482 0.4470 0.4470 0.4371

SF-295
AUROC 0.5844 0.6076 0.5971 0.5949 0.5920 0.5996
AUPRC 0.2766 0.2832 0.2723 0.2716 0.2653 0.2790
F1-score 0.4803 0.5047 0.5001 0.4975 0.4994 0.4973

SN12C
AUROC 0.5995 0.6079 0.5993 0.5963 0.5910 0.5990
AUPRC 0.2696 0.2746 0.2685 0.2666 0.2632 0.2675
F1-score 0.5030 0.5110 0.5041 0.5013 0.4971 0.5046

UACC257
AUROC 0.5877 0.6015 0.5939 0.5854 0.5938 0.5914
AUPRC 0.2480 0.2598 0.2517 0.2527 0.2585 0.2586
F1-score 0.4906 0.4983 0.4956 0.4835 0.4890 0.4858

PROTEINS_full
AUROC 0.5799 0.6174 0.5986 0.5842 0.5990 0.5854
AUPRC 0.6259 0.6358 0.6111 0.5988 0.6205 0.6042
F1-score 0.5679 0.6175 0.5995 0.5848 0.5976 0.5857

DBLP_v1
AUROC 0.6231 0.8044 0.7615 0.7828 0.7762 0.7628
AUPRC 0.7201 0.8626 0.8301 0.8411 0.8374 0.8294
F1-score 0.5996 0.8028 0.7594 0.7829 0.7760 0.7619
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Figure 5: Varying training size (%) for PROTEINS_full.

I PERFORMANCE WITH MORE TRAINING DATA

To further demonstrate the superior ability of our proposed FracAug, we conduct experiments on
PROTEINS_full and DBLP_v1, varying by the training size (%), as shown in Figures 5 and 6. As
we can see, the red lines, which represent the performance of GIN with FracAug, are always on
top of the figures, which demonstrates that with more training data, our FracAug can still boost the
performance of the given baseline consistently in terms of AUROC, AUPRC, and F1-score. To sum
up, such experiments further prove that our FracAug is a more general and practical framework.
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Table 9: Comparison of different margin loss.

Datasets Metrics GIN +FA Softmax LMCL LDAM

MCF-7
AUC 0.5867 0.5976 0.5844 0.5880 0.5844

AUPRC 0.2830 0.2971 0.2781 0.2847 0.2796
MF1 0.5366 0.5421 0.5378 0.5372 0.5360

MOLT-4
AUC 0.5733 0.5854 0.5760 0.5797 0.5751

AUPRC 0.2830 0.3001 0.2969 0.2952 0.2857
MF1 0.5072 0.5103 0.4991 0.5059 0.5076

PC-3
AUC 0.5969 0.6119 0.6021 0.6037 0.6001

AUPRC 0.2797 0.2893 0.2809 0.2778 0.2769
MF1 0.5063 0.5205 0.5134 0.5195 0.5144

SW-620
AUC 0.5938 0.6004 0.5947 0.5936 0.5931

AUPRC 0.2776 0.2813 0.2779 0.2768 0.2720
MF1 0.5090 0.5155 0.5100 0.5092 0.5133

NCI-H23
AUC 0.5897 0.5968 0.5913 0.5896 0.5887

AUPRC 0.2566 0.2659 0.2650 0.2612 0.2622
MF1 0.5059 0.5073 0.5001 0.5012 0.4990

OVCAR-8
AUC 0.5935 0.5963 0.5905 0.5890 0.5932

AUPRC 0.2573 0.2612 0.2557 0.2570 0.2579
MF1 0.5118 0.5123 0.5087 0.5051 0.5107

P388
AUC 0.5565 0.5913 0.5864 0.5653 0.5602

AUPRC 0.2850 0.3309 0.3265 0.3080 0.2901
MF1 0.4468 0.4491 0.4465 0.4377 0.4469

SF-295
AUC 0.5844 0.6076 0.5943 0.5898 0.5955

AUPRC 0.2766 0.2832 0.2664 0.2712 0.2715
MF1 0.4803 0.5047 0.5017 0.4909 0.4985

SN12C
AUC 0.5995 0.6079 0.5914 0.5955 0.6004

AUPRC 0.2696 0.2746 0.2661 0.2601 0.2707
MF1 0.5030 0.5110 0.4950 0.5068 0.5034

UACC257
AUC 0.5877 0.6015 0.5905 0.5899 0.5935

AUPRC 0.2480 0.2598 0.2584 0.2581 0.2557
MF1 0.4906 0.4983 0.4849 0.4844 0.4912

PROTEINS_full
AUC 0.5799 0.6174 0.6002 0.5937 0.6051

AUPRC 0.6259 0.6358 0.6235 0.6078 0.6231
MF1 0.5679 0.6175 0.5987 0.5945 0.6051

DBLP_v1
AUC 0.6231 0.8044 0.7776 0.7834 0.7874

AUPRC 0.7201 0.8626 0.8383 0.8463 0.8502
MF1 0.5996 0.8028 0.7774 0.7817 0.7855
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Figure 6: Varying training size (%) for DBLP_v1.

J LEARNED PARAMETERS

Here, we present the learned parameters based on GIN, αl, ωl, αs, ωs, and ω in Table 10. Specifically,
αl,αs represent the learned fractional powers for the largest and smallest eigenvalues, respectively,
ωl,ωs denote the corresponding learned coefficients for the fractional graphs, and ω means the
balanced coefficient between the group of fractional graphs from the largest and smallest eigenvalues.
Recap from Section 4.2, we utilize Hl and Hs to control the number of combined fractional graphs
from different eigenvalues, so the number of entries in αl,ωl is equal to Hl and that of αs,ωs is the
same as Hs. Since we only consider the largest and smallest eigenvalue groups, the size of ω should
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Table 10: Learned parameters

Datasets MCF-7 MOLT-4 PC-3 SW-620 NCI-H23 OVCAR-8 P388 SF-295 SN12C UACC257 PROTEINS_full DBLP_v1

αl

0.9062 1.4187 1.0862 2.186 0.4991 0.8986 2.8806 0.8845 2.7404 1.6178 1.1407 1.8663
2.0063 2.2813 1.9282 1.5108 0.3535 0.1262 2.9620 2.9038 0.5877 1.9339 0.6885 1.1374
1.4770 1.7911 1.9928 1.8073 2.3672 1.1480 2.3129 2.3939 1.0219 2.4874 2.5432 1.1843
1.4269 - - - - - 1.2674 2.4786 - 2.2634 1.4364 2.8254

ωl

0.2921 0.2655 0.3450 0.2667 0.2793 0.3476 0.1639 0.3051 0.2385 0.1165 0.3842 0.1685
0.3108 0.3101 0.3349 0.5068 0.4612 0.3615 0.3654 0.1747 0.3833 0.2806 0.1535 0.1714
0.1549 0.4244 0.3202 0.2266 0.2595 0.2909 0.2728 0.2145 0.3782 0.3028 0.2927 0.4004
0.2422 - - - - - 0.1979 0.3057 - 0.3000 0.1696 0.2597

αs

2.3128 1.9621 2.8048 1.5579 2.4828 0.5030 1.5344 1.6912 2.9331 0.8959 1.1290 1.7201
2.1539 0.4087 1.1722 1.8088 2.1366 1.4235 1.552 1.9896 1.5150 1.9589 0.1467 2.8101
0.7485 2.9168 1.6098 0.4474 2.2668 2.6830 2.0318 1.8741 2.9352 2.8844 0.5492 2.0935
2.5362 0.2449 - - - - 2.7135 - - 0.1148 0.0124 -

ωs

0.3042 0.2821 0.3910 0.3756 0.3292 0.3384 0.1696 0.4052 0.4554 0.2916 0.2407 0.2517
0.2569 0.2112 0.2750 0.4245 0.3630 0.3436 0.4001 0.2386 0.2343 0.2539 0.3285 0.4758
0.2764 0.1519 0.3340 0.1999 0.3078 0.3180 0.2027 0.3562 0.3103 0.3122 0.2524 0.2725
0.1625 0.3548 - - - - 0.2277 - - 0.1423 0.1785 -

ω
0.4634 0.6795 0.6481 0.5579 0.5263 0.4541 0.4408 0.5589 0.5724 0.5309 0.7134 0.5174
0.5366 0.3205 0.3519 0.4421 0.4737 0.5459 0.5592 0.4411 0.4276 0.4691 0.2866 0.4826

be 2. Note that, according to Table 6, the optimal Hl, Hs varies by datasets, so the number of entries
in Table 10 will also be different, where "-" represents no such entry in the vector. As shown in Table
10, the learned powers vary within the range of (0, 3), which aligns with the parameter settings of
common GNNs, as deeper GNNs may result in over-smoothing and shallower GNNs will lead to
under-fitting. This experiment further shows the rationality of our proposed FracAug.
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