

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FRAC AUG: FRACTIONAL AUGMENTATION BOOST GRAPH-LEVEL ANOMALY DETECTION UNDER LIMITED SUPERVISION

Anonymous authors

Paper under double-blind review

ABSTRACT

Graph-level anomaly detection (GAD) is critical in diverse domains such as drug discovery, yet high labeling costs and dataset imbalance hamper the performance of Graph Neural Networks (GNNs). To address these issues, we propose FracAug, an innovative plug-in augmentation framework that enhances GNNs by generating semantically consistent graph variants and pseudo-labeling with mutual verification. Unlike previous heuristic methods, FracAug learns semantics within given graphs and synthesizes fractional variants, guided by a novel weighted distance-aware margin loss. This captures multi-scale topology to generate diverse, semantic-preserving graphs unaffected by data imbalance. Then, FracAug utilizes predictions from both original and augmented graphs to pseudo-label unlabeled data, iteratively expanding the training set. As a model-agnostic module compatible with various GNNs, FracAug demonstrates remarkable universality and efficacy: experiments across 14 GNNs on 12 real-world datasets show consistent gains, boosting average AUROC, AUPRC, and F1-score by up to 5.72%, 7.23%, and 4.18%, respectively.

1 INTRODUCTION

Graph-structured data is pivotal in real applications ranging from drug discovery to anomaly identification among proteins (Zhang et al., 2022). While Graph Neural Networks (GNNs) excel at modeling topological and feature-based patterns through message-passing, their effectiveness in Graph-level Anomaly Detection (GAD)—distinguishing anomalous graphs from normal ones—is hindered by two key challenges: limited supervision and extreme class imbalance, as demonstrated in Section 5. Specifically, anomalies represent rare instances, exacerbating data imbalance and restricting the availability of labeled training samples (Chen et al., 2024; Dong et al., 2024). While data augmentation techniques have revolutionized computer vision (Zhang et al., 2023) by generating synthetic labels through rotations or crops, their adaptation to graph domains presents unique challenges. Unlike images, graphs inhabit non-Euclidean space where seemingly minor structural modifications (e.g., edge removal) risk distorting semantic properties and violating the label-invariant assumption—a critical constraint in GAD’s challenging setting of limited supervision and inherent class imbalance.

Existing graph-level augmentation methods, such as MAA (Yoo et al., 2022), often employ heuristic modifications without considering data properties, leading to compromised semantics or insufficient diversity in GAD tasks. Consequently, their direct application may underperform vanilla GAD models. We attribute this gap to three key issues: (1) the absence of semantic-preserving augmentation strategies, (2) inadequate handling of imbalance, and (3) ineffective utilization of unlabeled data.

To address these challenges, we introduce FracAug, a novel plug-in augmentation framework that generates semantic-preserving graph variants and pseudo-labels for unlabeled graphs to train GNNs for GAD. Our key innovation leverages the fractional power of adjacency matrices, which encodes multi-scale topological relationships. By computing polynomials of various fractional graphs, guided by weighted distance-aware margin loss, FracAug introduces controlled structural variations while ensuring semantic consistency with the original graph’s label, independent of the underlying data distribution. Afterward, a given GNN will produce predictions for both original and synthetic samples, enabling FracAug to employ a mutual verification mechanism for pseudo-labeling unlabeled graphs,

054 thereby iteratively expanding the training set. This approach not only mitigates supervision scarcity
 055 but also enhances model robustness against class imbalance.

056 In summary, our contributions are as follows:

- 058 • We present FracAug, the first augmentation framework designed for GAD that maintains effectiveness
 059 under the dual constraints of limited supervision and imbalanced distribution
- 060 • FracAug operates as a model-agnostic plug-in augmentation framework compatible with 14 GNNs
 061 without architectural modifications, facilitating seamless integration into existing models.
- 062 • Extensive experiments on 12 real-world datasets demonstrate that FracAug enhances performance
 063 across diverse GNNs, significantly outperforming existing graph augmentation approaches.

066 2 RELATED WORK

068 **Graph Classification.** Generalized GNNs, such as GCN (Kipf & Welling, 2017), GraphSAGE
 069 (Hamilton et al., 2017), GAT (Velickovic et al., 2018), and GIN (Xu et al., 2019), excel at learning
 070 graph representations through neighborhood aggregation. Recent advances include LRGNN (Wei
 071 et al., 2023), which captures long-range dependencies with stacking GNNs, and GRDL (Wang & Fan,
 072 2024), which achieves state-of-the-art (SOTA) performance by learning representation distributions
 073 of graphs. However, these representative GNNs are not specifically designed for GAD tasks. While
 074 they can capture certain topological or feature-based patterns, their performance degrades under data
 075 imbalance and limited supervision.

076 **Graph-level Anomaly Detection.** Recognizing the challenges underlying GAD tasks, researchers
 077 have introduced specialized approaches to address them. For instance, iGAD (Zhang et al., 2022)
 078 introduces dual-discriminative kernels guided by a point mutual information-based loss function
 079 to better capture graph anomalies. Later, by mapping anomalies and normal graphs to separate
 080 areas based on adjusted candidate nodes, GmapAD (Ma et al., 2023a) shows advanced performance.
 081 Moreover, RQGNN (Dong et al., 2024) leverages the Rayleigh Quotient to detect graph anomalies
 082 effectively within spectral space. Recently, UniGAD (Lin et al., 2024) combines different levels of
 083 graph anomaly detection to capture comprehensive information to enhance the detection accuracy.
 084 Although these specialized frameworks show promising performance in addressing data imbalance
 085 challenges, they still present inferior results due to the limited supervision issue.

086 **Graph-level Augmentation.** To address the scarcity of labeled examples, researchers also develop
 087 diverse augmentation techniques for graph-level tasks. For example, MAA (Yoo et al., 2022) proposes
 088 two separate methods, NodeSam and SubMix, to generate synthetic samples by heuristic structure
 089 modification. Besides, GLA (Yue et al., 2022) generates the latent representations as the augmented
 090 graphs during the training phase. Subsequently, GMixup (Han et al., 2022) and FGWMixup (Ma et al.,
 091 2023b) interpolate graphs or features linearly to mix normal and anomalous samples for producing
 092 novel samples. Nevertheless, they fail to produce semantic-preserving samples when dealing with
 093 imbalanced data with limited supervision, resulting in unsatisfactory performance.

094 In contrast, FracAug diverges by leveraging the fractional power of adjacency matrices, a mathematically
 095 grounded operation that preserves semantics within graphs while introducing multi-scale
 096 structural variations. The incorporation of weighted distance-aware margin loss further enables
 097 FracAug to adapt to the imbalanced scenario. Furthermore, its pseudo-labeling mechanism explicitly
 098 addresses the limited supervision constraint. As a plug-in module, FracAug overcomes above
 099 limitations in GNNs and graph-level augmentation methods without modifying GNN architectures,
 100 enabling given GNN models to learn discriminative features for GAD tasks even with sparse labels.

101 3 PRELIMINARIES

104 **Notation.** Let $G = (\mathbf{A}, \mathbf{X})$ denote an undirected graph with n nodes and m edges, where $\mathbf{A} \in \mathbb{R}^{n \times n}$
 105 is the adjacency matrix and $\mathbf{X} \in \mathbb{R}^{n \times F}$ is the node feature matrix. $\mathbf{A}_{ij} = 1$ if an edge exists between
 106 node i and j , and $\mathbf{A}_{ij} = 0$ otherwise. \mathbf{D} is the diagonal degree matrix of \mathbf{A} , and the normalized
 107 adjacency matrix can be defined as $\tilde{\mathbf{A}} = \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}$ correspondingly. For a given matrix \mathbf{M} ,
 108 \mathbf{M}^α stands for the α -th power of matrix \mathbf{M} , where $\alpha \geq 0$. When \mathbf{M} can be eigendecomposed,

Figure 1: Overview of FracAug.

$M^\alpha = U\Lambda^\alpha V$, where $U, V \in \mathbb{C}^{n \times n}$ are unitary matrices and $\Lambda \in \mathbb{R}^{n \times n}$ is a diagonal matrix composed of the eigenvalues of M .

Continuous Semantic Space. Given a graph G with adjacency matrix A and a graph signal $x \in \mathbb{R}^F$, the semantic space of G is defined as a subspace $\mathcal{S} \subseteq \mathbb{R}^F$ generated by the set of vectors obtained through the application of powers of A to x . Unlike previous approaches that rely on discrete semantics constrained by integer powers, i.e., $\{A^t x | t \in \mathbb{N}\}$, our continuous semantic space formulation, $\mathcal{S} = \text{span}\{A^t x | t \in \mathbb{N}\}$, captures the underlying continuous semantic manifold of the graph, which enables us to synthesize novel semantic-preserving graph instances, shown in Section 4.

Graph-level Anomaly Detection. In this work, we focus on enhancing GAD performance under limited supervision. Given a training set with k labeled samples, $\mathcal{D}_{train} = \{(G_1, y_1), (G_2, y_2), \dots, (G_k, y_k)\}$, the goal of GAD is to train a model that classifies unseen graphs as normal or anomalous. In real deployment, there are two main challenges in GAD. Firstly, $\mathcal{D}_{all} = \mathcal{D}_{train} \cup \mathcal{D}_{val} \cup \mathcal{D}_{test}$ contains N_0 normal graphs and N_1 anomalous graphs, where $N_0 \gg N_1$, leading to severe imbalanced problem. Secondly, only limited labeled graphs are accessible during training, i.e., $k \ll N_0 + N_1$, resulting in the limited supervision issue. Therefore, the key to enhancing the ability of GNNs on real-world GAD tasks is to address these two challenges simultaneously.

Graph-level Augmentation. Graph-level augmentation has been proven effective in improving the performance of GNNs on graph-level tasks. Graph generation and pseudo-labeling are the most common ways to conduct graph-level augmentation:

- **Graph generation:** This strategy maps the graph $G \in \mathcal{D}_{train}$ to a new graph G' , i.e., $(G, y) \mapsto (G', y)$. The generated graph should have a semantic meaning similar to that of the original G .
- **Pseudo-labeling:** This approach leverages a GNN trained on \mathcal{D}_{train} to classify samples from $\mathcal{D}_{val} \cup \mathcal{D}_{test}$ and assign pseudo-labels to samples with high confidence under a certain criterion.

By combining graph generation and pseudo-labeling techniques while tackling the imbalanced issue, FracAug effectively boosts GNN performance for GAD under limited supervision.

4 METHOD

4.1 OVERVIEW

Our proposed FracAug consists of three key components: (1) **Fractional Graph Generator (FGG)** in Section 4.2 captures the inherent semantics of graphs, enabling the synthesis of fractional variants that maintain semantic consistency with originals, as we demonstrate theoretically. (2) **Weighted Distance-Aware Margin Loss (WDML)** in Section 4.3 addresses data imbalance to guide FGG, employing distance-based margins to position synthetic graphs near original counterparts while ensuring distinctiveness. (3) **Mutual Verification Pseudo-Labeler (MVP)** in Section 4.4 minimizes pseudo-labeling errors through mutual verification of predictions from original and synthetic graphs, facilitating reliable and iterative training set expansion.

Figure 1 illustrates the pipeline of our FracAug. Initially, we warm up a given GNN to establish a preliminary semantic understanding of the GAD task. Then, we freeze the GNN parameters and utilize its outputs to train the FGG with WDML. The trained FGG then generates fractional graph variants, and the GNN predicts on both original and synthetic graphs to pseudo-label data within the validation and test sets using MVP, which are subsequently incorporated into the original training set.

162 Finally, we train the GNN using the new training set and continue the above process until both the
 163 GNN and our FracAug framework reach reasonable capability.
 164

165 **4.2 FRACTIONAL GRAPH GENERATOR**
 166

167 **Flexible Eigengraph Combinations.** The fractional power of the adjacency matrix, \mathbf{A}^α , where
 168 $\alpha \geq 0$, serves as the mathematical foundation of our framework due to its unique properties.
 169 Unlike integer powers of \mathbf{A} , which only capture discrete-step neighborhood aggregations, fractional
 170 powers enable continuous interpolation of graph structures, providing fine-grained control over
 171 topological variations. Crucially, \mathbf{A}^α can be expressed as a combination of eigengraphs derived
 172 from eigendecompositions. For an undirected graph G with symmetric adjacency matrix \mathbf{A} , we can
 173 decompose \mathbf{A}^α as:

$$174 \quad \mathbf{A}^\alpha = \mathbf{U} \mathbf{\Lambda}^\alpha \mathbf{U}^T = \sum_{i=1}^n \lambda_i^\alpha \mathbf{u}_i \mathbf{u}_i^T, \\ 175 \quad 176$$

177 where $\mathbf{\Lambda}$ is the diagonal eigenvalue matrix containing $\{\lambda_i\}_{i=1}^n$ in a descending order, \mathbf{U} is the eigen-
 178 vector matrix formed by $\{\mathbf{u}_i\}_{i=1}^n$, and $\mathbf{u}_i \mathbf{u}_i^T$ is the i -th eigengraph. It reveals two key advantages:

- 179 • **Multi-scale Structure Adaptation:** Fractional powers enable tunable control over spectral com-
 180 ponents via α , where lower values ($\alpha < 1$) emphasize homophilic graph signals (low-frequency
 181 eigengraphs), while higher values ($\alpha > 1$) accentuate heterophilic graph signals (high-frequency
 182 eigengraphs) (Yan et al., 2023). This adaptive reweighting preserves the hierarchical topology
 183 while generating augmented graphs, signaling structural anomalies for detection.
- 184 • **Semantic-preserving Combination:** By combining eigengraphs, FracAug preserves semantic-
 185 critical structures (targeting spectral deviations linked to anomalies (Dong et al., 2024)), ensuring
 186 that generated graphs retain the original semantics.

187 **Semantic Preservation.** Prior studies, such as GIN (Xu et al., 2019), rely on integer powers of
 188 adjacency matrices, limiting them to discrete semantic preservation. In contrast, we prove that for
 189 any $\alpha \geq 0$, $\mathbf{A}^\alpha \mathbf{x}$ resides in the original semantic space. Moreover, we further derive a theoretical
 190 boundary to quantify differences between the original and fractional graphs, detailed in Appendix A.
 191

192 **Theorem 1.** *Given a polynomial function $p(\cdot; \theta)$ parameterized by θ , for any $\alpha \geq 0$, there exists θ^*
 193 such that $\mathbf{A}^\alpha \approx p(\mathbf{A}; \theta^*) = \sum_{t=0}^T \theta_t^* \mathbf{A}^t$, $T \in \mathbb{N}$. With proper parameter θ^* , the difference of them
 194 is bounded by $\beta e^{-\gamma T}$, where $\beta, \gamma > 0$ depend on the eigenvalues of \mathbf{A} . Since \mathbf{A}^α can be represented
 195 as a polynomial combination of $\{\mathbf{A}^t\}_{t \in \mathbb{N}}$, $\mathbf{A}^\alpha \mathbf{x}$ lies in \mathcal{S} of the original graph as $T \rightarrow \infty$.*

196 Theorem 1 ensures that fractional graphs preserve the original semantic space while encoding multi-
 197 scale semantics. The continuous parameter α spans all possible semantic variations within this space,
 198 enabling rich and comprehensive augmentation. Besides, previous approaches such as MAA (Yoo
 199 et al., 2022) leverage heuristic perturbation techniques for generating synthetic graphs, which may
 200 result in useful substitutes near the semantic space of the original graph. Theorem 2 formally bridges
 201 these perturbation-based approaches with our fractional graph augmentation, revealing their shared
 202 theoretical foundations. The complete proof is provided in Appendix A.

203 **Theorem 2.** *Let the structural perturbation on a graph be a perturbation matrix \mathbf{P} added to the
 204 original graph, so that any graph generated by a structural perturbation method can be expressed as
 205 $\mathbf{A} + \mathbf{P}$. Then, we can derive $\|\mathbf{A}^\alpha - (\mathbf{A} + \mathbf{P})\| \leq c \|\mathbf{P}\| + \max_i |\lambda_i - \lambda_i^\alpha|$, where c depends on α
 206 and the spectral gap of \mathbf{P} , and λ_i is the i -th eigenvalue of $\mathbf{A} + \mathbf{P}$. Thus, by choosing an appropriate
 207 α , \mathbf{A}^α can approximate any graph generated by structural perturbation methods.*

208 Based on Theorem 2, we observe that for a suitably chosen α , the fractional graph can approximate
 209 any sample generated by perturbation-based framework, demonstrating its generalization capability.

210 **Fractional Graph Generation.** Building on the above analysis, we conclude that fractional graphs
 211 offer powerful augmentation capabilities. However, directly deriving the fractional power of the
 212 adjacency matrix can be computationally prohibitive and may yield invalid results for non-semi-
 213 definite adjacency matrix. Thus, a transformation function $h(\cdot)$ is applied to the adjacency matrix to
 214 ensure valid fractional powers while preserving structural integrity (Yan et al., 2023). Specifically,
 215 instead of adding self-loops before normalization of the adjacency matrix, we introduce them after

Figure 2: Decision boundaries of different margin losses.

normalization and rescale the matrix, so the resulting adjacency matrix can be defined as:

$$\hat{\mathbf{A}} = h(\tilde{\mathbf{A}}) = \frac{1}{2}(\mathbf{I} + \tilde{\mathbf{A}}),$$

which is still a normalized adjacency matrix. Since all eigenvalues of $\tilde{\mathbf{A}}$ lie within $[-1, 1]$, the corresponding eigenvalues of $\hat{\mathbf{A}}$ fall within $[0, 1]$. Therefore, $h(\cdot)$ transforms \mathbf{A} into a positive semi-definite matrix $\hat{\mathbf{A}}$, which allows the design of FGG.

Moreover, to mitigate computational costs for large graphs, we precompute the eigendecomposition (EVD) using the Arnoldi method (Lehoucq et al., 1998), retaining only the top- k_l largest and top- k_s smallest eigenpairs. Denote $\hat{\mathbf{A}}_{k_l}, \hat{\mathbf{A}}_{k_s}$ as diagonal matrices of the top- k_l largest and top- k_s smallest eigenvalues, $\mathbf{U}_{k_l} = \mathbf{U}[:, 0 : k_l], \mathbf{U}_{k_s} = \mathbf{U}[:, n - k_s : n]$ as the corresponding matrices of eigenvectors, and the generated graph of $G(\mathbf{A}, \mathbf{X})$ as $G'(\mathbf{A}', \mathbf{X})$, FGG can be formulated as:

$$g(\mathbf{A}, k, H) = \sum_{h=1}^H \omega_h \mathbf{U}_k \hat{\mathbf{A}}_k^{\alpha_h} \mathbf{U}_k^T,$$

$$\mathbf{A}' = \text{FGG}(\mathbf{A}, k_l, k_s, H_l, H_s) = \omega g(\mathbf{A}, k_l, H_l) + (1 - \omega)g(\mathbf{A}, k_s, H_s),$$

where $\sum_{h=1}^H \omega_h = 1$, ω are learnable coefficients, and α_h is h -th learnable fractional power of the matrix. By combining multiple fractional graphs with tunable weights, our generated graphs can capture comprehensive information while preserving semantics. Although the anomalous properties are well-preserved in graphs from FGG based on previous analysis, inherent data imbalance risks biasing FGG training. To counteract this, in Section 4.3, we design WDML to guide FGG training.

4.3 WEIGHTED DISTANCE-AWARE MARGIN LOSS

Revisiting Margin Loss. To better separate the semantic spaces of different graphs and enable FGG to generate high-quality fractional graphs robust to class imbalance, we introduce a novel margin loss function. Before illustrating the details of WDML, we first reexamine representative margin losses, with comprehensive empirical validation provided in Appendix G. Formally, margin loss based on cross-entropy can be defined as:

$$L = -\frac{1}{N} \sum_{i=1}^N \log \frac{e^{\mathbf{s}_{\mathbf{y}_i} - m}}{e^{\mathbf{s}_{\mathbf{y}_i} - m} + \sum_{j=1, j \neq \mathbf{y}_i}^C e^{\mathbf{s}_j}}, \quad (1)$$

where N is the number of the samples, \mathbf{s} represents the normalized logits predicted by a given GNN, \mathbf{y}_i is the ground truth label of i -th sample, m is the margin that determines the decision boundary, and C is the number of classes.

As shown in Figure 2 (a), when setting margin m to 0, the margin loss is degraded to a cross-entropy loss, which lacks explicit mechanisms to separate classes in complex scenarios. Another margin loss is LMCL (Wang et al., 2018) with m as a hyperparameter. Figure 2 (b) describes the result of setting $m > 0$, enforcing better inter-class separation. However, this uniform margin shifts the decision boundaries of different classes by the same value, which fails to detect the unique class-specific properties. Afterward, LDAM (Cao et al., 2019) in Figure 2 (c) tackles the issues by setting class-specific margin m_c for c -th class so that the decision boundaries can accommodate scenarios where classes require distinct margins. Existing margin losses typically employ fixed margins, which prove suboptimal for GAD where sample-specific semantic variations exist. To address this, we propose WDML, which assigns dynamic margins based on the intrinsic distance of each synthetic sample and its original graph with a weight according to its class. Figure 2 (d) describes the adaptive decision boundary of WDML.

270 **Margin Loss Based on Sample-Specific Distance.** For the i -th training graph G_i and its counterpart
 271 G'_i generated by FGG, we extract graph-level embeddings \mathbf{o}_i and \mathbf{o}'_i via a given GNN. Then, our
 272 distance-aware margin can be defined as:

$$273 \quad 274 \quad m_i = \frac{1 - \cos(\mathbf{o}_i, \mathbf{o}'_i)}{2}, \quad (2)$$

275 where \cos represents cosine similarity. Substituting m in Equation 1 with the sample-specific margin
 276 m_i yields a distance-aware margin loss. By computing angular distances in Equation 2, this loss shifts
 277 the semantic space away from decision boundaries by a margin m_i , ensuring generated samples retain
 278 the original label with high confidence. To further address class imbalance, WDML incorporates
 279 weights based on class frequency:

$$280 \quad 281 \quad L_{\text{WDML}} = - \sum_{i=1}^N \frac{1}{N_{\mathbf{y}_i}} \log \frac{e^{\mathbf{s}_{\mathbf{y}_i} - m_i}}{e^{\mathbf{s}_{\mathbf{y}_i} - m_i} + \sum_{j=1, j \neq \mathbf{y}_i}^C e^{\mathbf{s}_j}},$$

283 where $N_{\mathbf{y}_i}$ is the number of samples in class \mathbf{y}_i . With the assistance of WDML, FGG can generate
 284 fractional graphs effectively without being biased by the imbalanced distribution of labels. To further
 285 boost the performance by data augmentation, we design MVP to combine graph generation and
 286 pseudo-labeling techniques, whose details will be elaborated in Section 4.4.

288 4.4 MUTUAL VERIFICATION PSEUDO-LABELER

289 **Insight on Mutual Verification.** Prior pseudo-labeling methods for related tasks, such as ConsisGAD
 290 (Chen et al., 2024), only rely on confidences from original samples, prone to high errors under low
 291 supervision (Dong et al., 2025). Therefore, we first investigate how mutual verification mitigates the
 292 error rates compared to single-view methods, theoretically. The proof is detailed in the Appendix A.

293 **Proposition 1.** *For a given GNN, assume its prediction error rates for original graphs and corre-
 294 sponding fractional graphs are both δ . The correlation coefficient between the errors is denoted as ρ .
 295 Then, when mutual verification is used, compared to single-view methods, the reduction factor of the
 296 error rate and its variance can be up to $\delta + \rho\delta(1 - \delta)$ and ρ , respectively.*

297 Proposition 1 demonstrates that the mutual verification mechanism leverages semantic consistency
 298 between original graphs and their fractional counterparts to enhance pseudo-labeling reliability.
 299 Building on this, we design MVP based on the agreement between predicted labels for the original
 300 and synthetic samples, as detailed below.

302 **High-Quality Pseudo-Label Prediction.** Based on the above analysis, MVP assigns a pseudo-label
 303 \hat{y}_i to the i -th sample in the validation or test set if and only if:

$$304 \quad 305 \quad \hat{y}_i = \begin{cases} 0, & p_i \leq \tau_n \wedge p'_i \leq \tau_n, \\ 1, & p_i \geq \tau_a \wedge p'_i \geq \tau_a, \end{cases}$$

307 where p_i, p'_i represent the anomaly probabilities of the i -th original sample and its fractional counter-
 308 part, respectively, and τ_n, τ_a denote the confidence thresholds of a sample being normal/anomalous.
 309 For any given GNN, we iteratively incorporate high-confidence pseudo-labeled samples from the
 310 validation and test sets into the training set, further mitigating the limited supervision issue.

311 The core innovation of our mutual verification framework lies in leveraging the semantic consistency
 312 between original and fractional graphs to generate high-confidence pseudo-labels. This mechanism
 313 addresses the scarcity of labeled anomalies by iteratively expanding the training set with reliable
 314 samples, guided by theoretical guarantees of robustness.

315 In summary, our proposed FracAug combines FGG, WDML, and MVP to generate fractional graphs
 316 and pseudo-label samples to boost the performance of GNNs on GAD tasks under limited supervision.
 317 The experiments in Section 5 further validate our theoretical analysis in Section 4.

319 5 EXPERIMENTS

321 5.1 EXPERIMENTAL SETUP

323 **Datasets.** We evaluate FracAug on 12 real-world datasets, including MCF-7, MOLT-4, PC-3, SW-
 620, NCI-H23, OVCAR-8, P388, SF-295, SN12C, UACC257, PROTEINS_full and DBLP_v1.

324
 325 Table 1: Average AUROC, AUPRC, and F1-score on 6 datasets with multiple runs, using graph
 326 classification models as baselines, where the white columns represent vanilla models and the "+FA"
 327 represent models augmented by FracAug.

Datasets	Metrics	GCN +FA	SAGE +FA	GAT +FA	GIN +FA	LRGNN +FA	GRDL +FA
P388	AUROC	0.5171 0.5896	0.5820 0.6277	0.4964 0.5758	0.5565 0.5913	0.5546 0.6316	0.5500 0.5852
	AUPRC	0.3488 0.3926	0.3569 0.3540	0.2045 0.2134	0.2850 0.3309	0.2880 0.2953	0.2318 0.2859
	F1-score	0.3428 0.3886	0.4138 0.4741	0.4478 0.5481	0.4468 0.4491	0.4430 0.5496	0.4808 0.4814
SF-295	AUROC	0.5730 0.5813	0.5858 0.6057	0.5960 0.6171	0.5844 0.6076	0.5903 0.6185	0.6156 0.6349
	AUPRC	0.3290 0.3308	0.3161 0.3222	0.2652 0.2708	0.2766 0.2832	0.3000	0.2972 0.3115
	F1-score	0.4199 0.4279	0.4463 0.4652	0.5065 0.5389	0.4803 0.5047	0.4669 0.5068	0.5221 0.5173
SN12C	AUROC	0.5624 0.5818	0.5705 0.6030	0.5863 0.6020	0.5995 0.6079	0.5973 0.6104	0.6061 0.6211
	AUPRC	0.2812 0.2981	0.2859 0.3133	0.2468 0.2585	0.2696 0.2746	0.2729 0.2888	0.2803 0.2875
	F1-score	0.4463 0.4546	0.4514 0.4670	0.5058 0.5191	0.5030 0.5110	0.4978 0.5012	0.5026 0.5183
UACC257	AUROC	0.5660 0.5831	0.6006 0.6132	0.5890 0.6174	0.5877 0.6015	0.6020 0.6189	0.6155 0.6340
	AUPRC	0.3334 0.3509	0.3360 0.3337	0.3493 0.3389	0.2480 0.2598	0.3047 0.3215	0.2942 0.3051
	F1-score	0.3921 0.3954	0.4289 0.4456	0.4031 0.4455	0.4906 0.4983	0.4585 0.4631	0.4843 0.4990
PROTEINS_full	AUROC	0.6186 0.6259	0.5942 0.6310	0.6157 0.6836	0.5799 0.6174	0.6434 0.6503	0.5895 0.5987
	AUPRC	0.6325 0.6404	0.6086 0.6516	0.6350 0.7005	0.6259 0.6358	0.6603 0.6722	0.6015 0.6077
	F1-score	0.6199 0.6273	0.5909 0.6289	0.6158 0.6859	0.5679 0.6175	0.6431 0.6469	0.5856 0.5962
DBLP_v1	AUROC	0.7866 0.7973	0.6218 0.6825	0.6119 0.6885	0.6231 0.8044	0.7922 0.8006	0.8089 0.8222
	AUPRC	0.8462 0.8515	0.7133 0.7769	0.7507 0.7796	0.7201 0.8626	0.8485 0.8537	0.8671 0.8716
	F1-score	0.7854 0.7974	0.6161 0.6805	0.5782 0.6868	0.5996 0.8028	0.7919 0.8007	0.8071 0.8220

343 Table 2: Average AUROC, AUPRC, and F1-score on 6 datasets with multiple runs, using GAD
 344 models as baselines, where the white columns represent vanilla models and the "+FA" represent
 345 models augmented by FracAug.

Datasets	Metrics	iGAD +FA	GmapAD +FA	RQGNN +FA	UniGAD +FA
P388	AUROC	0.5143 0.5300	0.4782 0.5057	0.5952 0.6108	0.5104 0.5167
	AUPRC	0.1923 0.1939	0.2478 0.2599	0.2484 0.2650	0.1679 0.1748
	F1-score	0.4669 0.4843	0.3894 0.4099	0.5879 0.5883	0.4781 0.4812
SF-295	AUROC	0.5811 0.5815	0.5414 0.5535	0.5582 0.5902	0.5439 0.5730
	AUPRC	0.2666 0.2821	0.3066 0.3070	0.2141 0.2342	0.3000 0.2846
	F1-score	0.4836 0.4705	0.4030 0.4167	0.5719 0.5847	0.4117 0.4582
SN12C	AUROC	0.5522 0.5537	0.5343 0.5441	0.5597 0.6038	0.5433 0.5497
	AUPRC	0.1817 0.1858	0.3262 0.3315	0.1927 0.2442	0.2028 0.1961
	F1-score	0.5151 0.5144	0.3754 0.3818	0.5648 0.5826	0.4851 0.4986
UACC257	AUROC	0.5697 0.5748	0.5394 0.5597	0.5528 0.5692	0.5710 0.5832
	AUPRC	0.1906 0.1970	0.2927 0.3004	0.1601 0.1885	0.2510 0.2642
	F1-score	0.5201 0.5224	0.3986 0.4144	0.5522 0.5678	0.4676 0.4710
PROTEINS_full	AUROC	0.5976 0.6206	0.5041 0.6289	0.5641 0.6365	0.6173 0.6212
	AUPRC	0.6200 0.6333	0.5169 0.6436	0.5673 0.6563	0.6295 0.6338
	F1-score	0.5960 0.6211	0.5020 0.6299	0.5600 0.6310	0.6178 0.6223
DBLP_v1	AUROC	0.7755 0.7909	0.4975 0.5045	0.8065 0.8082	0.7601 0.7965
	AUPRC	0.8377 0.8473	0.6242 0.6548	0.8584 0.8598	0.8346 0.8509
	F1-score	0.7749 0.7910	0.4968 0.5021	0.8060 0.8079	0.7549 0.7966

363 These datasets are obtained from TUDataset¹, and their detailed statistics are listed in Appendix B.
 364 We randomly divide each dataset into 1%/1%/98% for $\mathcal{D}_{train}/\mathcal{D}_{val}/\mathcal{D}_{test}$ to simulate the limited
 365 supervision scenario in real applications. Due to the limited space, we present results of MCF-7,
 366 MOLT-4, PC-3, SW-620, NCI-H23, and OVCAR-8 in Appendix J.

367 **Baselines.** We integrate our FracAug with 10 distinct GNNs, including generalized graph classification
 368 models and specialized GAD models, to demonstrate its broad applicability. Besides, to further
 369 confirm the usefulness of FracAug, we compare FracAug against 4 SOTA graph-level augmentation
 370 frameworks based on their original vanilla models.

371

- 372 • Graph Classification: GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton et al., 2017), GAT
 373 (Velickovic et al., 2018), GIN (Xu et al., 2019), LRGNN (Wei et al., 2023), and GRDL (Wang &
 374 Fan, 2024).
- 375 • Graph-level Anomaly Detection: iGAD (Zhang et al., 2022), GmapAD (Ma et al., 2023a), RQGNN
 376 (Dong et al., 2024), and UniGAD (Lin et al., 2024).

377 ¹<https://chrsmrrs.github.io/datasets/docs/datasets/>

378 Table 3: Average AUROC, AUPRC, and F1-score on 6 datasets with multiple runs, using graph-level
 379 augmentation models as baselines, where the white columns represent vanilla models and their own
 380 augmentation method, while the "+FA" represent vanilla models augmented by FracAug.

382 Datasets	383 Metrics	MAAv	NodeSam	SubMix	384 +FA	GLAv	GLA +FA	GMixupv	GMixup +FA	FGWMixupv	FGWMixup +FA
388 P388	AUROC	0.5500	0.5069	0.5057	0.5720	0.5622	0.5816	0.6057	0.5469	0.5265	0.5647
	AUPRC	0.1958	0.1985	0.1127	0.2229	0.2157	0.2264	0.2632	0.1694	0.1536	0.1957
	F1-score	0.5520	0.5000	0.4987	0.5746	0.5372	0.5766	0.5925	0.5315	0.5078	0.5373
385 SF-295	AUROC	0.5649	0.5579	0.5292	0.5753	0.5954	0.6060	0.6197	0.5665	0.5687	0.6040
	AUPRC	0.2114	0.1939	0.2218	0.2252	0.2316	0.2451	0.2648	0.2004	0.2061	0.2509
	F1-score	0.5736	0.5644	0.5406	0.5820	0.5643	0.5702	0.5855	0.5245	0.5205	0.5371
387 SN12C	AUROC	0.5509	0.5639	0.5160	0.5795	0.5715	0.6003	0.6141	0.5713	0.5336	0.5984
	AUPRC	0.1726	0.1845	0.1966	0.2164	0.2048	0.2344	0.2528	0.2163	0.2047	0.2524
	F1-score	0.5538	0.5405	0.5190	0.5770	0.5644	0.5590	0.5655	0.5136	0.4920	0.5195
389 UACC257	AUROC	0.5623	0.5023	0.5211	0.5947	0.6159	0.6198	0.6327	0.5853	0.5843	0.6209
	AUPRC	0.1805	0.0559	0.0942	0.2210	0.2755	0.2745	0.2978	0.2365	0.2285	0.2963
	F1-score	0.5541	0.5005	0.5214	0.5784	0.5033	0.5131	0.5050	0.4993	0.5042	0.4898
390 PROTEINS_full	AUROC	0.6009	0.6083	0.4998	0.6217	0.5652	0.5325	0.6249	0.5411	0.5132	0.6097
	AUPRC	0.6183	0.6294	0.6186	0.6366	0.6053	0.5343	0.6476	0.5810	0.5057	0.6244
	F1-score	0.6015	0.6039	0.4316	0.6214	0.5577	0.5291	0.6227	0.5348	0.5025	0.6102
393 DBLP_v1	AUROC	0.6446	0.6608	0.6205	0.6822	0.7040	0.6402	0.7222	0.7939	0.7885	0.7994
	AUPRC	0.7689	0.7868	0.7947	0.7816	0.7882	0.7450	0.8085	0.8503	0.8471	0.8563
	F1-score	0.6252	0.6408	0.6291	0.6778	0.7029	0.6147	0.7177	0.7937	0.7878	0.7985

395 • Graph-level Augmentation: MAA (Yoo et al., 2022), GLA (Yue et al., 2022), GMixup (Han et al.,
 396 2022), and FGWMixup (Ma et al., 2023b).

397 **Experimental Settings.** To ensure fair evaluation, we standardize evaluations by: (1) sourcing
 398 all baseline code from GitHub and replacing loss functions with weighted version to mitigate
 399 class imbalance; (2) using authors' recommended hyperparameters for baselines, while optimizing
 400 FracAug's hyperparameters via grid search to maximize the summed AUROC/AUPRC/F1-score on
 401 validation sets. Complete configurations are detailed in Appendix F.

403 5.2 EXPERIMENTAL RESULTS

405 **Note that we conduct all the experiments in a semi-supervised setting, where we use both the
 406 validation and the test sets for pseudo-labeling.** We first evaluate the performance of FracAug on 6
 407 graph classification models and 4 GAD models. Tables 1 and 2 report the AUROC, AUPRC, and
 408 F1-score on 6 datasets. Besides, we also compare FracAug with 4 graph-level augmentation methods
 409 on their vanilla models, as shown in Table 3. The best performance of each model is highlighted in
 410 boldface. To sum up, FracAug effectively boosts the performance of GNNs and outperforms almost
 411 all baselines on these real-world datasets. Next, we provide our detailed observations.

412 **Augmentation for Graph Classification Models.** We analyze 4 generalized GNNs (GCN, Graph-
 413 SAGE, GAT, and GIN) and 2 recent models (LRGNN and GRDL) under limited supervision
 414 conditions. While generalized GNNs, due to architectural simplicity, struggle to capture nuanced anomaly
 415 patterns in GAD tasks, FracAug boosts their performance across most datasets as shown in Table 1,
 416 validating its augmentation efficacy. Surprisingly, LRGNN and GRDL initially underperform simpler
 417 GNNs in some cases, likely hindered by label scarcity, but regain competitiveness when integrated
 418 with FracAug, highlighting FracAug's adaptability to advanced architectures.

419 **Augmentation for Graph-level Anomaly Detection Models.** Specialized GAD models (iGAD,
 420 GmapAD, RQGNN, and UniGAD) exploit task-specific properties but falter under limited super-
 421 vision due to insufficient generalization capability. Notably, these task-specific architectures may
 422 underperform even basic GNNs in low-label regimes as presented in Table 2, emphasizing FracAug's
 423 effectiveness. Our framework universally elevates their performance by compensating for supervision
 424 scarcity, validating its versatility across model paradigms.

425 **Comparison with Graph-level Augmentation Frameworks.** To further prove the effectiveness
 426 of FracAug, we compare it against leading graph-level augmentation frameworks, including MAA,
 427 GLA, GMixup, and FGWMixup. In Table 3, we denote their corresponding vanilla models as MAAv,
 428 GLAv, GMixupv, and FGWMixupv, respectively. Such a setting will preserve the ability of those
 429 augmentation frameworks. Nevertheless, as we can see, the augmentation methods fail to generalize
 430 effectively to GAD tasks under limited supervision—the performance of the vanilla models may
 431 drop after the augmentation. In contrast, our FracAug can boost all vanilla models across real-world
 datasets, which demonstrates the usefulness of FracAug.

432
433
Table 4: Ablation study.
434

Datasets	Metrics	GIN	+FA	w/o largest	w/o smallest	w/o WDML	w/o MVP
P388	AUROC	0.5565	0.5913	0.5620	0.5708	0.5730	0.5599
	AUPRC	0.2850	0.3309	0.2917	0.3050	0.3074	0.3014
	F1-score	0.4468	0.4491	0.4482	0.4470	0.4470	0.4371
SF-295	AUROC	0.5844	0.6076	0.5971	0.5949	0.5920	0.5996
	AUPRC	0.2766	0.2832	0.2723	0.2716	0.2653	0.2790
	F1-score	0.4803	0.5047	0.5001	0.4975	0.4994	0.4973
SN12C	AUROC	0.5995	0.6079	0.5993	0.5963	0.5910	0.5990
	AUPRC	0.2696	0.2746	0.2685	0.2666	0.2632	0.2675
	F1-score	0.5030	0.5110	0.5041	0.5013	0.4971	0.5046
UACC257	AUROC	0.5877	0.6015	0.5939	0.5854	0.5938	0.5914
	AUPRC	0.2480	0.2598	0.2517	0.2527	0.2585	0.2586
	F1-score	0.4906	0.4983	0.4956	0.4835	0.4890	0.4858
PROTEINS_full	AUROC	0.5799	0.6174	0.5986	0.5842	0.5990	0.5854
	AUPRC	0.6259	0.6358	0.6111	0.5988	0.6205	0.6042
	F1-score	0.5679	0.6175	0.5995	0.5848	0.5976	0.5857
DBLP_v1	AUROC	0.6231	0.8044	0.7615	0.7828	0.7762	0.7628
	AUPRC	0.7201	0.8626	0.8301	0.8411	0.8374	0.8294
	F1-score	0.5996	0.8028	0.7594	0.7829	0.7760	0.7619

451
452
Table 5: Varying k_l - k_s - H_l - H_s on different datasets based on GIN.
453

Datasets k_l - k_s - H_l - H_s	PROTEINS_full			DBLP_v1		
	AUROC	AUPRC	F1-score	AUROC	AUPRC	F1-score
3-3-3-3	0.6174	0.6298	0.6187	0.7950	0.8514	0.7947
3-3-3-4	0.6141	0.6327	0.6142	0.7972	0.8572	0.7955
3-3-4-3	0.6103	0.6291	0.6104	0.7995	0.8546	0.7992
3-3-4-4	0.6174	0.6358	0.6175	0.7925	0.8486	0.7925
3-4-3-3	0.6174	0.6298	0.6187	0.7950	0.8514	0.7947
3-4-3-4	0.6082	0.6304	0.6072	0.7972	0.8572	0.7955
3-4-4-3	0.6103	0.6291	0.6104	0.7995	0.8546	0.7992
3-4-4-4	0.6094	0.6210	0.6104	0.7982	0.8524	0.7982
4-3-3-3	0.6174	0.6298	0.6187	0.7885	0.8509	0.7867
4-3-3-4	0.6124	0.6284	0.6133	0.7972	0.8538	0.7967
4-3-4-3	0.6161	0.6295	0.6174	0.8044	0.8626	0.8028
4-3-4-4	0.6138	0.6316	0.6142	0.8007	0.8570	0.8000
4-4-3-3	0.6174	0.6298	0.6187	0.7972	0.8579	0.7953
4-4-3-4	0.6161	0.6295	0.6174	0.7994	0.8560	0.7987
4-4-4-3	0.6108	0.6334	0.6095	0.8015	0.8617	0.7996
4-4-4-4	0.6094	0.6210	0.6104	0.8008	0.8577	0.7999

471
472
5.3 ABLATION STUDY
473

474 To examine the effectiveness of each component in FracAug, we conduct an ablation study on 6
475 datasets based on GIN (ablation study on the other 6 datasets can be found in Appendix L), which is
476 shown in Table 4. Specifically, the "+FA" represents the performance of GIN with FracAug, where
477 w/o largest and w/o smallest denote removing the fractional graphs generated by top- k_l largest and
478 top- k_s smallest eigenvalues, respectively, w/o WDML means replacing our proposed WDML with
479 weighted cross-entropy loss, and w/o MVP pseudo-labels samples in $\mathcal{D}_{val} \cup \mathcal{D}_{test}$ using only the
480 predicted probability of synthetic graphs. As shown in Table 4, FracAug consistently outperforms its
481 four variants, which demonstrates the benefits of these components.

482
483
5.4 HYPERPARAMETER ANALYSIS
484

485 Table 5 presents a systematic exploration of FracAug's performance, measured in AUROC, AUPRC,
486 and F1-score, when varying k_l , k_s , H_l , H_s between 3 and 4. Specifically, k_l , k_s denote the top- k_l

Figure 3: Varying τ_a and τ_n for PROTEINS_full based on GIN.Figure 4: Varying τ_a and τ_n for DBLP_v1 based on GIN.

largest and top- k_s eigenvalues generated by EVD, while H_l, H_s denote the number of learnable fractional powers of the matrix for the largest and smallest eigenvalues. By sweeping each of these four parameters, we generate a compact grid of 16 configurations. As detailed in Appendix F, each evaluation metric prefers a slightly different quadruple of (k_l, k_s, H_l, H_s) , but more importantly, Table 5 reveals that the detection performance barely wavers across all measured combinations. This robustness not only validates the spectral augmentation strategy of FracAug but also suggests that practitioners can avoid laborious hyperparameter tuning without sacrificing performance.

In a parallel study, Figures 3 and 4 examine the sensitivity of FracAug to the pseudo-labeling thresholds τ_n and τ_a . Here, τ_n specifies the percentile above which a node is considered “normal”, and τ_a the percentile below which it is flagged as “anomalous”. By varying τ_n from 0.8 to 0.95 and τ_a from 0.05 to 0.2, we again explore 16 threshold pairs on each dataset, logging the resulting AUROC, AUPRC, and F1-score for every pair. Remarkably, all three metrics remain essentially flat throughout this entire range, indicating that FracAug’s pseudo-labeling module is forgiving of moderate threshold choices. Leveraging this stability, we adopt $\tau_n = 0.05$ and $\tau_a = 0.95$ as our default across all datasets, thereby avoiding extensive threshold tuning without affecting performance.

6 CONCLUSION

In this paper, we investigate the efficacy of leveraging fractional graph variants for data augmentation in GAD under limited supervision scenarios. Based on the analysis, we design a model-agnostic plug-in augmentation framework, FracAug, which includes three key components: FGG, WDML, and MVP. FGG with WDML captures semantics from original samples and then generates semantic-preserving fractional graphs during model training, unaffected by the imbalanced data distribution, while MVP employs mutual verification to enhance pseudo-labeling reliability, iteratively expanding the training set. Comprehensive experiments demonstrate that FracAug not only effectively improves the performance of any given GNN but also significantly outperforms other graph-level augmentation methods, demonstrating the effectiveness of our method.

540 REFERENCES
541

542 Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Aréchiga, and Tengyu Ma. Learning imbalanced
543 datasets with label-distribution-aware margin loss. In *NeurIPS*, pp. 1565–1576, 2019.

544 Nan Chen, Zemin Liu, Bryan Hooi, Bingsheng He, Rizal Fathony, Jun Hu, and Jia Chen. Consistency
545 training with learnable data augmentation for graph anomaly detection with limited supervision. In
546 *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,*
547 *May 7-11, 2024*, 2024.

548 Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes without
549 alignments. *Journal of molecular biology*, 330:771–783, 2003.

550 Xiangyu Dong, Xingyi Zhang, and Sibo Wang. Rayleigh quotient graph neural networks for graph-
551 level anomaly detection. In *ICLR*, 2024.

552 Xiangyu Dong, Xingyi Zhang, Lei Chen, Mingxuan Yuan, and Sibo Wang. Spacegnn: Multi-space
553 graph neural network for node anomaly detection with extremely limited labels. In *ICLR*, 2025.

554 William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
555 graphs. In *NeurIPS*, pp. 1024–1034, 2017.

556 Xiaotian Han, Zhimeng Jiang, Ninghao Liu, and Xia Hu. G-mixup: Graph data augmentation for
557 graph classification. In *ICML*, pp. 8230–8248, 2022.

558 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
559 In *ICLR*, 2017.

560 Richard B. Lehoucq, Danny C. Sorensen, and Chao Yang. *ARPACK users' guide - solution of*
561 *large-scale eigenvalue problems with implicitly restarted Arnoldi methods*. SIAM, 1998.

562 Yiqing Lin, Jianheng Tang, Chenyi Zi, H. Vicky Zhao, Yuan Yao, and Jia Li. Unigad: Unifying
563 multi-level graph anomaly detection. In *NeurIPS*, pp. 136120–136148, 2024.

564 Xiaoxiao Ma, Jia Wu, Jian Yang, and Quan Z. Sheng. Towards graph-level anomaly detection via
565 deep evolutionary mapping. In *KDD*, pp. 1631–1642, 2023a.

566 Xinyu Ma, Xu Chu, Yasha Wang, Yang Lin, Junfeng Zhao, Liantao Ma, and Wenwu Zhu. Fused
567 gromov-wasserstein graph mixup for graph-level classifications. In *NeurIPS*, pp. 15252–15276,
568 2023b.

569 Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
570 Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In *ICML 2020*
571 *Workshop on Graph Representation Learning and Beyond*, 2020.

572 Shirui Pan, Xingquan Zhu, Chengqi Zhang, and Philip S. Yu. Graph stream classification using
573 labeled and unlabeled graphs. In *ICDE*, pp. 398–409, 2013.

574 Lloyd N Trefethen. *Approximation theory and approximation practice, extended edition*. SIAM,
575 2019.

576 Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
577 Bengio. Graph attention networks. In *ICLR*, 2018.

578 Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng Li, and Wei
579 Liu. Cosface: Large margin cosine loss for deep face recognition. In *CVPR*, pp. 5265–5274, 2018.

580 Yili Wang, Yixin Liu, Xu Shen, Chenyu Li, Kaize Ding, Rui Miao, Ying Wang, Shirui Pan, and Xin
581 Wang. Unifying unsupervised graph-level out-of-distribution detection and anomaly detection: A
582 benchmark. In *ICLR*, 2025.

583 Zixiao Wang and Jicong Fan. Graph classification via reference distribution learning: Theory and
584 practice. In *NeurIPS*, pp. 137698–137740, 2024.

594 Lanning Wei, Zhiqiang He, Huan Zhao, and Quanming Yao. Search to capture long-range dependency
595 with stacking gnns for graph classification. In *WWW*, pp. 588–598, 2023.
596

597 Jun Xia, Chengshuai Zhao, Bozhen Hu, Zhangyang Gao, Cheng Tan, Yue Liu, Siyuan Li, and Stan Z.
598 Li. Mole-BERT: Rethinking pre-training graph neural networks for molecules. In *ICLR*, 2023.
599

600 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
601 networks? In *ICLR*, 2019.
602

603 Yuchen Yan, Yuzhong Chen, Huiyuan Chen, Minghua Xu, Mahashweta Das, Hao Yang, and Hang-
604 hang Tong. From trainable negative depth to edge heterophily in graphs. In *NeurIPS*, pp. 70162–
605 70178, 2023.
606

607 Jaemin Yoo, Sooyeon Shim, and U Kang. Model-agnostic augmentation for accurate graph classifica-
608 tion. In *WWW*, pp. 1281–1291, 2022.
609

610 Han Yue, Chunhui Zhang, Chuxu Zhang, and Hongfu Liu. Label-invariant augmentation for semi-
611 supervised graph classification. In *NeurIPS*, pp. 29350–29361, 2022.
612

613 Ge Zhang, Zhenyu Yang, Jia Wu, Jian Yang, Shan Xue, Hao Peng, Jianlin Su, Chuan Zhou, Quan Z.
614 Sheng, Leman Akoglu, and Charu C. Aggarwal. Dual-discriminative graph neural network for
615 imbalanced graph-level anomaly detection. In *NeurIPS*, pp. 24144–24157, 2022.
616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 **A PROOFS**
 649

650 **Proof of Theorem 1.** To derive the approximation of \mathbf{A}^α and the corresponding error bound, we first
 651 consider a function for real numbers, i.e., $f(x) = x^\alpha$ defined on an interval $[a, b] \subset (0, +\infty)$. To
 652 satisfy the requirement of Chebyshev series approximation, we map $[a, b]$ to the standard Chebyshev
 653 interval $[-1, 1]$ via the linear transformation:
 654

$$655 \quad x = \frac{2}{b-a}(x' - \frac{b+a}{2}), \\ 656$$

657 where $x' \in [a, b]$ maps to $x \in [-1, 1]$. Then we further define:
 658

$$659 \quad \tilde{f}(x) = \left(\frac{(b-a)x + (b+a)}{2} \right)^\alpha, \\ 660$$

661 which can be approximated using Chebyshev series approximation as:
 662

$$663 \quad \tilde{f}(x) \approx p_T(x) = \sum_{t=0}^T c_t P_t(x), \\ 664 \\ 665$$

666 where $P_t(x)$ is the t -th Chebyshev polynomial, and the c_t are the Chebyshev coefficients. Specifically,
 667 we can find the coefficients c_t through the application of an inner product:
 668

$$669 \quad \int_{-1}^{+1} \frac{P_m(x) \tilde{f}(x)}{\sqrt{1-x^2}} dx = \sum_{t=0}^{\infty} c_t \int_{-1}^{+1} \frac{P_m(x) P_t(x)}{\sqrt{1-x^2}} dx. \\ 670 \\ 671$$

672 On the interval $[-1, 1]$, we have:
 673

$$674 \quad \int_{-1}^{+1} \frac{P_m(x) P_t(x)}{\sqrt{1-x^2}} dx = \begin{cases} 0, & m \neq t, \\ \pi, & m = t = 0, \\ \frac{\pi}{2}, & m = t \neq 0, \end{cases} \\ 675 \\ 676 \\ 677$$

678 so we can derive:
 679

$$680 \quad c_t = \begin{cases} \frac{1}{\pi} \int_{-1}^{+1} \frac{P_t(x) \tilde{f}(x)}{\sqrt{1-x^2}} dx, & t = 0, \\ \frac{2}{\pi} \int_{-1}^{+1} \frac{P_t(x) \tilde{f}(x)}{\sqrt{1-x^2}} dx, & t \neq 0. \end{cases} \\ 681 \\ 682 \\ 683 \\ 684$$

685 Afterward, to obtain the error bound of the approximation, we leverage the following Theorem:
 686

687 **Theorem 3.** (Theorems 8.1 and 8.2 from previous work (Trefethen, 2019)) Let a function $f(x)$ analytic
 688 in $[-1, 1]$ be analytically continuable to open Bernstein ellipse E_p , where it satisfies $|f(x)| \leq M$ for
 689 some M , then for each $t \geq 0$, its Chebyshev approximation $p_T(x)$ satisfies $\|f(x) - p_T(x)\| \leq \frac{4M\rho^{-T}}{\rho-1}$,
 690 where ρ depends on the distance from $[-1, 1]$ to the nearest singularity of $f(x)$.
 691

692 The function $f(x) = x^\alpha$ has a branch point at $x = 0$. For $[a, b] \subset (0, +\infty)$, the mapped function
 693 $\tilde{f}(x)$ is analytic in a Bernstein ellipse E_p , excluding $x = 0$. Therefore, $\tilde{f}(x)$ satisfies Theorem 3, so
 694 we can have:
 695

$$696 \quad \|\tilde{f}(x) - p_T(x)\| \leq \frac{4M\rho^{-T}}{\rho-1} = \beta e^{-\gamma T}, \\ 697$$

698 where $\beta = \frac{4M}{\rho-1}$ and $\gamma = \ln \rho$.
 699

700 Similarly, we can directly apply the function to \mathbf{A} with eigenvalues in $[\lambda_{\min}, \lambda_{\max}] \subset (0, +\infty)$,
 701 then we can conclude:
 702

$$703 \quad \|\mathbf{A}^\alpha - p_T(\mathbf{A})\| \leq \beta e^{-\gamma T},$$

704 where β, γ is derived from $[\lambda_{\min}, \lambda_{\max}]$. □
 705

702 **Proof of Theorem 2.** Using the Dunford-Taylor integral, for a contour Γ enclosing the spectra of \mathbf{A}
 703 and $\mathbf{A} + \mathbf{P}$, we have:

$$704 \quad \mathbf{A}^\alpha = \frac{1}{2\pi i} \int_{\Gamma} x^\alpha (\mathbf{xI} - \mathbf{A})^{-1} dx,$$

$$705 \quad (\mathbf{A} + \mathbf{P})^\alpha = \frac{1}{2\pi i} \int_{\Gamma} x^\alpha (\mathbf{xI} - (\mathbf{A} + \mathbf{P}))^{-1} dx.$$

706 Then we subtract the two integrals:

$$707 \quad \mathbf{A}^\alpha - (\mathbf{A} + \mathbf{P})^\alpha = \frac{1}{2\pi i} \int_{\Gamma} x^\alpha [(\mathbf{xI} - \mathbf{A})^{-1} - (\mathbf{xI} - (\mathbf{A} + \mathbf{P}))^{-1}] dx.$$

710 After applying the resolvent identity, we can have:

$$711 \quad (\mathbf{xI} - \mathbf{A})^{-1} - (\mathbf{xI} - (\mathbf{A} + \mathbf{P}))^{-1} = (\mathbf{xI} - \mathbf{A})^{-1} \mathbf{P} (\mathbf{xI} - (\mathbf{A} + \mathbf{P}))^{-1}.$$

714 By substituting back into the integral, we have:

$$715 \quad \mathbf{A}^\alpha - (\mathbf{A} + \mathbf{P})^\alpha = \frac{1}{2\pi i} \int_{\Gamma} x^\alpha (\mathbf{xI} - \mathbf{A})^{-1} \mathbf{P} (\mathbf{xI} - (\mathbf{A} + \mathbf{P}))^{-1} dx.$$

718 Take the operator norm and apply submultiplicativity:

$$719 \quad \|\mathbf{A}^\alpha - (\mathbf{A} + \mathbf{P})^\alpha\| \leq \frac{1}{2\pi} \int_{\Gamma} |x^\alpha| \|(\mathbf{xI} - \mathbf{A})^{-1}\| \|\mathbf{P}\| \|(\mathbf{xI} - (\mathbf{A} + \mathbf{P}))^{-1}\| dx.$$

722 If we choose Γ to be a contour at distance $d > 0$ from the spectra of \mathbf{A} , we can have:

$$723 \quad (\mathbf{xI} - \mathbf{A})^{-1} = \mathbf{U} (\mathbf{xI} - \mathbf{\Lambda})^{-1} \mathbf{U}^T,$$

726 where $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T$ is the eigendecomposition of \mathbf{A} and the corresponding norm is:

$$727 \quad \|(\mathbf{xI} - \mathbf{A})^{-1}\| = \|(\mathbf{xI} - \mathbf{\Lambda})^{-1}\| = \max_{\lambda \in \sigma(\mathbf{A})} \frac{1}{|x - \lambda|} = \frac{1}{\text{dist}(x, \sigma(\mathbf{A}))} = \frac{1}{d},$$

732 where $\sigma(\mathbf{A})$ is the spectrum of \mathbf{A} and $\text{dist}(\cdot)$ is the distance function.

734 For a small perturbation $\|\mathbf{P}\|$, the spectrum of $\mathbf{A} + \mathbf{P}$ will lie in a neighborhood of the spectrum
 735 of \mathbf{A} . Specifically, for any eigenvalue λ' of $\mathbf{A} + \mathbf{P}$, there exists an eigenvalue λ of \mathbf{A} such that
 736 $|\lambda' - \lambda| \leq \|\mathbf{P}\|$, which implies:

$$737 \quad \text{dist}(x, \sigma(\mathbf{A} + \mathbf{P})) \geq \text{dist}(x, \sigma(\mathbf{A})) - \|\mathbf{P}\|.$$

739 Then for $x \notin \sigma(\mathbf{A} + \mathbf{P})$, we use the Neumann series:

$$740 \quad (\mathbf{xI} - (\mathbf{A} + \mathbf{P}))^{-1} = (\mathbf{xI} - \mathbf{A})^{-1} \sum_{i=0}^{+\infty} [\mathbf{P} (\mathbf{xI} - \mathbf{A})^{-1}]^i,$$

744 which converges if $\|\mathbf{P} (\mathbf{xI} - \mathbf{A})^{-1}\| < 1$.

745 Afterward, we take its norm and apply submultiplicativity:

$$746 \quad \|(\mathbf{xI} - (\mathbf{A} + \mathbf{P}))^{-1}\| \leq \frac{\|(\mathbf{xI} - \mathbf{A})^{-1}\|}{1 - \|\mathbf{P}\| \|(\mathbf{xI} - \mathbf{A})^{-1}\|}$$

$$747 \quad = \frac{1}{\text{dist}(x, \sigma(\mathbf{A})) - \|\mathbf{P}\|}$$

$$748 \quad \leq \frac{1}{d}.$$

753 Then let $M = \max_{x \in \Gamma} |x^\alpha|$ and $\text{L}(\cdot)$ be the length function, we can have:

$$755 \quad \|\mathbf{A}^\alpha - (\mathbf{A} + \mathbf{P})^\alpha\| \leq \frac{1}{2\pi d^2} M \|\mathbf{P}\| \text{L}(\Gamma)$$

756 Table 6: Statistics of 12 real-world datasets, where n_n is the number of normal graphs, n_a is the
 757 number of anomalous graphs, $h = \frac{n_a}{n_n+n_a}$ is the anomalous ratio, \bar{n} is the average number of nodes,
 758 \bar{m} is the average number of edges, and F is the number of attributes.

760	Dataset	MCF-7	MOLT-4	PC-3	SW-620	NCI-H23	OVCAR-8	P388	SF-295	SN12C	UACC257	PROTEINS_full	DBLP_v1
761	n_n	25476	36625	25941	38122	38296	38437	39174	38246	38049	38345	663	9926
762	n_a	2294	3140	1568	2410	2057	2079	2298	2025	1955	1643	450	9530
763	h	0.0826	0.079	0.057	0.0595	0.051	0.0513	0.0554	0.0503	0.0489	0.0411	0.4043	0.4898
764	\bar{n}	26.4	26.1	26.36	26.06	26.07	26.08	22.11	26.06	26.08	262.09	39.06	10.48
765	\bar{m}	28.53	28.14	28.49	28.09	28.1	28.11	23.56	28.09	28.11	28.13	72.82	19.65
	F	46	64	45	65	65	72	65	65	64	3	41325	

766 Define $c = \frac{ML(\Gamma)}{2\pi d^2}$, yielding $\|\mathbf{A}^\alpha - (\mathbf{A} + \mathbf{P})^\alpha\| \leq c\|\mathbf{P}\|$.

767 Besides, for a generated adjacency matrix from the perturbation method, it can be diagonalized, so
 768 we can have:

$$771 \quad (\mathbf{A} + \mathbf{P}) - (\mathbf{A} + \mathbf{P})^\alpha = \mathbf{V}(\Sigma - \Sigma^\alpha)\mathbf{V}^T,$$

772 where $\mathbf{A} + \mathbf{P} = \mathbf{V}\Sigma\mathbf{V}^T$ and Σ is a diagonal matrix composed of $(\lambda_1, \lambda_2, \dots, \lambda_n)$. Take the norm,
 773 we can get:

$$774 \quad \|(\mathbf{A} + \mathbf{P}) - (\mathbf{A} + \mathbf{P})^\alpha\| = \max_i |\lambda_i - \lambda_i^\alpha|.$$

775 Finally, by applying the submultiplicativity, we can conclude:

$$777 \quad \|\mathbf{A}^\alpha - (\mathbf{A} + \mathbf{P})\| \leq c\|\mathbf{P}\| + \max_i |\lambda_i - \lambda_i^\alpha|,$$

779 where c depends on α and the spectral gap of \mathbf{P} , and λ_i is the i -th eigenvalue of $\mathbf{A} + \mathbf{P}$. \square

780 **Proof of Proposition 1.** Assume the two prediction error rates for original graphs and corresponding
 781 fractional graphs are two Bernoulli variables with mean δ , and the correlation of the errors is ρ . Then
 782 we have the joint error rate:

$$784 \quad \mathbb{P}(\text{Both wrong}) = \delta^2 + \rho\delta(1 - \delta).$$

785 Since the original error rate is δ , the mutual verification will lower the error with the reduction factor
 786 $\delta + \rho\delta(1 - \delta)$.

787 According to the above analysis, the error rate of mutual verification is $p = \delta^2 + \rho\delta(1 - \delta)$. Assuming
 788 it is also a Bernoulli variable, the variance can be calculated as:

$$789 \quad v = (\delta^2 + \rho\delta(1 - \delta))(1 - \delta^2 - \rho\delta(1 - \delta)).$$

792 For a small error rate δ , we can approximate it as $v = \rho\delta(1 - \rho\delta)$. Therefore, the reduction factor of
 793 variance is close to ρ . \square

795 B DATASETS AND BASELINES

797 **Datasets.** The datasets used in our experiments are collected by TUDataset (Morris et al., 2020).
 798 Specifically, MCF-7, MOLT-4, PC-3, SW-620, NCI-H23, OVCAR-8, P388, SF-295, SN12C, and
 799 UACC257 are small-molecule datasets from PubChem², which provide information on the biological
 800 activities of small molecules. In these datasets, nodes represent atoms within chemical compounds,
 801 while edges indicate the chemical bonds connecting pairs of atoms. Each dataset corresponds
 802 to a specific type of cancer screening, with outcomes classified as either active or inactive. We
 803 consider inactive chemical compounds as normal graphs and active compounds as anomalous graphs.
 804 Furthermore, the attributes are derived from node labels using one-hot encoding.

805 Besides, PROTEINS_full is a typical bioinformatics-related dataset (Dobson & Doig, 2003), which
 806 processes several proteins represented as graphs. In this dataset, nodes and edges are formulated in a
 807 similar way to small-molecule datasets from PubChem. This dataset aims to classify enzymes and
 808 non-enzymes, which are denoted as normal and anomalous graphs, respectively.

809 ²<https://pubchem.ncbi.nlm.nih.gov/>

Beyond the above datasets, we also conduct experiments on DBLP_v1 (Pan et al., 2013), which consists of bibliography data in computer science. Each record in DBLP_v1 is associated with a number of attributes such as abstract, authors, year, venue, title, and reference ID. Since the dimension of the attributes is high, we first utilize EVD to lower the dimension to 16. In this dataset, nodes denote papers, while edges represent reference relations between papers. The classification task is to predict whether a paper belongs to the CVPR (computer vision and pattern recognition) or DBDM (database and data mining) conferences, which are seen as normal and anomalous, respectively.

Baselines. The first group is graph classification models:

- GCN (Kipf & Welling, 2017): a GNN that uses a convolution function on a graph to propagate information within the neighborhood of nodes;
- GraphSAGE (Hamilton et al., 2017): a GNN that leverages a sampling technique to aggregate features from the neighborhood.
- GAT (Velickovic et al., 2018): a GNN that adopts an attention mechanism within the neighborhood of each node;
- GIN (Xu et al., 2019): a GNN that follows graph isomorphism to capture the properties of a graph.
- LRGNN (Wei et al., 2023): a GNN stacking multiple GNNs to extract the long-range dependencies;
- GRDL (Wang & Fan, 2024): a GNN treating node embeddings as a discrete distribution, enabling direct classification without global pooling.

The second group is GAD models:

- iGAD (Zhang et al., 2022): a GNN with a substructure-aware component to capture properties of anomalous graphs.
- GmapAD (Ma et al., 2023a): a GNN mapping graphs into a latent space where anomalies can be effectively detected;
- RQGNN (Dong et al., 2024): a GNN using Rayleigh Quotient to obtain information from both spectral and spatial spaces.
- UniGAD (Lin et al., 2024): a GNN that unifies different levels of graph-related tasks.

The third group is graph-level augmentation frameworks:

- MAA (Yoo et al., 2022): a framework using node split and merge, and subgraph mix to augment graphs heuristically;
- GLA (Yue et al., 2022): a framework augmenting data in the representation space from the most difficult direction while keeping the label of augmented data the same as the original samples;
- GMixup (Han et al., 2022): a framework that interpolates graphons of different classes in the Euclidean space to get mixed graphons;
- FGWMixup (Ma et al., 2023b): a framework that seeks a midpoint of source graphs in the Fused Gromov-Wasserstein metric space to interpolate graphons of different classes.

C ALGORITHM

Algorithm 1: Preprocess

```

Input:  $\mathcal{D}, k_l, k_s$ 
1 for  $G$  in  $\mathcal{D}$  do
2    $G.\mathbf{A} \leftarrow \frac{1}{2}(\mathbf{I} + G.\mathbf{D}^{-\frac{1}{2}} * G.\mathbf{A} * G.\mathbf{D}^{-\frac{1}{2}});$ 
3    $G.\mathbf{U}_l, G.\mathbf{\Lambda}_l \leftarrow \text{EVD}(G.\mathbf{A}, k_l);$ 
4    $G.\mathbf{U}_s, G.\mathbf{\Lambda}_s \leftarrow \text{EVD}(G.\mathbf{A}, k_s);$ 

```

D TIME COMPLEXITY ANALYSIS

For the Preprocess function, we first analyze the time complexity of the matrix multiplication. Since we utilize sparse matrices to conduct the experiment, the time complexity of the multiplication is

864

Algorithm 2: FGG

865

Input: \mathcal{D}, H_l, H_s
Output: \mathcal{D}'

1 **for** G in \mathcal{D} **do**
2 **for** $i = 0$ to H_l **do**
3 $G_l \leftarrow G_l + \omega_l[i] * G \cdot \mathbf{U}_l * G \cdot \Lambda_l^{\alpha_l[i]} * G \cdot \mathbf{U}_l^T$;
4 **for** $i = 0$ to H_l **do**
5 $G_s \leftarrow G_s + \omega_s[i] * G \cdot \mathbf{U}_s * G \cdot \Lambda_s^{\alpha_s[i]} * G \cdot \mathbf{U}_s^T$;
6 $G' \leftarrow \omega * G_l + (1 - \omega) * G_s$;
7 $\mathcal{D}' \leftarrow \mathcal{D}' \cup G'$;
8 **Return** \mathcal{D}' ;

877

878

Algorithm 3: WDML

879

Input: $f, \mathcal{D}, \mathcal{D}'$
1 **for** G, G' in $\mathcal{D}, \mathcal{D}'$ **do**
2 $s, o \leftarrow f(G)$;
3 $s', o' \leftarrow f(G')$;
4 $m \leftarrow \frac{1 - \cos(o, o')}{2}$;
5 $L_{\text{WDML}} \leftarrow L_{\text{WDML}} + -\frac{1}{N_{G,y}} \log \frac{e^{s[G,y] - m}}{e^{s[G,y] - m} + e^{s[1 - G,y]}}$;
6 $L_{\text{WDML}}.\text{backward}()$;

888

889

Algorithm 4: MVP

890

Input: $f, \mathcal{D}, \mathcal{D}', \tau_n, \tau_a$
Output: \mathcal{D}''

1 **for** G, G' in $\mathcal{D}, \mathcal{D}'$ **do**
2 $s, o \leftarrow f(G)$;
3 $s', o' \leftarrow f(G')$;
4 **if** $s[0] < \tau_n \wedge s'[0] \leq \tau_n$ **then**
5 $G.y \leftarrow 0$;
6 $\mathcal{D}'' \leftarrow \mathcal{D}'' \cup G$;
7 **else if** $s[1] < \tau_a \wedge s'[1] \leq \tau_a$ **then**
8 $G.y \leftarrow 1$;
9 $\mathcal{D}'' \leftarrow \mathcal{D}'' \cup G$;
10 **Return** \mathcal{D}'' ;

903

904

Algorithm 5: FracAug

905

Input: $f, \mathcal{D}_{\text{train}}, \mathcal{D}_{\text{val}}, \mathcal{D}_{\text{test}}, H_l, H_s, k_l, k_s, e_{\text{warmup}}, e_{\text{aug}}, \tau_n, \tau_a$

1 Preprocess($\mathcal{D}_{\text{train}} \cup \mathcal{D}_{\text{val}} \cup \mathcal{D}_{\text{test}}, k_l, k_s$);
2 $D'_{\text{train}} \leftarrow D_{\text{train}}$;
3 **for** $e = 0$ to e_f **do**
4 **if** $e > e_{\text{warmup}} \wedge e \% e_{\text{aug}} == 0$ **then**
5 **for** $e' = 0$ to e_{FGG} **do**
6 $D_{\text{temp}} \leftarrow \text{FGG}(\mathcal{D}_{\text{train}}, H_l, H_s)$;
7 $\text{WDML}(f, \mathcal{D}, \mathcal{D}_{\text{temp}})$;
8 $D_{\text{temp}} \leftarrow \text{FGG}(\mathcal{D}_{\text{val}} \cup \mathcal{D}_{\text{test}}, H_l, H_s)$;
9 $D_{\text{temp}} \leftarrow \text{MVP}(f, \mathcal{D}_{\text{val}} \cup \mathcal{D}_{\text{test}}, \mathcal{D}_{\text{temp}}, \tau_n, \tau_a)$;
10 $D'_{\text{train}} \leftarrow D_{\text{train}} \cup \mathcal{D}_{\text{temp}}$;
11 $\text{train}(f, D'_{\text{train}})$);

918
919
Table 7: Comparison of average running time (s).
920

Datasets	NSv+FA	NodeSam	SubMix	GLAv+FA	GLA	GMixupv+FA	GMixup	FGWMixupv+FA	FGWMixup
MCF-7	92.18+58.56	1282.84	876.39	92.00+73.57	1493.55	90.54+107.51	51.64	92.29+106.76	553.90
MOLT-4	133.10+83.70	1352.07	881.00	128.18+113.70	1924.35	131.30+150.27	64.55	129.84+176.65	855.30
PC-3	91.26+70.05	1249.30	879.76	90.55+64.84	1484.25	90.46+110.26	51.52	90.70+98.88	613.19
SW-620	133.80+102.96	1248.39	875.52	136.75+99.17	2076.36	133.42+158.47	75.68	133.50+153.30	873.41
NCI-H23	130.20+108.73	1301.09	883.09	130.63+93.82	2091.18	131.54+134.20	63.68	131.07+143.53	896.41
OVCAR-8	131.48+98.46	1351.17	890.68	132.62+102.36	2077.41	132.07+168.57	61.41	131.23+130.47	986.01
P388	120.73+103.09	1258.91	884.15	120.43+90.74	2140.75	122.53+145.56	60.47	121.12+135.97	965.61
SF-295	130.92+84.81	1359.48	879.52	131.26+110.89	2063.71	130.77+168.45	66.25	130.43+150.38	915.04
SN12C	129.79+102.16	1334.82	914.87	129.62+87.23	2044.62	130.21+148.75	68.58	128.95+134.45	933.55
UACC257	128.63+84.19	1387.70	930.43	128.39+88.05	2053.46	129.04+138.45	58.83	129.65+142.53	891.95
PROTEINS_full	9.03+6.67	206.50	202.65	8.50+8.86	69.30	8.62+7.98	4.58	8.84+7.63	30.25
DBLP_v1	38.86+62.06	1335.42	897.90	36.99+61.50	1123.57	39.22+99.74	30.51	39.15+105.83	155.67

921
922
923
924
925
926
927
928
929
930
931
Table 8: Comparison of average wall-clock time (s).
932

Datasets	NSv+FA	NodeSam	SubMix	GLAv+FA	GLA	GMixupv+FA	GMixup	FGWMixupv+FA	FGWMixup
MCF-7	135.73+69.63	1410.86	912.23	136.19+92.94	1543.64	131.46+107.54	70.60	132.19+106.70	949.81
MOLT-4	191.15+93.22	1433.10	936.19	194.52+127.01	1993.29	189.00+155.83	98.79	188.37+164.47	1487.41
PC-3	133.72+74.67	1423.05	973.39	132.97+86.91	1524.84	131.72+116.66	68.41	131.70+103.64	968.09
SW-620	193.47+104.12	1411.45	945.87	191.01+130.31	2138.65	194.62+162.24	102.90	191.97+162.04	1321.40
NCI-H23	191.622+113.72	1417.68	896.13	191.50+118.83	2220.64	192.70+139.89	102.48	194.30+150.65	1438.07
OVCAR-8	194.69+102.93	1459.6	891.68	192.11+127.31	2521.36	190.40+160.44	102.89	193.93+171.23	1430.77
P388	171.61+103.73	1573.25	933.75	172.97+130.55	2146.63	171.64+146.75	104.16	175.47+195.82	1754.24
SF-295	193.68+93.42	1640.00	889.18	195.20+129.01	2065.14	190.63+165.59	102.69	194.14+185.80	1469.35
SN12C	191.82+102.57	1429.26	972.91	192.14+125.52	2116.96	192.33+145.00	101.46	192.01+185.39	1378.80
UACC257	191.56+100.38	1429.63	977.20	193.70+122.99	2110.75	192.43+159.39	102.32	189.07+164.62	1320.10
PROTEINS_full	12.90+7.600	213.95	216.55	12.28+8.87	80.33	12.91+9.25	6.65	12.04+8.55	42.86
DBLP_v1	69.62+67.53	2238.69	1866.97	66.97+74.43	3155.02	69.79+99.96	61.35	66.85+104.41	227.15

943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
 $O(nnz(G \cdot D^{-\frac{1}{2}}) * nnz(G \cdot A) + nnz(G \cdot D^{-\frac{1}{2}} * G \cdot A) * nnz(G \cdot D^{-\frac{1}{2}})$, where nnz means non-zero entries of the matrix. Then, by adopting EVD to only keep the top- k_l largest and top- k_s smallest eigenvalues, the time complexity can be $O(n * (k_l^2 + k_s^2) + m * (k_l + k_s))$, where n, m is the number of nodes/edges. As shown in Algorithm 5, Preprocess can be called before the training process, and thus it won't burden the training or inference of our FracAug.

950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
Then, we analyze the time complexity of FGG for each graph. As presented in Algorithm 2, we perform sparse matrix multiplication for every sample H_l and H_s times. Besides, since $G \cdot \Lambda$ is a diagonal matrix, the time complexity of multiplying $G \cdot \Lambda$ is the same as that of multiplying $G \cdot \Lambda^\alpha$. Therefore, the total time complexity of FGG is $O(FGG) = O(nnz(G \cdot U_l) * k_l + nnz(G \cdot U_l * G \cdot \Lambda_l) * nnz(G \cdot U_l^T) + nnz(G \cdot U_s) * k_s + nnz(G \cdot U_s * G \cdot \Lambda_s) * nnz(G \cdot U_s^T))$.

950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
Next, we analyze the time complexity of WDML in Algorithm 3. Assuming that we only have one sample in \mathcal{D}_{train} , then the time complexity of WDML is $O(WDML) = O(d)$, where d is the dimension of the generated graph embedding \mathcal{O} .

950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
Moreover, as shown in Algorithm 4, in MVP, we only need to see if the probability predicted by the given GNN satisfies the criterion, so the time complexity for MVP is $O(MVP) = O(1)$.

950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
Finally, in Algorithm 5, we combine all the time complexities together within one training epoch of the given GNN f , assuming the time complexity of f for each sample is $O(f)$, then we have the total complexity as $O(e_{FGG} * (O(FGG) + O(WDML) + O(f)) * N_{train} + (O(FGG) + O(MVP) + O(f)) * (N_{val} + N_{test})$, where N_{val}, N_{test} represent the number of samples in \mathcal{D}_{val} and \mathcal{D}_{test} , respectively.

950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
In practice, we set e_{FGG} to 10 and e_{aug} to 25, which can reduce the computational cost, and FGG can still converge. According to the final complexity, we can see the dominant factor within each epoch is $O(e_{FGG} * O(f) * N_{train} + O(f) * (N_{val} + N_{test}))$. For such a factor, we need to calculate it in total $\frac{e_f - e_{warmup}}{e_{aug}} * e_{FGG}$ times, which is much less than the original training epoch of f . Hence, the increase in time complexity will not be the limitation of our FracAug in real applications.

950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
In Tables 7 and 8, we present a detailed runtime comparison and [wall-clock time comparison](#) between FracAug and several leading graph augmentation methods, respectively. For each technique, we decompose the total computational cost into a one-time preprocessing phase, performed once per

972
973
Table 9: Comparison of average consumed memory (MB).

Datasets	NSv+FA	NodeSam	SubMix	GLAv+FA	GLA	GMixupv+FA	GMixup	FGWMixupv+FA	FGWMixup
MCF-7	171.99+530.47	655.12	689.79	171.88+687.56	1125.73	172.20+538.38	675.25	172.32+552.62	598.73
MOLT-4	240.71+534.24	763.71	784.25	239.91+672.44	1262.11	239.92+538.74	770.23	239.85+573.34	817.38
PC-3	170.76+530.65	652.03	687.16	170.68+661.78	1118.31	170.50+533.72	671.04	170.77+505.36	602.24
SW-620	243.48+530.75	764.33	801.05	241.11+666.00	1276.12	243.46+531.57	769.41	249.02+546.39	838.00
NCI-H23	248.02+531.50	761.09	798.24	247.96+678.73	1300.57	250.67+534.30	772.79	247.66+549.04	836.02
OVCAR-8	248.82+526.89	764.66	800.23	248.93+669.54	1247.54	243.27+536.46	771.64	243.43+550.80	805.35
P388	249.69+531.71	762.02	800.58	249.85+678.52	1292.48	249.46+534.69	765.74	249.85+573.38	807.48
SF-295	243.00+527.81	761.71	799.39	247.26+669.17	1273.55	243.53+529.14	774.14	242.94+548.67	793.34
SN12C	240.86+535.26	765.17	787.12	240.62+689.41	1267.07	240.81+534.07	783.81	240.57+550.13	788.09
UACC257	245.70+536.63	765.68	786.74	240.70+690.96	1263.72	240.79+542.29	787.33	240.82+501.84	825.58
PROTEINS_full	36.85+553.28	455.68	491.23	36.88+707.05	746.64	36.93+549.06	462.45	36.87+561.18	79.47
DBLP_v1	129.30+526.47	810.82	865.18	129.12+697.11	990.82	129.04+539.86	604.73	129.20+552.64	417.28

984
985
Table 10: Comparison of average peak memory (MB).

Datasets	NSv+FA	NodeSam	SubMix	GLAv+FA	GLA	GMixupv+FA	GMixup	FGWMixupv+FA	FGWMixup
MCF-7	62.53	55.84	52.07	73.49	143.10	60.55	51.83	65.46	137.32
MOLT-4	89.45	78.66	73.17	95.55	192.97	86.34	79.51	90.78	194.61
PC-3	61.93	54.51	51.37	71.91	142.55	60.67	51.40	72.49	137.59
SW-620	91.19	80.08	74.80	85.14	196.15	93.25	81.22	93.69	197.01
NCI-H23	90.79	79.15	74.23	99.11	195.42	87.77	81.13	96.70	197.96
OVCAR-8	91.16	80.31	74.50	97.86	196.09	92.59	81.50	94.43	195.91
P388	93.28	82.13	76.83	103.88	200.72	95.81	90.00	96.29	208.33
SF-295	90.61	78.46	74.34	94.73	195.08	86.58	81.05	95.56	196.82
SN12C	90.02	78.43	73.81	96.41	193.95	90.44	80.36	94.84	199.04
UACC257	89.98	79.26	74.08	96.52	193.88	88.65	80.81	90.62	194.10
PROTEINS_full	4.89	5.83	5.63	4.97	6.51	5.01	7.02	4.95	7.35
DBLP_v1	45.35	38.40	37.67	48.54	95.30	43.37	29.05	46.59	93.41

997
998 dataset, and the subsequent training time measured over multiple epochs. While some baselines re-
999 quire repeated feature perturbations or costly online sampling at every iteration, FracAug’s eigenvalue
1000 decomposition is only performed during preprocessing. As a result, the per-epoch training overhead
1001 of FracAug remains on par with, or even below, that of competing approaches, despite leveraging
1002 additional spectral information to boost anomaly detection performance.

1003 Crucially, these efficiency gains do not come at the expense of detection performance. Across all
1004 datasets and baseline comparisons, FracAug consistently delivers state-of-the-art AUROC, AUPRC,
1005 and F1-score results while maintaining competitive total runtimes. By amortizing the heavier spectral
1006 computations over the entire training cycle and by implementing optimized matrix operations, Fra-
1007 cAug strikes an effective balance between computational tractability and augmentation quality. This
1008 combination of speed and performance underscores the practical value of our method: practitioners
1009 can readily adopt FracAug for real graph applications without incurring prohibitive time costs.

E MEMORY COMPLEXITY ANALYSIS

1013 In Tables 9 and 10, we report detailed comparisons of total and peak memory consumption for
1014 FracAug against several leading graph augmentation methods. For each method in Table 9, we
1015 further break down the total memory usage into a one-time preprocessing stage, executed once per
1016 dataset, and the recurring memory cost measured across training epochs. For each method in Table
1017 10, we present the peak memory during the training procedure. Unlike baselines that repeatedly
1018 perturb features or perform expensive online sampling at every iteration, FracAug requires eigenvalue
1019 decomposition only during preprocessing. Consequently, its per-epoch training overhead remains
1020 comparable to, or even lower than, that of competing methods, despite incorporating additional
1021 spectral information to enhance anomaly detection.

1022 Importantly, these memory efficiency benefits do not compromise detection quality. Across all
1023 datasets and baselines, FracAug consistently achieves state-of-the-art AUROC, AUPRC, and F1-
1024 scores while maintaining competitive end-to-end memory cost. By amortizing the heavier spectral
1025 computations across the full training process and employing optimized matrix operations, FracAug
achieves a strong balance between memory efficiency and augmentation quality. This blend of

Table 11: Hyperparameters of 12 datasets based on GIN.

Datasets	MCF-7	MOLT-4	PC-3	SW-620	NCI-H23	OVCAR-8	P388	SF-295	SN12C	UACC257	PROTEINS_full	DBLP_v1
k_l	4	4	4	4	3	3	4	3	4	4	3	4
H_l	4	3	3	3	3	3	4	4	3	4	4	4
k_s	3	4	3	3	4	3	4	3	3	4	3	3
H_s	4	4	3	3	3	3	4	3	3	4	4	3
e_{warmup}	50	25	50	50	25	25	50	50	25	50	50	25

Figure 5: Varying training size (%) for PROTEINS_full.

memory usage and performance highlights the method’s practical value: practitioners can deploy FracAug in real-world graph applications without incurring prohibitive memory costs.

F EXPERIMENTAL SETTINGS

Table 11 provides a comprehensive summary of the hyperparameter configurations used in our experiments based on the GIN backbone. To obtain the final settings for FracAug, we perform a grid search and select the configuration that achieves the highest combined AUROC, AUPRC, and F1-score on the validation set, after which we report the corresponding test performance. Concretely, the parameters k_l, H_l, k_s, H_s are each chosen from the set 3, 4, and the number of GNN warmup epochs is selected from 25, 50, which helps keep the overall search cost manageable while still ensuring sufficient coverage of plausible configurations. For fairness and reproducibility, all experiments are conducted on an NVIDIA Quadro RTX 8000, ensuring a consistent computational environment across all evaluations.

G MARGIN LOSS COMPARISON

Next, we examine the performance of FracAug under different margin losses, as discussed in Section 4.3, by conducting comparisons across 12 datasets using the GIN backbone. As reported in Table 12, FracAug consistently surpasses its variants that employ Softmax, LMCL, or LDAM as alternative margin formulations. This consistent advantage highlights the effectiveness of our design and reinforces the idea that sample-specific decision boundaries provide a more suitable and flexible mechanism than fixed margins for graph-level anomaly detection. The results align closely with our theoretical analysis in Section 4.3, further validating the motivation and significance of adopting adaptive, distance-aware margins within the FracAug framework.

H PERFORMANCE WITH MORE TRAINING DATA

To further demonstrate the superior capability of our proposed FracAug framework, we conduct additional experiments on PROTEINS_full and DBLP_v1 under varying training sizes (%), as illustrated in Figures 5 and 6. Across all training-size configurations, the red curves, representing the performance of GIN equipped with FracAug, consistently appear at the top of the plots. This clear and repeated trend shows that as more training data becomes available, FracAug continues to deliver steady performance gains over the baseline in terms of AUROC, AUPRC, and F1-score. Overall, these results provide additional evidence that FracAug offers a robust, broadly applicable,

Table 12: Comparison of different margin loss.

Datasets	Metrics	GIN	+FA	Softmax	LMCL	LDAM
MCF-7	AUC	0.5867	0.5976	0.5844	0.5880	0.5844
	AUPRC	0.2830	0.2971	0.2781	0.2847	0.2796
	MF1	0.5366	0.5421	0.5378	0.5372	0.5360
MOLT-4	AUC	0.5733	0.5854	0.5760	0.5797	0.5751
	AUPRC	0.2830	0.3001	0.2969	0.2952	0.2857
	MF1	0.5072	0.5103	0.4991	0.5059	0.5076
PC-3	AUC	0.5969	0.6119	0.6021	0.6037	0.6001
	AUPRC	0.2797	0.2893	0.2809	0.2778	0.2769
	MF1	0.5063	0.5205	0.5134	0.5195	0.5144
SW-620	AUC	0.5938	0.6004	0.5947	0.5936	0.5931
	AUPRC	0.2776	0.2813	0.2779	0.2768	0.2720
	MF1	0.5090	0.5155	0.5100	0.5092	0.5133
NCI-H23	AUC	0.5897	0.5968	0.5913	0.5896	0.5887
	AUPRC	0.2566	0.2659	0.2650	0.2612	0.2622
	MF1	0.5059	0.5073	0.5001	0.5012	0.4990
OVCAR-8	AUC	0.5935	0.5963	0.5905	0.5890	0.5932
	AUPRC	0.2573	0.2612	0.2557	0.2570	0.2579
	MF1	0.5118	0.5123	0.5087	0.5051	0.5107
P388	AUC	0.5565	0.5913	0.5864	0.5653	0.5602
	AUPRC	0.2850	0.3309	0.3265	0.3080	0.2901
	MF1	0.4468	0.4491	0.4465	0.4377	0.4469
SF-295	AUC	0.5844	0.6076	0.5943	0.5898	0.5955
	AUPRC	0.2766	0.2832	0.2664	0.2712	0.2715
	MF1	0.4803	0.5047	0.5017	0.4909	0.4985
SN12C	AUC	0.5995	0.6079	0.5914	0.5955	0.6004
	AUPRC	0.2696	0.2746	0.2661	0.2601	0.2707
	MF1	0.5030	0.5110	0.4950	0.5068	0.5034
UACC257	AUC	0.5877	0.6015	0.5905	0.5899	0.5935
	AUPRC	0.2480	0.2598	0.2584	0.2581	0.2557
	MF1	0.4906	0.4983	0.4849	0.4844	0.4912
PROTEINS_full	AUC	0.5799	0.6174	0.6002	0.5937	0.6051
	AUPRC	0.6259	0.6358	0.6235	0.6078	0.6231
	MF1	0.5679	0.6175	0.5987	0.5945	0.6051
DBLP_v1	AUC	0.6231	0.8044	0.7776	0.7834	0.7874
	AUPRC	0.7201	0.8626	0.8383	0.8463	0.8502
	MF1	0.5996	0.8028	0.7774	0.7817	0.7855

Figure 6: Varying training size (%) for DBLP_v1.

and practical enhancement to existing models, maintaining its advantages even as the amount of supervised data varies.

In addition, we examine the inductive setting, where only the validation set is used for pseudo-labeling, to evaluate the generalization capabilities of our proposed framework, FracAug. This analysis is represented by the yellow curves in Figures 5 and 6. Across all training-size configurations, the yellow curves, which depict the performance of the GIN model enhanced with FracAug under this setting, consistently outperform the vanilla model. While the yellow curve falls slightly below the red curve due to the reduced amount of data available, the performance gap is minimal. This further

Table 13: Learned parameters

Datasets	MCF-7	MOLT-4	PC-3	SW-620	NCI-H23	OVCAR-8	P388	SF-295	SN12C	UACC257	PROTEINS_full	DBLP_v1
α_l	0.9062	1.4187	1.0862	2.186	0.4991	0.8986	2.8806	0.8845	2.7404	1.6178	1.1407	1.8663
	2.0063	2.2813	1.9282	1.5108	0.3535	0.1262	2.9620	2.9038	0.5877	1.9339	0.6885	1.1374
	1.4770	1.7911	1.9928	1.8073	2.3672	1.1480	2.3129	2.3939	1.0219	2.4874	2.5432	1.1843
	1.4269	-	-	-	-	-	1.2674	2.4786	-	2.2634	1.4364	2.8254
ω_l	0.2921	0.2655	0.3450	0.2667	0.2793	0.3476	0.1639	0.3051	0.2385	0.1165	0.3842	0.1685
	0.3108	0.3101	0.3349	0.5068	0.4612	0.3615	0.3654	0.1747	0.3833	0.2806	0.1535	0.1714
	0.1549	0.4244	0.3202	0.2266	0.2595	0.2909	0.2728	0.2145	0.3782	0.3028	0.2927	0.4004
	0.2422	-	-	-	-	-	0.1979	0.3057	-	0.3000	0.1696	0.2597
α_s	2.3128	1.9621	2.8048	1.5579	2.4828	0.5030	1.5344	1.6912	2.9331	0.8959	1.1290	1.7201
	2.1539	0.4087	1.1722	1.8088	2.1366	1.4235	1.552	1.9896	1.5150	1.9589	0.1467	2.8101
	0.7485	2.9168	1.6098	0.4474	2.2668	2.6830	2.0318	1.8741	2.9352	2.8844	0.5492	2.0935
	2.5362	0.2449	-	-	-	-	2.7135	-	-	0.1148	0.0124	-
ω_s	0.3042	0.2821	0.3910	0.3756	0.3292	0.3384	0.1696	0.4052	0.4554	0.2916	0.2407	0.2517
	0.2569	0.2112	0.2750	0.4245	0.3630	0.3436	0.4001	0.2386	0.2343	0.2539	0.3285	0.4758
	0.2764	0.1519	0.3340	0.1999	0.3078	0.3180	0.2027	0.3562	0.3103	0.3122	0.2524	0.2725
	0.1625	0.3548	-	-	-	-	0.2277	-	-	0.1423	0.1785	-
ω	0.4634	0.6795	0.6481	0.5579	0.5263	0.4541	0.4408	0.5589	0.5724	0.5309	0.7134	0.5174
	0.5366	0.3205	0.3519	0.4421	0.4737	0.5459	0.5592	0.4411	0.4276	0.4691	0.2866	0.4826

underscores the viability of our proposed framework in strictly inductive scenarios. Overall, these findings highlight that FracAug provides a robust, versatile, and practical improvement to existing models, maintaining its effectiveness even when limited to the validation set for pseudo-labeling.

I LEARNED PARAMETERS

Here, we present the learned parameters based on GIN, α_l , ω_l , α_s , ω_s , and ω , as summarized in Table 13. Specifically, α_l and α_s correspond to the learned fractional powers associated with the largest and smallest eigenvalue groups, respectively, while ω_l and ω_s denote the learned coefficients applied to the fractional graphs generated from these eigenvalues. The vector ω represents the balancing coefficient between the two groups of fractional graphs derived from the largest and smallest eigenvalues.

As described in Section 4.2, the hyperparameters H_l and H_s determine the number of fractional graphs combined within each eigenvalue group. Consequently, the dimensionality of α_l and ω_l equals H_l , and that of α_s and ω_s equals H_s . Since we only consider two eigenvalue groups, the largest and the smallest, the vector ω always contains two entries. Moreover, as indicated by Table 11, the optimal values of H_l and H_s vary across datasets, leading to corresponding variations in the number of entries reported in Table 13. In cases where a particular entry does not exist due to the selection of H_l or H_s , we mark it with “–” for clarity.

From Table 13, we observe that the learned fractional powers fall within the range $(0, 3)$, which is consistent with common practices in GNN design: excessively large effective depths can cause over-smoothing, whereas overly small depths may lead to under-fitting. This observation further validates the rationality of our proposed FracAug, demonstrating that the learned parameters remain well-aligned with established principles while effectively capturing dataset-specific structural information.

J ADDITIONAL EXPERIMENTAL RESULTS

We present the additional experimental results for MCF-7, MOLT-4, PC-3, SW-620, NCI-H23, and OVCAR-8 to further demonstrate our superiority over other baselines. On one hand, as shown in Tables 14 and 15, FracAug consistently boosts the performance of a variety of backbone models in both the graph classification and graph-level anomaly detection methods. This pattern holds across all the newly included datasets, reinforcing the generalization ability of our proposed framework and showing that its benefits are not restricted to specific architectures or data distributions. On the other hand, as shown in Table 16, FracAug also outperforms other existing graph augmentation techniques, even when those techniques are evaluated alongside their own native backbones. This result highlights the effectiveness and robustness of our framework, indicating that FracAug can

1188 Table 14: Average AUROC, AUPRC, and F1-score on 6 datasets with multiple runs, using graph
 1189 classification models as baselines, where the white columns represent vanilla models and the "+FA"
 1190 represent models augmented by FracAug.

Datasets	Metrics	GCN	+FA	SAGE	+FA	GAT	+FA	GIN	+FA	LRGNN	+FA	GRDL	+FA
MCF-7	AUROC	0.5753	0.5840	0.5801	0.5930	0.5885	0.6058	0.5867	0.5976	0.5467	0.6117	0.5867	0.6197
	AUPRC	0.3035	0.3073	0.3316	0.3340	0.3678	0.3814	0.2830	0.2971	0.2951	0.3309	0.3038	0.3469
	F1-score	0.4982	0.5074	0.4798	0.4963	0.4573	0.4687	0.5366	0.5421	0.4660	0.5290	0.5147	0.5254
MOLT-4	AUROC	0.5531	0.5650	0.5326	0.5727	0.5403	0.5721	0.5733	0.5854	0.5495	0.5851	0.5858	0.5924
	AUPRC	0.3183	0.3217	0.1907	0.2602	0.3456	0.3667	0.2830	0.3001	0.3047	0.3175	0.3018	0.3101
	F1-score	0.4501	0.4626	0.5166	0.5277	0.4096	0.4313	0.5072	0.5103	0.4570	0.4939	0.5091	0.5117
PC-3	AUROC	0.5697	0.5863	0.5986	0.6119	0.5707	0.5865	0.5969	0.6119	0.5690	0.6102	0.6044	0.6202
	AUPRC	0.2740	0.2837	0.3154	0.3248	0.3562	0.3626	0.2797	0.2893	0.2320	0.3038	0.3381	0.3459
	F1-score	0.4745	0.4876	0.4751	0.4841	0.4036	0.4166	0.5063	0.5205	0.5103	0.5024	0.4615	0.4750
SW-620	AUROC	0.5662	0.5839	0.5800	0.5968	0.5633	0.5870	0.5938	0.6004	0.5758	0.5946	0.6005	0.6046
	AUPRC	0.3134	0.3229	0.3401	0.3260	0.2481	0.2587	0.2776	0.2813	0.3506	0.3386	0.2908	0.2901
	F1-score	0.4406	0.4541	0.4339	0.4678	0.4923	0.5187	0.5090	0.5155	0.4190	0.4536	0.5059	0.5135
NCI-H23	AUROC	0.5811	0.5864	0.5765	0.6105	0.5777	0.6084	0.5897	0.5968	0.6002	0.6315	0.6161	0.6271
	AUPRC	0.2777	0.2777	0.3197	0.3207	0.2966	0.2945	0.2566	0.2659	0.2830	0.3205	0.3034	0.3069
	F1-score	0.4751	0.4819	0.4333	0.4740	0.4548	0.4961	0.5059	0.5073	0.4987	0.5055	0.4983	0.5112
OVCAR-8	AUROC	0.5692	0.5809	0.5763	0.5836	0.5396	0.5784	0.5935	0.5963	0.5628	0.5984	0.6230	0.6311
	AUPRC	0.3240	0.3263	0.3391	0.3423	0.2010	0.2401	0.2573	0.2612	0.3106	0.3290	0.3042	0.3129
	F1-score	0.4216	0.4334	0.4163	0.4221	0.4855	0.5060	0.5118	0.5123	0.4260	0.4518	0.5087	0.5119

1207 Table 15: Average AUROC, AUPRC, and F1-score on 6 datasets with multiple runs, using GAD
 1208 models as baselines, where the white columns represent vanilla models and the "+FA" represent
 1209 models augmented by FracAug.

Datasets	Metrics	iGAD	+FA	GmapAD	+FA	RQGNN	+FA	UniGAD	+FA
MCF-7	AUROC	0.5670	0.5756	0.5159	0.5342	0.5522	0.5709	0.5380	0.5480
	AUPRC	0.3402	0.3525	0.3521	0.3577	0.2379	0.2648	0.2405	0.2527
	F1-score	0.4546	0.4549	0.3776	0.3961	0.5609	0.5804	0.4959	0.5008
MOLT-4	AUROC	0.5562	0.5573	0.5100	0.5374	0.5576	0.5696	0.5353	0.5445
	AUPRC	0.3088	0.3092	0.2704	0.2827	0.2302	0.2468	0.2111	0.2241
	F1-score	0.4621	0.4636	0.4354	0.4592	0.5644	0.5718	0.5079	0.5125
PC-3	AUROC	0.5526	0.5674	0.5112	0.5266	0.5618	0.6043	0.5496	0.5559
	AUPRC	0.1887	0.2159	0.2999	0.3094	0.2370	0.2663	0.3875	0.3889
	F1-score	0.5217	0.5229	0.3845	0.3938	0.5721	0.5972	0.3461	0.3542
SW-620	AUROC	0.5641	0.5776	0.5279	0.5362	0.5428	0.5692	0.5427	0.5688
	AUPRC	0.3332	0.3701	0.3506	0.3479	0.1936	0.2219	0.2527	0.2585
	F1-score	0.4207	0.4029	0.3605	0.3734	0.5530	0.5654	0.4600	0.4903
NCI-H23	AUROC	0.5689	0.5721	0.5289	0.5489	0.5704	0.6061	0.5694	0.5860
	AUPRC	0.2267	0.2288	0.3274	0.3401	0.2166	0.2500	0.2733	0.2756
	F1-score	0.5039	0.5066	0.3710	0.3827	0.5770	0.5820	0.4645	0.4831
OVCAR-8	AUROC	0.5609	0.5685	0.5209	0.5243	0.5549	0.5773	0.5360	0.5445
	AUPRC	0.2319	0.2325	0.2863	0.2836	0.1933	0.2216	0.3196	0.3112
	F1-score	0.4880	0.4991	0.3992	0.4054	0.5618	0.5794	0.3873	0.4043

1228 provide complementary advantages regardless of the underlying model design or augmentation
 1229 strategy used.

1232 K STANDARD DEVIATION FOR EXPERIMENTAL RESULTS

1234 Due to the limited space, we present the standard deviation for our experimental results here in Tables
 1235 17, 18, and 19. Across the three tables reporting standard deviations, for graph classification, graph-
 1236 level anomaly detection, and data augmentation, we observe a consistent stabilizing effect introduced
 1237 by FracAug. Although FracAug serves as a plug-in framework that can be seamlessly integrated
 1238 with diverse baselines, its impact is both clear and substantial. In most cases, the incorporation of
 1239 FracAug not only improves AUROC, AUPRC, and F1-score, as shown in Tables 1, 2, 3, 14, 15, and
 1240 16, but also reduces the variance of these metrics, as shown in Tables 17, 18, and 19. This dual benefit
 1241 indicates that FracAug enhances both the effectiveness and the reliability of downstream models.
 By pseudo-labeling the semantic-preserving graphs, FracAug helps models converge to more stable

1242 Table 16: Average AUROC, AUPRC, and F1-score on 6 datasets with multiple runs, using graph-level
 1243 augmentation models as baselines, where the white columns represent vanilla models and their own
 1244 augmentation method, while the "+FA" represent vanilla models augmented by FracAug.

1246 Datasets	1246 Metrics	1246 MAAv	1246 NodeSam	1246 SubMix	1246 +FA	1246 GLA	1246 GLA	1246 +FA	1246 GMixup	1246 GMixup	1246 +FA	1246 FGWMixup	1246 FGWMixup	1246 +FA
1247 MCF-7	AUROC	0.5496	0.5727	0.5428	0.5695	0.5797	0.5735	0.6068	0.5730	0.5581	0.5935	0.5731	0.5502	0.5828
	AUPRC	0.2346	0.2445	0.2224	0.2455	0.2558	0.2456	0.2944	0.2767	0.2864	0.3081	0.2720	0.2130	0.2945
	F1-score	0.5179	0.5635	0.5512	0.5721	0.5607	0.5609	0.5793	0.5186	0.4879	0.5220	0.5585	0.5283	0.5971
1249 MOLT-4	AUROC	0.5506	0.5391	0.5113	0.5663	0.5585	0.5578	0.5792	0.5637	0.5547	0.5771	0.5477	0.5308	0.6067
	AUPRC	0.2203	0.1914	0.1796	0.2356	0.2177	0.2159	0.2511	0.2411	0.2176	0.2559	0.1994	0.1939	0.3104
	F1-score	0.5595	0.5392	0.5048	0.5658	0.5540	0.5519	0.5733	0.5306	0.5368	0.5416	0.5446	0.5115	0.5366
1250 PC-3	AUROC	0.5688	0.5805	0.5284	0.5821	0.6207	0.5938	0.6221	0.5705	0.5646	0.5782	0.5490	0.5442	0.6107
	AUPRC	0.2112	0.2233	0.1854	0.2385	0.2770	0.2386	0.2790	0.3506	0.3456	0.3587	0.2028	0.2108	0.2623
	F1-score	0.5698	0.5685	0.5321	0.5848	0.5650	0.5569	0.5868	0.4085	0.4058	0.4101	0.5027	0.4914	0.5633
1253 SW-620	AUROC	0.5577	0.5776	0.5232	0.5834	0.5822	0.5799	0.5936	0.5839	0.5722	0.5987	0.5265	0.5395	0.6183
	AUPRC	0.2026	0.2205	0.1958	0.2279	0.2315	0.2258	0.2455	0.2599	0.2511	0.2728	0.1340	0.1777	0.2759
	F1-score	0.5641	0.5477	0.5273	0.5676	0.5422	0.5473	0.5786	0.5111	0.5015	0.5220	0.5283	0.5113	0.5729
1254 NCI-H23	AUROC	0.5792	0.5634	0.5323	0.5979	0.5773	0.5762	0.6194	0.5912	0.5647	0.6014	0.5658	0.5760	0.6422
	AUPRC	0.2273	0.1983	0.2017	0.2407	0.2082	0.2188	0.2680	0.2587	0.2139	0.2672	0.1986	0.2345	0.3105
	F1-score	0.5821	0.5625	0.5445	0.5835	0.5659	0.5779	0.5914	0.5058	0.5087	0.5134	0.5561	0.5066	0.5358
1256 OVCAR-8	AUROC	0.5507	0.5494	0.5278	0.5726	0.5911	0.5859	0.6049	0.5786	0.5725	0.6024	0.5696	0.5713	0.6317
	AUPRC	0.1775	0.1633	0.1665	0.2132	0.2346	0.2196	0.2447	0.2764	0.2994	0.3072	0.2696	0.2401	0.3060
	F1-score	0.5461	0.5408	0.5337	0.5749	0.5350	0.5548	0.5728	0.4733	0.4469	0.4766	0.4831	0.4950	0.5211

Table 17: Standard Deviation of AUROC, AUPRC, and F1-score for Tables 1 and 14.

1262 Datasets	1262 Metrics	1262 GCN	1262 +FA	1262 SAGE	1262 +FA	1262 GAT	1262 +FA	1262 GIN	1262 +FA	1262 LRGNN	1262 +FA	1262 GRDL	1262 +FA
1264 MCF-7	AUROC	0.0027	0.0016	0.0011	0.0123	0.0144	0.0011	0.0015	0.0010	0.0011	0.0069	0.0128	0.0050
	AUPRC	0.0110	0.0016	0.0024	0.0050	0.0436	0.0465	0.0036	0.0030	0.0245	0.0135	0.0256	0.0007
	F1-score	0.0136	0.0038	0.0006	0.0134	0.0215	0.0442	0.0012	0.0017	0.0182	0.0030	0.0041	0.0081
1266 MOLT-4	AUROC	0.0080	0.0015	0.0233	0.0035	0.0228	0.0101	0.0043	0.0006	0.0122	0.0055	0.0076	0.0035
	AUPRC	0.0093	0.0032	0.0391	0.0059	0.0217	0.0024	0.0126	0.0052	0.0018	0.0107	0.0076	0.0037
	F1-score	0.0023	0.0047	0.0116	0.0003	0.0233	0.0155	0.0047	0.0058	0.0171	0.0177	0.0045	0.0092
1268 PC-3	AUROC	0.0132	0.0047	0.0093	0.0018	0.0284	0.0150	0.0015	0.0042	0.0117	0.0015	0.0163	0.0045
	AUPRC	0.0067	0.0027	0.0092	0.0043	0.0235	0.0269	0.0017	0.0049	0.0465	0.0093	0.0332	0.0004
	F1-score	0.0109	0.0038	0.0037	0.0016	0.0124	0.0071	0.0040	0.0017	0.0258	0.0071	0.0098	0.0064
1271 SW-620	AUROC	0.0063	0.0010	0.0008	0.0014	0.0216	0.0112	0.0038	0.0026	0.0054	0.0153	0.0087	0.0077
	AUPRC	0.0190	0.0035	0.0078	0.0045	0.0115	0.0040	0.0027	0.0001	0.0068	0.0106	0.0064	0.0004
	F1-score	0.0088	0.0045	0.0082	0.0022	0.0196	0.0237	0.0086	0.0045	0.0130	0.0292	0.0068	0.0129
1273 NCI-H23	AUROC	0.0030	0.0033	0.0013	0.0016	0.0062	0.0020	0.0016	0.0045	0.0306	0.0085	0.0075	0.0087
	AUPRC	0.0074	0.0015	0.0031	0.0006	0.0098	0.0074	0.0014	0.0071	0.0038	0.0197	0.0061	0.0136
	F1-score	0.0026	0.0029	0.0043	0.0028	0.0009	0.0100	0.0037	0.0004	0.0411	0.0349	0.0048	0.0011
1275 OVCAR-8	AUROC	0.0047	0.0008	0.0026	0.0010	0.0201	0.0061	0.0018	0.0014	0.0130	0.0008	0.0013	0.0009
	AUPRC	0.0017	0.0009	0.0037	0.0045	0.0220	0.0062	0.0033	0.0016	0.0061	0.0122	0.0052	0.0018
	F1-score	0.0070	0.0002	0.0003	0.0030	0.0086	0.0153	0.0005	0.0006	0.0203	0.0101	0.0037	0.0036
1278 P388	AUROC	0.0519	0.0009	0.0107	0.0030	0.1071	0.0002	0.0261	0.0150	0.0392	0.0008	0.0063	0.0104
	AUPRC	0.0506	0.0066	0.0127	0.0047	0.0323	0.0051	0.0249	0.0089	0.0023	0.0025	0.0640	0.0011
	F1-score	0.0129	0.0078	0.0011	0.0005	0.0966	0.0172	0.0100	0.0104	0.0442	0.0069	0.0422	0.0126
1280 SF-295	AUROC	0.0086	0.0026	0.0055	0.0011	0.0059	0.0124	0.0274	0.0067	0.0235	0.0043	0.0169	0.0026
	AUPRC	0.0007	0.0059	0.0019	0.0005	0.0336	0.0060	0.0022	0.0045	0.0116	0.0011	0.0381	0.0081
	F1-score	0.0106	0.0083	0.0048	0.0019	0.0254	0.0203	0.0334	0.0056	0.0399	0.0078	0.0161	0.0052
1282 SN12C	AUROC	0.0100	0.0011	0.0153	0.0054	0.0083	0.0025	0.0053	0.0010	0.0137	0.0083	0.0094	0.0035
	AUPRC	0.0039	0.0053	0.0325	0.0044	0.2283	0.0106	0.0099	0.0051	0.2345	0.0136	0.2344	0.0019
	F1-score	0.0082	0.0033	0.0093	0.0027	0.0222	0.0081	0.0020	0.0039	0.0231	0.0264	0.0153	0.0038
1284 UACC257	AUROC	0.0040	0.0033	0.0040	0.0172	0.0032	0.0145	0.0112	0.0043	0.0156	0.0116	0.0031	0.0069
	AUPRC	0.0035	0.0083	0.0047	0.0031	0.0325	0.0245	0.0146	0.0071	0.0049	0.0249	0.0096	0.0014
	F1-score	0.0013	0.0040	0.0002	0.0230	0.0335	0.0053	0.0016	0.0008	0.0228	0.0087	0.0050	0.0115
1285 PROTEINS_full	AUROC	0.0057	0.0013	0.0202	0.0182	0.0411	0.0039	0.0410	0.0052	0.0331	0.0265	0.0028	0.0066
	AUPRC	0.0053	0.0001	0.0346	0.0248	0.0367	0.0060	0.0010	0.0044	0.0345	0.0218	0.0078	0.0077
	F1-score	0.0059	0.0017	0.0219	0.0139	0.0420	0.0060	0.0593	0.0054	0.0312	0.0275	0.0093	0.0086
1289 DBLP_v1	AUROC	0.0141	0.0007	0.0278	0.0008	0.0400	0.0053	0.0124	0.0004	0.0031	0.0004	0.0125	0.0024
	AUPRC	0.0065	0.0004	0.0277	0.0040	0.0267	0.0023	0.0185	0.0004	0.0016	0.0002	0.0034	0.0021
	F1-score	0.0161	0.0008	0.0337	0.0006	0.0851	0.0075	0.0081	0.0003	0.0035	0.0005	0.0143	0.0023

1294 decision boundaries. Consequently, the tables collectively demonstrate that FracAug is not just a
 1295 performance booster but also a variance reducer, offering practitioners a method that delivers stronger
 1296 and more consistent results across a wide range of graph-level anomaly detection tasks.

1296 Table 18: Standard Deviation of AUROC, AUPRC, and F1-score for Tables 2 and 15.
1297

Datasets	Metrics	iGAD +FA	GmapAD +FA	RQGNN +FA	UniGAD +FA
MCF-7	AUROC	0.0020 0.0022	0.0006 0.0035	0.0167 0.0136	0.0069 0.0055
	AUPRC	0.0118 0.0016	0.0135 0.0086	0.0047 0.0042	0.0100 0.0025
	F1-score	0.0078 0.0015	0.0138 0.0037	0.0136 0.0067	0.0165 0.0097
MOLT-4	AUROC	0.0033 0.0020	0.0021 0.0038	0.0041 0.0132	0.0011 0.0001
	AUPRC	0.0075 0.0009	0.0168 0.0082	0.0247 0.0047	0.0226 0.0009
	F1-score	0.0105 0.0018	0.0100 0.0016	0.0122 0.0001	0.0139 0.0009
PC-3	AUROC	0.0246 0.0037	0.0096 0.0021	0.0264 0.0017	0.0040 0.0009
	AUPRC	0.0459 0.0074	0.0069 0.0049	0.0017 0.0018	0.0011 0.0005
	F1-score	0.0006 0.0011	0.0172 0.0068	0.0182 0.0028	0.0040 0.0015
SW-620	AUROC	0.0033 0.0008	0.0020 0.0033	0.0088 0.0266	0.0002 0.0059
	AUPRC	0.0023 0.0023	0.0100 0.0025	0.0010 0.0172	0.0052 0.0036
	F1-score	0.0020 0.0033	0.0075 0.0064	0.0075 0.0033	0.0011 0.0049
NCI-H23	AUROC	0.0081 0.0101	0.0102 0.0040	0.0068 0.0205	0.0015 0.0034
	AUPRC	0.0413 0.0409	0.0221 0.0075	0.0064 0.0223	0.0022 0.0018
	F1-score	0.0260 0.0235	0.0089 0.0023	0.0038 0.0010	0.0001 0.0028
OVCAR-8	AUROC	0.0117 0.0044	0.0016 0.0051	0.0110 0.0013	0.0017 0.0093
	AUPRC	0.0375 0.0405	0.0028 0.0016	0.0007 0.0042	0.0035 0.0153
	F1-score	0.0155 0.0301	0.0006 0.0070	0.0037 0.0024	0.0012 0.0028
P388	AUROC	0.0016 0.0021	0.0015 0.0270	0.0155 0.0146	0.0104 0.0150
	AUPRC	0.0235 0.0063	0.0030 0.0140	0.0175 0.0127	0.0026 0.0093
	F1-score	0.0133 0.0018	0.0040 0.0186	0.0055 0.0056	0.0101 0.0115
SF-295	AUROC	0.0022 0.0013	0.0094 0.0156	0.0004 0.0110	0.0069 0.0027
	AUPRC	0.0264 0.0202	0.0303 0.0088	0.0046 0.0181	0.0182 0.0121
	F1-score	0.0203 0.0158	0.0158 0.0103	0.0008 0.0094	0.0078 0.0070
SN12C	AUROC	0.0004 0.0007	0.0057 0.0054	0.0025 0.0112	0.0066 0.0069
	AUPRC	0.2670 0.0159	0.0001 0.0015	0.0091 0.0100	0.0056 0.0039
	F1-score	0.0107 0.0167	0.0065 0.0076	0.0046 0.0031	0.0040 0.0062
UACC257	AUROC	0.0085 0.0013	0.0105 0.0001	0.0027 0.0069	0.0016 0.0081
	AUPRC	0.0143 0.0053	0.0196 0.0025	0.0014 0.0099	0.0037 0.0006
	F1-score	0.0008 0.0040	0.0282 0.0019	0.0028 0.0040	0.0050 0.0091
PROTEINS_full	AUROC	0.0206 0.0052	0.0163 0.0069	0.0287 0.0508	0.0020 0.0008
	AUPRC	0.0052 0.0061	0.0045 0.0093	0.0428 0.0617	0.0020 0.0009
	F1-score	0.0239 0.0054	0.0132 0.0066	0.0354 0.0419	0.0029 0.0008
DBLP_v1	AUROC	0.0004 0.0003	0.0072 0.0002	0.0029 0.0028	0.0123 0.0003
	AUPRC	0.0002 0.0002	0.0032 0.0027	0.0010 0.0012	0.0042 0.0001
	F1-score	0.0004 0.0004	0.0069 0.0010	0.0036 0.0026	0.0151 0.0004

1329 L ADDITIONAL ABLATION STUDY
1330

1331 Beyond the 6 datasets examined in Section 5.3, we further conduct an ablation study on the remaining
1332 6 datasets, as reported in Table 20. The notations used follow the same definitions as those in Table
1333 4. In this extended analysis, we again observe that FracAug consistently outperforms all four of
1334 its variants across the newly included datasets. This repeated pattern reinforces the importance
1335 of the individual components that constitute our framework and provides additional evidence that
1336 each design choice contributes meaningfully to the overall performance improvements achieved by
1337 FracAug.
1338

1339 M MVP FOR VALIDATION SET ONLY
1340

1341 Although we follow the standard data augmentation setting—using both the validation and test sets for
1342 pseudo-labeling—as adopted in related works such as ConsisGAD (Chen et al., 2024), we additionally
1343 evaluate a more restrictive setting in which only the validation set is used for pseudo-labeling. This
1344 complementary experiment allows us to examine the robustness of our framework under an extremely
1345 limited auxiliary data scenario.
1346

1347 As shown in Table 21, pseudo-labeling only the validation set leads to a reduction in performance
1348 gains compared to our original setting. This behavior indicates that having access to more data for
1349 pseudo-labeling can more fully reveal the strength of our framework. At the same time, the results
also demonstrate that even when supplied with very limited auxiliary data, our method can still

Table 19: Standard Deviation of AUROC, AUPRC, and F1-score for Tables 3 and 16.

1350	1351	Datasets	Metrics	MAAv	NodeSam	SubMix	+FA	GLAv	GLA	+FA	GMixup	GMixup	+FA	FGWMixup	FGWMixup	+FA
1352	MCF-7	AUROC	0.0069	0.0062	0.0154	0.0003	0.0069	0.0208	0.0091	0.0216	0.0173	0.0015	0.0091	0.0427	0.0014	
1353		AUPRC	0.0070	0.0094	0.0107	0.0016	0.0112	0.0320	0.0126	0.0226	0.0272	0.0018	0.0004	0.0854	0.0152	
1354		F1-score	0.0169	0.0018	0.0168	0.0014	0.0003	0.0070	0.0082	0.0144	0.0016	0.0006	0.0330	0.0096	0.0055	
1355	MOLT-4	AUROC	0.0080	0.0225	0.0059	0.0065	0.0135	0.0029	0.0004	0.0038	0.0058	0.0001	0.0057	0.0083	0.0146	
1356		AUPRC	0.0110	0.0284	0.0313	0.0016	0.0206	0.0047	0.0013	0.0010	0.0105	0.0003	0.0096	0.0409	0.0116	
1357		F1-score	0.0076	0.0174	0.0110	0.0046	0.0042	0.0030	0.0017	0.0065	0.0013	0.0001	0.0041	0.0136	0.0148	
1358	PC-3	AUROC	0.0062	0.0181	0.0296	0.0104	0.0046	0.0195	0.0053	0.0144	0.0179	0.0009	0.0246	0.0141	0.0011	
1359		AUPRC	0.0078	0.0201	0.0329	0.0120	0.0091	0.0277	0.0099	0.0065	0.0290	0.0174	0.0651	0.0373	0.0017	
1360		F1-score	0.0033	0.0003	0.0430	0.0058	0.0111	0.0072	0.0153	0.0235	0.0053	0.0153	0.0163	0.0095	0.0001	
1361	SW-620	AUROC	0.0034	0.0043	0.0172	0.0020	0.0061	0.0135	0.0057	0.0029	0.0038	0.0008	0.0302	0.0241	0.0069	
1362		AUPRC	0.0001	0.0059	0.0093	0.0031	0.0151	0.0141	0.0035	0.0191	0.0136	0.0002	0.0645	0.0704	0.0091	
1363		F1-score	0.0004	0.0027	0.0276	0.0019	0.0091	0.0182	0.0052	0.0142	0.0066	0.0013	0.0335	0.0169	0.0071	
1364	NCI-H23	AUROC	0.0139	0.0330	0.0020	0.0013	0.0057	0.0077	0.0061	0.0317	0.0018	0.0002	0.0551	0.0073	0.0045	
1365		AUPRC	0.0125	0.0355	0.0049	0.0008	0.0118	0.0076	0.0085	0.0401	0.0070	0.0069	0.0661	0.0037	0.0071	
1366		F1-score	0.0059	0.0175	0.0029	0.0006	0.0100	0.0032	0.0037	0.0083	0.0036	0.0071	0.0305	0.0074	0.0205	
1367	OVCAR-8	AUROC	0.0031	0.0111	0.0193	0.0036	0.0023	0.0230	0.0007	0.0169	0.0099	0.0006	0.0194	0.0144	0.0063	
1368		AUPRC	0.0171	0.0175	0.0139	0.0031	0.0083	0.0335	0.0008	0.0361	0.0016	0.0047	0.0783	0.0284	0.0034	
1369		F1-score	0.0221	0.0028	0.0255	0.0013	0.0072	0.0062	0.0004	0.0098	0.0131	0.0035	0.1100	0.0049	0.0072	
1370	P388	AUROC	0.0003	0.0067	0.0066	0.0095	0.0175	0.0220	0.0122	0.0001	0.0033	0.0007	0.0023	0.0028	0.0071	
1371		AUPRC	0.0346	0.0438	0.0308	0.0058	0.0660	0.0287	0.0058	0.0049	0.0207	0.0009	0.0330	0.0086	0.0228	
1372		F1-score	0.0187	0.0136	0.0138	0.0045	0.0382	0.0114	0.0057	0.0081	0.0194	0.0050	0.0292	0.0334	0.0084	
1373	SF-295	AUROC	0.0100	0.0087	0.0035	0.0038	0.0208	0.0065	0.0023	0.0013	0.0303	0.0081	0.0059	0.0018	0.0059	
1374		AUPRC	0.0061	0.0030	0.0016	0.0002	0.0268	0.0076	0.0023	0.0046	0.0460	0.0093	0.0073	0.0069	0.0013	
1375		F1-score	0.0052	0.0030	0.0052	0.0002	0.0072	0.0087	0.0015	0.0081	0.0057	0.0049	0.0028	0.0107	0.0224	
1376	SN12C	AUROC	0.0052	0.0506	0.0081	0.0043	0.0308	0.0187	0.0073	0.0125	0.0117	0.0105	0.0281	0.0243	0.0116	
1377		AUPRC	0.0206	0.0733	0.0223	0.0076	0.0287	0.0268	0.0103	0.0030	0.0247	0.0147	0.0489	0.0646	0.0317	
1378		F1-score	0.0124	0.0098	0.0144	0.0040	0.0067	0.0027	0.0030	0.0177	0.0241	0.0016	0.0048	0.0232	0.0221	
1379	UACC257	AUROC	0.0335	0.0052	0.0302	0.0041	0.0132	0.0038	0.0101	0.0137	0.0013	0.0083	0.0489	0.0366	0.0115	
1380		AUPRC	0.0295	0.0185	0.1041	0.0001	0.0200	0.0199	0.0025	0.0547	0.0088	0.0054	0.0804	0.0959	0.0195	
1381		F1-score	0.0071	0.0083	0.0454	0.0051	0.0113	0.0299	0.0127	0.0334	0.0068	0.0165	0.0378	0.0324	0.0155	
1382	PROTEINS_full	AUROC	0.0124	0.0013	0.0957	0.0035	0.0013	0.0355	0.0048	0.0301	0.0090	0.0008	0.0194	0.0052	0.0023	
1383		AUPRC	0.0106	0.0071	0.0088	0.0011	0.0239	0.0339	0.0033	0.0077	0.0141	0.0059	0.0909	0.0098	0.0175	
1384		F1-score	0.0129	0.0041	0.1812	0.0062	0.0116	0.0346	0.0088	0.0392	0.0042	0.0006	0.0199	0.0093	0.0087	
1385	DBLP_v1	AUROC	0.0464	0.0047	0.0289	0.0012	0.0043	0.0284	0.0069	0.0064	0.0052	0.0033	0.0170	0.0180	0.0061	
1386		AUPRC	0.0030	0.0007	0.0560	0.0026	0.0027	0.0032	0.0029	0.0037	0.0031	0.0015	0.0104	0.0132	0.0075	
1387		F1-score	0.0739	0.0070	0.0711	0.0032	0.0059	0.0545	0.0078	0.0068	0.0059	0.0045	0.0181	0.0177	0.0057	

Table 20: Ablation study.

1388	1389	1390	1391	1392	1393	1394	1395	Datasets	Metrics	GIN	+FA	w/o largest	w/o smallest	w/o WDML	w/o MVP
1396	MCF-7	AUROC	0.5867	0.5976	0.5848	0.5889	0.5860	0.5835							
1397		AUPRC	0.2830	0.2971	0.2842	0.2882	0.2813	0.2790							
1398		F1-score	0.5366	0.5421	0.5317	0.5351	0.5372	0.5350							
1399	MOLT-4	AUROC	0.5733	0.5854	0.5770	0.5760	0.5772	0.5754							
1400		AUPRC	0.2830	0.3001	0.2974	0.2862	0.2981	0.2881							
1401		F1-score	0.5072	0.5103	0.5001	0.5085	0.4998	0.5060							
1402	PC-3	AUROC	0.5969	0.6119	0.5963	0.6018	0.6026	0.5975							
1403		AUPRC	0.2797	0.2893	0.2797	0.2815	0.2806	0.2780							
1404		F1-score	0.5063	0.5205	0.5055	0.5124	0.5145	0.5092							
1405	SW-620	AUROC	0.5938	0.6004	0.5941	0.5938	0.5949	0.5930							
1406		AUPRC	0.2776	0.2813	0.2737	0.2778	0.2800	0.2697							
1407		F1-score	0.5090	0.5155	0.5132	0.5089	0.5082	0.5155							
1408	NCI-H23	AUROC	0.5897	0.5968	0.5893	0.5911	0.5866	0.5925							
1409		AUPRC	0.2566	0.2659	0.2564	0.2633	0.2614	0.2656							
1410		F1-score	0.5059	0.5073	0.5054	0.5013	0.4968	0.5013							
1411	OVCAR-8	AUROC	0.5935	0.5963	0.5911	0.5918	0.5911	0.5904							
1412		AUPRC	0.2573	0.2612	0.2579	0.2565	0.2573	0.2605							
1413		F1-score	0.5118	0.5123	0.5074	0.5100	0.5081	0.5038							

extract meaningful supervisory signals and deliver performance improvements. This resilience under constrained conditions highlights the superiority of our framework, further confirming that FracAug remains effective even in extreme data augmentation settings.

N ORIGINAL LOSS FOR BASELINES

1404 Table 21: Average AUROC, AUPRC, and F1-score on 3 datasets with multiple runs, where the "+FA"
 1405 represents our original setting, and onlyval represents pseudo-labeling only the validation set.
 1406

1407 Datasets	1408 Metrics	1409 GAT	1410 +FA	1411 onlyval	1412 GIN	1413 +FA	1414 onlyval	1415 iGAD	1416 +FA	1417 onlyval	1418 NSv	1419 +FA	1420 onlyval
1408 UACC257	AUROC	0.5890	0.6174	0.6021	0.5877	0.6015	0.5946	0.5697	0.5748	0.5721	0.5623	0.5947	0.5731
	AUPRC	0.3493	0.3389	0.3250	0.2480	0.2598	0.2631	0.1906	0.1970	0.1956	0.1805	0.2210	0.1847
	F1-score	0.4031	0.4455	0.4491	0.4906	0.4983	0.4908	0.5201	0.5224	0.5214	0.5541	0.5784	0.5582
1411 PROTEINS_full	AUROC	0.6157	0.6836	0.6633	0.5799	0.6174	0.6015	0.5976	0.6206	0.6125	0.6009	0.6217	0.6147
	AUPRC	0.6350	0.7005	0.6933	0.6259	0.6358	0.6261	0.6200	0.6333	0.6271	0.6183	0.6366	0.6357
	F1-score	0.6158	0.6859	0.6508	0.5679	0.6175	0.6024	0.5960	0.6211	0.6137	0.6015	0.6214	0.614
1413 DBLP_v1	AUROC	0.6119	0.6885	0.6489	0.6231	0.8044	0.7844	0.7755	0.7909	0.7901	0.6446	0.6822	0.6712
	AUPRC	0.7507	0.7796	0.7768	0.7201	0.8626	0.8446	0.8377	0.8473	0.8466	0.7689	0.7816	0.7814
	F1-score	0.5782	0.6868	0.6311	0.5996	0.8028	0.7837	0.7749	0.7910	0.7902	0.6252	0.6778	0.6621

1415 Table 22: Average AUROC, AUPRC, and F1-score on 3 datasets with multiple runs, where the "+FA"
 1416 represents our original setting, and oriloss represents the original setting of baselines.
 1417

1418 Datasets	1419 Metrics	1420 GAT	1421 +FA	1422 oriloss	1423 GIN	1424 +FA	1425 oriloss	1426 NodeSam	1427 +FA	1428 oriloss	1429 GMixup	1430 +FA	1431 oriloss
1420 UACC257	AUROC	0.5890	0.6174	0.5583	0.5877	0.6015	0.5749	0.5023	0.5947	0.4994	0.5843	0.6209	0.5280
	AUPRC	0.3493	0.3389	0.3106	0.2480	0.2598	0.2448	0.0559	0.2210	0.0206	0.2285	0.2963	0.1185
	F1-score	0.4031	0.4455	0.4039	0.4906	0.4983	0.4772	0.5005	0.5784	0.4892	0.5042	0.4898	0.5165
1422 PROTEINS_full	AUROC	0.6157	0.6836	0.5739	0.5799	0.6174	0.5517	0.6083	0.6217	0.5546	0.5132	0.6097	0.4979
	AUPRC	0.6350	0.7005	0.6097	0.6259	0.6358	0.5824	0.6294	0.6366	0.5703	0.5057	0.6244	0.5259
	F1-score	0.6158	0.6859	0.5695	0.5679	0.6175	0.5503	0.6039	0.6214	0.5548	0.5025	0.6102	0.4978
1424 DBLP_v1	AUROC	0.6119	0.6885	0.6263	0.6231	0.8044	0.6151	0.6608	0.6822	0.5000	0.7885	0.7994	0.7903
	AUPRC	0.7507	0.7796	0.7168	0.7201	0.8626	0.7154	0.7868	0.7816	0.7551	0.8471	0.8563	0.8467
	F1-score	0.5782	0.6868	0.6199	0.5996	0.8028	0.6147	0.6408	0.6778	0.3288	0.7878	0.7985	0.7904

1428 We conduct an additional set of experiments in which baseline models were evaluated under the
 1429 original, unweighted loss functions, without applying any rebalancing techniques or class frequency
 1430 adjustments. The results are summarized in Table 22. As shown, most baseline models experience a
 1431 substantial decline in performance when trained with their original loss in the imbalanced setting.
 1432 This degradation is consistent across metrics and datasets, confirming that the performance of these
 1433 models is sensitive to skewed class distributions. Importantly, this finding validates our experimental
 1434 choice in the main paper, i.e., the weighted loss was introduced precisely to prevent the baselines
 1435 from collapsing under severe imbalance, thereby ensuring a fair and meaningful comparison with
 1436 our proposed method. Without such weighting, the baselines fail to capture minority class patterns
 1437 effectively, leading to inflated majority class predictions and weakened anomaly or minority detection
 1438 capability. These newly added results therefore reinforce the significance of using balanced training
 1439 strategies and further highlight the robustness advantage of our approach.

O RUNNING TIME WHEN VARYING HYPERPARAMETERS

1440 Because FGG involves four hyperparameters, k_l, k_s, H_l, H_s , that might influence the running time,
 1441 we evaluate the computational overhead under different configurations. We present two 3D plots that
 1442 report the runtime under varying hyperparameters, as shown in Figures 7. The first plot sweeps k_l
 1443 and k_s from 1 to 8 and records the training time. The second plot similarly varies H_l and H_s from 1
 1444 to 8 and measures the runtime during training.

1445 Across both experiments, we observe that the runtime does increase as the hyperparameters grow,
 1446 but the increase is small and progresses gradually. Larger k_l and k_s require computing additional
 1447 eigenvalues, and larger H_l and H_s apply more repeated or deeper fractional operations. Despite
 1448 this, the overall time remains low and exhibits no sharp growth. These results confirm that FGG's
 1449 computational cost scales smoothly with its hyperparameters, and even at higher settings, it maintains
 1450 an efficient and manageable runtime suitable for practical graph-level anomaly detection.

P PSEUDO LABEL CONSISTENCY

1454 An important aspect of evaluating FracAug is understanding how reliably the synthetic samples
 1455 align with the labels of their corresponding original graphs to keep label invariance from semantic

Figure 7: Training time when varying k_l, k_s, H_l, H_s for UACC257 based on GIN.

Figure 8: Label consistency ratio.

preservation. To measure this, we track label consistency ratio, defined as the proportion of synthetic samples whose pseudo labels match the predicted label of the original sample from which they are generated. This metric reflects how faithfully the synthetic data preserves the class semantics and whether the pseudo-labeling process remains stable throughout iterative training.

Our experimental results in Figure 8 reveal a clear and consistent trend: label consistency ratio is high after the warmup and continues to increase across iterations. This high label consistency ratio can be attributed to the positive feedback loop established by the MVP pseudo-labeling mechanism and semantic-preserving generation by FGG. Since only synthetic samples that match the prediction of their associated original graph are admitted into training, the model is repeatedly reinforced with high-quality, label-aligned synthetic instances. Over time, this encourages the baseline model to develop more robust feature representations. Simultaneously, the synthetic graphs generated by FGG become increasingly aligned with the semantic structure of the original samples, further boosting consistency.

Across all evaluated datasets, we observe the same pattern: label consistency ratio remains high throughout training and increases over iterations. This behavior confirms that the mutual verification pseudo-labeling strategy effectively suppresses noisy labels and enhances the reliability of synthetic augmentation. The rising label consistency ratio also indicates that FracAug drives the model toward a stable equilibrium, where both original and synthetic samples converge to consistent and semantically coherent predictions.

In summary, the empirical evidence demonstrates that FracAug maintains strong label fidelity and progressively strengthens the mutual agreement between original and synthetic samples during training. This increasing label consistency ratio is a key factor contributing to the overall robustness and performance gains enabled by FracAug.

1512 Table 23: Ablation study by replacing FGG by Node Drop(ND) or Edge Drop (ED), and replacing
1513 MVP by Soft Ensemble (SE).
1514

1515 Datasets	1516 Metrics	1517 GIN	1518 +FA	1519 ND	1520 ED	1521 SE	1522 NS	1523 +FA	1524 ND	1525 ED	1526 SE	1527 GMixup	1528 +FA	1529 ND	1530 ED	1531 SE
1516 MCF-7	AUROC	0.5867	0.5976	0.5878	0.5838	0.5917	0.5496	0.5695	0.5575	0.5442	0.5594	0.5730	0.5935	0.5758	0.5720	0.5738
	AUPRC	0.2830	0.2971	0.2834	0.2832	0.2959	0.2346	0.2455	0.2224	0.2054	0.2248	0.2767	0.3081	0.2941	0.2947	0.2762
	F1-score	0.5366	0.5421	0.5384	0.5309	0.5317	0.5179	0.5721	0.5460	0.5506	0.5589	0.5186	0.5220	0.5070	0.5009	0.5203
1518 MOLT-4	AUROC	0.5733	0.5854	0.5790	0.5774	0.5789	0.5506	0.5663	0.5496	0.5521	0.5557	0.5637	0.5771	0.5737	0.5707	0.5714
	AUPRC	0.2830	0.3001	0.2967	0.2929	0.2949	0.2203	0.2356	0.2271	0.2261	0.2240	0.2411	0.2559	0.2414	0.2545	0.2459
	F1-score	0.5072	0.5103	0.5024	0.5047	0.5101	0.5595	0.5658	0.5606	0.5622	0.5632	0.5306	0.5416	0.5378	0.5300	0.5414
1520 PC-3	AUROC	0.5969	0.6119	0.6036	0.5991	0.6015	0.5688	0.5821	0.5664	0.5639	0.5679	0.5705	0.5782	0.5677	0.5700	0.5731
	AUPRC	0.2797	0.2893	0.2855	0.2837	0.2778	0.2112	0.2385	0.2132	0.2103	0.2149	0.3506	0.3587	0.3473	0.3527	0.3546
	F1-score	0.5063	0.5205	0.5110	0.5058	0.5156	0.5698	0.5848	0.5716	0.5700	0.5725	0.4085	0.4101	0.4083	0.4038	0.4096
1522 SW-620	AUROC	0.5938	0.6004	0.5919	0.5958	0.5932	0.5577	0.5834	0.5634	0.5610	0.5581	0.5839	0.5987	0.5855	0.5834	0.5872
	AUPRC	0.2776	0.2813	0.2721	0.2793	0.2746	0.2026	0.2279	0.2072	0.2041	0.1991	0.2599	0.2728	0.2574	0.2609	0.2658
	F1-score	0.5090	0.5155	0.5112	0.5101	0.5109	0.5641	0.5676	0.5666	0.5651	0.5625	0.5111	0.5220	0.5169	0.5090	0.5110
1524 NCI-H23	AUROC	0.5897	0.5968	0.5847	0.5850	0.5900	0.5792	0.5979	0.5729	0.5780	0.5909	0.5912	0.6014	0.5911	0.5947	0.5984
	AUPRC	0.2566	0.2659	0.2543	0.2522	0.2626	0.2273	0.2407	0.2255	0.2258	0.2295	0.2587	0.2672	0.2522	0.2665	0.2610
	F1-score	0.5059	0.5073	0.5007	0.5031	0.5004	0.5821	0.5835	0.5816	0.5821	0.5776	0.5058	0.5134	0.5127	0.5036	0.5121
1526 OVCAR-8	AUROC	0.5935	0.5963	0.5926	0.5918	0.5933	0.5507	0.5726	0.5603	0.5561	0.5549	0.5786	0.6024	0.5846	0.5840	0.5827
	AUPRC	0.2573	0.2612	0.2527	0.2584	0.2604	0.1775	0.2132	0.1904	0.1758	0.1740	0.2764	0.3072	0.2916	0.2851	0.2883
	F1-score	0.5118	0.5123	0.5068	0.5081	0.5082	0.5461	0.5749	0.5628	0.5518	0.5359	0.4733	0.4766	0.4680	0.4729	0.4740
1528 P388	AUROC	0.5565	0.5913	0.5662	0.5749	0.5645	0.5500	0.5720	0.5500	0.5700	0.5507	0.5469	0.5647	0.5467	0.5486	0.5484
	AUPRC	0.2850	0.3309	0.2933	0.3026	0.2948	0.1958	0.2229	0.1919	0.2077	0.2015	0.1694	0.1957	0.1821	0.1795	0.1789
	F1-score	0.4468	0.4491	0.4445	0.4439	0.4480	0.5520	0.5746	0.5599	0.5678	0.5625	0.5315	0.5373	0.5313	0.5222	0.5224
1530 SF-295	AUROC	0.5844	0.6076	0.5948	0.5972	0.5998	0.5649	0.5753	0.5636	0.5721	0.5624	0.5665	0.6040	0.5862	0.5841	0.5694
	AUPRC	0.2766	0.2832	0.2673	0.2796	0.2780	0.2114	0.2252	0.2154	0.2072	0.2149	0.2004	0.2509	0.2374	0.2278	0.2090
	F1-score	0.4803	0.5047	0.5016	0.4932	0.4984	0.5736	0.5820	0.5752	0.5717	0.5745	0.5245	0.5371	0.5186	0.5260	0.5198
1532 SN12C	AUROC	0.5995	0.6079	0.5972	0.5959	0.6017	0.5509	0.5795	0.5561	0.5538	0.5690	0.5713	0.5984	0.5882	0.5740	0.5817
	AUPRC	0.2696	0.2746	0.2677	0.2682	0.2695	0.1726	0.2164	0.1710	0.1704	0.1855	0.2163	0.2524	0.2386	0.2150	0.2328
	F1-score	0.5030	0.5110	0.5017	0.4991	0.5065	0.5538	0.5770	0.5490	0.5523	0.5650	0.5136	0.5195	0.5175	0.5185	0.5127
1534 UACC257	AUROC	0.5877	0.6015	0.5905	0.5859	0.5952	0.5623	0.5947	0.5768	0.5679	0.5689	0.5853	0.6209	0.5989	0.5945	0.5951
	AUPRC	0.2480	0.2598	0.2442	0.2553	0.2573	0.1805	0.2210	0.1938	0.1813	0.2112	0.2365	0.2963	0.2405	0.2548	0.2727
	F1-score	0.4906	0.4983	0.4978	0.4818	0.4919	0.5541	0.5784	0.5657	0.5615	0.5794	0.4993	0.4898	0.4883	0.4933	0.4780
1536 PROTEINS_full	AUROC	0.5799	0.6174	0.5808	0.5815	0.5979	0.6009	0.6217	0.6054	0.6039	0.6157	0.5411	0.6097	0.5759	0.5523	0.5554
	AUPRC	0.6259	0.6358	0.6139	0.6075	0.6297	0.6183	0.6366	0.6271	0.6353	0.6304	0.5810	0.6244	0.5997	0.5770	0.5992
	F1-score	0.5679	0.6175	0.5770	0.5801	0.5933	0.6015	0.6214	0.6003	0.5991	0.6137	0.5348	0.6102	0.5753	0.5520	0.5494
1538 DBLP_v1	AUROC	0.6231	0.8044	0.7034	0.6791	0.7849	0.6446	0.6822	0.6601	0.6414	0.6712	0.7939	0.7994	0.7891	0.7803	0.7812
	AUPRC	0.7201	0.8626	0.8003	0.7738	0.8411	0.7689	0.7816	0.7794	0.7329	0.7614	0.8503	0.8563	0.8479	0.8394	0.8403
	F1-score	0.5996	0.8028	0.7009	0.6775	0.7847	0.6252	0.6778	0.6467	0.6399	0.6712	0.7937	0.7985	0.7885	0.7805	0.7812

1539
1540 Q REPLACEMENT FOR FGG/MVP
1541

1542 To further evaluate the contribution of FracAug’s main components, we conduct an additional ablation
1543 study by replacing FGG. We substitute FGG with two standard perturbation-based augmentations,
1544 Node Drop and Edge Drop. As shown in Table 23, these replacements often result in degraded
1545 performance compared to our original setting, and sometimes even lower than their baselines.
1546 Although our MVP can rule out the noise from non-semantic-preserving generation by mutual
1547 verification to some extent, the fail to leverage guaranteed semantic-preserving properties prevents
1548 existing data augmentation methods from achieving optimal results, which further demonstrates the
1549 effectiveness of our proposed components.

1550 We further replace MVP with a soft ensemble pseudo-labeling strategy that averages the predictions
1551 of the original and synthetic samples. This relaxation produces noisier and less reliable pseudo-labels,
1552 since it lacks the strict consistency constraint enforced by mutual verification. Consequently, as
1553 shown in Table 23, performance becomes unstable or deteriorates across datasets. In contrast, the
1554 full FracAug framework, using FGG for high-fidelity synthetic generation and MVP for robust
1555 pseudo-label filtering, consistently delivers superior results, underscoring the critical importance of
1556 both design components.

1557 Instead of conducting experiments on GIN, we also conduct the same experiments on different
1558 backbones to prove that the effectiveness of our framework is a general advantage.

1559 In conclusion, the additional ablation study, where FGG is replaced with either Node Drop or
1560 Edge Drop, and MVP is replaced with Soft Ensemble, further reinforces the effectiveness of each
1561 individual component. These controlled substitutions consistently lead to inferior performance,
1562 thereby validating that all the components contribute uniquely and substantially to the overall design.

1563
1564 R INFLUENCE OF MIDDLE EIGENVALUES
1565

1566
1567
1568 Table 24: Ablation study for middle eigenvalues.
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599

Datasets	Metrics	GIN	+FA	w/ middle
MCF-7	AUROC	0.5867	0.5976	0.5958
	AUPRC	0.2830	0.2971	0.2913
	F1-score	0.5366	0.5421	0.5452
MOLT-4	AUROC	0.5733	0.5854	0.5851
	AUPRC	0.2830	0.3001	0.3034
	F1-score	0.5072	0.5103	0.5066
PC-3	AUROC	0.5969	0.6119	0.6182
	AUPRC	0.2797	0.2893	0.2898
	F1-score	0.5063	0.5205	0.5283
SW-620	AUROC	0.5938	0.6004	0.5980
	AUPRC	0.2776	0.2813	0.2820
	F1-score	0.5090	0.5155	0.5110
NCI-H23	AUROC	0.5897	0.5968	0.5923
	AUPRC	0.2566	0.2659	0.2614
	F1-score	0.5059	0.5073	0.5063
OVCAR-8	AUROC	0.5935	0.5963	0.6026
	AUPRC	0.2573	0.2612	0.2617
	F1-score	0.5118	0.5123	0.5119
P388	AUROC	0.5565	0.5913	0.6031
	AUPRC	0.2850	0.3309	0.3376
	F1-score	0.4468	0.4491	0.4483
SF-295	AUROC	0.5844	0.6076	0.6089
	AUPRC	0.2766	0.2832	0.2873
	F1-score	0.4803	0.5047	0.4983
SN12C	AUROC	0.5995	0.6079	0.6082
	AUPRC	0.2696	0.2746	0.2756
	F1-score	0.5030	0.5110	0.5103
UACC257	AUROC	0.5877	0.6015	0.5980
	AUPRC	0.2480	0.2598	0.2525
	F1-score	0.4906	0.4983	0.5006
PROTEINS_full	AUROC	0.5799	0.6174	0.6105
	AUPRC	0.6259	0.6358	0.6321
	F1-score	0.5679	0.6175	0.6096
DBLP_v1	AUROC	0.6231	0.8044	0.8028
	AUPRC	0.7201	0.8626	0.8607
	F1-score	0.5996	0.8028	0.8015

1600
1601
1602 Originally, FGG is intentionally constructed around the largest top- k_l and smallest top- k_s eigenvalues,
1603 as these parts of the spectrum encode global structural patterns and localized irregularities, both of
1604 which are crucial for effectively distinguishing anomalous graphs. To further examine this design
1605 choice, we conduct an analysis to determine whether incorporating the middle region of the eigenvalue
1606 spectrum offers any meaningful contribution to our fractional augmentation process.

1607 As shown in Table 24, our results indicate that including all eigenvalues does not lead to any noticeable
1608 performance improvement across the evaluated datasets. Moreover, extracting these intermediate
1609 spectral components requires performing a full eigendecomposition, which incurs a computational
1610 complexity of $O(n^3)$, where n denotes the number of nodes in the graph. This stands in sharp
1611 contrast to the top- k approximate eigensolvers used in our original design, whose complexity is only
1612 $O(k \cdot nnz \cdot t)$, with nnz representing the number of non-zero entries in the adjacency matrix and t
1613 denoting the iteration count of the eigendecomposition. Given the minimal performance gains and
1614 the substantially higher computational burden, these findings confirm that focusing solely on the
1615 largest top- k_l and smallest top- k_s eigenvalues is both an effective and efficient choice for FGG’s
1616 augmentation strategy.

1617
1618 **S COMPARISON WITH WARMUP MODELS**
1619

1620 Table 25: Average AUROC, AUPRC, and F1-score on 3 datasets with multiple runs, where the "+FA"
 1621 represents our original setting, and warmup represents the baseline mode after the warmup phase.
 1622

1623 Datasets	1624 Metrics	1625 GAT	1626 +FA	1627 warmup	1628 GIN	1629 +FA	1630 warmup	1631 iGAD	1632 +FA	1633 warmup	1634 NSv	1635 +FA	1636 warmup
1624 UACC257	AUROC	0.5890	0.6174	0.5568	0.5877	0.6015	0.5606	0.5697	0.5748	0.5590	0.5623	0.5947	0.5499
	AUPRC	0.3493	0.3389	0.3139	0.2480	0.2598	0.1994	0.1906	0.1970	0.1780	0.1805	0.2210	0.1515
	F1-score	0.4031	0.4455	0.3993	0.4906	0.4983	0.4972	0.5201	0.5224	0.5145	0.5541	0.5784	0.5280
1626 PROTEINS_full	AUROC	0.6157	0.6836	0.6012	0.5799	0.6174	0.5723	0.5976	0.6206	0.5631	0.6009	0.6217	0.5875
	AUPRC	0.6350	0.7005	0.6112	0.6259	0.6358	0.5987	0.6200	0.6333	0.6234	0.6183	0.6366	0.6287
	F1-score	0.6158	0.6859	0.6014	0.5679	0.6175	0.5713	0.5960	0.6211	0.5669	0.6015	0.6214	0.5619
1629 DBLP_v1	AUROC	0.6119	0.6885	0.5436	0.6231	0.8044	0.6098	0.7755	0.7909	0.7482	0.6446	0.6822	0.6414
	AUPRC	0.7507	0.7796	0.7207	0.7201	0.8626	0.7014	0.8377	0.8473	0.8272	0.7689	0.7816	0.7329
	F1-score	0.5782	0.6868	0.5425	0.5996	0.8028	0.5910	0.7749	0.7910	0.7447	0.6252	0.6778	0.6239

1631 Table 26: Comparison with unsupervised and finetuned models. "+FA" represents FracAug-enhanced
 1632 GIN. "OOM" represents the out-of-memory issue.
 1633

1635 Datasets	1636 Metrics	1637 Unsupervised						1638 Mole-BERT		1639 ours	
		1639 OCGIN	1640 GLADC	1641 GLoKD	1642 OCGTL	1643 SIGNET	1644 CVTGAD	1645 pretrain	1646 finetune	1647 GIN	1648 +FA
1637 PROTEINS_full	AUROC	0.3435	0.3206	0.5596	0.5971	0.5841	0.2485	0.4414	0.5124	0.5799	0.6174
	AUPRC	0.3132	0.3032	0.4941	0.4302	0.4962	0.2815	0.5968	0.5988	0.6259	0.6358
	F1-score	0.2880	0.2879	0.3733	0.2879	0.2879	0.2879	0.3697	0.4882	0.5679	0.6175
1639 DBLP_v1	AUROC	0.4536	0.5340	0.4370	0.5425	0.5131	OOM	0.5077	0.6677	0.6231	0.8044
	AUPRC	0.4651	0.5470	0.4522	0.5552	0.5332	OOM	0.6506	0.7305	0.7201	0.8626
	F1-score	0.3290	0.3288	0.3288	0.3378	0.3378	OOM	0.5069	0.6678	0.5996	0.8028

1643 We conduct an additional experiment to further demonstrate the effectiveness of our proposed
 1644 model. As described in Section 4, before integrating FracAug into the baseline models, we ensure
 1645 that the baselines first acquire a foundational understanding of the graph-level anomaly detection
 1646 dataset by warmup. This step is crucial to stabilize their predictions and enhance the reliability of
 1647 pseudo-labeling.

1648 As shown in Table 25, the baseline models that undergo only a brief warmup phase, without sufficient
 1649 training epochs, are outperformed by their fully trained counterparts. However, once FracAug is
 1650 integrated into the training process of warmup baselines and then trained for an equivalent number
 1651 of epochs as the fully-trained baselines, it becomes evident that the warmup models with FracAug
 1652 achieve substantial performance improvements over the baselines. Ultimately, these models reach
 1653 state-of-the-art performance, providing strong evidence of the effectiveness of our proposed FracAug
 1654 framework.

1656 T COMPARISON WITH UNSUERVISED AND FINETUNED MODELS

1658 We first conduct comparisons between unsupervised graph-level anomaly detection models from a
 1659 novel benchmark paper (Wang et al., 2025) and the FracAug-enhanced GIN. The results in Table 26
 1660 show that unsupervised training falls significantly behind our method, even though we only utilize 1%
 1661 examples as the training set, indicating that label information plays a crucial role in achieving strong
 1662 anomaly detection performance. Consistent with our earlier experiments in Appendix H, increasing
 1663 the amount of available labeled data leads to further improvements, reinforcing the importance of
 1664 label supervision. These findings highlight the importance and effectiveness of our proposed plug-in
 1665 data augmentation framework, since in real deployment, anomaly detection works usually suffer from
 1666 the limited label supervision issue.

1667 Furthermore, we compare our performance with Mole-BERT (Xia et al., 2023), which is a model
 1668 pretrained in an unsupervised manner and subsequently finetuned with labeled data for a specific
 1669 domain. As shown in Table 26, the unsupervised pretraining alone produces suboptimal results,
 1670 consistent with the behavior of the unsupervised baselines. Even after finetuning with the same
 1671 labeled data budget as our framework, the performance remains inferior to ours to a large extent. This
 1672 observation suggests two key points: (1) finetuning may inherit a suboptimal parameter space induced
 1673 by unsupervised pretraining, limiting its adaptability, and (2) sufficient and properly utilized label
 1674 information is essential for achieving robust performance. Together, these findings further validate

1674 the novelty and effectiveness of our plug-in data augmentation framework, which can effectively
1675 generate more fidelity label information, even under extremely limited supervision.
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727