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ABSTRACT

Graph-level anomaly detection (GAD) is critical in diverse domains such as drug
discovery, yet high labeling costs and dataset imbalance hamper the performance
of Graph Neural Networks (GNNs). To address these issues, we propose FracAug,
an innovative plug-in augmentation framework that enhances GNNs by generating
semantically consistent graph variants and pseudo-labeling with mutual verification.
Unlike previous heuristic methods, FracAug learns semantics within given graphs
and synthesizes fractional variants, guided by a novel weighted distance-aware
margin loss. This captures multi-scale topology to generate diverse, semantic-
preserving graphs unaffected by data imbalance. Then, FracAug utilizes predictions
from both original and augmented graphs to pseudo-label unlabeled data, iteratively
expanding the training set. As a model-agnostic module compatible with various
GNNs, FracAug demonstrates remarkable universality and efficacy: experiments
across 14 GNNs on 12 real-world datasets show consistent gains, boosting average
AUROC, AUPRC, and F1-score by up to 5.72%, 7.23%, and 4.18%, respectively.

1 INTRODUCTION

Graph-structured data is pivotal in real applications ranging from drug discovery to anomaly identifi-
cation among proteins (Zhang et al., 2022). While Graph Neural Networks (GNNs) excel at modeling
topological and feature-based patterns through message-passing, their effectiveness in Graph-level
Anomaly Detection (GAD)—distinguishing anomalous graphs from normal ones—is hindered by
two key challenges: limited supervision and extreme class imbalance, as demonstrated in Section 5.
Specifically, anomalies represent rare instances, exacerbating data imbalance and restricting the avail-
ability of labeled training samples (Chen et al., 2024; Dong et al., 2024). While data augmentation
techniques have revolutionized computer vision (Zhang et al., 2023) by generating synthetic labels
through rotations or crops, their adaptation to graph domains presents unique challenges. Unlike
images, graphs inhabit non-Euclidean space where seemingly minor structural modifications (e.g.,
edge removal) risk distorting semantic properties and violating the label-invariant assumption—a
critical constraint in GAD’s challenging setting of limited supervision and inherent class imbalance.

Existing graph-level augmentation methods, such as MAA (Yoo et al., 2022), often employ heuristic
modifications without considering data properties, leading to compromised semantics or insufficient
diversity in GAD tasks. Consequently, their direct application may underperform vanilla GAD
models. We attribute this gap to three key issues: (1) the absence of semantic-preserving augmentation
strategies, (2) inadequate handling of imbalance, and (3) ineffective utilization of unlabeled data.

To address these challenges, we introduce FracAug, a novel plug-in augmentation framework that
generates semantic-preserving graph variants and pseudo-labels for unlabeled graphs to train GNNs
for GAD. Our key innovation leverages the fractional power of adjacency matrices, which encodes
multi-scale topological relationships. By computing polynomials of various fractional graphs, guided
by weighted distance-aware margin loss, FracAug introduces controlled structural variations while
ensuring semantic consistency with the original graph’s label, independent of the underlying data
distribution. Afterward, a given GNN will produce predictions for both original and synthetic samples,
enabling FracAug to employ a mutual verification mechanism for pseudo-labeling unlabeled graphs,
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thereby iteratively expanding the training set. This approach not only mitigates supervision scarcity
but also enhances model robustness against class imbalance.

In summary, our contributions are as follows:

• We present FracAug, the first augmentation framework designed for GAD that maintains effective-
ness under the dual constraints of limited supervision and imbalanced distribution

• FracAug operates as a model-agnostic plug-in augmentation framework compatible with 14 GNNs
without architectural modifications, facilitating seamless integration into existing models.

• Extensive experiments on 12 real-world datasets demonstrate that FracAug enhances performance
across diverse GNNs, significantly outperforming existing graph augmentation approaches.

2 RELATED WORK

Graph Classification. Generalized GNNs, such as GCN (Kipf & Welling, 2017), GraphSAGE
(Hamilton et al., 2017), GAT (Velickovic et al., 2018), and GIN (Xu et al., 2019), excel at learning
graph representations through neighborhood aggregation. Recent advances include LRGNN (Wei
et al., 2023), which captures long-range dependencies with stacking GNNs, and GRDL (Wang & Fan,
2024), which achieves state-of-the-art (SOTA) performance by learning representation distributions
of graphs. However, these representative GNNs are not specifically designed for GAD tasks. While
they can capture certain topological or feature-based patterns, their performance degrades under data
imbalance and limited supervision.

Graph-level Anomaly Detection. Recognizing the challenges underlying GAD tasks, researchers
have introduced specialized approaches to address them. For instance, iGAD (Zhang et al., 2022)
introduces dual-discriminative kernels guided by a point mutual information-based loss function
to better capture graph anomalies. Later, by mapping anomalies and normal graphs to separate
areas based on adjusted candidate nodes, GmapAD (Ma et al., 2023a) shows advanced performance.
Moreover, RQGNN (Dong et al., 2024) leverages the Rayleigh Quotient to detect graph anomalies
effectively within spectral space. Recently, UniGAD (Lin et al., 2024) combines different levels of
graph anomaly detection to capture comprehensive information to enhance the detection accuracy.
Although these specialized frameworks show promising performance in addressing data imbalance
challenges, they still present inferior results due to the limited supervision issue.

Graph-level Augmentation. To address the scarcity of labeled examples, researchers also develop
diverse augmentation techniques for graph-level tasks. For example, MAA (Yoo et al., 2022) proposes
two separate methods, NodeSam and SubMix, to generate synthetic samples by heuristic structure
modification. Besides, GLA (Yue et al., 2022) generates the latent representations as the augmented
graphs during the training phase. Subsequently, GMixup (Han et al., 2022) and FGWMixup (Ma et al.,
2023b) interpolate graphs or features linearly to mix normal and anomalous samples for producing
novel samples. Nevertheless, they fail to produce semantic-preserving samples when dealing with
imbalanced data with limited supervision, resulting in unsatisfactory performance.

In contrast, FracAug diverges by leveraging the fractional power of adjacency matrices, a mathe-
matically grounded operation that preserves semantics within graphs while introducing multi-scale
structural variations. The incorporation of weighted distance-aware margin loss further enables
FracAug to adapt to the imbalanced scenario. Furthermore, its pseudo-labeling mechanism explic-
itly addresses the limited supervision constraint. As a plug-in module, FracAug overcomes above
limitations in GNNs and graph-level augmentation methods without modifying GNN architectures,
enabling given GNN models to learn discriminative features for GAD tasks even with sparse labels.

3 PRELIMINARIES

Notation. Let G = (A,X) denote an undirected graph with n nodes and m edges, where A ∈ Rn×n

is the adjacency matrix and X ∈ Rn×F is the node feature matrix. Aij = 1 if an edge exists between
node i and j, and Aij = 0 otherwise. D is the diagonal degree matrix of A, and the normalized
adjacency matrix can be defined as Ã = D− 1

2AD− 1
2 correspondingly. For a given matrix M ,

Mα stands for the α-th power of matrix M , where α ≥ 0. When M can be eigendecomposed,

2
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Figure 1: Overview of FracAug.

Mα = UΛαV , where U ,V ∈ Cn×n are unitary matrices and Λ ∈ Rn×n is a diagonal matrix
composed of the eigenvalues of M .

Continuous Semantic Space. Given a graph G with adjacency matrix A and a graph signal
x ∈ RF , the semantic space of G is defined as a subspace S ⊆ RF generated by the set of vectors
obtained through the application of powers of A to x. Unlike previous approaches that rely on
discrete semantics constrained by integer powers, i.e., {Atx|t ∈ N}, our continuous semantic space
formulation, S = span{Atx|t ∈ N}, captures the underlying continuous semantic manifold of the
graph, which enables us to synthesize novel semantic-preserving graph instances, shown in Section 4.

Graph-level Anomaly Detection. In this work, we focus on enhancing GAD perfor-
mance under limited supervision. Given a training set with k labeled samples, Dtrain =
{(G1, y1), (G2, y2), ..., (Gk, yk)}, the goal of GAD is to train a model that classifies unseen graphs
as normal or anomalous. In real deployment, there are two main challenges in GAD. Firstly,
Dall = Dtrain∪Dval∪Dtest contains N0 normal graphs and N1 anomalous graphs, where N0 ≫ N1,
leading to severe imbalanced problem. Secondly, only limited labeled graphs are accessible during
training, i.e., k ≪ N0+N1, resulting in the limited supervision issue. Therefore, the key to enhancing
the ability of GNNs on real-world GAD tasks is to address these two challenges simultaneously.

Graph-level Augmentation. Graph-level augmentation has been proven effective in improving the
performance of GNNs on graph-level tasks. Graph generation and pseudo-labeling are the most
common ways to conduct graph-level augmentation:

• Graph generation: This strategy maps the graph G ∈ Dtrain to a new graph G′, i.e., (G, y) 7→
(G′, y). The generated graph should have a semantic meaning similar to that of the original G.

• Pseudo-labeling: This approach leverages a GNN trained on Dtrain to classify samples from
Dval ∪ Dtest and assign pseudo-labels to samples with high confidence under a certain criterion.

By combining graph generation and pseudo-labeling techniques while tackling the imbalanced issue,
FracAug effectively boosts GNN performance for GAD under limited supervision.

4 METHOD

4.1 OVERVIEW

Our proposed FracAug consists of three key components: (1) Fractional Graph Generator (FGG)
in Section 4.2 captures the inherent semantics of graphs, enabling the synthesis of fractional variants
that maintain semantic consistency with originals, as we demonstrate theoretically. (2) Weighted
Distance-Aware Margin Loss (WDML) in Section 4.3 addresses data imbalance to guide FGG,
employing distance-based margins to position synthetic graphs near original counterparts while
ensuring distinctiveness. (3) Mutual Verification Pseudo-Labeler (MVP) in Section 4.4 minimizes
pseudo-labeling errors through mutual verification of predictions from original and synthetic graphs,
facilitating reliable and iterative training set expansion.

Figure 1 illustrates the pipeline of our FracAug. Initially, we warm up a given GNN to establish a
preliminary semantic understanding of the GAD task. Then, we freeze the GNN parameters and
utilize its outputs to train the FGG with WDML. The trained FGG then generates fractional graph
variants, and the GNN predicts on both original and synthetic graphs to pseudo-label data within the
validation and test sets using MVP, which are subsequently incorporated into the original training set.
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Finally, we train the GNN using the new training set and continue the above process until both the
GNN and our FracAug framework reach reasonable capability.

4.2 FRACTIONAL GRAPH GENERATOR

Flexible Eigengraph Combinations. The fractional power of the adjacency matrix, Aα, where
α ≥ 0, serves as the mathematical foundation of our framework due to its unique properties.
Unlike integer powers of A, which only capture discrete-step neighborhood aggregations, fractional
powers enable continuous interpolation of graph structures, providing fine-grained control over
topological variations. Crucially, Aα can be expressed as a combination of eigengraphs derived
from eigendecompositions. For an undirected graph G with symmetric adjacency matrix A, we can
decompose Aα as:

Aα = UΛαUT =

n∑
i=1

λα
i uiu

T
i ,

where Λ is the diagonal eigenvalue matrix containing {λi}ni=1 in a descending order, U is the eigen-
vector matrix formed by {ui}ni=1, and uiu

T
i is the i-th eigengraph. It reveals two key advantages:

• Multi-scale Structure Adaptation: Fractional powers enable tunable control over spectral com-
ponents via α, where lower values (α < 1) emphasize homophilic graph signals (low-frequency
eigengraphs), while higher values (α > 1) accentuate heterophilic graph signals (high-frequency
eigengraphs) (Yan et al., 2023). This adaptive reweighting preserves the hierarchical topology
while generating augmented graphs, signaling structural anomalies for detection.

• Semantic-preserving Combination: By combining eigengraphs, FracAug preserves semantic-
critical structures (targeting spectral deviations linked to anomalies (Dong et al., 2024)), ensuring
that generated graphs retain the original semantics.

Semantic Preservation. Prior studies, such as GIN (Xu et al., 2019), rely on integer powers of
adjacency matrices, limiting them to discrete semantic preservation. In contrast, we prove that for
any α ≥ 0, Aαx resides in the original semantic space. Moreover, we further derive a theoretical
boundary to quantify differences between the original and fractional graphs, detailed in Appendix A.

Theorem 1. Given a polynomial function p(·;θ) parameterized by θ, for any α ≥ 0, there exists θ∗

such that Aα ≈ p(A;θ∗) =
∑T

t=0 θ
∗
tA

t, T ∈ N. With proper parameter θ∗, the difference of them
is bounded by βe−γT , where β, γ > 0 depend on the eigenvalues of A. Since Aα can be represented
as a polynomial combination of {At}t∈N, Aαx lies in S of the original graph as T →∞.

Theorem 1 ensures that fractional graphs preserve the original semantic space while encoding multi-
scale semantics. The continuous parameter α spans all possible semantic variations within this space,
enabling rich and comprehensive augmentation. Besides, previous approaches such as MAA (Yoo
et al., 2022) leverage heuristic perturbation techniques for generating synthetic graphs, which may
result in useful substitutes near the semantic space of the original graph. Theorem 2 formally bridges
these perturbation-based approaches with our fractional graph augmentation, revealing their shared
theoretical foundations. The complete proof is provided in Appendix A.

Theorem 2. Let the structural perturbation on a graph be a perturbation matrix P added to the
original graph, so that any graph generated by a structural perturbation method can be expressed as
A+ P . Then, we can derive ||Aα − (A+ P )|| ≤ c||P ||+maxi |λi − λα

i |, where c depends on α
and the spectral gap of P , and λi is the i-th eigenvalue of A+P . Thus, by choosing an appropriate
α, Aα can approximate any graph generated by structural perturbation methods.

Based on Theorem 2, we observe that for a suitably chosen α, the fractional graph can approximate
any sample generated by perturbation-based framework, demonstrating its generalization capability.

Fractional Graph Generation. Building on the above analysis, we conclude that fractional graphs
offer powerful augmentation capabilities. However, directly deriving the fractional power of the
adjacency matrix can be computationally prohibitive and may yield invalid results for non-semi-
definite adjacency matrix. Thus, a transformation function h(·) is applied to the adjacency matrix to
ensure valid fractional powers while preserving structural integrity (Yan et al., 2023). Specifically,
instead of adding self-loops before normalization of the adjacency matrix, we introduce them after
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(a) Softmax (b) LMCL (c) LDAM (d) WDML

Figure 2: Decision boundaries of different margin losses.

normalization and rescale the matrix, so the resulting adjacency matrix can be defined as:

Â = h(Ã) =
1

2
(I + Ã),

which is still a normalized adjacency matrix. Since all eigenvalues of Ã lie within [−1, 1], the
corresponding eigenvalues of Â fall within [0, 1]. Therefore, h(·) transforms A into a positive
semi-definite matrix Â, which allows the design of FGG.

Moreover, to mitigate computational costs for large graphs, we precompute the eigendecomposition
(EVD) using the Arnoldi method (Lehoucq et al., 1998), retaining only the top-kl largest and top-ks
smallest eigenpairs. Denote Λ̂kl

, Λ̂ks
as diagonal matrices of the top-kl largest and top-ks smallest

eigenvalues, Ukl
= U [:, 0 : kl],Uks

= U [:, n−ks : n] as the corresponding matrices of eigenvectors,
and the generated graph of G(A,X) as G′(A′,X), FGG can be formulated as:

g(A, k,H) =

H∑
h=1

ωhUkΛ̂
αh

k UT
k ,

A′ = FGG(A, kl, ks, Hl, Hs) = ωg(A, kl, Hl) + (1− ω)g(A, ks, Hs),

where
∑H

h=1 ωh = 1, ω are learnable coefficients, and αh is h-th learnable fractional power of the
matrix. By combining multiple fractional graphs with tunable weights, our generated graphs can
capture comprehensive information while preserving semantics. Although the anomalous properties
are well-preserved in graphs from FGG based on previous analysis, inherent data imbalance risks
biasing FGG training. To counteract this, in Section 4.3, we design WDML to guide FGG training.

4.3 WEIGHTED DISTANCE-AWARE MARGIN LOSS

Revisiting Margin Loss. To better separate the semantic spaces of different graphs and enable FGG
to generate high-quality fractional graphs robust to class imbalance, we introduce a novel margin loss
function. Before illustrating the details of WDML, we first reexamine representative margin losses,
with comprehensive empirical validation provided in Appendix G. Formally, margin loss based on
cross-entropy can be defined as:

L = − 1

N

N∑
i=1

log
esyi

−m

esyi
−m +

∑C
j=1,j ̸=yi

esj

, (1)

where N is the number of the samples, s represents the normalized logits predicted by a given GNN,
yi is the ground truth label of i-th sample, m is the margin that determines the decision boundary,
and C is the number of classes.

As shown in Figure 2 (a), when setting margin m to 0, the margin loss is degraded to a cross-entropy
loss, which lacks explicit mechanisms to separate classes in complex scenarios. Another margin loss
is LMCL (Wang et al., 2018) with m as a hyperparameter. Figure 2 (b) describes the result of setting
m > 0, enforcing better inter-class separation. However, this uniform margin shifts the decision
boundaries of different classes by the same value, which fails to detect the unique class-specific
properties. Afterward, LDAM (Cao et al., 2019) in Figure 2 (c) tackles the issues by setting class-
specific margin mc for c-th class so that the decision boundaries can accommodate scenarios where
classes require distinct margins. Existing margin losses typically employ fixed margins, which prove
suboptimal for GAD where sample-specific semantic variations exist. To address this, we propose
WDML, which assigns dynamic margins based on the intrinsic distance of each synthetic sample and
its original graph with a weight according to its class. Figure 2 (d) describes the adaptive decision
boundary of WDML.
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Margin Loss Based on Sample-Specific Distance. For the i-th training graph Gi and its counterpart
G′

i generated by FGG, we extract graph-level embeddings oi and o′
i via a given GNN. Then, our

distance-aware margin can be defined as:

mi =
1− cos(oi,o

′
i)

2
, (2)

where cos represents cosine similarity. Substituting m in Equation 1 with the sample-specific margin
mi yields a distance-aware margin loss. By computing angular distances in Equation 2, this loss shifts
the semantic space away from decision boundaries by a margin mi, ensuring generated samples retain
the original label with high confidence. To further address class imbalance, WDML incorporates
weights based on class frequency:

LWDML = −
N∑
i=1

1

Nyi

log
esyi

−mi

esyi
−mi +

∑C
j=1,j ̸=yi

esj

,

where Nyi
is the number of samples in class yi. With the assistance of WDML, FGG can generate

fractional graphs effectively without being biased by the imbalanced distribution of labels. To further
boost the performance by data augmentation, we design MVP to combine graph generation and
pseudo-labeling techniques, whose details will be elaborated in Section 4.4.

4.4 MUTUAL VERIFICATION PSEUDO-LABELER

Insight on Mutual Verification. Prior pseudo-labeling methods for related tasks, such as ConsisGAD
(Chen et al., 2024), only rely on confidences from original samples, prone to high errors under low
supervision (Dong et al., 2025). Therefore, we first investigate how mutual verification mitigates the
error rates compared to single-view methods, theoretically. The proof is detailed in the Appendix A.
Proposition 1. For a given GNN, assume its prediction error rates for original graphs and corre-
sponding fractional graphs are both δ. The correlation coefficient between the errors is denoted as ρ.
Then, when mutual verification is used, compared to single-view methods, the reduction factor of the
error rate and its variance can be up to δ + ρδ(1− δ) and ρ, respectively.

Proposition 1 demonstrates that the mutual verification mechanism leverages semantic consistency
between original graphs and their fractional counterparts to enhance pseudo-labeling reliability.
Building on this, we design MVP based on the agreement between predicted labels for the original
and synthetic samples, as detailed below.

High-Quality Pseudo-Label Prediction. Based on the above analysis, MVP assigns a pseudo-label
ŷi to the i-th sample in the validation or test set if and only if:

ŷi =

{
0, pi ≤ τn ∧ p′i ≤ τn,

1, pi ≥ τa ∧ p′i ≥ τa,

where pi, p
′
i represent the anomaly probabilities of the i-th original sample and its fractional counter-

part, respectively, and τn, τa denote the confidence thresholds of a sample being normal/anomalous.
For any given GNN, we iteratively incorporate high-confidence pseudo-labeled samples from the
validation and test sets into the training set, further mitigating the limited supervision issue.

The core innovation of our mutual verification framework lies in leveraging the semantic consistency
between original and fractional graphs to generate high-confidence pseudo-labels. This mechanism
addresses the scarcity of labeled anomalies by iteratively expanding the training set with reliable
samples, guided by theoretical guarantees of robustness.

In summary, our proposed FracAug combines FGG, WDML, and MVP to generate fractional graphs
and pseudo-label samples to boost the performance of GNNs on GAD tasks under limited supervision.
The experiments in Section 5 further validate our theoretical analysis in Section 4.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate FracAug on 12 real-world datasets, including MCF-7, MOLT-4, PC-3, SW-
620, NCI-H23, OVCAR-8, P388, SF-295, SN12C, UACC257, PROTEINS_full and DBLP_v1.
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Table 1: Average AUROC, AUPRC, and F1-score on 6 datasets with multiple runs, using graph
classification models as baselines, where the white columns represent vanilla models and the "+FA"
represent models augmented by FracAug.

Datasets Metrics GCN +FA SAGE +FA GAT +FA GIN +FA LRGNN +FA GRDL +FA

P388
AUROC 0.5171 0.5896 0.5820 0.6277 0.4964 0.5758 0.5565 0.5913 0.5546 0.6316 0.5500 0.5852
AUPRC 0.3488 0.3926 0.3569 0.3540 0.2045 0.2134 0.2850 0.3309 0.2880 0.2953 0.2318 0.2859
F1-score 0.3428 0.3886 0.4138 0.4741 0.4478 0.5481 0.4468 0.4491 0.4430 0.5496 0.4808 0.4814

SF-295
AUROC 0.5730 0.5813 0.5858 0.6057 0.5960 0.6171 0.5844 0.6076 0.5903 0.6185 0.6156 0.6349
AUPRC 0.3290 0.3308 0.3161 0.3222 0.2652 0.2708 0.2766 0.2832 0.3000 0.2972 0.2796 0.3115
F1-score 0.4199 0.4279 0.4463 0.4652 0.5065 0.5389 0.4803 0.5047 0.4669 0.5068 0.5221 0.5173

SN12C
AUROC 0.5624 0.5818 0.5705 0.6030 0.5863 0.6020 0.5995 0.6079 0.5973 0.6104 0.6061 0.6211
AUPRC 0.2812 0.2981 0.2859 0.3133 0.2468 0.2585 0.2696 0.2746 0.2729 0.2888 0.2803 0.2875
F1-score 0.4463 0.4546 0.4514 0.4670 0.5058 0.5191 0.5030 0.5110 0.4978 0.5012 0.5026 0.5183

UACC257
AUROC 0.5660 0.5831 0.6006 0.6132 0.5890 0.6174 0.5877 0.6015 0.6020 0.6189 0.6155 0.6340
AUPRC 0.3334 0.3509 0.3360 0.3337 0.3493 0.3389 0.2480 0.2598 0.3047 0.3215 0.2942 0.3051
F1-score 0.3921 0.3954 0.4289 0.4456 0.4031 0.4455 0.4906 0.4983 0.4585 0.4631 0.4843 0.4990

PROTEINS_full
AUROC 0.6186 0.6259 0.5942 0.6310 0.6157 0.6836 0.5799 0.6174 0.6434 0.6503 0.5895 0.5987
AUPRC 0.6325 0.6404 0.6086 0.6516 0.6350 0.7005 0.6259 0.6358 0.6603 0.6722 0.6015 0.6077
F1-score 0.6199 0.6273 0.5909 0.6289 0.6158 0.6859 0.5679 0.6175 0.6431 0.6469 0.5856 0.5962

DBLP_v1
AUROC 0.7866 0.7973 0.6218 0.6825 0.6119 0.6885 0.6231 0.8044 0.7922 0.8006 0.8089 0.8222
AUPRC 0.8462 0.8515 0.7133 0.7769 0.7507 0.7796 0.7201 0.8626 0.8485 0.8537 0.8671 0.8716
F1-score 0.7854 0.7974 0.6161 0.6805 0.5782 0.6868 0.5996 0.8028 0.7919 0.8007 0.8071 0.8220

Table 2: Average AUROC, AUPRC, and F1-score on 6 datasets with multiple runs, using GAD
models as baselines, where the white columns represent vanilla models and the "+FA" represent
models augmented by FracAug.

Datasets Metrics iGAD +FA GmapAD +FA RQGNN +FA UniGAD +FA

P388
AUROC 0.5143 0.5300 0.4782 0.5057 0.5952 0.6108 0.5104 0.5167
AUPRC 0.1923 0.1939 0.2478 0.2599 0.2484 0.2650 0.1679 0.1748
F1-score 0.4669 0.4843 0.3894 0.4099 0.5879 0.5883 0.4781 0.4812

SF-295
AUROC 0.5811 0.5815 0.5414 0.5535 0.5582 0.5902 0.5439 0.5730
AUPRC 0.2666 0.2821 0.3066 0.3070 0.2141 0.2342 0.3000 0.2846
F1-score 0.4836 0.4705 0.4030 0.4167 0.5719 0.5847 0.4117 0.4582

SN12C
AUROC 0.5522 0.5537 0.5343 0.5441 0.5597 0.6038 0.5433 0.5497
AUPRC 0.1817 0.1858 0.3262 0.3315 0.1927 0.2442 0.2028 0.1961
F1-score 0.5151 0.5144 0.3754 0.3818 0.5648 0.5826 0.4851 0.4986

UACC257
AUROC 0.5697 0.5748 0.5394 0.5597 0.5528 0.5692 0.5710 0.5832
AUPRC 0.1906 0.1970 0.2927 0.3004 0.1601 0.1885 0.2510 0.2642
F1-score 0.5201 0.5224 0.3986 0.4144 0.5522 0.5678 0.4676 0.4710

PROTEINS_full
AUROC 0.5976 0.6206 0.5041 0.6289 0.5641 0.6365 0.6173 0.6212
AUPRC 0.6200 0.6333 0.5169 0.6436 0.5673 0.6563 0.6295 0.6338
F1-score 0.5960 0.6211 0.5020 0.6299 0.5600 0.6310 0.6178 0.6223

DBLP_v1
AUROC 0.7755 0.7909 0.4975 0.5045 0.8065 0.8082 0.7601 0.7965
AUPRC 0.8377 0.8473 0.6242 0.6548 0.8584 0.8598 0.8346 0.8509
F1-score 0.7749 0.7910 0.4968 0.5021 0.8060 0.8079 0.7549 0.7966

These datasets are obtained from TUDataset1, and their detailed statistics are listed in Appendix B.
We randomly divide each dataset into 1%/1%/98% for Dtrain/Dval/Dtest to simulate the limited
supervision scenario in real applications. Due to the limited space, we present results of MCF-7,
MOLT-4, PC-3, SW-620, NCI-H23, and OVCAR-8 in Appendix J.

Baselines. We integrate our FracAug with 10 distinct GNNs, including generalized graph classifica-
tion models and specialized GAD models, to demonstrate its broad applicability. Besides, to further
confirm the usefulness of FracAug, we compare FracAug against 4 SOTA graph-level augmentation
frameworks based on their original vanilla models.

• Graph Classification: GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton et al., 2017), GAT
(Velickovic et al., 2018), GIN (Xu et al., 2019), LRGNN (Wei et al., 2023), and GRDL (Wang &
Fan, 2024).

• Graph-level Anomaly Detection: iGAD (Zhang et al., 2022), GmapAD (Ma et al., 2023a), RQGNN
(Dong et al., 2024), and UniGAD (Lin et al., 2024).

1https://chrsmrrs.github.io/datasets/docs/datasets/
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Table 3: Average AUROC, AUPRC, and F1-score on 6 datasets with multiple runs, using graph-level
augmentation models as baselines, where the white columns represent vanilla models and their own
augmentation method, while the "+FA" represent vanilla models augmented by FracAug.

Datasets Metrics MAAv NodeSam SubMix +FA GLAv GLA +FA GMixupv GMixup +FA FGWMixupv FGWMixup +FA

P388
AUROC 0.5500 0.5069 0.5057 0.5720 0.5622 0.5816 0.6057 0.5469 0.5265 0.5647 0.5480 0.5409 0.5729
AUPRC 0.1958 0.1985 0.1127 0.2229 0.2157 0.2264 0.2632 0.1694 0.1536 0.1957 0.2056 0.1951 0.2362
F1-score 0.5520 0.5000 0.4987 0.5746 0.5372 0.5766 0.5925 0.5315 0.5078 0.5373 0.5421 0.5282 0.5798

SF-295
AUROC 0.5649 0.5579 0.5292 0.5753 0.5954 0.6060 0.6197 0.5665 0.5687 0.6040 0.5893 0.5981 0.6459
AUPRC 0.2114 0.1939 0.2218 0.2252 0.2316 0.2451 0.2648 0.2004 0.2061 0.2509 0.2331 0.2585 0.3017
F1-score 0.5736 0.5644 0.5406 0.5820 0.5643 0.5702 0.5855 0.5245 0.5205 0.5371 0.5300 0.5161 0.5623

SN12C
AUROC 0.5509 0.5639 0.5160 0.5795 0.5715 0.6003 0.6141 0.5713 0.5336 0.5984 0.5831 0.5693 0.6314
AUPRC 0.1726 0.1845 0.1966 0.2164 0.2048 0.2344 0.2528 0.2163 0.2047 0.2524 0.2382 0.2252 0.2929
F1-score 0.5538 0.5405 0.5190 0.5770 0.5644 0.5590 0.5655 0.5136 0.4920 0.5195 0.5085 0.5002 0.5326

UACC257
AUROC 0.5623 0.5023 0.5211 0.5947 0.6159 0.6198 0.6327 0.5853 0.5843 0.6209 0.5535 0.5632 0.6368
AUPRC 0.1805 0.0559 0.0942 0.2210 0.2755 0.2745 0.2978 0.2365 0.2285 0.2963 0.1534 0.2172 0.2718
F1-score 0.5541 0.5005 0.5214 0.5784 0.5033 0.5131 0.5050 0.4993 0.5042 0.4898 0.5470 0.4830 0.5571

PROTEINS_full
AUROC 0.6009 0.6083 0.4998 0.6217 0.5652 0.5325 0.6249 0.5411 0.5132 0.6097 0.5078 0.5259 0.6082
AUPRC 0.6183 0.6294 0.6186 0.6366 0.6053 0.5343 0.6476 0.5810 0.5057 0.6244 0.5300 0.6934 0.6333
F1-score 0.6015 0.6039 0.4316 0.6214 0.5577 0.5291 0.6227 0.5348 0.5025 0.6102 0.4909 0.3809 0.6031

DBLP_v1
AUROC 0.6446 0.6608 0.6205 0.6822 0.7040 0.6402 0.7222 0.7939 0.7885 0.7994 0.7865 0.7772 0.7989
AUPRC 0.7689 0.7868 0.7947 0.7816 0.7882 0.7450 0.8085 0.8503 0.8471 0.8563 0.8461 0.8377 0.8549
F1-score 0.6252 0.6408 0.6291 0.6778 0.7029 0.6147 0.7177 0.7937 0.7878 0.7985 0.7856 0.7772 0.7981

• Graph-level Augmentation: MAA (Yoo et al., 2022), GLA (Yue et al., 2022), GMixup (Han et al.,
2022), and FGWMixup (Ma et al., 2023b).

Experimental Settings. To ensure fair evaluation, we standardize evaluations by: (1) sourcing
all baseline code from GitHub and replacing loss functions with weighted version to mitigate
class imbalance; (2) using authors’ recommended hyperparameters for baselines, while optimizing
FracAug’s hyperparameters via grid search to maximize the summed AUROC/AUPRC/F1-score on
validation sets. Complete configurations are detailed in Appendix F.

5.2 EXPERIMENTAL RESULTS

Note that we conduct all the experiments in a semi-supervised setting, where we use both the
validation and the test sets for pseudo-labeling. We first evaluate the performance of FracAug on 6
graph classification models and 4 GAD models. Tables 1 and 2 report the AUROC, AUPRC, and
F1-score on 6 datasets. Besides, we also compare FracAug with 4 graph-level augmentation methods
on their vanilla models, as shown in Table 3. The best performance of each model is highlighted in
boldface. To sum up, FracAug effectively boosts the performance of GNNs and outperforms almost
all baselines on these real-world datasets. Next, we provide our detailed observations.

Augmentation for Graph Classification Models. We analyze 4 generalized GNNs (GCN, Graph-
SAGE, GAT, and GIN) and 2 recent models (LRGNN and GRDL) under limited supervision condi-
tions. While generalized GNNs, due to architectural simplicity, struggle to capture nuanced anomaly
patterns in GAD tasks, FracAug boosts their performance across most datasets as shown in Table 1,
validating its augmentation efficacy. Surprisingly, LRGNN and GRDL initially underperform simpler
GNNs in some cases, likely hindered by label scarcity, but regain competitiveness when integrated
with FracAug, highlighting FracAug’s adaptability to advanced architectures.

Augmentation for Graph-level Anomaly Detection Models. Specialized GAD models (iGAD,
GmapAD, RQGNN, and UniGAD) exploit task-specific properties but falter under limited super-
vision due to insufficient generalization capability. Notably, these task-specific architectures may
underperform even basic GNNs in low-label regimes as presented in Table 2, emphasizing FracAug’s
effectiveness. Our framework universally elevates their performance by compensating for supervision
scarcity, validating its versatility across model paradigms.

Comparison with Graph-level Augmentation Frameworks. To further prove the effectiveness
of FracAug, we compare it against leading graph-level augmentation frameworks, including MAA,
GLA, GMixup, and FGWMixup. In Table 3, we denote their corresponding vanilla models as MAAv,
GLAv, GMixupv, and FGWMixupv, respectively. Such a setting will preserve the ability of those
augmentation frameworks. Nevertheless, as we can see, the augmentation methods fail to generalize
effectively to GAD tasks under limited supervision—the performance of the vanilla models may
drop after the augmentation. In contrast, our FracAug can boost all vanilla models across real-world
datasets, which demonstrates the usefulness of FracAug.
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Table 4: Ablation study.

Datasets Metrics GIN +FA w/o largest w/o smallest w/o WDML w/o MVP

P388
AUROC 0.5565 0.5913 0.5620 0.5708 0.5730 0.5599
AUPRC 0.2850 0.3309 0.2917 0.3050 0.3074 0.3014
F1-score 0.4468 0.4491 0.4482 0.4470 0.4470 0.4371

SF-295
AUROC 0.5844 0.6076 0.5971 0.5949 0.5920 0.5996
AUPRC 0.2766 0.2832 0.2723 0.2716 0.2653 0.2790
F1-score 0.4803 0.5047 0.5001 0.4975 0.4994 0.4973

SN12C
AUROC 0.5995 0.6079 0.5993 0.5963 0.5910 0.5990
AUPRC 0.2696 0.2746 0.2685 0.2666 0.2632 0.2675
F1-score 0.5030 0.5110 0.5041 0.5013 0.4971 0.5046

UACC257
AUROC 0.5877 0.6015 0.5939 0.5854 0.5938 0.5914
AUPRC 0.2480 0.2598 0.2517 0.2527 0.2585 0.2586
F1-score 0.4906 0.4983 0.4956 0.4835 0.4890 0.4858

PROTEINS_full
AUROC 0.5799 0.6174 0.5986 0.5842 0.5990 0.5854
AUPRC 0.6259 0.6358 0.6111 0.5988 0.6205 0.6042
F1-score 0.5679 0.6175 0.5995 0.5848 0.5976 0.5857

DBLP_v1
AUROC 0.6231 0.8044 0.7615 0.7828 0.7762 0.7628
AUPRC 0.7201 0.8626 0.8301 0.8411 0.8374 0.8294
F1-score 0.5996 0.8028 0.7594 0.7829 0.7760 0.7619

Table 5: Varying kl-ks-Hl-Hs on different datasets based on GIN.

Datasets PROTEINS_full DBLP_v1
kl-ks-Hl-Hs AUROC AUPRC F1-score AUROC AUPRC F1-score

3-3-3-3 0.6174 0.6298 0.6187 0.7950 0.8514 0.7947
3-3-3-4 0.6141 0.6327 0.6142 0.7972 0.8572 0.7955
3-3-4-3 0.6103 0.6291 0.6104 0.7995 0.8546 0.7992
3-3-4-4 0.6174 0.6358 0.6175 0.7925 0.8486 0.7925
3-4-3-3 0.6174 0.6298 0.6187 0.7950 0.8514 0.7947
3-4-3-4 0.6082 0.6304 0.6072 0.7972 0.8572 0.7955
3-4-4-3 0.6103 0.6291 0.6104 0.7995 0.8546 0.7992
3-4-4-4 0.6094 0.6210 0.6104 0.7982 0.8524 0.7982
4-3-3-3 0.6174 0.6298 0.6187 0.7885 0.8509 0.7867
4-3-3-4 0.6124 0.6284 0.6133 0.7972 0.8538 0.7967
4-3-4-3 0.6161 0.6295 0.6174 0.8044 0.8626 0.8028
4-3-4-4 0.6138 0.6316 0.6142 0.8007 0.8570 0.8000
4-4-3-3 0.6174 0.6298 0.6187 0.7972 0.8579 0.7953
4-4-3-4 0.6161 0.6295 0.6174 0.7994 0.8560 0.7987
4-4-4-3 0.6108 0.6334 0.6095 0.8015 0.8617 0.7996
4-4-4-4 0.6094 0.6210 0.6104 0.8008 0.8577 0.7999

5.3 ABLATION STUDY

To examine the effectiveness of each component in FracAug, we conduct an ablation study on 6
datasets based on GIN (ablation study on the other 6 datasets can be found in Appendix L), which is
shown in Table 4. Specifically, the "+FA" represents the performance of GIN with FracAug, where
w/o largest and w/o smallest denote removing the fractional graphs generated by top-kl largest and
top-ks smallest eigenvalues, respectively, w/o WDML means replacing our proposed WDML with
weighted cross-entropy loss, and w/o MVP pseudo-labels samples in Dval ∪ Dtest using only the
predicted probability of synthetic graphs. As shown in Table 4, FracAug consistently outperforms its
four variants, which demonstrates the benefits of these components.

5.4 HYPERPARAMETER ANALYSIS

Table 5 presents a systematic exploration of FracAug’s performance, measured in AUROC, AUPRC,
and F1-score, when varying kl, ks, Hl, Hs between 3 and 4. Specifically, kl, ks denote the top-kl
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Figure 3: Varying τa and τn for PROTEINS_full based on GIN.
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Figure 4: Varying τa and τn for DBLP_v1 based on GIN.

largest and top-ks eigenvalues generated by EVD, while Hl, Hs denote the number of learnable
fractional powers of the matrix for the largest and smallest eigenvalues. By sweeping each of these
four parameters, we generate a compact grid of 16 configurations. As detailed in Appendix F, each
evaluation metric prefers a slightly different quadruple of (kl, ks, Hl, Hs), but more importantly,
Table 5 reveals that the detection performance barely wavers across all measured combinations. This
robustness not only validates the spectral augmentation strategy of FracAug but also suggests that
practitioners can avoid laborious hyperparameter tuning without sacrificing performance.

In a parallel study, Figures 3 and 4 examine the sensitivity of FracAug to the pseudo-labeling
thresholds τn and τa. Here, τn specifies the percentile above which a node is considered “normal”,
and τa the percentile below which it is flagged as “anomalous”. By varying τn from 0.8 to 0.95 and τa
from 0.05 to 0.2, we again explore 16 threshold pairs on each dataset, logging the resulting AUROC,
AUPRC, and F1-score for every pair. Remarkably, all three metrics remain essentially flat throughout
this entire range, indicating that FracAug’s pseudo-labeling module is forgiving of moderate threshold
choices. Leveraging this stability, we adopt τn = 0.05 and τa = 0.95 as our default across all datasets,
thereby avoiding extensive threshold tuning without affecting performance.

6 CONCLUSION

In this paper, we investigate the efficacy of leveraging fractional graph variants for data augmentation
in GAD under limited supervision scenarios. Based on the analysis, we design a model-agnostic
plug-in augmentation framework, FracAug, which includes three key components: FGG, WDML,
and MVP. FGG with WDML captures semantics from original samples and then generates semantic-
preserving fractional graphs during model training, unaffected by the imbalanced data distribution,
while MVP employs mutual verification to enhance pseudo-labeling reliability, iteratively expanding
the training set. Comprehensive experiments demonstrate that FracAug not only effectively improves
the performance of any given GNN but also significantly outperforms other graph-level augmentation
methods, demonstrating the effectiveness of our method.
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A PROOFS

Proof of Theorem 1. To derive the approximation of Aα and the corresponding error bound, we first
consider a function for real numbers, i.e., f(x) = xα defined on an interval [a, b] ⊂ (0,+∞). To
satisfy the requirement of Chebyshev series approximation, we map [a, b] to the standard Chebyshev
interval [−1, 1] via the linear transformation:

x =
2

b− a
(x′ − b+ a

2
),

where x′ ∈ [a, b] maps to x ∈ [−1, 1]. Then we further define:

f̃(x) = (
(b− a)x+ (b+ a)

2
)α,

which can be approximated using Chebyshev series approximation as:

f̃(x) ≈ pT (x) =

T∑
t=0

ctPt(x),

where Pt(x) is the t-th Chebyshev polynomial, and the ct are the Chebyshev coefficients. Specifically,
we can find the coefficients ct through the application of an inner product:∫ +1

−1

Pm(x)f̃(x)√
1− x2

dx =

∞∑
t=0

ct

∫ +1

−1

Pm(x)Pt(x)√
1− x2

dx.

On the interval [−1, 1], we have:

∫ +1

−1

Pm(x)Pt(x)√
1− x2

dx =


0, m ̸= t,

π, m = t = 0,
π

2
, m = t ̸= 0,

so we can derive:

ct =


1

π

∫ +1

−1

Pt(x)f̃(x)√
1− x2

dx, t = 0,

2

π

∫ +1

−1

Pt(x)f̃(x)√
1− x2

dx, t ̸= 0.

Afterward, to obtain the error bound of the approximation, we leverage the following Theorem:

Theorem 3. (Theorems 8.1 and 8.2 from previous work (Trefethen, 2019)) Let a function f(x) analytic
in [−1, 1] be analytically continuable to open Bernstein ellipse Ep, where it satisfies |f(x)| ≤M for
some M , then for each t ≥ 0, its Chebyshev approximation pT (x) satisfies ||f(x)−pT (x)|| ≤ 4Mρ−T

ρ−1 ,
where ρ depends on the distance from [−1, 1] to the nearest singularity of f(x).

The function f(x) = xα has a branch point at x = 0. For [a, b] ⊂ (0,+∞), the mapped function
f̃(x) is analytic in a Bernstein ellipse Ep, excluding x = 0. Therefore, f̃(x) satisfies Theorem 3, so
we can have:

||f̃(x)− pT (x)|| ≤
4Mρ−T

ρ− 1
= βe−γT ,

where β = 4M
ρ−1 and γ = ln ρ.

Similarly, we can directly apply the function to A with eigenvalues in [λmin, λmax] ⊂ (0,+∞),
then we can conclude:

||Aα − pT (A)|| ≤ βe−γT ,

where β, γ is derived from [λmin, λmax].
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Proof of Theorem 2. Using the Dunford-Taylor integral, for a contour Γ enclosing the spectra of A
and A+ P , we have:

Aα =
1

2πi

∫
Γ

xα(xI −A)−1dx,

(A+ P )α =
1

2πi

∫
Γ

xα(xI − (A+ P ))−1dx.

Then we subtract the two integrals:

Aα − (A+ P )α =
1

2πi

∫
Γ

xα[(xI −A)−1 − (xI − (A+ P ))−1]dx.

After applying the resolvent identity, we can have:

(xI −A)−1 − (xI − (A+ P ))−1 = (xI −A)−1P (xI − (A+ P ))−1.

By substituting back into the integral, we have:

Aα − (A+ P )α =
1

2πi

∫
Γ

xα(xI −A)−1P (xI − (A+ P ))−1dx.

Take the operator norm and apply submultiplicativity:

||Aα − (A+ P )α|| ≤ 1

2π

∫
Γ

|xα|||(xI −A)−1||||P ||||(xI − (A+ P ))−1|||dx|.

If we choose Γ to be a contour at distance d > 0 from the spectra of A, we can have:

(xI −A)−1 = U(xI −Λ)−1UT ,

where A = UΛUT is the eigendecomposition of A and the corresponding norm is:

||(xI −A)−1|| = ||(xI −Λ)−1|| = max
λ∈σ(A)

1

|x− λ|
=

1

dist(x, σ(A))
=

1

d
,

where σ(A) is the spectrum of A and dist(·) is the distance function.

For a small perturbation ||P ||, the spectrum of A + P will lie in a neighborhood of the spectrum
of A. Specifically, for any eigenvalue λ′ of A + P , there exists an eigenvalue λ of A such that
|λ′ − λ| ≤ ||P ||, which implies:

dist(x, σ(A+ P )) ≥ dist(x, σ(A))− ||P ||.

Then for x /∈ σ(A+ P ), we use the Neumann series:

(xI − (A+ P ))−1 = (xI −A)−1
+∞∑
i=0

[P (xI −A)−1]i,

which converges if ||P (xI −A)−1|| < 1.

Afterward, we take its norm and apply submultiplicativity:

||(xI − (A+ P ))−1|| ≤ ||(xI −A)−1||
1− ||P ||||(xI −A)−1||

=
1

dist(x, σ(A))− ||P ||

≤ 1

d
.

Then let M = maxx∈Γ |xα| and L(·) be the length function, we can have:

||Aα − (A+ P )α|| ≤ 1

2πd2
M ||P ||L(Γ)

14
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Table 6: Statistics of 12 real-world datasets, where nn is the number of normal graphs, na is the
number of anomalous graphs, h = na

nn+na
is the anomalous ratio, n̄ is the average number of nodes,

m̄ is the average number of edges, and F is the number of attributes.

Dataset MCF-7 MOLT-4 PC-3 SW-620 NCI-H23 OVCAR-8 P388 SF-295 SN12C UACC257 PROTEINS_full DBLP_v1

nn 25476 36625 25941 38122 38296 38437 39174 38246 38049 38345 663 9926
na 2294 3140 1568 2410 2057 2079 2298 2025 1955 1643 450 9530
h 0.0826 0.079 0.057 0.0595 0.051 0.0513 0.0554 0.0503 0.0489 0.0411 0.4043 0.4898
n̄ 26.4 26.1 26.36 26.06 26.07 26.08 22.11 26.06 26.08 262.09 39.06 10.48
m̄ 28.53 28.14 28.49 28.09 28.1 28.11 23.56 28.09 28.11 28.13 72.82 19.65
F 46 64 45 65 65 65 72 65 65 64 3 41325

Define c = ML(Γ)
2πd2 , yielding ||Aα − (A+ P )α|| ≤ c||P ||.

Besides, for a generated adjacency matrix from the perturbation method, it can be diagonalized, so
we can have:

(A+ P )− (A+ P )α = V (Σ−Σα)V T ,

where A+ P = V ΣV T and Σ is a diagonal matrix composed of (λ1, λ2, · · · , λn). Take the norm,
we can get:

||(A+ P )− (A+ P )α|| = max
i
|λi − λα

i |.

Finally, by applying the submultiplicativity, we can conclude:

||Aα − (A+ P )|| ≤ c||P ||+max
i
|λi − λα

i |,

where c depends on α and the spectral gap of P , and λi is the i-th eigenvalue of A+ P .

Proof of Proposition 1. Assume the two prediction error rates for original graphs and corresponding
fractional graphs are two Bernoulli variables with mean δ, and the correlation of the errors is ρ. Then
we have the joint error rate:

P(Both wrong) = δ2 + ρδ(1− δ).

Since the original error rate is δ, the mutual verification will lower the error with the reduction factor
δ + ρδ(1− δ).

According to the above analysis, the error rate of mutual verification is p = δ2+ρδ(1−δ). Assuming
it is also a Bernoulli variable, the variance can be calculated as:

v = (δ2 + ρδ(1− δ))(1− δ2 − ρδ(1− δ)).

For a small error rate δ, we can approximate it as v = ρδ(1− ρδ). Therefore, the reduction factor of
variance is close to ρ.

B DATASETS AND BASELINES

Datasets. The datasets used in our experiments are collected by TUDataset (Morris et al., 2020).
Specifically, MCF-7, MOLT-4, PC-3, SW-620, NCI-H23, OVCAR-8, P388, SF-295, SN12C, and
UACC257 are small-molecule datasets from PubChem 2, which provide information on the biological
activities of small molecules. In these datasets, nodes represent atoms within chemical compounds,
while edges indicate the chemical bonds connecting pairs of atoms. Each dataset corresponds
to a specific type of cancer screening, with outcomes classified as either active or inactive. We
consider inactive chemical compounds as normal graphs and active compounds as anomalous graphs.
Furthermore, the attributes are derived from node labels using one-hot encoding.

Besides, PROTEINS_full is a typical bioinformatics-related dataset (Dobson & Doig, 2003), which
processes several proteins represented as graphs. In this dataset, nodes and edges are formulated in a
similar way to small-molecule datasets from PubChem. This dataset aims to classify enzymes and
non-enzymes, which are denoted as normal and anomalous graphs, respectively.

2https://pubchem.ncbi.nlm.nih.gov/
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Beyond the above datasets, we also conduct experiments on DBLP_v1 (Pan et al., 2013), which
consists of bibliography data in computer science. Each record in DBLP_v1 is associated with a
number of attributes such as abstract, authors, year, venue, title, and reference ID. Since the dimension
of the attributes is high, we first utilize EVD to lower the dimension to 16. In this dataset, nodes
denote papers, while edges represent reference relations between papers. The classification task is to
predict whether a paper belongs to the CVPR (computer vision and pattern recognition) or DBDM
(database and data mining) conferences, which are seen as normal and anomalous, respectively.

Baselines. The first group is graph classification models:

• GCN (Kipf & Welling, 2017): a GNN that uses a convolution function on a graph to propagate
information within the neighborhood of nodes;

• GraphSAGE (Hamilton et al., 2017): a GNN that leverages a sampling technique to aggregate
features from the neighborhood.

• GAT (Velickovic et al., 2018): a GNN that adopts an attention mechanism within the neighborhood
of each node;

• GIN (Xu et al., 2019): a GNN that follows graph isomorphism to capture the properties of a graph.
• LRGNN (Wei et al., 2023): a GNN stacking multiple GNNs to extract the long-range dependencies;
• GRDL (Wang & Fan, 2024): a GNN treating node embeddings as a discrete distribution, enabling

direct classification without global pooling.

The second group is GAD models:

• iGAD (Zhang et al., 2022): a GNN with a substructure-aware component to capture properties of
anomalous graphs.

• GmapAD (Ma et al., 2023a): a GNN mapping graphs into a latent space where anomalies can be
effectively detected;

• RQGNN (Dong et al., 2024): a GNN using Rayleigh Quotient to obtain information from both
spectral and spatial spaces.

• UniGAD (Lin et al., 2024): a GNN that unifies different levels of graph-related tasks.

The third group is graph-level augmentation frameworks:

• MAA (Yoo et al., 2022): a framework using node split and merge, and subgraph mix to augment
graphs heuristically;

• GLA (Yue et al., 2022): a framework augmenting data in the representation space from the most
difficult direction while keeping the label of augmented data the same as the original samples;

• GMixup (Han et al., 2022): a framework that interpolates graphons of different classes in the
Euclidean space to get mixed graphons;

• FGWMixup (Ma et al., 2023b): a framework that seeks a midpoint of source graphs in the Fused
Gromov-Wasserstein metric space to interpolate graphons of different classes.

C ALGORITHM

Algorithm 1: Preprocess
Input: D, kl, ks

1 for G in D do
2 G.A← 1

2 (I +G.D− 1
2 ∗G.A ∗G.D− 1

2 );
3 G.Ul, G.Λl ← EVD(G.A, kl);
4 G.Us, G.Λs ← EVD(G.A, ks);

D TIME COMPLEXITY ANALYSIS

For the Preprocess function, we first analyze the time complexity of the matrix multiplication. Since
we utilize sparse matrices to conduct the experiment, the time complexity of the multiplication is
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Algorithm 2: FGG
Input: D, Hl, Hs

Output: D′

1 for G in D do
2 for i = 0 to Hl do
3 Gl ← Gl + ωl[i] ∗G.Ul ∗G.Λ

αl[i]
l ∗G.UT

l ;
4 for i = 0 to Hl do
5 Gs ← Gs + ωs[i] ∗G.Us ∗G.Λ

αs[i]
s ∗G.UT

s ;
6 G′ ← ω ∗Gl + (1− ω) ∗Gs;
7 D′ ← D′ ∪G′;
8 Return D′;

Algorithm 3: WDML
Input: f,D,D′

1 for G,G′ in D,D′ do
2 s,o← f(G);
3 s′,o′ ← f(G′);
4 m← 1−cos(o,o′)

2 ;

5 LWDML ← LWDML +− 1
NG.y

log es[G.y]−m

es[G.y]−m+es[1−G.y] ;

6 LWDML.backward();

Algorithm 4: MVP
Input: f,D,D′, τn, τa
Output: D′′

1 for G,G′ in D,D′ do
2 s,o← f(G);
3 s′,o′ ← f(G′);
4 if s[0] < τn ∧ s′[0] ≤ τn then
5 G.y ← 0;
6 D′′ ← D′′ ∪G;
7 else if s[1] < τa ∧ s′[1] ≤ τa then
8 G.y ← 1;
9 D′′ ← D′′ ∪G;

10 Return D′′;

Algorithm 5: FracAug
Input: f,Dtrain,Dval,Dtest, Hl, Hs, kl, ks, ewarmup, eaug, τn, τa

1 Preprocess(Dtrain ∪ Dval ∪ Dtest, kl, ks);
2 D′

train ← Dtrain;
3 for e = 0 to ef do
4 if e > ewarmup ∧ e%eaug == 0 then
5 for e′ = 0 to eFGG do
6 Dtemp ← FGG(Dtrain, Hl, Hs);
7 WDML(f,D,Dtemp);
8 Dtemp ← FGG(Dval ∪ Dtest, Hl, Hs);
9 Dtemp ← MVP(f,Dval ∪ Dtest,Dtemp, τn, τa);

10 D′
train ← Dtrain ∪ Dtemp;

11 train(f,D′
train));
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Table 7: Comparison of average running time (s).

Datasets NSv+FA NodeSam SubMix GLAv+FA GLA GMixupv+FA GMixup FGWMixupv+FA FGWMixup
MCF-7 92.18+58.56 1282.84 876.39 92.00+73.57 1493.55 90.54+107.51 51.64 92.29+106.76 553.90

MOLT-4 133.10+83.70 1352.07 881.00 128.18+113.70 1924.35 131.30+150.27 64.55 129.84+176.65 855.30
PC-3 91.26+70.05 1249.30 879.76 90.55+64.84 1484.25 90.46+110.26 51.52 90.70+98.88 613.19

SW-620 133.80+102.96 1248.39 875.52 136.75+99.17 2076.36 133.42+158.47 75.68 133.50+153.30 873.41
NCI-H23 130.20+108.73 1301.09 883.09 130.63+93.86 2091.18 131.54+134.20 63.68 131.07+143.53 896.41

OVCAR-8 131.48+98.46 1351.17 890.68 132.62+102.36 2077.41 132.07+168.57 61.41 131.23+130.47 986.01
P388 120.73+103.09 1258.91 884.15 120.43+90.74 2140.75 122.53+145.56 60.47 121.12+135.97 965.61

SF-295 130.92+84.81 1359.48 879.52 131.26+110.89 2063.71 130.77+168.45 66.25 130.43+150.38 915.04
SN12C 129.79+102.16 1334.82 914.87 129.62+87.23 2044.62 130.21+148.75 68.58 128.95+134.45 933.55

UACC257 128.63+84.19 1387.70 930.43 128.39+88.05 2053.46 129.04+138.45 58.83 129.65+142.53 891.95
PROTEINS_full 9.03+6.67 206.50 202.65 8.50+8.86 69.30 8.62+7.98 4.58 8.84+7.63 30.25

DBLP_v1 38.86+62.06 1335.42 897.90 36.99+61.50 1123.57 39.22+99.74 30.51 39.15+105.83 155.67

Table 8: Comparison of average wall-clock time (s).

Datasets NSv+FA NodeSam SubMix GLAv+FA GLA GMixupv+FA GMixup FGWMixupv+FA FGWMixup
MCF-7 135.73+69.63 1410.86 912.23 136.19+92.94 1543.64 131.46+107.54 70.60 132.19+106.70 949.81

MOLT-4 191.15+93.22 1433.10 936.19 194.52+127.01 1993.29 189.00+155.83 98.79 188.37+164.47 1487.41
PC-3 133.72+74.67 1423.05 973.39 132.97+86.91 1524.84 131.72+116.66 68.41 131.70+103.64 968.09

SW-620 193.47+104.12 1411.45 945.87 191.01+130.31 2138.65 194.62+162.24 102.90 191.97+162.04 1321.40
NCI-H23 191.622+113.72 1417.68 896.13 191.50+118.83 2220.64 192.70+139.89 102.48 194.30+150.65 1438.07

OVCAR-8 194.69+102.93 1459.6 891.68 192.11+127.31 2521.36 190.40+160.44 102.89 193.93+171.23 1430.77
P388 171.61+103.73 1573.25 933.75 172.97+130.55 2146.63 171.64+146.75 104.16 175.47+195.82 1754.24

SF-295 193.68+93.42 1640.00 889.18 195.20+129.01 2065.14 190.63+165.59 102.69 194.14+185.80 1469.35
SN12C 191.82+102.57 1429.26 972.91 192.14+125.52 2116.96 192.33+145.00 101.46 192.01+185.39 1378.80

UACC257 191.56+100.38 1429.63 977.20 193.70+122.99 2110.75 192.43+159.39 102.32 189.07+164.62 1320.10
PROTEINS_full 12.90+7.600 213.95 216.55 12.28+8.87 80.33 12.91+9.25 6.65 12.04+8.55 42.86

DBLP_v1 69.62+67.53 2238.69 1866.97 66.97+74.43 3155.02 69.79+99.96 61.35 66.85+104.41 227.15

O(nnz(G.D− 1
2 ) ∗ nnz(G.A) + nnz(G.D− 1

2 ∗ G.A) ∗ nnz(G.D− 1
2 ), where nnz means non-zero

entries of the matrix. Then, by adopting EVD to only keep the top-kl largest and top-ks smallest
eigenvalues, the time complexity can be O(n ∗ (k2l + k2s)+m ∗ (kl + ks)), where n,m is the number
of nodes/edges. As shown in Algorithm 5, Preprocess can be called before the training process, and
thus it won’t burden the training or inference of our FracAug.

Then, we analyze the time complexity of FGG for each graph. As presented in Algorithm 2, we
perform sparse matrix multiplication for every sample Hl and Hs times. Besides, since G.Λ is a
diagonal matrix, the time complexity of multiplying G.Λ is the same as that of multiplying G.Λα.
Therefore, the total time complexity of FGG is O(FGG) = O(nnz(G.Ul) ∗ kl + nnz(G.Ul ∗G.Λl) ∗
nnz(G.UT

l ) + nnz(G.Us) ∗ ks + nnz(G.Us ∗G.Λs) ∗ nnz(G.UT
s )).

Next, we analyze the time complexity of WDML in Algorithm 3. Assuming that we only have
one sample in Dtrain, then the time complexity of WDML is O(WDML) = O(d), where d is the
dimension of the generated graph embedding o.

Moreover, as shown in Algorithm 4, in MVP, we only need to see if the probability predicted by the
given GNN satisfies the criterion, so the time complexity for MVP is O(MVP) = O(1).

Finally, in Algorithm 5, we combine all the time complexities together within one training epoch
of the given GNN f , assuming the time complexity of f for each sample is O(f), then we have the
total complexity as O(eFGG ∗ (O(FGG) +O(WDML) +O(f)) ∗Ntrain + (O(FGG) +O(MVP) +
O(f)) ∗ (Nval + Ntest), where Nval, Ntest represent the number of samples in Dval and Dtest,
respectively.

In practice, we set eFGG to 10 and eaug to 25, which can reduce the computational cost, and FGG
can still converge. According to the final complexity, we can see the dominant factor within each
epoch is O(eFGG ∗O(f) ∗Ntrain +O(f) ∗ (Nval +Ntest)). For such a factor, we need to calculate
it in total ef−ewarmup

eaug
∗ eFGG times, which is much less than the original training epoch of f . Hence,

the increase in time complexity will not be the limitation of our FracAug in real applications.

In Tables 7 and 8, we present a detailed runtime comparison and wall-clock time comparison between
FracAug and several leading graph augmentation methods, respectively. For each technique, we
decompose the total computational cost into a one-time preprocessing phase, performed once per
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Table 9: Comparison of average consumed memory (MB).

Datasets NSv+FA NodeSam SubMix GLAv+FA GLA GMixupv+FA GMixup FGWMixupv+FA FGWMixup
MCF-7 171.99+530.47 655.12 689.79 171.88+687.56 1125.73 172.20+538.38 675.25 172.32+552.62 598.73

MOLT-4 240.71+534.24 763.71 784.25 239.91+672.44 1262.11 239.92+538.74 770.23 239.85+573.34 817.38
PC-3 170.76+530.65 652.03 687.16 170.68+661.78 1118.31 170.50+533.72 671.04 170.77+505.36 602.24

SW-620 243.48+530.75 764.33 801.05 241.11+666.00 1276.12 243.46+531.57 769.41 249.02+546.39 838.00
NCI-H23 248.02+531.50 761.09 798.24 247.96+678.73 1300.57 250.67+534.30 772.79 247.66+549.04 836.02

OVCAR-8 248.82+526.89 764.66 800.23 248.93+669.54 1247.54 243.27+536.46 771.64 243.43+550.80 805.35
P388 249.69+531.71 762.02 800.58 249.85+678.52 1292.48 249.46+534.69 765.74 249.85+573.38 807.48

SF-295 243.00+527.81 761.71 799.39 247.26+669.17 1273.55 243.53+529.14 774.14 242.94+548.67 793.34
SN12C 240.86+535.26 765.17 787.12 240.62+689.41 1267.07 240.81+534.07 783.81 240.57+550.13 788.09

UACC257 245.70+536.63 765.68 786.74 240.70+690.96 1263.72 240.79+542.29 787.33 240.82+501.84 825.58
PROTEINS_full 36.85+553.28 455.68 491.23 36.88+707.05 746.64 36.93+549.06 462.45 36.87+561.18 79.47

DBLP_v1 129.30+526.47 810.82 865.18 129.12+697.11 990.82 129.04+539.86 604.73 129.20+552.64 417.28

Table 10: Comparison of average peak memory (MB).

Datasets NSv+FA NodeSam SubMix GLAv+FA GLA GMixupv+FA GMixup FGWMixupv+FA FGWMixup
MCF-7 62.53 55.84 52.07 73.49 143.10 60.55 51.83 65.46 137.32

MOLT-4 89.45 78.66 73.17 95.55 192.97 86.34 79.51 90.78 194.61
PC-3 61.93 54.51 51.37 71.91 142.55 60.67 51.40 72.49 137.59

SW-620 91.19 80.08 74.80 85.14 196.15 93.25 81.22 93.69 197.01
NCI-H23 90.79 79.15 74.23 99.11 195.42 87.77 81.13 96.70 197.96

OVCAR-8 91.16 80.31 74.50 97.86 196.09 92.59 81.50 94.43 195.91
P388 93.28 82.13 76.83 103.88 200.72 95.81 90.00 96.29 208.33

SF-295 90.61 78.46 74.34 94.73 195.08 86.58 81.05 95.56 196.82
SN12C 90.02 78.43 73.81 96.41 193.95 90.44 80.36 94.84 199.04

UACC257 89.98 79.26 74.08 96.52 193.88 88.65 80.81 90.62 194.10
PROTEINS_full 4.89 5.83 5.63 4.97 6.51 5.01 7.02 4.95 7.35

DBLP_v1 45.35 38.40 37.67 48.54 95.30 43.37 29.05 46.59 93.41

dataset, and the subsequent training time measured over multiple epochs. While some baselines re-
quire repeated feature perturbations or costly online sampling at every iteration, FracAug’s eigenvalue
decomposition is only performed during preprocessing. As a result, the per-epoch training overhead
of FracAug remains on par with, or even below, that of competing approaches, despite leveraging
additional spectral information to boost anomaly detection performance.

Crucially, these efficiency gains do not come at the expense of detection performance. Across all
datasets and baseline comparisons, FracAug consistently delivers state-of-the-art AUROC, AUPRC,
and F1-score results while maintaining competitive total runtimes. By amortizing the heavier spectral
computations over the entire training cycle and by implementing optimized matrix operations, Fra-
cAug strikes an effective balance between computational tractability and augmentation quality. This
combination of speed and performance underscores the practical value of our method: practitioners
can readily adopt FracAug for real graph applications without incurring prohibitive time costs.

E MEMORY COMPLEXITY ANALYSIS

In Tables 9 and 10, we report detailed comparisons of total and peak memory consumption for
FracAug against several leading graph augmentation methods. For each method in Table 9, we
further break down the total memory usage into a one-time preprocessing stage, executed once per
dataset, and the recurring memory cost measured across training epochs. For each method in Table
10, we present the peak memory during the training procedure. Unlike baselines that repeatedly
perturb features or perform expensive online sampling at every iteration, FracAug requires eigenvalue
decomposition only during preprocessing. Consequently, its per-epoch training overhead remains
comparable to, or even lower than, that of competing methods, despite incorporating additional
spectral information to enhance anomaly detection.

Importantly, these memory efficiency benefits do not compromise detection quality. Across all
datasets and baselines, FracAug consistently achieves state-of-the-art AUROC, AUPRC, and F1-
scores while maintaining competitive end-to-end memory cost. By amortizing the heavier spectral
computations across the full training process and employing optimized matrix operations, FracAug
achieves a strong balance between memory efficiency and augmentation quality. This blend of
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Table 11: Hyperparameters of 12 datasets based on GIN.

Datasets MCF-7 MOLT-4 PC-3 SW-620 NCI-H23 OVCAR-8 P388 SF-295 SN12C UACC257 PROTEINS_full DBLP_v1
kl 4 4 4 4 3 3 4 3 4 4 3 4
Hl 4 3 3 3 3 3 4 4 3 4 4 4
ks 3 4 3 3 4 3 4 3 3 4 3 3
Hs 4 4 3 3 3 3 4 3 3 4 4 3

ewarmup 50 25 50 50 25 25 50 50 25 50 50 25

1 5 10 20 40

0.60

0.65

0.70

(a) AUROC
1 5 10 20 40

0.65
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(b) AUPRC
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0.70

(c) F1-score

Vanilla GIN GIN with FracAug GIN with FracAug onlyval

Figure 5: Varying training size (%) for PROTEINS_full.

memory usage and performance highlights the method’s practical value: practitioners can deploy
FracAug in real-world graph applications without incurring prohibitive memory costs.

F EXPERIMENTAL SETTINGS

Table 11 provides a comprehensive summary of the hyperparameter configurations used in our
experiments based on the GIN backbone. To obtain the final settings for FracAug, we perform a grid
search and select the configuration that achieves the highest combined AUROC, AUPRC, and F1-
score on the validation set, after which we report the corresponding test performance. Concretely, the
parameters kl, Hl, ks, Hs are each chosen from the set 3, 4, and the number of GNN warmup epochs
is selected from 25, 50, which helps keep the overall search cost manageable while still ensuring
sufficient coverage of plausible configurations. For fairness and reproducibility, all experiments
are conducted on an NVIDIA Quadro RTX 8000, ensuring a consistent computational environment
across all evaluations.

G MARGIN LOSS COMPARISON

Next, we examine the performance of FracAug under different margin losses, as discussed in Section
4.3, by conducting comparisons across 12 datasets using the GIN backbone. As reported in Table 12,
FracAug consistently surpasses its variants that employ Softmax, LMCL, or LDAM as alternative
margin formulations. This consistent advantage highlights the effectiveness of our design and
reinforces the idea that sample-specific decision boundaries provide a more suitable and flexible
mechanism than fixed margins for graph-level anomaly detection. The results align closely with our
theoretical analysis in Section 4.3, further validating the motivation and significance of adopting
adaptive, distance-aware margins within the FracAug framework.

H PERFORMANCE WITH MORE TRAINING DATA

To further demonstrate the superior capability of our proposed FracAug framework, we conduct
additional experiments on PROTEINS_full and DBLP_v1 under varying training sizes (%), as
illustrated in Figures 5 and 6. Across all training-size configurations, the red curves, representing
the performance of GIN equipped with FracAug, consistently appear at the top of the plots. This
clear and repeated trend shows that as more training data becomes available, FracAug continues
to deliver steady performance gains over the baseline in terms of AUROC, AUPRC, and F1-score.
Overall, these results provide additional evidence that FracAug offers a robust, broadly applicable,
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Table 12: Comparison of different margin loss.

Datasets Metrics GIN +FA Softmax LMCL LDAM

MCF-7
AUC 0.5867 0.5976 0.5844 0.5880 0.5844

AUPRC 0.2830 0.2971 0.2781 0.2847 0.2796
MF1 0.5366 0.5421 0.5378 0.5372 0.5360

MOLT-4
AUC 0.5733 0.5854 0.5760 0.5797 0.5751

AUPRC 0.2830 0.3001 0.2969 0.2952 0.2857
MF1 0.5072 0.5103 0.4991 0.5059 0.5076

PC-3
AUC 0.5969 0.6119 0.6021 0.6037 0.6001

AUPRC 0.2797 0.2893 0.2809 0.2778 0.2769
MF1 0.5063 0.5205 0.5134 0.5195 0.5144

SW-620
AUC 0.5938 0.6004 0.5947 0.5936 0.5931

AUPRC 0.2776 0.2813 0.2779 0.2768 0.2720
MF1 0.5090 0.5155 0.5100 0.5092 0.5133

NCI-H23
AUC 0.5897 0.5968 0.5913 0.5896 0.5887

AUPRC 0.2566 0.2659 0.2650 0.2612 0.2622
MF1 0.5059 0.5073 0.5001 0.5012 0.4990

OVCAR-8
AUC 0.5935 0.5963 0.5905 0.5890 0.5932

AUPRC 0.2573 0.2612 0.2557 0.2570 0.2579
MF1 0.5118 0.5123 0.5087 0.5051 0.5107

P388
AUC 0.5565 0.5913 0.5864 0.5653 0.5602

AUPRC 0.2850 0.3309 0.3265 0.3080 0.2901
MF1 0.4468 0.4491 0.4465 0.4377 0.4469

SF-295
AUC 0.5844 0.6076 0.5943 0.5898 0.5955

AUPRC 0.2766 0.2832 0.2664 0.2712 0.2715
MF1 0.4803 0.5047 0.5017 0.4909 0.4985

SN12C
AUC 0.5995 0.6079 0.5914 0.5955 0.6004

AUPRC 0.2696 0.2746 0.2661 0.2601 0.2707
MF1 0.5030 0.5110 0.4950 0.5068 0.5034

UACC257
AUC 0.5877 0.6015 0.5905 0.5899 0.5935

AUPRC 0.2480 0.2598 0.2584 0.2581 0.2557
MF1 0.4906 0.4983 0.4849 0.4844 0.4912

PROTEINS_full
AUC 0.5799 0.6174 0.6002 0.5937 0.6051

AUPRC 0.6259 0.6358 0.6235 0.6078 0.6231
MF1 0.5679 0.6175 0.5987 0.5945 0.6051

DBLP_v1
AUC 0.6231 0.8044 0.7776 0.7834 0.7874

AUPRC 0.7201 0.8626 0.8383 0.8463 0.8502
MF1 0.5996 0.8028 0.7774 0.7817 0.7855
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Figure 6: Varying training size (%) for DBLP_v1.

and practical enhancement to existing models, maintaining its advantages even as the amount of
supervised data varies.

In addition, we examine the inductive setting, where only the validation set is used for pseudo-labeling,
to evaluate the generalization capabilities of our proposed framework, FracAug. This analysis is
represented by the yellow curves in Figures 5 and 6. Across all training-size configurations, the
yellow curves, which depict the performance of the GIN model enhanced with FracAug under this
setting, consistently outperform the vanilla model. While the yellow curve falls slightly below the
red curve due to the reduced amount of data available, the performance gap is minimal. This further

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 13: Learned parameters

Datasets MCF-7 MOLT-4 PC-3 SW-620 NCI-H23 OVCAR-8 P388 SF-295 SN12C UACC257 PROTEINS_full DBLP_v1

αl

0.9062 1.4187 1.0862 2.186 0.4991 0.8986 2.8806 0.8845 2.7404 1.6178 1.1407 1.8663
2.0063 2.2813 1.9282 1.5108 0.3535 0.1262 2.9620 2.9038 0.5877 1.9339 0.6885 1.1374
1.4770 1.7911 1.9928 1.8073 2.3672 1.1480 2.3129 2.3939 1.0219 2.4874 2.5432 1.1843
1.4269 - - - - - 1.2674 2.4786 - 2.2634 1.4364 2.8254

ωl

0.2921 0.2655 0.3450 0.2667 0.2793 0.3476 0.1639 0.3051 0.2385 0.1165 0.3842 0.1685
0.3108 0.3101 0.3349 0.5068 0.4612 0.3615 0.3654 0.1747 0.3833 0.2806 0.1535 0.1714
0.1549 0.4244 0.3202 0.2266 0.2595 0.2909 0.2728 0.2145 0.3782 0.3028 0.2927 0.4004
0.2422 - - - - - 0.1979 0.3057 - 0.3000 0.1696 0.2597

αs

2.3128 1.9621 2.8048 1.5579 2.4828 0.5030 1.5344 1.6912 2.9331 0.8959 1.1290 1.7201
2.1539 0.4087 1.1722 1.8088 2.1366 1.4235 1.552 1.9896 1.5150 1.9589 0.1467 2.8101
0.7485 2.9168 1.6098 0.4474 2.2668 2.6830 2.0318 1.8741 2.9352 2.8844 0.5492 2.0935
2.5362 0.2449 - - - - 2.7135 - - 0.1148 0.0124 -

ωs

0.3042 0.2821 0.3910 0.3756 0.3292 0.3384 0.1696 0.4052 0.4554 0.2916 0.2407 0.2517
0.2569 0.2112 0.2750 0.4245 0.3630 0.3436 0.4001 0.2386 0.2343 0.2539 0.3285 0.4758
0.2764 0.1519 0.3340 0.1999 0.3078 0.3180 0.2027 0.3562 0.3103 0.3122 0.2524 0.2725
0.1625 0.3548 - - - - 0.2277 - - 0.1423 0.1785 -

ω
0.4634 0.6795 0.6481 0.5579 0.5263 0.4541 0.4408 0.5589 0.5724 0.5309 0.7134 0.5174
0.5366 0.3205 0.3519 0.4421 0.4737 0.5459 0.5592 0.4411 0.4276 0.4691 0.2866 0.4826

underscores the viability of our proposed framework in strictly inductive scenarios. Overall, these
findings highlight that FracAug provides a robust, versatile, and practical improvement to existing
models, maintaining its effectiveness even when limited to the validation set for pseudo-labeling.

I LEARNED PARAMETERS

Here, we present the learned parameters based on GIN, αl, ωl, αs, ωs, and ω, as summarized in
Table 13. Specifically, αl and αs correspond to the learned fractional powers associated with the
largest and smallest eigenvalue groups, respectively, while ωl and ωs denote the learned coefficients
applied to the fractional graphs generated from these eigenvalues. The vector ω represents the
balancing coefficient between the two groups of fractional graphs derived from the largest and
smallest eigenvalues.

As described in Section 4.2, the hyperparameters Hl and Hs determine the number of fractional
graphs combined within each eigenvalue group. Consequently, the dimensionality of αl and ωl

equals Hl, and that of αs and ωs equals Hs. Since we only consider two eigenvalue groups, the
largest and the smallest, the vector ω always contains two entries. Moreover, as indicated by Table
11, the optimal values of Hl and Hs vary across datasets, leading to corresponding variations in the
number of entries reported in Table 13. In cases where a particular entry does not exist due to the
selection of Hl or Hs, we mark it with “–” for clarity.

From Table 13, we observe that the learned fractional powers fall within the range (0, 3), which is
consistent with common practices in GNN design: excessively large effective depths can cause over-
smoothing, whereas overly small depths may lead to under-fitting. This observation further validates
the rationality of our proposed FracAug, demonstrating that the learned parameters remain well-
aligned with established principles while effectively capturing dataset-specific structural information.

J ADDITIONAL EXPERIMENTAL RESULTS

We present the additional experimental results for MCF-7, MOLT-4, PC-3, SW-620, NCI-H23, and
OVCAR-8 to further demonstrate our superiority over other baselines. On one hand, as shown in
Tables 14 and 15, FracAug consistently boosts the performance of a variety of backbone models in
both the graph classification and graph-level anomaly detection methods. This pattern holds across
all the newly included datasets, reinforcing the generalization ability of our proposed framework
and showing that its benefits are not restricted to specific architectures or data distributions. On
the other hand, as shown in Table 16, FracAug also outperforms other existing graph augmentation
techniques, even when those techniques are evaluated alongside their own native backbones. This
result highlights the effectiveness and robustness of our framework, indicating that FracAug can
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Table 14: Average AUROC, AUPRC, and F1-score on 6 datasets with multiple runs, using graph
classification models as baselines, where the white columns represent vanilla models and the "+FA"
represent models augmented by FracAug.

Datasets Metrics GCN +FA SAGE +FA GAT +FA GIN +FA LRGNN +FA GRDL +FA

MCF-7
AUROC 0.5753 0.5840 0.5801 0.5930 0.5885 0.6058 0.5867 0.5976 0.5467 0.6117 0.5867 0.6197
AUPRC 0.3035 0.3073 0.3316 0.3340 0.3678 0.3814 0.2830 0.2971 0.2951 0.3309 0.3038 0.3469
F1-score 0.4982 0.5074 0.4798 0.4963 0.4573 0.4687 0.5366 0.5421 0.4660 0.5290 0.5147 0.5254

MOLT-4
AUROC 0.5531 0.5650 0.5326 0.5727 0.5403 0.5721 0.5733 0.5854 0.5495 0.5851 0.5858 0.5924
AUPRC 0.3183 0.3217 0.1907 0.2602 0.3456 0.3667 0.2830 0.3001 0.3047 0.3175 0.3018 0.3101
F1-score 0.4501 0.4626 0.5166 0.5277 0.4096 0.4313 0.5072 0.5103 0.4570 0.4939 0.5091 0.5117

PC-3
AUROC 0.5697 0.5863 0.5986 0.6119 0.5707 0.5865 0.5969 0.6119 0.5690 0.6102 0.6044 0.6202
AUPRC 0.2740 0.2837 0.3154 0.3248 0.3562 0.3626 0.2797 0.2893 0.2320 0.3038 0.3381 0.3459
F1-score 0.4745 0.4876 0.4751 0.4841 0.4036 0.4166 0.5063 0.5205 0.5103 0.5024 0.4615 0.4750

SW-620
AUROC 0.5662 0.5839 0.5800 0.5968 0.5633 0.5870 0.5938 0.6004 0.5758 0.5946 0.6005 0.6046
AUPRC 0.3134 0.3229 0.3401 0.3260 0.2481 0.2587 0.2776 0.2813 0.3506 0.3386 0.2908 0.2901
F1-score 0.4406 0.4541 0.4339 0.4678 0.4923 0.5187 0.5090 0.5155 0.4190 0.4536 0.5059 0.5135

NCI-H23
AUROC 0.5811 0.5864 0.5765 0.6105 0.5777 0.6084 0.5897 0.5968 0.6002 0.6315 0.6161 0.6271
AUPRC 0.2777 0.2777 0.3197 0.3207 0.2966 0.2945 0.2566 0.2659 0.2830 0.3205 0.3034 0.3069
F1-score 0.4751 0.4819 0.4333 0.4740 0.4548 0.4961 0.5059 0.5073 0.4987 0.5055 0.4983 0.5112

OVCAR-8
AUROC 0.5692 0.5809 0.5763 0.5836 0.5396 0.5784 0.5935 0.5963 0.5628 0.5984 0.6230 0.6311
AUPRC 0.3240 0.3263 0.3391 0.3423 0.2010 0.2401 0.2573 0.2612 0.3106 0.3290 0.3042 0.3129
F1-score 0.4216 0.4334 0.4163 0.4221 0.4855 0.5060 0.5118 0.5123 0.4260 0.4518 0.5087 0.5119

Table 15: Average AUROC, AUPRC, and F1-score on 6 datasets with multiple runs, using GAD
models as baselines, where the white columns represent vanilla models and the "+FA" represent
models augmented by FracAug.

Datasets Metrics iGAD +FA GmapAD +FA RQGNN +FA UniGAD +FA

MCF-7
AUROC 0.5670 0.5756 0.5159 0.5342 0.5522 0.5709 0.5380 0.5480
AUPRC 0.3402 0.3525 0.3521 0.3577 0.2379 0.2648 0.2405 0.2527
F1-score 0.4546 0.4549 0.3776 0.3961 0.5609 0.5804 0.4959 0.5008

MOLT-4
AUROC 0.5562 0.5573 0.5100 0.5374 0.5576 0.5696 0.5353 0.5445
AUPRC 0.3088 0.3092 0.2704 0.2827 0.2302 0.2468 0.2111 0.2241
F1-score 0.4621 0.4636 0.4354 0.4592 0.5644 0.5718 0.5079 0.5125

PC-3
AUROC 0.5526 0.5674 0.5112 0.5266 0.5618 0.6043 0.5496 0.5559
AUPRC 0.1887 0.2159 0.2999 0.3094 0.2370 0.2663 0.3875 0.3889
F1-score 0.5217 0.5229 0.3845 0.3938 0.5721 0.5972 0.3461 0.3542

SW-620
AUROC 0.5641 0.5776 0.5279 0.5362 0.5428 0.5692 0.5427 0.5688
AUPRC 0.3332 0.3701 0.3506 0.3479 0.1936 0.2219 0.2527 0.2585
F1-score 0.4207 0.4029 0.3605 0.3734 0.5530 0.5654 0.4600 0.4903

NCI-H23
AUROC 0.5689 0.5721 0.5289 0.5489 0.5704 0.6061 0.5694 0.5860
AUPRC 0.2267 0.2288 0.3274 0.3401 0.2166 0.2500 0.2733 0.2756
F1-score 0.5039 0.5066 0.3710 0.3827 0.5770 0.5820 0.4645 0.4831

OVCAR-8
AUROC 0.5609 0.5685 0.5209 0.5243 0.5549 0.5773 0.5360 0.5445
AUPRC 0.2319 0.2325 0.2863 0.2836 0.1933 0.2216 0.3196 0.3112
F1-score 0.4880 0.4991 0.3992 0.4054 0.5618 0.5794 0.3873 0.4043

provide complementary advantages regardless of the underlying model design or augmentation
strategy used.

K STANDARD DEVIATION FOR EXPERIMENTAL RESULTS

Due to the limited space, we present the standard deviation for our experimental results here in Tables
17, 18, and 19. Across the three tables reporting standard deviations, for graph classification, graph-
level anomaly detection, and data augmentation, we observe a consistent stabilizing effect introduced
by FracAug. Although FracAug serves as a plug-in framework that can be seamlessly integrated
with diverse baselines, its impact is both clear and substantial. In most cases, the incorporation of
FracAug not only improves AUROC, AUPRC, and F1-score, as shown in Tables 1, 2, 3, 14, 15, and
16, but also reduces the variance of these metrics, as shown in Tables 17, 18, and 19. This dual benefit
indicates that FracAug enhances both the effectiveness and the reliability of downstream models.
By pseudo-labeling the semantic-preserving graphs, FracAug helps models converge to more stable
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Table 16: Average AUROC, AUPRC, and F1-score on 6 datasets with multiple runs, using graph-level
augmentation models as baselines, where the white columns represent vanilla models and their own
augmentation method, while the "+FA" represent vanilla models augmented by FracAug.

Datasets Metrics MAAv NodeSam SubMix +FA GLAv GLA +FA GMixupv GMixup +FA FGWMixupv FGWMixup +FA

MCF-7
AUROC 0.5496 0.5727 0.5428 0.5695 0.5797 0.5735 0.6068 0.5730 0.5581 0.5935 0.5731 0.5502 0.5828
AUPRC 0.2346 0.2445 0.2224 0.2455 0.2558 0.2456 0.2944 0.2767 0.2864 0.3081 0.2720 0.2130 0.2945
F1-score 0.5179 0.5635 0.5512 0.5721 0.5607 0.5609 0.5793 0.5186 0.4879 0.5220 0.5585 0.5283 0.5971

MOLT-4
AUROC 0.5506 0.5391 0.5113 0.5663 0.5585 0.5578 0.5792 0.5637 0.5547 0.5771 0.5477 0.5308 0.6067
AUPRC 0.2203 0.1914 0.1796 0.2356 0.2177 0.2159 0.2511 0.2411 0.2176 0.2559 0.1994 0.1939 0.3104
F1-score 0.5595 0.5392 0.5048 0.5658 0.5540 0.5519 0.5733 0.5306 0.5368 0.5416 0.5446 0.5115 0.5366

PC-3
AUROC 0.5688 0.5805 0.5284 0.5821 0.6207 0.5938 0.6221 0.5705 0.5646 0.5782 0.5490 0.5442 0.6107
AUPRC 0.2112 0.2233 0.1854 0.2385 0.2770 0.2386 0.2790 0.3506 0.3456 0.3587 0.2028 0.2108 0.2623
F1-score 0.5698 0.5685 0.5321 0.5848 0.5650 0.5569 0.5686 0.4085 0.4058 0.4101 0.5027 0.4914 0.5633

SW-620
AUROC 0.5577 0.5776 0.5232 0.5834 0.5822 0.5799 0.5936 0.5839 0.5722 0.5987 0.5265 0.5395 0.6183
AUPRC 0.2026 0.2205 0.1958 0.2279 0.2315 0.2258 0.2455 0.2599 0.2511 0.2728 0.1340 0.1777 0.2759
F1-score 0.5641 0.5477 0.5273 0.5676 0.5422 0.5473 0.5786 0.5111 0.5015 0.5220 0.5283 0.5113 0.5729

NCI-H23
AUROC 0.5792 0.5634 0.5323 0.5979 0.5773 0.5762 0.6194 0.5912 0.5647 0.6014 0.5658 0.5760 0.6422
AUPRC 0.2273 0.1983 0.2017 0.2407 0.2082 0.2188 0.2680 0.2587 0.2139 0.2672 0.1986 0.2345 0.3105
F1-score 0.5821 0.5625 0.5445 0.5835 0.5659 0.5779 0.5914 0.5058 0.5087 0.5134 0.5561 0.5066 0.5358

OVCAR-8
AUROC 0.5507 0.5494 0.5278 0.5726 0.5911 0.5859 0.6049 0.5786 0.5725 0.6024 0.5696 0.5713 0.6317
AUPRC 0.1775 0.1633 0.1665 0.2132 0.2346 0.2196 0.2447 0.2764 0.2994 0.3072 0.2696 0.2401 0.3060
F1-score 0.5461 0.5408 0.5337 0.5749 0.5350 0.5548 0.5728 0.4733 0.4469 0.4766 0.4831 0.4950 0.5211

Table 17: Standard Deviation of AUROC, AUPRC, and F1-score for Tables 1 and 14.

Datasets Metrics GCN +FA SAGE +FA GAT +FA GIN +FA LRGNN +FA GRDL +FA

MCF-7
AUROC 0.0027 0.0016 0.0011 0.0123 0.0144 0.0011 0.0015 0.0010 0.0011 0.0069 0.0128 0.0050
AUPRC 0.0110 0.0016 0.0024 0.0050 0.0436 0.0465 0.0036 0.0030 0.0245 0.0135 0.0256 0.0007
F1-score 0.0136 0.0038 0.0006 0.0134 0.0215 0.0442 0.0012 0.0017 0.0182 0.0030 0.0041 0.0081

MOLT-4
AUROC 0.0080 0.0015 0.0233 0.0035 0.0028 0.0101 0.0043 0.0006 0.0122 0.0055 0.0076 0.0035
AUPRC 0.0093 0.0032 0.0391 0.0059 0.0217 0.0024 0.0126 0.0052 0.0018 0.0107 0.0076 0.0037
F1-score 0.0023 0.0047 0.0116 0.0003 0.0233 0.0155 0.0047 0.0058 0.0171 0.0177 0.0045 0.0092

PC-3
AUROC 0.0132 0.0047 0.0093 0.0018 0.0284 0.0150 0.0015 0.0042 0.0117 0.0015 0.0163 0.0045
AUPRC 0.0067 0.0027 0.0092 0.0043 0.0235 0.0269 0.0017 0.0049 0.0465 0.0093 0.0332 0.0004
F1-score 0.0109 0.0038 0.0037 0.0016 0.0124 0.0071 0.0040 0.0017 0.0258 0.0071 0.0098 0.0064

SW-620
AUROC 0.0063 0.0010 0.0008 0.0014 0.0216 0.0112 0.0038 0.0026 0.0054 0.0153 0.0087 0.0077
AUPRC 0.0190 0.0035 0.0078 0.0045 0.0115 0.0040 0.0027 0.0001 0.0068 0.0106 0.0064 0.0004
F1-score 0.0088 0.0045 0.0082 0.0022 0.0196 0.0237 0.0086 0.0045 0.0130 0.0292 0.0068 0.0129

NCI-H23
AUROC 0.0030 0.0033 0.0013 0.0016 0.0062 0.0020 0.0016 0.0045 0.0306 0.0085 0.0075 0.0087
AUPRC 0.0074 0.0015 0.0031 0.0006 0.0098 0.0074 0.0014 0.0071 0.0038 0.0197 0.0061 0.0136
F1-score 0.0026 0.0029 0.0043 0.0028 0.0009 0.0100 0.0037 0.0004 0.0411 0.0349 0.0048 0.0011

OVCAR-8
AUROC 0.0047 0.0008 0.0026 0.0010 0.0201 0.0061 0.0018 0.0014 0.0130 0.0008 0.0013 0.0009
AUPRC 0.0017 0.0009 0.0037 0.0045 0.0220 0.0062 0.0033 0.0016 0.0061 0.0122 0.0052 0.0018
F1-score 0.0070 0.0002 0.0003 0.0030 0.0086 0.0153 0.0005 0.0006 0.0203 0.0101 0.0037 0.0036

P388
AUROC 0.0519 0.0009 0.0107 0.0030 0.1071 0.0002 0.0261 0.0150 0.0392 0.0008 0.0063 0.0104
AUPRC 0.0506 0.0066 0.0127 0.0047 0.0323 0.0051 0.0249 0.0089 0.0023 0.0025 0.0640 0.0011
F1-score 0.0129 0.0078 0.0011 0.0005 0.0966 0.0172 0.0100 0.0104 0.0442 0.0069 0.0422 0.0126

SF-295
AUROC 0.0086 0.0026 0.0055 0.0011 0.0059 0.0124 0.0274 0.0067 0.0235 0.0043 0.0169 0.0026
AUPRC 0.0007 0.0059 0.0019 0.0005 0.0336 0.0060 0.0022 0.0045 0.0116 0.0011 0.0381 0.0081
F1-score 0.0106 0.0083 0.0048 0.0019 0.0254 0.0203 0.0334 0.0056 0.0399 0.0078 0.0161 0.0052

SN12C
AUROC 0.0100 0.0011 0.0153 0.0054 0.0083 0.0025 0.0053 0.0010 0.0137 0.0083 0.0094 0.0035
AUPRC 0.0039 0.0053 0.0325 0.0044 0.2283 0.0106 0.0099 0.0051 0.2345 0.0136 0.2344 0.0019
F1-score 0.0082 0.0033 0.0093 0.0027 0.0022 0.0081 0.0020 0.0039 0.0231 0.0264 0.0153 0.0038

UACC257
AUROC 0.0040 0.0033 0.0040 0.0172 0.0032 0.0145 0.0112 0.0043 0.0156 0.0116 0.0031 0.0069
AUPRC 0.0035 0.0083 0.0047 0.0031 0.0325 0.0245 0.0146 0.0071 0.0049 0.0249 0.0096 0.0014
F1-score 0.0013 0.0040 0.0002 0.0230 0.0335 0.0053 0.0016 0.0008 0.0228 0.0087 0.0050 0.0115

PROTEINS_full
AUROC 0.0057 0.0013 0.0202 0.0182 0.0411 0.0039 0.0410 0.0052 0.0331 0.0265 0.0028 0.0066
AUPRC 0.0053 0.0001 0.0346 0.0248 0.0367 0.0060 0.0010 0.0044 0.0345 0.0218 0.0078 0.0077
F1-score 0.0059 0.0017 0.0219 0.0139 0.0420 0.0060 0.0593 0.0054 0.0312 0.0275 0.0093 0.0086

DBLP_v1
AUROC 0.0141 0.0007 0.0278 0.0008 0.0400 0.0053 0.0124 0.0004 0.0031 0.0004 0.0125 0.0024
AUPRC 0.0065 0.0004 0.0277 0.0040 0.0267 0.0023 0.0185 0.0004 0.0016 0.0002 0.0034 0.0021
F1-score 0.0161 0.0008 0.0337 0.0006 0.0851 0.0075 0.0081 0.0003 0.0035 0.0005 0.0143 0.0023

decision boundaries. Consequently, the tables collectively demonstrate that FracAug is not just a
performance booster but also a variance reducer, offering practitioners a method that delivers stronger
and more consistent results across a wide range of graph-level anomaly detection tasks.
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Table 18: Standard Deviation of AUROC, AUPRC, and F1-score for Tables 2 and 15.

Datasets Metrics iGAD +FA GmapAD +FA RQGNN +FA UniGAD +FA

MCF-7
AUROC 0.0020 0.0022 0.0006 0.0035 0.0167 0.0136 0.0069 0.0055
AUPRC 0.0118 0.0016 0.0135 0.0086 0.0047 0.0042 0.0100 0.0025
F1-score 0.0078 0.0015 0.0138 0.0037 0.0136 0.0067 0.0165 0.0097

MOLT-4
AUROC 0.0033 0.0020 0.0021 0.0038 0.0041 0.0132 0.0011 0.0001
AUPRC 0.0075 0.0009 0.0168 0.0082 0.0247 0.0047 0.0226 0.0009
F1-score 0.0105 0.0018 0.0100 0.0016 0.0122 0.0001 0.0139 0.0009

PC-3
AUROC 0.0246 0.0037 0.0096 0.0021 0.0264 0.0017 0.0040 0.0009
AUPRC 0.0459 0.0074 0.0069 0.0049 0.0017 0.0018 0.0011 0.0005
F1-score 0.0006 0.0011 0.0172 0.0068 0.0182 0.0028 0.0040 0.0015

SW-620
AUROC 0.0033 0.0008 0.0020 0.0033 0.0088 0.0266 0.0002 0.0059
AUPRC 0.0023 0.0023 0.0100 0.0025 0.0010 0.0172 0.0052 0.0036
F1-score 0.0020 0.0033 0.0075 0.0064 0.0075 0.0033 0.0011 0.0049

NCI-H23
AUROC 0.0081 0.0101 0.0102 0.0040 0.0068 0.0205 0.0015 0.0034
AUPRC 0.0413 0.0409 0.0221 0.0075 0.0064 0.0223 0.0022 0.0018
F1-score 0.0260 0.0235 0.0089 0.0023 0.0038 0.0010 0.0001 0.0028

OVCAR-8
AUROC 0.0117 0.0044 0.0016 0.0051 0.0110 0.0013 0.0017 0.0093
AUPRC 0.0375 0.0405 0.0028 0.0016 0.0007 0.0042 0.0035 0.0153
F1-score 0.0155 0.0301 0.0006 0.0070 0.0037 0.0024 0.0012 0.0028

P388
AUROC 0.0016 0.0021 0.0015 0.0270 0.0155 0.0146 0.0104 0.0150
AUPRC 0.0235 0.0063 0.0030 0.0140 0.0175 0.0127 0.0026 0.0093
F1-score 0.0133 0.0018 0.0040 0.0186 0.0055 0.0056 0.0101 0.0115

SF-295
AUROC 0.0022 0.0013 0.0094 0.0156 0.0004 0.0110 0.0069 0.0027
AUPRC 0.0264 0.0202 0.0303 0.0088 0.0046 0.0181 0.0182 0.0121
F1-score 0.0203 0.0158 0.0158 0.0103 0.0008 0.0094 0.0078 0.0070

SN12C
AUROC 0.0004 0.0007 0.0057 0.0054 0.0025 0.0112 0.0066 0.0069
AUPRC 0.2670 0.0159 0.0001 0.0015 0.0091 0.0100 0.0056 0.0039
F1-score 0.0107 0.0167 0.0065 0.0076 0.0046 0.0031 0.0040 0.0062

UACC257
AUROC 0.0085 0.0013 0.0105 0.0001 0.0027 0.0069 0.0016 0.0081
AUPRC 0.0143 0.0053 0.0196 0.0025 0.0014 0.0099 0.0037 0.0006
F1-score 0.0008 0.0040 0.0282 0.0019 0.0028 0.0040 0.0050 0.0091

PROTEINS_full
AUROC 0.0206 0.0052 0.0163 0.0069 0.0287 0.0508 0.0020 0.0008
AUPRC 0.0052 0.0061 0.0045 0.0093 0.0428 0.0617 0.0020 0.0009
F1-score 0.0239 0.0054 0.0132 0.0066 0.0354 0.0419 0.0029 0.0008

DBLP_v1
AUROC 0.0004 0.0003 0.0072 0.0002 0.0029 0.0028 0.0123 0.0003
AUPRC 0.0002 0.0002 0.0032 0.0027 0.0010 0.0012 0.0042 0.0001
F1-score 0.0004 0.0004 0.0069 0.0010 0.0036 0.0026 0.0151 0.0004

L ADDITIONAL ABLATION STUDY

Beyond the 6 datasets examined in Section 5.3, we further conduct an ablation study on the remaining
6 datasets, as reported in Table 20. The notations used follow the same definitions as those in Table
4. In this extended analysis, we again observe that FracAug consistently outperforms all four of
its variants across the newly included datasets. This repeated pattern reinforces the importance
of the individual components that constitute our framework and provides additional evidence that
each design choice contributes meaningfully to the overall performance improvements achieved by
FracAug.

M MVP FOR VALIDATION SET ONLY

Although we follow the standard data augmentation setting—using both the validation and test sets for
pseudo-labeling—as adopted in related works such as ConsisGAD (Chen et al., 2024), we additionally
evaluate a more restrictive setting in which only the validation set is used for pseudo-labeling. This
complementary experiment allows us to examine the robustness of our framework under an extremely
limited auxiliary data scenario.

As shown in Table 21, pseudo-labeling only the validation set leads to a reduction in performance
gains compared to our original setting. This behavior indicates that having access to more data for
pseudo-labeling can more fully reveal the strength of our framework. At the same time, the results
also demonstrate that even when supplied with very limited auxiliary data, our method can still
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Table 19: Standard Deviation of AUROC, AUPRC, and F1-score for Tables 3 and 16.

Datasets Metrics MAAv NodeSam SubMix +FA GLAv GLA +FA GMixupv GMixup +FA FGWMixupv FGWMixup +FA

MCF-7
AUROC 0.0069 0.0062 0.0154 0.0003 0.0069 0.0208 0.0091 0.0216 0.0173 0.0015 0.0091 0.0427 0.0014
AUPRC 0.0070 0.0094 0.0107 0.0016 0.0112 0.0320 0.0126 0.0226 0.0272 0.0018 0.0004 0.0854 0.0152
F1-score 0.0169 0.0018 0.0168 0.0014 0.0003 0.0070 0.0082 0.0144 0.0016 0.0006 0.0330 0.0096 0.0055

MOLT-4
AUROC 0.0080 0.0225 0.0059 0.0065 0.0135 0.0029 0.0004 0.0038 0.0058 0.0001 0.0057 0.0083 0.0146
AUPRC 0.0110 0.0284 0.0313 0.0016 0.0206 0.0047 0.0013 0.0010 0.0105 0.0003 0.0096 0.0409 0.0116
F1-score 0.0076 0.0174 0.0110 0.0046 0.0042 0.0030 0.0017 0.0065 0.0013 0.0001 0.0041 0.0136 0.0148

PC-3
AUROC 0.0062 0.0181 0.0296 0.0104 0.0046 0.0195 0.0053 0.0144 0.0179 0.0009 0.0246 0.0141 0.0011
AUPRC 0.0078 0.0201 0.0329 0.0120 0.0091 0.0277 0.0099 0.0065 0.0290 0.0174 0.0651 0.0373 0.0017
F1-score 0.0033 0.0003 0.0430 0.0058 0.0111 0.0072 0.0153 0.0235 0.0053 0.0153 0.0163 0.0095 0.0001

SW-620
AUROC 0.0034 0.0043 0.0172 0.0020 0.0061 0.0135 0.0057 0.0029 0.0038 0.0008 0.0302 0.0241 0.0069
AUPRC 0.0001 0.0059 0.0093 0.0031 0.0151 0.0141 0.0035 0.0191 0.0136 0.0002 0.0645 0.0704 0.0091
F1-score 0.0004 0.0027 0.0276 0.0019 0.0091 0.0182 0.0052 0.0142 0.0066 0.0013 0.0335 0.0169 0.0071

NCI-H23
AUROC 0.0139 0.0330 0.0020 0.0013 0.0057 0.0077 0.0061 0.0317 0.0018 0.0002 0.0551 0.0073 0.0045
AUPRC 0.0125 0.0355 0.0049 0.0008 0.0118 0.0076 0.0085 0.0401 0.0070 0.0069 0.0661 0.0037 0.0071
F1-score 0.0059 0.0175 0.0029 0.0006 0.0100 0.0032 0.0037 0.0083 0.0036 0.0071 0.0305 0.0074 0.0205

OVCAR-8
AUROC 0.0031 0.0111 0.0193 0.0036 0.0023 0.0230 0.0007 0.0169 0.0099 0.0006 0.0194 0.0144 0.0063
AUPRC 0.0171 0.0175 0.0139 0.0031 0.0083 0.0335 0.0008 0.0361 0.0016 0.0047 0.0783 0.0284 0.0034
F1-score 0.0221 0.0028 0.0255 0.0013 0.0072 0.0062 0.0004 0.0098 0.0131 0.0035 0.1100 0.0049 0.0072

P388
AUROC 0.0003 0.0067 0.0066 0.0095 0.0715 0.0220 0.0122 0.0001 0.0033 0.0007 0.0023 0.0028 0.0071
AUPRC 0.0346 0.0438 0.0308 0.0058 0.0660 0.0287 0.0058 0.0049 0.0207 0.0009 0.0330 0.0086 0.0228
F1-score 0.0187 0.0136 0.0138 0.0045 0.0382 0.0114 0.0057 0.0081 0.0194 0.0050 0.0292 0.0334 0.0084

SF-295
AUROC 0.0100 0.0087 0.0035 0.0038 0.0208 0.0065 0.0023 0.0013 0.0303 0.0081 0.0059 0.0018 0.0059
AUPRC 0.0061 0.0030 0.0016 0.0002 0.0268 0.0076 0.0023 0.0046 0.0460 0.0093 0.0073 0.0069 0.0013
F1-score 0.0052 0.0030 0.0052 0.0002 0.0072 0.0087 0.0015 0.0081 0.0057 0.0049 0.0028 0.0107 0.0224

SN12C
AUROC 0.0052 0.0506 0.0081 0.0043 0.0308 0.0187 0.0073 0.0125 0.0117 0.0105 0.0281 0.0243 0.0116
AUPRC 0.0206 0.0733 0.0223 0.0076 0.0287 0.0268 0.0103 0.0030 0.0247 0.0147 0.0489 0.0646 0.0317
F1-score 0.0124 0.0098 0.0144 0.0040 0.0067 0.0027 0.0030 0.0177 0.0241 0.0016 0.0048 0.0232 0.0221

UACC257
AUROC 0.0335 0.0052 0.0302 0.0041 0.0132 0.0038 0.0101 0.0137 0.0013 0.0083 0.0489 0.0366 0.0115
AUPRC 0.0295 0.0185 0.1041 0.0001 0.0200 0.0199 0.0025 0.0547 0.0088 0.0054 0.0804 0.0959 0.0195
F1-score 0.0071 0.0083 0.0454 0.0051 0.0013 0.0299 0.0127 0.0334 0.0068 0.0165 0.0378 0.0324 0.0155

PROTEINS_full
AUROC 0.0124 0.0013 0.0957 0.0035 0.0013 0.0355 0.0048 0.0301 0.0090 0.0008 0.0194 0.0052 0.0023
AUPRC 0.0106 0.0071 0.0088 0.0011 0.0239 0.0339 0.0033 0.0077 0.0141 0.0059 0.0909 0.0098 0.0175
F1-score 0.0129 0.0041 0.1812 0.0062 0.0116 0.0346 0.0088 0.0392 0.0042 0.0006 0.0199 0.0093 0.0087

DBLP_v1
AUROC 0.0464 0.0047 0.0289 0.0012 0.0043 0.0284 0.0069 0.0064 0.0052 0.0033 0.0170 0.0180 0.0061
AUPRC 0.0030 0.0007 0.0560 0.0026 0.0027 0.0032 0.0029 0.0037 0.0031 0.0015 0.0104 0.0132 0.0075
F1-score 0.0739 0.0070 0.0711 0.0032 0.0059 0.0545 0.0078 0.0068 0.0059 0.0045 0.0181 0.0177 0.0057

Table 20: Ablation study.

Datasets Metrics GIN +FA w/o largest w/o smallest w/o WDML w/o MVP

MCF-7
AUROC 0.5867 0.5976 0.5848 0.5889 0.5860 0.5835
AUPRC 0.2830 0.2971 0.2842 0.2882 0.2813 0.2790
F1-score 0.5366 0.5421 0.5317 0.5351 0.5372 0.5350

MOLT-4
AUROC 0.5733 0.5854 0.5770 0.5760 0.5772 0.5754
AUPRC 0.2830 0.3001 0.2974 0.2862 0.2981 0.2881
F1-score 0.5072 0.5103 0.5001 0.5085 0.4998 0.5060

PC-3
AUROC 0.5969 0.6119 0.5963 0.6018 0.6026 0.5975
AUPRC 0.2797 0.2893 0.2797 0.2815 0.2806 0.2780
F1-score 0.5063 0.5205 0.5055 0.5124 0.5145 0.5092

SW-620
AUROC 0.5938 0.6004 0.5941 0.5938 0.5949 0.5930
AUPRC 0.2776 0.2813 0.2737 0.2778 0.2800 0.2697
F1-score 0.5090 0.5155 0.5132 0.5089 0.5082 0.5155

NCI-H23
AUROC 0.5897 0.5968 0.5893 0.5911 0.5866 0.5925
AUPRC 0.2566 0.2659 0.2564 0.2633 0.2614 0.2656
F1-score 0.5059 0.5073 0.5054 0.5013 0.4968 0.5013

OVCAR-8
AUROC 0.5935 0.5963 0.5911 0.5918 0.5911 0.5904
AUPRC 0.2573 0.2612 0.2579 0.2565 0.2573 0.2605
F1-score 0.5118 0.5123 0.5074 0.5100 0.5081 0.5038

extract meaningful supervisory signals and deliver performance improvements. This resilience under
constrained conditions highlights the superiority of our framework, further confirming that FracAug
remains effective even in extreme data augmentation settings.

N ORIGINAL LOSS FOR BASELINES
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Table 21: Average AUROC, AUPRC, and F1-score on 3 datasets with multiple runs, where the "+FA"
represents our original setting, and onlyval represents pseudo-labeling only the validation set.

Datasets Metrics GAT +FA onlyval GIN +FA onlyval iGAD +FA onlyval NSv +FA onlyval

UACC257
AUROC 0.5890 0.6174 0.6021 0.5877 0.6015 0.5946 0.5697 0.5748 0.5721 0.5623 0.5947 0.5731
AUPRC 0.3493 0.3389 0.3250 0.2480 0.2598 0.2631 0.1906 0.1970 0.1956 0.1805 0.2210 0.1847
F1-score 0.4031 0.4455 0.4491 0.4906 0.4983 0.4908 0.5201 0.5224 0.5214 0.5541 0.5784 0.5582

PROTEINS_full
AUROC 0.6157 0.6836 0.6633 0.5799 0.6174 0.6015 0.5976 0.6206 0.6125 0.6009 0.6217 0.6147
AUPRC 0.6350 0.7005 0.6933 0.6259 0.6358 0.6261 0.6200 0.6333 0.6271 0.6183 0.6366 0.6357
F1-score 0.6158 0.6859 0.6508 0.5679 0.6175 0.6024 0.5960 0.6211 0.6137 0.6015 0.6214 0.614

DBLP_v1
AUROC 0.6119 0.6885 0.6489 0.6231 0.8044 0.7844 0.7755 0.7909 0.7901 0.6446 0.6822 0.6712
AUPRC 0.7507 0.7796 0.7768 0.7201 0.8626 0.8446 0.8377 0.8473 0.8466 0.7689 0.7816 0.7814
F1-score 0.5782 0.6868 0.6311 0.5996 0.8028 0.7837 0.7749 0.7910 0.7902 0.6252 0.6778 0.6621

Table 22: Average AUROC, AUPRC, and F1-score on 3 datasets with multiple runs, where the "+FA"
represents our original setting, and oriloss represents the original setting of baselines.

Datasets Metrics GAT +FA oriloss GIN +FA oriloss NodeSam +FA oriloss GMixup +FA oriloss

UACC257
AUROC 0.5890 0.6174 0.5583 0.5877 0.6015 0.5749 0.5023 0.5947 0.4994 0.5843 0.6209 0.5280
AUPRC 0.3493 0.3389 0.3106 0.2480 0.2598 0.2448 0.0559 0.2210 0.0206 0.2285 0.2963 0.1185
F1-score 0.4031 0.4455 0.4039 0.4906 0.4983 0.4772 0.5005 0.5784 0.4892 0.5042 0.4898 0.5165

PROTEINS_full
AUROC 0.6157 0.6836 0.5739 0.5799 0.6174 0.5517 0.6083 0.6217 0.5546 0.5132 0.6097 0.4979
AUPRC 0.6350 0.7005 0.6097 0.6259 0.6358 0.5824 0.6294 0.6366 0.5703 0.5057 0.6244 0.5259
F1-score 0.6158 0.6859 0.5695 0.5679 0.6175 0.5503 0.6039 0.6214 0.5548 0.5025 0.6102 0.4978

DBLP_v1
AUROC 0.6119 0.6885 0.6263 0.6231 0.8044 0.6151 0.6608 0.6822 0.5000 0.7885 0.7994 0.7903
AUPRC 0.7507 0.7796 0.7168 0.7201 0.8626 0.7154 0.7868 0.7816 0.7551 0.8471 0.8563 0.8467
F1-score 0.5782 0.6868 0.6199 0.5996 0.8028 0.6147 0.6408 0.6778 0.3288 0.7878 0.7985 0.7904

We conduct an additional set of experiments in which baseline models were evaluated under the
original, unweighted loss functions, without applying any rebalancing techniques or class frequency
adjustments. The results are summarized in Table 22. As shown, most baseline models experience a
substantial decline in performance when trained with their original loss in the imbalanced setting.
This degradation is consistent across metrics and datasets, confirming that the performance of these
models is sensitive to skewed class distributions. Importantly, this finding validates our experimental
choice in the main paper, i.e., the weighted loss was introduced precisely to prevent the baselines
from collapsing under severe imbalance, thereby ensuring a fair and meaningful comparison with
our proposed method. Without such weighting, the baselines fail to capture minority class patterns
effectively, leading to inflated majority class predictions and weakened anomaly or minority detection
capability. These newly added results therefore reinforce the significance of using balanced training
strategies and further highlight the robustness advantage of our approach.

O RUNNING TIME WHEN VARYING HYPERPARAMETERS

Because FGG involves four hyperparameters, kl, ks, Hl, Hs, that might influence the running time,
we evaluate the computational overhead under different configurations. We present two 3D plots that
report the runtime under varying hyperparameters, as shown in Figures 7. The first plot sweeps kl
and ks from 1 to 8 and records the training time. The second plot similarly varies Hl and Hs from 1
to 8 and measures the runtime during training.

Across both experiments, we observe that the runtime does increase as the hyperparameters grow,
but the increase is small and progresses gradually. Larger kl and ks require computing additional
eigenvalues, and larger Hl and Hs apply more repeated or deeper fractional operations. Despite
this, the overall time remains low and exhibits no sharp growth. These results confirm that FGG’s
computational cost scales smoothly with its hyperparameters, and even at higher settings, it maintains
an efficient and manageable runtime suitable for practical graph-level anomaly detection.

P PSEUDO LABEL CONSISTENCY

An important aspect of evaluating FracAug is understanding how reliably the synthetic samples
align with the labels of their corresponding original graphs to keep label invariance from semantic
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Figure 7: Training time when varying kl, ks, Hl, Hs for UACC257 based on GIN.
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Figure 8: Label consistency ratio.

preservation. To measure this, we track label consistency ratio, defined as the proportion of synthetic
samples whose pseudo labels match the predicted label of the original sample from which they are
generated. This metric reflects how faithfully the synthetic data preserves the class semantics and
whether the pseudo-labeling process remains stable throughout iterative training.

Our experimental results in Figure 8 reveal a clear and consistent trend: label consistency ratio is
high after the warmup and continues to increase across iterations. This high label consistency ratio
can be attributed to the positive feedback loop established by the MVP pseudo-labeling mechanism
and semantic-preserving generation by FGG. Since only synthetic samples that match the prediction
of their associated original graph are admitted into training, the model is repeatedly reinforced with
high-quality, label-aligned synthetic instances. Over time, this encourages the baseline model to
develop more robust feature representations. Simultaneously, the synthetic graphs generated by FGG
become increasingly aligned with the semantic structure of the original samples, further boosting
consistency.

Across all evaluated datasets, we observe the same pattern: label consistency ratio remains high
throughout training and increases over iterations. This behavior confirms that the mutual verification
pseudo-labeling strategy effectively suppresses noisy labels and enhances the reliability of synthetic
augmentation. The rising label consistency ratio also indicates that FracAug drives the model toward a
stable equilibrium, where both original and synthetic samples converge to consistent and semantically
coherent predictions.

In summary, the empirical evidence demonstrates that FracAug maintains strong label fidelity and
progressively strengthens the mutual agreement between original and synthetic samples during
training. This increasing label consistency ratio is a key factor contributing to the overall robustness
and performance gains enabled by FracAug.
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Table 23: Ablation study by replacing FGG by Node Drop(ND) or Edge Drop (ED), and replacing
MVP by Soft Ensemble (SE).

Datasets Metrics GIN +FA ND ED SE NS +FA ND ED SE GMixup +FA ND ED SE

MCF-7
AUROC 0.5867 0.5976 0.5878 0.5838 0.5917 0.5496 0.5695 0.5575 0.5442 0.5594 0.5730 0.5935 0.5758 0.5720 0.5738
AUPRC 0.2830 0.2971 0.2834 0.2832 0.2959 0.2346 0.2455 0.2224 0.2054 0.2248 0.2767 0.3081 0.2941 0.2947 0.2762
F1-score 0.5366 0.5421 0.5384 0.5309 0.5317 0.5179 0.5721 0.5460 0.5506 0.5589 0.5186 0.5220 0.5070 0.5009 0.5203

MOLT-4
AUROC 0.5733 0.5854 0.5790 0.5774 0.5789 0.5506 0.5663 0.5496 0.5521 0.5557 0.5637 0.5771 0.5737 0.5707 0.5714
AUPRC 0.2830 0.3001 0.2967 0.2929 0.2949 0.2203 0.2356 0.2271 0.2261 0.2240 0.2411 0.2559 0.2414 0.2545 0.2459
F1-score 0.5072 0.5103 0.5024 0.5047 0.5101 0.5595 0.5658 0.5606 0.5622 0.5632 0.5306 0.5416 0.5378 0.5300 0.5414

PC-3
AUROC 0.5969 0.6119 0.6036 0.5991 0.6015 0.5688 0.5821 0.5664 0.5639 0.5679 0.5705 0.5782 0.5677 0.5700 0.5731
AUPRC 0.2797 0.2893 0.2855 0.2837 0.2778 0.2112 0.2385 0.2132 0.2103 0.2149 0.3506 0.3587 0.3473 0.3527 0.3546
F1-score 0.5063 0.5205 0.5110 0.5058 0.5156 0.5698 0.5848 0.5716 0.5700 0.5725 0.4085 0.4101 0.4083 0.4038 0.4096

SW-620
AUROC 0.5938 0.6004 0.5919 0.5958 0.5932 0.5577 0.5834 0.5634 0.5610 0.5581 0.5839 0.5987 0.5855 0.5834 0.5872
AUPRC 0.2776 0.2813 0.2721 0.2793 0.2746 0.2026 0.2279 0.2072 0.2041 0.1991 0.2599 0.2728 0.2574 0.2609 0.2658
F1-score 0.5090 0.5155 0.5112 0.5101 0.5109 0.5641 0.5676 0.5666 0.5651 0.5625 0.5111 0.5220 0.5169 0.5090 0.5110

NCI-H23
AUROC 0.5897 0.5968 0.5847 0.5850 0.5900 0.5792 0.5979 0.5729 0.5780 0.5909 0.5912 0.6014 0.5911 0.5947 0.5984
AUPRC 0.2566 0.2659 0.2543 0.2522 0.2626 0.2273 0.2407 0.2255 0.2258 0.2295 0.2587 0.2672 0.2522 0.2665 0.2610
F1-score 0.5059 0.5073 0.5007 0.5031 0.5004 0.5821 0.5835 0.5816 0.5821 0.5776 0.5058 0.5134 0.5127 0.5036 0.5121

OVCAR-8
AUROC 0.5935 0.5963 0.5926 0.5918 0.5933 0.5507 0.5726 0.5603 0.5561 0.5549 0.5786 0.6024 0.5846 0.5840 0.5827
AUPRC 0.2573 0.2612 0.2527 0.2584 0.2604 0.1775 0.2132 0.1904 0.1758 0.1740 0.2764 0.3072 0.2916 0.2851 0.2883
F1-score 0.5118 0.5123 0.5068 0.5081 0.5082 0.5461 0.5749 0.5628 0.5518 0.5359 0.4733 0.4766 0.4680 0.4729 0.4740

P388
AUROC 0.5565 0.5913 0.5662 0.5749 0.5645 0.5500 0.5720 0.5507 0.5700 0.5507 0.5469 0.5647 0.5467 0.5486 0.5484
AUPRC 0.2850 0.3309 0.2933 0.3026 0.2948 0.1958 0.2229 0.1919 0.2077 0.2015 0.1694 0.1957 0.1821 0.1795 0.1789
F1-score 0.4468 0.4491 0.4445 0.4439 0.4480 0.5520 0.5746 0.5599 0.5678 0.5625 0.5315 0.5373 0.5313 0.5222 0.5224

SF-295
AUROC 0.5844 0.6076 0.5948 0.5972 0.5998 0.5649 0.5753 0.5636 0.5721 0.5624 0.5665 0.6040 0.5862 0.5841 0.5694
AUPRC 0.2766 0.2832 0.2673 0.2796 0.2780 0.2114 0.2252 0.2154 0.2072 0.2149 0.2004 0.2509 0.2374 0.2278 0.2090
F1-score 0.4803 0.5047 0.5016 0.4932 0.4984 0.5736 0.5820 0.5752 0.5717 0.5745 0.5245 0.5371 0.5186 0.5260 0.5198

SN12C
AUROC 0.5995 0.6079 0.5972 0.5959 0.6017 0.5509 0.5795 0.5561 0.5538 0.5690 0.5713 0.5984 0.5882 0.5740 0.5817
AUPRC 0.2696 0.2746 0.2677 0.2682 0.2695 0.1726 0.2164 0.1710 0.1704 0.1855 0.2163 0.2524 0.2386 0.2150 0.2328
F1-score 0.5030 0.5110 0.5017 0.4991 0.5065 0.5538 0.5770 0.5490 0.5523 0.5650 0.5136 0.5195 0.5175 0.5185 0.5127

UACC257
AUROC 0.5877 0.6015 0.5905 0.5859 0.5952 0.5623 0.5947 0.5768 0.5679 0.5689 0.5853 0.6209 0.5989 0.5945 0.5951
AUPRC 0.2480 0.2598 0.2442 0.2553 0.2573 0.1805 0.2210 0.1932 0.1813 0.2112 0.2365 0.2963 0.2405 0.2548 0.2727
F1-score 0.4906 0.4983 0.4978 0.4818 0.4919 0.5541 0.5784 0.5657 0.5615 0.5794 0.4993 0.4898 0.4883 0.4933 0.4780

PROTEINS_full
AUROC 0.5799 0.6174 0.5808 0.5815 0.5979 0.6009 0.6217 0.6054 0.6039 0.6157 0.5411 0.6097 0.5759 0.5523 0.5554
AUPRC 0.6259 0.6358 0.6139 0.6075 0.6297 0.6183 0.6366 0.6271 0.6353 0.6304 0.5810 0.6244 0.5997 0.5770 0.5992
F1-score 0.5679 0.6175 0.5770 0.5801 0.5933 0.6015 0.6214 0.6003 0.5991 0.6137 0.5348 0.6102 0.5753 0.5520 0.5494

DBLP_v1
AUROC 0.6231 0.8044 0.7034 0.6791 0.7849 0.6446 0.6822 0.6601 0.6414 0.6712 0.7939 0.7994 0.7891 0.7803 0.7812
AUPRC 0.7201 0.8626 0.8003 0.7738 0.8411 0.7689 0.7816 0.7794 0.7329 0.7614 0.8503 0.8563 0.8479 0.8394 0.8403
F1-score 0.5996 0.8028 0.7009 0.6775 0.7847 0.6252 0.6778 0.6467 0.6399 0.6712 0.7937 0.7985 0.7885 0.7805 0.7812

Q REPLACEMENT FOR FGG/MVP

To further evaluate the contribution of FracAug’s main components, we conduct an additional ablation
study by replacing FGG. We substitute FGG with two standard perturbation-based augmentations,
Node Drop and Edge Drop. As shown in Table 23, these replacements often result in degraded
performance compared to our original setting, and sometimes even lower than their baselines.
Although our MVP can rule out the noise from non-semantic-preserving generation by mutual
verification to some extent, the fail to leverage guaranteed semantic-preserving properties prevents
existing data augmentation methods from achieving optimal results, which further demonstrates the
effectiveness of our proposed components.

We further replace MVP with a soft ensemble pseudo-labeling strategy that averages the predictions
of the original and synthetic samples. This relaxation produces noisier and less reliable pseudo-labels,
since it lacks the strict consistency constraint enforced by mutual verification. Consequently, as
shown in Table 23, performance becomes unstable or deteriorates across datasets. In contrast, the
full FracAug framework, using FGG for high-fidelity synthetic generation and MVP for robust
pseudo-label filtering, consistently delivers superior results, underscoring the critical importance of
both design components.

Instead of conducting experiments on GIN, we also conduct the same experiments on different
backbones to prove that the effectiveness of our framework is a general advantage.

In conclusion, the additional ablation study, where FGG is replaced with either Node Drop or
Edge Drop, and MVP is replaced with Soft Ensemble, further reinforces the effectiveness of each
individual component. These controlled substitutions consistently lead to inferior performance,
thereby validating that all the components contribute uniquely and substantially to the overall design.

R INFLUENCE OF MIDDLE EIGENVALUES
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Table 24: Ablation study for middle eigenvalues.

Datasets Metrics GIN +FA w/ middle

MCF-7
AUROC 0.5867 0.5976 0.5958
AUPRC 0.2830 0.2971 0.2913
F1-score 0.5366 0.5421 0.5452

MOLT-4
AUROC 0.5733 0.5854 0.5851
AUPRC 0.2830 0.3001 0.3034
F1-score 0.5072 0.5103 0.5066

PC-3
AUROC 0.5969 0.6119 0.6182
AUPRC 0.2797 0.2893 0.2898
F1-score 0.5063 0.5205 0.5283

SW-620
AUROC 0.5938 0.6004 0.5980
AUPRC 0.2776 0.2813 0.2820
F1-score 0.5090 0.5155 0.5110

NCI-H23
AUROC 0.5897 0.5968 0.5923
AUPRC 0.2566 0.2659 0.2614
F1-score 0.5059 0.5073 0.5063

OVCAR-8
AUROC 0.5935 0.5963 0.6026
AUPRC 0.2573 0.2612 0.2617
F1-score 0.5118 0.5123 0.5119

P388
AUROC 0.5565 0.5913 0.6031
AUPRC 0.2850 0.3309 0.3376
F1-score 0.4468 0.4491 0.4483

SF-295
AUROC 0.5844 0.6076 0.6089
AUPRC 0.2766 0.2832 0.2873
F1-score 0.4803 0.5047 0.4983

SN12C
AUROC 0.5995 0.6079 0.6082
AUPRC 0.2696 0.2746 0.2756
F1-score 0.5030 0.5110 0.5103

UACC257
AUROC 0.5877 0.6015 0.5980
AUPRC 0.2480 0.2598 0.2525
F1-score 0.4906 0.4983 0.5006

PROTEINS_full
AUROC 0.5799 0.6174 0.6105
AUPRC 0.6259 0.6358 0.6321
F1-score 0.5679 0.6175 0.6096

DBLP_v1
AUROC 0.6231 0.8044 0.8028
AUPRC 0.7201 0.8626 0.8607
F1-score 0.5996 0.8028 0.8015

Originally, FGG is intentionally constructed around the largest top-kl and smallest top-ks eigenvalues,
as these parts of the spectrum encode global structural patterns and localized irregularities, both of
which are crucial for effectively distinguishing anomalous graphs. To further examine this design
choice, we conduct an analysis to determine whether incorporating the middle region of the eigenvalue
spectrum offers any meaningful contribution to our fractional augmentation process.

As shown in Table 24, our results indicate that including all eigenvalues does not lead to any noticeable
performance improvement across the evaluated datasets. Moreover, extracting these intermediate
spectral components requires performing a full eigendecomposition, which incurs a computational
complexity of O(n3), where n denotes the number of nodes in the graph. This stands in sharp
contrast to the top-k approximate eigensolvers used in our original design, whose complexity is only
O(k · nnz · t), with nnz representing the number of non-zero entries in the adjacency matrix and t
denoting the iteration count of the eigendecomposition. Given the minimal performance gains and
the substantially higher computational burden, these findings confirm that focusing solely on the
largest top-kl and smallest top-ks eigenvalues is both an effective and efficient choice for FGG’s
augmentation strategy.

S COMPARISON WITH WARMUP MODELS
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Table 25: Average AUROC, AUPRC, and F1-score on 3 datasets with multiple runs, where the "+FA"
represents our original setting, and warmup represents the baseline mode after the warmup phase.

Datasets Metrics GAT +FA warmup GIN +FA warmup iGAD +FA warmup NSv +FA warmup

UACC257
AUROC 0.5890 0.6174 0.5568 0.5877 0.6015 0.5606 0.5697 0.5748 0.5590 0.5623 0.5947 0.5499
AUPRC 0.3493 0.3389 0.3139 0.2480 0.2598 0.1994 0.1906 0.1970 0.1780 0.1805 0.2210 0.1515
F1-score 0.4031 0.4455 0.3993 0.4906 0.4983 0.4972 0.5201 0.5224 0.5145 0.5541 0.5784 0.5280

PROTEINS_full
AUROC 0.6157 0.6836 0.6012 0.5799 0.6174 0.5723 0.5976 0.6206 0.5631 0.6009 0.6217 0.5875
AUPRC 0.6350 0.7005 0.6112 0.6259 0.6358 0.5987 0.6200 0.6333 0.6234 0.6183 0.6366 0.6287
F1-score 0.6158 0.6859 0.6014 0.5679 0.6175 0.5713 0.5960 0.6211 0.5669 0.6015 0.6214 0.5619

DBLP_v1
AUROC 0.6119 0.6885 0.5436 0.6231 0.8044 0.6098 0.7755 0.7909 0.7482 0.6446 0.6822 0.6414
AUPRC 0.7507 0.7796 0.7207 0.7201 0.8626 0.7014 0.8377 0.8473 0.8272 0.7689 0.7816 0.7329
F1-score 0.5782 0.6868 0.5425 0.5996 0.8028 0.5910 0.7749 0.7910 0.7447 0.6252 0.6778 0.6239

Table 26: Comparison with unsupervised and finetuned models. "+FA" represents FracAug-enhanced
GIN. "OOM" represents the out-of-memory issue.

Unsupervised Mole-BERT ours
Datasets Metrics OCGIN GLADC GLocaKD OCGTL SIGNET CVTGAD pretrain finetune GIN +FA

PROTEINS_full
AUROC 0.3435 0.3206 0.5596 0.5971 0.5841 0.2485 0.4414 0.5124 0.5799 0.6174
AUPRC 0.3132 0.3032 0.4941 0.4302 0.4962 0.2815 0.5968 0.5988 0.6259 0.6358
F1-score 0.2880 0.2879 0.3733 0.2879 0.2879 0.2879 0.3697 0.4882 0.5679 0.6175

DBLP_v1
AUROC 0.4536 0.5340 0.4370 0.5425 0.5131 OOM 0.5077 0.6677 0.6231 0.8044
AUPRC 0.4651 0.5470 0.4522 0.5552 0.5332 OOM 0.6506 0.7305 0.7201 0.8626
F1-score 0.3290 0.3288 0.3288 0.3378 0.3378 OOM 0.5069 0.6678 0.5996 0.8028

We conduct an additional experiment to further demonstrate the effectiveness of our proposed
model. As described in Section 4, before integrating FracAug into the baseline models, we ensure
that the baselines first acquire a foundational understanding of the graph-level anomaly detection
dataset by warmup. This step is crucial to stabilize their predictions and enhance the reliability of
pseudo-labeling.

As shown in Table 25, the baseline models that undergo only a brief warmup phase, without sufficient
training epochs, are outperformed by their fully trained counterparts. However, once FracAug is
integrated into the training process of warmup baselines and then trained for an equivalent number
of epochs as the fully-trained baselines, it becomes evident that the warmup models with FracAug
achieve substantial performance improvements over the baselines. Ultimately, these models reach
state-of-the-art performance, providing strong evidence of the effectiveness of our proposed FracAug
framework.

T COMPARISON WITH UNSUERVISED AND FINETUNED MODELS

We first conduct comparisons between unsupervised graph-level anomaly detection models from a
novel benchmark paper (Wang et al., 2025) and the FracAug-enhanced GIN. The results in Table 26
show that unsupervised training falls significantly behind our method, even though we only utilize 1%
examples as the training set, indicating that label information plays a crucial role in achieving strong
anomaly detection performance. Consistent with our earlier experiments in Appendix H, increasing
the amount of available labeled data leads to further improvements, reinforcing the importance of
label supervision. These findings highlight the importance and effectiveness of our proposed plug-in
data augmentation framework, since in real deployment, anomaly detection works usually suffer from
the limited label supervision issue.

Furthermore, we compare our performance with Mole-BERT (Xia et al., 2023), which is a model
pretrained in an unsupervised manner and subsequently finetuned with labeled data for a specific
domain. As shown in Table 26, the unsupervised pretraining alone produces suboptimal results,
consistent with the behavior of the unsupervised baselines. Even after finetuning with the same
labeled data budget as our framework, the performance remains inferior to ours to a large extent. This
observation suggests two key points: (1) finetuning may inherit a suboptimal parameter space induced
by unsupervised pretraining, limiting its adaptability, and (2) sufficient and properly utilized label
information is essential for achieving robust performance. Together, these findings further validate
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the novelty and effectiveness of our plug-in data augmentation framework, which can effectively
generate more fidelity label information, even under extremely limited supervision.
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