Under review as a conference paper at ICLR 2025

ACCELERATING TASK GENERALISATION WITH
MULTI-LEVEL HIERARCHICAL OPTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Creating reinforcement learning agents that generalise effectively to new tasks is
a key challenge in Al research. This paper introduces Fracture Cluster Options
(FraCOs), a multi-level hierarchical reinforcement learning method that achieves
state-of-the-art performance on difficult generalisation tasks. FraCOs identifies
patterns in agent behaviour and forms options based on the expected future use-
fulness of those patterns, enabling rapid adaptation to new tasks. In tabular set-
tings, FraCOs demonstrates effective transfer and improves performance as it
grows in hierarchical depth. We evaluate FraCOs against state-of-the-art deep
reinforcement learning algorithms in several complex procedurally generated en-
vironments. Our results show that FraCOs achieves higher in-distribution and
out-of-distribution performance than competitors.

1 INTRODUCTION

A key goal of Al research is to develop agents that can leverage structured prior knowledge, either
provided or learned, to perform competently in unfamiliar domains (Pateria et al.l|[2021). This is a
common feature in animals; for example, many newborn mammals, such as foals, can walk shortly
after birth due to innate motor patterns, while human infants display instinctive stepping motions
when supported (Adolph & Robinson, 2013} Dominici et al,|2011). These innate behaviors, shaped
by evolution, act as priors that guide goal-directed actions and enable rapid adaptation.

In parallel, humans are believed to organise behaviors into a hierarchy of temporally extended ac-
tions, which helps break complex tasks into simpler, manageable steps (Rosenbloom & Newell,
19864 |Laird et al., [1987). For instance, human decision-making often involves planning with high-
level actions like “pick up glass” or “drive to college,” each of which comprises subtasks such as
“reach for glass” or “pull door handle.” These eventually decompose into basic motor movements.

This hierarchical fragmentation likely arises from sub-experiences of past tasks (Brunskill & Li,
2014). Notably, parts of this hierarchy are shared between tasks; for instance, both “pick up glass”
and “pull door handle” involve similar gripping movements. Such shared temporal actions may fa-
cilitate rapid learning of new tasks beyond those previously experienced. Replicating this hierarchy
in algorithms could allow artificial agents to also adapt quickly (Heess et al., 2016).

Despite advances in hierarchical methods, generalising behaviors across diverse tasks remains a
significant challenge for artificial agents (Cobbe et al.,2019). Many approaches struggle with effec-
tively transferring skills to new environments, limiting their ability to adapt to real-world scenarios
(Pateria et al., 2021)).

In this paper, we make two key contributions:

1. We introduce Fracture Cluster Options (FraCOs), a novel framework for defining, forming,
and utilizing multi-level hierarchical options based on their expected future usefulness.

2. We empirically demonstrate that FraCOs significantly enhances out-of-distribution (OOD)
learning. Our method outperforms two baselines—Proximal Policy Optimization (PPO)
(Schulman et al.l|2017) and Option Critic with PPO (OC-PPO) (Klissarov et al.,[2017)—in
both in-distribution and OOD learning across nine environments from the Procgen bench-
mark (Cobbe et al., 2020)).

Under review as a conference paper at ICLR 2025

2 BACKGROUND

2.1 REINFORCEMENT LEARNING

Standard Reinforcement Learning (RL) focuses on how agents can “take actions in different states
of an environment to maximize cumulative future reward”, where the reward provides task-specific
feedback (Sutton & Barto, |[2018). In any environment, an agent exists in a state s and can perform
an action a, both of which may be discrete, continuous, or multidimensional. Most RL problems are
framed as a Markov Decision Process (MDP). An MDP is defined as a tuple (S, A, P, R, ~), where
S is the set of possible states, A is the set of possible actions, P is the transition probability function
with P(s, a, s’) indicating the probability of transitioning from state s to s’ after action a, R is the
reward function where R(s, a,s’) gives the reward for transitioning from s to s’ via action a, and
~ € [0, 1] is the discount factor. An MDP assumes the Markov property, where the future state and
reward depend only on the current state and action.

At each time step ¢ > 0, the agent makes a decision based on its current state s; using a policy,
denoted as 7(s;). The policy maps states to probabilities over actions, guiding the agent’s behaviour.
The actions taken produce observed experience data of the form (s¢, as, 7441, St+1). When the agent
interacts with the environment until it reaches a termination state, the full sequence of observations
is called a trajectory 7. The objective of reinforcement learning is to learn a policy that maximises
the cumulative discounted returns, defined as G; = ZZOZO 7th+1¢+1-

In this paper, we define an environment as the external system with which the agent interacts, char-
acterized by (S, A, P, R). In our work, a task is defined as an MDP with a unique state space S or
reward function R.

2.2 HIERARCHICAL REINFORCEMENT LEARNING

Hierarchical Reinforcement Learning (HRL) extends standard RL by organising decision-making
into multiple levels of abstraction. A key paradigm in HRL is the options framework, which en-
capsulates extended sequences of actions into options (Sutton & Barto, 2018)). An option consists
of an initiation set I, which defines the states where it can be selected, an intra-option policy Tina,
which governs the actions while the option is active, and a termination condition 8 : S — [0, 1],
which defines when the option ends. The intra-option policy executes actions until the termination
condition 3(s) is satisfied.

Options operate within a Semi-Markov Decision Process (SMDP). An SMDP is an extension of an
MDP where actions can have variable durations. The agent chooses between options and primitive
actions at each decision point, with a policy over options, 7oy, deciding which to execute based
on the current state. This hierarchical structuring can improve exploration and learning efficiency
by enabling agents to plan over extended time horizons and break complex tasks into manageable
sub-tasks. This decomposition reduces the decision space, facilitates structured exploration, and
simplifies credit assignment, particularly in environments with sparse rewards (Sutton et al., |[1999;
Dayan & Hintonl [1992).

2.3 GENERALISATION

Generalisation in Reinforcement Learning (RL) encompasses a broad class of problems (Kirk et al.,
2021). These problems can be categorised based on the relationship between training and testing
distributions, either falling within Independent and Identically Distributed (IID) scenarios or ex-
tending to Out-of-Distribution (OOD) contexts. Additionally, generalisation can be classified by the
features of the environment that change, including the state space, observation space, dynamics, and
rewards. This classification leads to eight possible combinations of generalisation challenges.

In this work, we define IID generalisation as the ability of agents to generalise within tasks drawn
from the same distribution as their training tasks. In contrast, OOD generalisation refers to an agent’s
ability in tasks that differ from those encountered during training.

We evaluate FraCOs’ generalisation performance in OOD tasks where the state space S and reward
function R vary, while the action space A, transition dynamics P, and discount factor + remain

Under review as a conference paper at ICLR 2025

constant. This setup reflects real-world scenarios where an agent, such as a robot, operates under
fixed dynamics but faces diverse environments and goals.

3 RELATED WORK

Policy transfer and single-level option transfer methods, aim to broaden an agent’s task-handling
capabilities. Examples of policy transfer include works by [Finn et al.| (2017), |Grant et al| (2018),
Frans et al.| (2017), |Cobbe et al.| (2021}, and Mazoure et al.| (2022). Option transfer methods, on
the other hand, focus on learning a set of reusable options to enhance rewards in new situations
(Konidaris & Bartol 2007; [Barreto et al.l 2019; Tessler et al., 2017; Mann & Choe, [2013). While
a few methods in the literature explore multi-level hierarchies, they do not focus on option transfer
as a mechanism for accelerating task adaptation and generalisation (Riemer et al., [2018}; |[Evans &
Simsek, 2023} |Levy et al.| 2017} [Fox et al., 2017).

HRL has typically focused on addressing broader challenges such as long-term credit assignment
and structured exploration (Dayan & Hinton, (1992} |Parr & Russell, |1997; McGovern & Sutton)
1998} [Sutton et al.l [1999). Two foundational paradigms within HRL are: 1) sub-goal-based ap-
proaches, which typically decompose tasks into smaller, state-based intermediate objectives, and
2) the options framework, which formalises temporally extended actions as options (Sutton et al.,
1999). In both paradigms the ability to learn transferable abstractions at more than two levels of
hierarchy is still an open research question (Pateria et al., 2021)).

Recent work has proposed methods for forming and managing multi-level hierarchies. |Levy et al.
(2017) and [Evans & Simsek! (2023) introduce sub-goal-conditioned approaches for multi-level ab-
straction. However, due to their reliance on state-based-sub-goals, these methods face difficulties
in sub-goal selection in complex state spaces such as pixel-based representations. Moreover, all
state-based-sub-goal methods struggle to transfer sub-goals to different state spaces. Additionally,
they do not account for the variability in action sequences required to transition between sub-goals;
for example, “booking a holiday” could involve “calling a travel agent” or “using the internet,” each
demanding different skills. In contrast, FraCOs avoids creating state-based-sub-goals, providing a
more flexible framework for transfer across state spaces.

Our work is more closely related to Hierarchical Option Critic (HOC) by Riemer et al.| (2018) and
the Discovery of Deep Options (DDO) by [Fox et al.| (2017), both of which use the options frame-
work. DDO employs an expectation gradient method to construct a hierarchy top-down from expert
demonstrations. However, DDO does not optimize for generality and it remains unclear how the
discovered options perform in unseen tasks. Moreover, the reliance on demonstrations limits the
development of more complex abstractions than those demonstrated. In comparison, FraCOs builds
bottom-up, forming increasingly complex abstractions. FraCOs also selects options based on their
expected usefulness in future tasks, directly addressing generalisation challenges.

HOC generalises the Option-Critic (OC) framework introduced by Bacon et al.|(2017) to multiple
hierarchical levels. HOC learns all options simultaneously during training. However, both OC and
HOC suffer from option collapse, where either all options converge to the same behaviour or one
option is consistently chosen (Harutyunyan et al., 2019). Moreover, OC methods introduce addi-
tional complexity to the learning algorithm, which has been shown to slow learning compared to
non-hierarchical approaches like PPO (Schulman et al., 2017; |[Zhang & Whiteson, 2019). Option
selection within the FraCOs process naturally prevents option collapse, and has been shown to in-
crease the rate of learning over baselines (see Section[5.3)).

4 FRACTURE CLUSTER OPTIONS

We hypothesise that identifying reoccurring patterns in an agent’s behaviour across successful tasks
will improve performance on future, unseen tasks. Our method consists of three key stages: 1)
Identifying the underlying reoccurring patterns in an agent’s behaviour across multiple tasks, 2)
selecting the most useful patterns—those likely to appear in successful trajectories of all possible
tasks, and 3) defining these identified patterns as options for the agent’s future use.

Under review as a conference paper at ICLR 2025

4.1 IDENTIFYING PATTERNS IN AGENT BEHAVIOUR

We seek to identify and cluster reoccurring patterns of states and actions in agent behavior. To
achieve this, we introduce the concept of fractures. A fracture is defined as a state s; paired with
a sequence of subsequent actions. The length of this action sequence is determined by a parameter
known as the chain length b, which specifies the number of actions following the state s;. More
formally, a fracture is represented as:

&= (St,Q8, Qpq1,5 -0 Qpgb—1) (D

where a;, a¢41,- . ., ar+p—1 represent the subsequent actions from s;. The parameter b controls the
temporal extent of the fracture.

We can derive fractures from the trajectories of tasks which an agent has experienced. Consider a
trajectory of length n. The set of fractures F' derived from this trajectory is defined as:

F = {(st;at,a11,- -, at4p-1) | 0 <t <n— b} ()

For a set of trajectories 7, we derive fractures from each individual trajectory. The complete set
of fractures from all trajectories is denoted by ® = {Fy, Fs, ... ,F‘T‘}. Individual trajectories are
denoted by 7, with 7 € T.

We investigate whether fractures capture un- Four Rooms Fracture Visualisations in 2D Latent Space
derlying structure by first identifying them in 4] [. Random}
Trained

the Four Rooms environment. Four Rooms is 34
a classic grid-based reinforcement learning en-
vironment, consisting of four connected rooms
separated by walls with narrow doorways. The 10
agent’s objective is to navigate through the
rooms to reach a specified goal, receiving a re-
ward for reaching this goal. Four Rooms is de- -10-
picted in the top left corner of Figure[T} see Ap-
pendix [A-6] for more detail. In all of our grid-
world implementations, the agent can observe -301

only a 7x7 area centered on itself and a scalar 30 -20 -10 0 10 20 30 40
indicating the direction of the reward. This is
similar to MiniGrid, except that our observa-

20 1

—20

Figure 1: A two-dimensional representation of the

tions are ego-centric (Chevalier-Boisvert et al.| ﬁrgc(:)tg(r)es (b — hQ)Fformgd by agents acting for
3023). ,000 steps in the Four Rooms environment.

We train a tabular Q-learning agent to solve multiple different reward locations in Four Rooms
and generate trajectories for both the trained agent and a random agent. Fractures are then created
following Equation[4.1] with b = 2. To reveal the structural differences between the fractures of the
random agent and the trained agent, we use UMAP (McInnes et al., [2018)), a dimension reduction
technique that projects the high-dimensional fracture data into a two-dimensional space. UMAP
is particularly useful for this task because it preserves local similarities within the data. We plot
the resulting two-dimensional visualization in Figure[I] This highlights a near-uniform distribution
for the random agent, while the trained agent’s fractures form distinct clusters, reflecting underlying
behaviour structures. This phenomenon is consistent across other environments (see Appendix[A.7).

We employ unsupervised clustering techniques to identify and formalise the fracture clusters, de-
noted as ¢.. Specifically, we use HDBSCAN for all tabular methods in this work
[2013). Fractures with a chain length of b = 4 are grouped into clusters, and four clusters are ran-
domly selected for visualisation in Figure 2] Each visualisation shows all fractures within a cluster,
demonstrating that, despite differences in starting states, action sequences, and terminal states, the
fractures within each cluster share similar semantic meanings.

4.2 SELECTING USEFUL FRACTURE CLUSTERS

In Section @ fracture clusters are formed based on behaviour similarity; however, the number of
potential clusters can be extensive, with some being highly task-specific. Selecting all clusters as

Under review as a conference paper at ICLR 2025

Four Rooms Discovered Clusters

e BN

=

Figure 2: Four examples of discovered fracture clusters (b = 4) within the Four Rooms environment.
The graph represents fracture clusters of a trained agent in the Four Rooms environment, colours
are used to visualise cluster boundaries. In the four examples, the green point represents possible
starting states, blue arrows indicate actions, the width of the arrows shows the frequency of the state-
action pair within the cluster, and the red point indicates possible terminal states.

options may burden the agent with unnecessary choices. Therefore, it is essential to identify the
most useful clusters—those likely to appear in future tasks.

First, consider the hypothetical scenario in which we can observe all possible trajectories across
all possible tasks. In this ideal setting, the set of all successful fractures, denoted as ®, would
be derived from fractures within the successful trajectories, where each trajectory is represented as
7, € Ts. Here, T refers to the collection of all trajectories deemed successful. A trajectory is
considered successful if its camulative return exceeds a predefined threshold, similar to the criterion
proposed by [Chollet| (2019), see Table [12] for all minimum returns. The tasks corresponding to
these successful trajectories are denoted as x5 € X, where X5 represents the set of all tasks with
successful outcomes.

To sensibly select fracture clusters, we must evaluate their potential for reuse in future tasks. We do
this by defining the usefulness U of a fracture cluster ¢. based on its likelihood of contributing to
success across tasks. Specifically, usefulness is determined by three key factors:

1. Appearance Probability (P[¢. € 75 | x;]): This measures the likelihood that any fracture
¢ € ¢, appears in the trajectory 75 of any given successful task xs. Higher probability
indicates that this ¢. frequently contributes to success across tasks.

2. Relative Frequency (P[¢. | ®;]): This term represents the proportion of times that any
fracture ¢ € ¢. appears among all successful fractures ®;. A higher relative frequency
implies its importance in the agent’s overall success.

3. Entropy of Usage (H(¢. | Xs)): This captures the diversity of a fracture cluster’s usage
across different tasks in AX;. A higher entropy indicates that a ¢, is useful across various
tasks, enhancing its generalisation potential.

The usefulness of a fracture cluster ¢.. is defined as the normalised sum of these factors:

Uy = 5 (Plo € 75 | 2] + PLoc | 8] + H(ge | X)) ®

In the ideal scenario where we could observe all possible tasks and trajectories, we would directly
calculate the usefulness of each fracture cluster Uy). This would allow us to exactly compute
the appearance probability, relative frequency, and entropy for each fracture cluster ¢., yielding a
true measure of usefulness across all potential tasks. However, this is impractical since we cannot
observe all possible tasks and trajectories. Instead, we must rely on available data, using the tasks
and trajectories encountered during training to estimate the usefulness.

1. Estimating Appearance Probability: We approximate P[¢. € 75 | x| using a Bayesian
approach, modeling the occurrence of a fracture cluster ¢, in a successful trajectory as a binomial

Under review as a conference paper at ICLR 2025

likelihood with a Beta conjugate prior. The prior parameters « and [, both set to 1, reflect an
uninformative prior. Let n denote an individual task, and /V the total number of experienced tasks.
The appearance indicator w,, = 1 if any fracture ¢ € ¢. appears in trajectory 7,,, and O otherwise.

2. Estimating Relative Frequency: We estimate P[¢. | ®5] by counting the occurrences of ¢,
in &g, where @ is formed from [V experienced tasks. This count is then normalised by the total
number of fractures in ®,.

3. Estimating Entropy: Finally, the entropy H (¢, | Xs), is approximated using Shannon’s entropy
formulation (Shannon, |1948).

We derive the full approximation in Appendix[A.1] the result is expressed as the expected usefulness,

1| SN wnda count(e, ®) count(oe, Ts) count(e, Ts)
E[U, — n=1 ’ _ 18/, ’
[(d)c)} 3 N+Oé+ﬂ + ‘(Ps‘ Z |7_S| OgN<i>c, |Ts|

(1) Appearance Probability (2) Relative Frequency

TsE€Ts

(3) Estimated Entropy

“

We can then select fracture clusters which yield the highest expected usefulness. To demonstrate
the effectiveness of Equation 4] we formulate a new experiment. In the Nine Rooms environment
(see Appendix[A.6) 100 tabular Q-learning agents are trained separately on 100 different tasks, each
defined with a new reward function. Evaluation trajectories are gathered and fractures are formed
(with a chain length b = 4). The fractures are clustered and finally the expected usefulness is
calculated. In Figure 3| we plot the eight fracture clusters with the highest expected usefulness.

[
at

&
at
I
]

Figure 3: The eight fracture clusters with the highest expected usefulness in the Nine Rooms envi-
ronment, ordered right and then down. Green points represent possible starting states, blue arrows
indicate actions taken, with arrow width proportional to their frequency in the cluster, and red points
denote possible termination states.

The fracture cluster in Figure 3| with the highest expected usefulness takes the agent from the starting
state in all sensible directions without repetitions of movements. The majority of the other fracture
clusters transverse bottlenecks, sharing the same fracture cluster where areas of local structure re-
main similar.

Forming multiple levels of the hierarchy. After identifying the most useful fracture clusters, they
can be converted into options (as explained in Section [4.3]), which extend the agent’s action space.
When learning a new task, the agent can now choose from both primitive actions and these newly
discovered options. The process of identifying fractures and clustering is repeated, but now the tra-
jectories (and therefore fractures) may consist of a mix of primitive actions and higher-level options.
This iterative approach naturally leads to the creation of a multi-level hierarchical structure.

Under review as a conference paper at ICLR 2025

4.3 USING FRACTURE CLUSTERS

After selecting the most useful fracture clusters, we need to transform each cluster into an option,
called a Fracture Cluster Option (FraCQO). Each FraCO is characterized by an initiation set I, a
termination condition /3., and a policy 7,. We denote a single FraCO as z and the set of all FraCOs
as Z. Each FraCO is associated with the fracture cluster ¢, that forms it. We use these clusters to
predict initiation states.

Initiation Set. Suppose the agent is in a state s, and has access to a set of actions A. For each state
s, we consider possible sequences of actions of chain length b. Each such sequence is represented
as:

a:(al,ag,...,ab)|ai€A,)
We can now define the set of all possible fractures starting from state s as,
Fy={(s,a) |a€ A", (6)

where A represents all sequences of length b drawn from the action set A.

For each fracture ¢ = (s, a) in Fs, we estimate the likelihood that it belongs to a FraCO z. The set
of fractures assigned to cluster z in state s can be defined as:

G,s={p€Fs| P(¢p€z) >0}

where P(¢ € z) denotes the estimated probability that fracture ¢ belongs to cluster z, and 6 is a
threshold hyperparameter that determines cluster membership. The method for estimating P(¢ € 2)
can vary depending on the implementation. In our tabular implementation, we directly use the
prediction function provided by HDBSCAN. In our deep implementation, a neural network predicts
this probability.

A FraCO z can be initiated in state s if G, 5 is not empty. Such that the initiation set is defined as,

L={seS|G.,+#0. (7)
Policy Execution. When FraCO z is executed . - -
. . . . Algorithm 1: Option policy 7. (G, s, Z, s
in state s, it follows the policy 7., as described g P i policy (G- 5, 2, 5)
in Algorithm The policy selects the frac- inPfltl‘. Gf’é’ iget Oiolzﬂons Z, state s ;
ture ¢, = (s,a) from G, ; with the highest nitialize: Select the fracture ¢ = (s, a) from

bability P(¢. € =), and th tes th G ,,s with the highest probability P(¢, € z),
probability = © Z), and then executes the e aisa sequence of actions (a1, az, ..., as)
sequence of actions a = (ay,az,...,ap). I o ouch action a; in ado
one of the selected actions is another FraCO 2/, if a; is a primitive action then
the agent must compute a new G 5 and recur- | Execute aj, resulting in new state s;
sively call the policy until the option terminates. else

S . . ; is another option 2’;
Termination Condition. The FraCO z termi- ?:%:3532 Ger/op on =
nates under two conditions: either when all ac- Recursively call 7./ (G o, 7, 5);
tions in the selected fracture ¢, have been ex- end ’
ecuted, or when no matching fracture can be ¢pq
found in the current state (i.e., G, s = 0).
The termination condition /3(s) is defined as:
1 if all actions in ¢, have been executed
B(s)=11 ifG,,=0 (8)

0 otherwise

Learning with FraCOs.

In our approach, FraCOs are fixed once identified. The agent learns

to choose between primitive actions and available FraCOs using standard reinforcement learning
algorithms (e.g., Q-learning for tabular settings, PPO for deep learning implementations).

Under review as a conference paper at ICLR 2025

Example FraCO usage: An agent is in state s. It looks at all possible fractures in that state
to form F. For each FraCO z; € Z, the agent estimates the probability P(¢ € z;) that each
fracture ¢ € Fj belongs to z;. If any fractures have a probability above a threshold 6, then z;
becomes available as an option.

The agent’s policy mop selects from the available FraCOs and primitive actions. Suppose it
selects FraCO z;. The agent picks the fracture ¢, with the highest probability P(¢,, € z1)
and executes the sequence a.

As the agent executes these actions, if one is another FraCO, say 29, then it forms a new F/,
estimates P(¢ € z3), and selects the most probable fracture for zo. This process repeats until
the termination condition 3,, = 1 is met, completing z;’s execution.

5 EXPERIMENTAL RESULTS

We evaluate FraCOs in three different experiments. The first experiment focuses on OOD reward
generalisation tasks using a tabular FraCOs agent in the Four Rooms, Nine Rooms, and Romesh
Maze grid-world environments (see Appendix [A.6). The second experiment examines OOD learn-
ing in state generalisation tasks within a novel environment called MetaGrid (see Appendix [A.6).
The final experiment evaluates a deep FraCOs agent, implemented with a three-level hierarchy us-
ing PPO, in nine Procgen environments (Cobbe et al. 2020). We compare its performance with
CleanRL’s Procgen PPO implementation (Huang et al.,|2022) and Option Critic with PPO (OC-PPO)
(Klissarov et al.,[2017). We use the same hyperparameters from CleanRL’s PPO implementation for
all three algorithms. In the grid-world environments, the agent receives a reward of 1 for reaching
the goal and a penalty of —0.001 per time step. Episodes have a maximum length of 500 steps, and
a fracture chain length b = 2. For Procgen environments, reward functions remain unchanged, and
b = 3 (see Appendix for chain-length selection details).

5.1 EXPERIMENT 1: TABULAR REWARD GENERALISATION

In this experiment, FraCOs are learned in a fixed state space S while we vary the reward function
R. The agent is allowed to discover FraCOs in 50 tasks, such that each task corresponds to a
different reward location. We reserve 10 unique tasks for testing. Separate agents are trained to
convergence—defined as achieving consistent performance across episodes. The top 20 FraCOs are
extracted from the final trajectories of the agents, as described in Section {4 and incorporated into
the action space. This extraction process is repeated four times, corresponding to each level of the
hierarchy.

Four agents are created, each with an additional hierarchical level of FraCOs. After resetting their
policies over options, the agents are trained on the test tasks, and evaluation episodes are conducted
periodically. As shown in Figure 4] results from the Four Rooms, Nine Rooms, and Romesh Maze
environments indicate that learning is progressively accelerated on these unseen tasks as the hierar-
chy depth increases.

Average Evaluation Episode Reward
Four Rooms Nine Rooms Romesh Maze

Depth: 4
= Depth: 3

= Depth: 1
= Q-learning

Global Step 04, 0.4

2k 4k 6k 8k 10k 20k 40k 60k 80k 100k 200k 300k 400k

Figure 4: Evaluation episode rewards of a tabular FraCOs agent trained in the Four Rooms, Grid,
and Romesh Maze environments. Results are averaged over 10 independently seeded experiments,
with shaded areas indicating the standard error.

Under review as a conference paper at ICLR 2025

5.2 EXPERIMENT 2: TABULAR STATE GENERALISATION

In this experiment, we introduce a novel environment called MetaGrid, which is designed to test
state and reward generalisation. MetaGrid is a navigational grid world constructed from structured
7 x 7 building blocks that can be combined randomly to create novel state spaces while preserving
certain areas of local structure. The agent is provided with a 7 x 7 window of observation, consistent
with our other grid-worlds. For more detailed information on MetaGrid, see Appendix

At each hierarchy level, 20 FraCOs are learned from 100 randomly generated 14 x 14 MetaGrid
tasks. A task in this experiment corresponds to a differnt space space S and reward location R. For
each hierarchy level, a separate agent is created, and their policies over options are reset. These
agents are then evaluated in previously unseen 14 x 14 domains and larger 21 x 21 domains. Pe-
riodic evaluation episodes are conducted during training to track performance, results are shown in

Figure 3]
MetaGrid Average Evaluation Episode Reward
Unseen 14x14 Unseen 21x21

— Depth: 4
— Depth: 3

— Depth: 1
— Q-learning
04 Global Step 04

3k 4k sk 6k 7k 8k Tok 20k 30k 40k 50k 60k 70k

Figure 5: Evaluation episode rewards for tabular FraCOs in unseen MetaGrid domains of varying
sizes. Results are averaged over 10 independently seeded experiments, with shaded areas indicating
the standard error.

5.3 EXPERIMENT 3: DEEP STATE AND REWARD GENERALISATION IN COMPLEX
ENVIRONMENTS

In this experiment, we test FraCOs in OOD tasks from the Procgen benchmark, focusing on unseen
states spaces .S and reward functions R. We compare with two methods: Option Critic with PPO
(OC-PPO) (Klissarov et al.|[2017) and a baseline PPO (Schulman et al.,[2017), across nine Procgen
environments (Cobbe et al., |2020). Procgen is a suite of procedurally generated arcade-style envi-
ronments designed to assess generalisation across diverse tasks; see Appendix [A.6]for full details.

FraCOs modifications. To handle the challenges of applying traditional clustering to high-
dimensional pixel data, we simplify the approach by grouping fractures with the same action se-
quences, regardless of state differences. Additionally, a neural network is used to estimate initiation
states and policies, which reduces the computational burden of performing a discrete search over the
complex 64 x 64 x 3 state space and managing 15 possible actions during millions of training steps.
These modifications do not change the theory of FraCOs, just the implementation. Full details of
these modifications are provided in Appendix with further information on the experiments,
baselines, and hyperparameters in Appendix

FraCOs and OC-PPO both learn options during a 20-million time-step warm-up phase, with tasks
drawn from the first 100 levels of each Procgen environment. FraCOs learns two sets of 25 options,
corresponding to different hierarchy levels, while OC-PPO learns a total of 25 options. After the
warm-up, the policy over options is reset, and training continues for an additional 5 million time
steps. During this phase, we periodically conduct evaluation episodes on both IID and OOD tasks,
with OOD tasks drawn from Procgen levels beyond 100.

We test two versions of FraCOs: one with a complete reinitialised policy over options after the warm-
up phase, and another that transfers a Shared State Representation (SSR), referred to as FraCOs-
SSR. In SSR, shared convolutional layers encode the state, followed by distinct linear layers for
the critic, policy over options, and option policies. These convolutional layers are not reset after
warm-up. Since OC-PPO shares its state representation, comparing it with FraCOs-SSR offers a

Under review as a conference paper at ICLR 2025

fairer evaluation. However, we find that FraCOs without SSR still outperforms both baselines. See
Appendix for FraCOs-SSR implementation details.

Table E] summarises the final mean IID, OOD, and peak OOD episodic evaluation returns for each
method across all nine environments. PPO-5 refers to PPO trained for 5 million time steps corre-
sponding to the training time after the warm-up phase, while PPO-25 refers to PPO trained for the
full 25 million time steps, including the warm-up phase and evaluation period without resetting the
policy. Each experiment was repeated with three independent seeds. Figure [6] shows examples of
the average IID and OOD evaluation returns as the agent learns post-warm-up in the FruitBot and
StarPilot environments. Detailed results for all environments are in Appendix [A.T3]

Final IID | Final OOD | Peak OOD
FraCOs 13.04 8.33 9.18
FraCOs-SSR 16.16 11.47 12.37
OC-PPO 11.00 7.74 8.47
PPO-5 11.97 6.67 6.84
PPO-25 17.68 8.27 9.13

Table 1: Final mean IID, OOD, and Peak OOD episodic evaluation returns for each method averaged
across nine Procgen environments.

Mean IID and OOD evaluation episode returns
StarPilot FruitBot

30

— FraCOs-SSR IID
mesnnse” == FraCOs-SSR OOD
— OC-PPOIID

== OC-PPO OOD

— PPOIID
Global Step -~ pPo OOD

20

0

0
0 M 2M 3M 4M 0 M M 3M 4M

Figure 6: Evaluation episode returns post-warm-up. IID evaluations are conducted on training lev-
els, while OOD evaluations are on levels not seen during training. Results are averaged over 3
independently seeded experiments, with shaded areas represent the standard error.

6 DISCUSSION AND LIMITATIONS

In this study, we introduce Fracture Cluster Options (FraCOs) as a novel approach to multi-level hi-
erarchical reinforcement learning. In the tabular settings, FraCOs demonstrates accelerated learning
in unseen tasks. Notably, as the hierarchical depth of FraCOs increases, the agent’s performance
also improves.

Our deep RL experiments show that FraCOs outperforms both OC-PPO and PPO in out-of-
distribution (OOD) tasks. Although PPO-25 slightly outperforms FraCOs in-distribution, it receives
five times more experience than FraCOs’ policy over options. FraCOs outperforms PPO-5 in 1ID
tasks and extends this by leveraging hierarchical options across tasks. This adaptability allows Fra-
COs to far surpass PPO in OOD scenarios. Furthermore FraCOs consistently outperforms Option
Critic, even when paired with PPO, highlighting its potential as a robust framework for hierarchical
reinforcement learning.

Despite its contributions, this work faces some limitations. As environments increase in complexity,
clustering methods struggle to maintain accurate predictions. While we introduce simpler cluster-
ing techniques and neural networks to address this issue, future research could explore alternatives
for identifying and predicting fracture clusters. Additionally, our experiments focus exclusively on
discrete action spaces, and extending this methodology to continuous action spaces remains a chal-
lenge for future investigation. Nonetheless, FraCOs provides a solid basis for continued research
into generalisation via multi-level hierarchical reinforcement learning.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Karen E. Adolph and Scott R. Robinson. 403The Road to Walking: What Learning to
Walk Tells Us About Development. In The Oxford Handbook of Developmental Psychol-
ogy, Vol. 1: Body and Mind. Oxford University Press, 03 2013. ISBN 9780199958450.
doi: 10.1093/0xfordhb/9780199958450.013.0015. URL https://doi.org/10.1093/
oxfordhb/9780199958450.013.0015.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of
the AAAI conference on artificial intelligence, volume 31, 2017.

André Barreto, Diana Borsa, Shaobo Hou, Gheorghe Comanici, Eser Aygiin, Philippe Hamel, Daniel
Toyama, Shibl Mourad, David Silver, Doina Precup, et al. The option keyboard: Combining skills
in reinforcement learning. Advances in Neural Information Processing Systems, 32, 2019.

Emma Brunskill and Lihong Li. Pac-inspired option discovery in lifelong reinforcement learning.
In International conference on machine learning, pp. 316-324. PMLR, 2014.

Ricardo JGB Campello, Davoud Moulavi, and Jorg Sander. Density-based clustering based on hier-
archical density estimates. In Pacific-Asia conference on knowledge discovery and data mining,
pp. 160-172. Springer, 2013.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems, Salem
Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Modu-
lar & customizable reinforcement learning environments for goal-oriented tasks. arXiv preprint
arXiv:2306.13831, 2023.

Francois Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547, 2019.

Karl Cobbe, Oleg Klimov, Chris Hesse, Tachoon Kim, and John Schulman. Quantifying generaliza-
tion in reinforcement learning. In International conference on machine learning, pp. 1282—1289.
PMLR, 2019.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to
benchmark reinforcement learning. In International conference on machine learning, pp. 2048—
2056. PMLR, 2020.

Karl W Cobbe, Jacob Hilton, Oleg Klimov, and John Schulman. Phasic policy gradient. In Interna-
tional Conference on Machine Learning, pp. 2020-2027. PMLR, 2021.

Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. Advances in neural information
processing systems, 5, 1992.

Nadia Dominici, Yuri P Ivanenko, Germana Cappellini, Andrea d’Avella, Vito Mondi, Marika Ci-
cchese, Adele Fabiano, Tiziana Silei, Ambrogio Di Paolo, Carlo Giannini, et al. Locomotor
primitives in newborn babies and their development. Science, 334(6058):997-999, 2011.

Joshua B Evans and Ozgiir Simsek. Creating multi-level skill hierarchies in reinforcement learning.
arXiv preprint arXiv:2306.09980, 2023.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126—-1135. PMLR, 2017.

Roy Fox, Sanjay Krishnan, Ion Stoica, and Ken Goldberg. Multi-level discovery of deep options.
arXiv preprint arXiv:1703.08294, 2017.

Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman. Meta learning shared
hierarchies. arXiv preprint arXiv:1710.09767, 2017.

Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths. Recasting gradient-
based meta-learning as hierarchical bayes. arXiv preprint arXiv:1801.08930, 2018.

Anna Harutyunyan, Will Dabney, Diana Borsa, Nicolas Heess, Remi Munos, and Doina Precup.
The termination critic. arXiv preprint arXiv:1902.09996, 2019.

11

https://doi.org/10.1093/oxfordhb/9780199958450.013.0015
https://doi.org/10.1093/oxfordhb/9780199958450.013.0015

Under review as a conference paper at ICLR 2025

Nicolas Heess, Greg Wayne, Yuval Tassa, Timothy Lillicrap, Martin Riedmiller, and David Silver.
Learning and transfer of modulated locomotor controllers. arXiv preprint arXiv:1610.05182,
2016.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Ki-
nal Mehta, and JoAGo GM AraAsSjo. Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1-18, 2022.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktidschel. A survey of generalisation in
deep reinforcement learning. arXiv preprint arXiv:2111.09794, 2021.

Martin Klissarov, Pierre-Luc Bacon, Jean Harb, and Doina Precup. Learnings options end-to-end
for continuous action tasks. arXiv preprint arXiv:1712.00004, 2017.

George Dimitri Konidaris and Andrew G Barto. Building portable options: Skill transfer in rein-
forcement learning. In 1IJCAI, volume 7, pp. 895-900, 2007.

John E Laird, Allen Newell, and Paul S Rosenbloom. Soar: An architecture for general intelligence.
Artificial intelligence, 33(1):1-64, 1987.

Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning multi-level hierarchies
with hindsight. arXiv preprint arXiv:1712.00948, 2017.

Timothy A Mann and Yoonsuck Choe. Directed exploration in reinforcement learning with trans-
ferred knowledge. In European Workshop on Reinforcement Learning, pp. 59-76. PMLR, 2013.

Bogdan Mazoure, Ilya Kostrikov, Ofir Nachum, and Jonathan J Tompson. Improving zero-shot
generalization in offline reinforcement learning using generalized similarity functions. Advances
in Neural Information Processing Systems, 35:25088-25101, 2022.

Amy McGovern and Richard S Sutton. Macro-actions in reinforcement learning: An empirical
analysis. Computer Science Department Faculty Publication Series, pp. 15, 1998.

Leland MclInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Volodymyr Mnih. Asynchronous methods for deep reinforcement learning. arXiv preprint
arXiv:1602.01783, 2016.

Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies of machines. Advances in
neural information processing systems, 10, 1997.

Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek. Hierarchical reinforcement
learning: A comprehensive survey. ACM Computing Surveys (CSUR), 54(5):1-35, 2021.

Matthew Riemer, Miao Liu, and Gerald Tesauro. Learning abstract options. Advances in neural
information processing systems, 31, 2018.

Paul S Rosenbloom and Allen Newell. The chunking of goal hierarchies: A generalized model of
practice. Machine learning-an artificial intelligence approach, 2:247, 1986.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
Jjournal, 27(3):379-423, 1948.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181-
211, 1999.

12

Under review as a conference paper at ICLR 2025

Chen Tessler, Shahar Givony, Tom Zahavy, Daniel Mankowitz, and Shie Mannor. A deep hier-
archical approach to lifelong learning in minecraft. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 31, 2017.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Gouldo, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, An-
drea Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymna-
sium, March 2023. URL https://zenodo.org/record/8127025.

Shangtong Zhang and Shimon Whiteson. Dac: The double actor-critic architecture for learning
options. Advances in Neural Information Processing Systems, 32, 2019.

A APPENDIX

A.1 DERIVATION OF USEFULNESS METRIC

In this appendix, we derive the usefulness (U) metric for fracture clusters. This metric is used to
identify which fracture clusters have the greatest potential for reuse across different tasks. Useful-
ness is a function of the following three factors:

1. The probability that a fracture cluster appears in any given successful task:
Ploe € 75|as]
2. The probability that a fracture cluster is selected from the set of successful fracture clusters:
Ploc| @]
3. The entropy of the fracture cluster’s usage across all successful tasks:

H(¢c | Ts)

Usefulness (U) is then defined as the normalized sum of these three factors:

U = 5 (Plge € mufe] + PLoc®.] + H(ge | T)

The objective is to select fracture clusters that maximize the usefulness, i.e.,

arg max U(pe)

A.2 DERIVING P[¢. € T5|xs] USING BAYESIAN INFERENCE

We want to model the probability that a fracture cluster ¢. appears in any given successful task,
Pl¢. € 7s]xs]. For each successful task x; from the set of successful tasks X, the presence of
fracture cluster ¢, in the corresponding trajectory 7, is represented by a binary random variable w;,
where:

_ {1 if ¢ € 75 (fracture cluster appears in the trajectory),

® |0 otherwise
The variable w, is modeled as a Bernoulli random variable:
ws ~ Bernoulli(p)
where p is the probability that fracture cluster ¢, appears in the trajectory 7, of task x.

Since we are uncertain about the true value of p, we place a Beta distribution prior on p:

p ~ Beta(a, 3)

where « and /3 are hyperparameters representing our prior belief about the likelihood of ¢ appearing
in a trajectory.

13

https://zenodo.org/record/8127025

Under review as a conference paper at ICLR 2025

Given a total of IV tasks, the likelihood for each observation wy is:
P(wnlp) = p* (1 = p)' "
where wy, is 1 if ¢, appears in trajectory 7, for task z,,, and 0 otherwise.
Using Bayes’ theorem, the posterior distribution of p after observing data is:
P(plwi,...,wny) x P(wy,...,wNn|p)P(p)
Substituting the likelihood and the Beta prior, we get:

N
P(plws, ..., wn) o< [[o (1 =p)t7em - p (1 = p)?
n=1

This simplifies to:

Zﬁ’:l wn+a71(1 _)Nfzle wn+B—1

P(p|w17awN)O(p p

Thus, the posterior distribution for p follows a Beta distribution:

p|w1, e WN Y Beta(aN,BN)
where:
N N
aN:ZWn+aa ﬁN:N_an'i‘ﬁ
n=1 n=1

In our experiments, we set &« = 1 and $ = 1, representing an uninformative prior.

A.3 DERIVING P[¢.|P;]

The second component of the usefulness metric, P[¢.|®;], is the probability that fracture cluster
¢. is selected from the set of successful fracture clusters. This can be computed as the relative
frequency of ¢, in the set ®, of successful clusters:

count(¢.., Ps)

Plgel] = S

where count(¢,., D) is the number of times ¢, appears in the set of successful clusters, and |®| is
the total number of successful clusters.

A.4 DERIVING H(¢. | T3)

The entropy term H(¢. | Ts) measures the unpredictability or diversity of the usage of fracture
cluster ¢. across successful tasks. Entropy is defined as:

H(¢c | 7;) = - Z p[(bc | Ts] : 10gN4,C (p[¢c | Ts])
Ts€Ts
where p[¢. | 7s] is the proportion of times that fracture cluster ¢, appears in trajectory 7s:

_ count(¢,,)

To| =
p [¢C ‘ 5] | Ts‘
Here, |7, represents the length of the trajectory 75, and Ny, is the total number of fracture clusters
considered. The choice of logarithm base, N, _, reflects the fact that we normalize entropy relative
to the number of fracture clusters.

A.5 EXPECTED USEFULNESS

Having derived the empirical estimations of the three components of usefulness we can now combine
these elements to calculate the expected usefulness of each fracture cluster. The expected usefulness
incorporates the posterior distribution from Bayesian inference for P[¢. € 7s|xs], as well as the
empirical counts for the other components.

14

Under review as a conference paper at ICLR 2025

Thus, the expected usefulness for each fracture cluster is calculated as:

1 SN wnta n count(¢e, L5) Z count(¢e, 7s) Io (count(éc,rs))
T3\ Nta+d @ Rl N\ il

E[U(¢c)]

TsE€Ts

where « and 3 are the parameters of the beta distribution, which we set to & = 1 and § = 1 in our
experiments.

By calculating this expected usefulness, we can rank the fracture clusters according to their potential
for reuse in future tasks. The ranking helps focus on fracture clusters that are more likely to appear
in successful outcomes and contribute to the agent’s performance across diverse scenarios.

A.6 ENVIRONMENTS

This section provides details on the environments used in our experiments, including standard grid-
world domains (Four Rooms, Grid, Romesh Maze), MetaGrid, and the Procgen suite. Each environ-
ment has been designed to evaluate different aspects of the agent’s behaviour, such as navigation,
exploration, and task performance.

A.6.1 GRID-WORLD ENVIRONMENTS

We use three standard grid-world environments: Four Rooms, Grid, and Romesh Maze. Figure
illustrates these environments.

(a) Four rooms (b) Grid (c) Romesh maze

Figure 7: Examples of the Four Rooms (a), Grid (b), and Romesh Maze (c) environments. In each,
black represents walls, blue represents the agent, yellow represents the goal, and white represents
empty space. The agent can move up, down, left, and right, receiving a reward upon reaching the
goal. The goal’s location in these figures is an example of one of many possible positions. These
versions of Four Rooms, Grid and Romesh Maze are part of the MetaGrid suite and thus have a 7x7
observation space centered on the agent.

In these grid-world environments, the action space is discrete, with four possible (primitive) actions:
A=1{0,1,2,3}

These actions correspond to moving Up, Down, Left, and Right, respectively. The agent’s observa-

tion space is a 7x7 grid centered on itself, meaning it only observes a portion of the environment

at any given time. This localized view allows the agent to learn how to navigate based on nearby

features. This design is similar to MiniGrid (Chevalier-Boisvert et al., [2023), but in our case, the
observations are ego-centric, always centered on the agent.

In tabular learning, the agent uses this 7x7 observation space to predict initiation states, though the
Q-function is still based on absolute coordinates. We do not employ state-transition graphs in any
of our experiments.

A.6.2 METAGRID ENVIRONMENT

The MetaGrid environment extends the standard grid-world setup by allowing for procedurally gen-
erated maps of varying sizes. MetaGrid introduces randomness in the layout of walls and goal

15

Under review as a conference paper at ICLR 2025

0 5 10 15 20 0 5 10 15 20

Figure 8: a) - e) demonstrate the building blocks which MetaGrid domains can be created from. f)
and g) demonstrate two 21x21 configurations using these building blocks.

locations, ensuring that the agent encounters a diverse set of environments during training and eval-
uation. Figure 8| demonstrates the building blocks which all environments in MetaGrid are formed
from, and Figure [0 shows examples of MetaGrid environments in two different sizes: 14x14 and
21x21.

() (b) (©) (d

Figure 9: Examples of randomly generated MetaGrid environments. The blue square represents
the agent, yellow represents the reward, white represents empty space, and black represents walls.
Subfigures (a) and (b) show 14x14 grids, while (c) and (d) show 21x21 grids.

The action space in MetaGrid is identical to the one used in the standard grid worlds, with four
discrete actions: Up, Down, Left, and Right. Similarly, the agent observes a 7x7 grid centered
on itself, allowing it to make decisions based on local information. The procedural generation in
MetaGrid provides varied environments for the agent to adapt to, making it a more challenging and
dynamic environment compared to static grid worlds.

A.6.3 PROCGEN ENVIRONMENTS

Procgen is a suite of procedurally generated environments designed to test generalisation and per-
formance across diverse tasks such as navigation, exploration, combat, and puzzle-solving. Each
environment provides a different variation on every reset, preventing the agent from memorizing
specific layouts or solutions. Please see |[Cobbe et al.| (2020) for the full details of these environ-
ments.

16

Under review as a conference paper at ICLR 2025

Fracture Visualisation in 2D latent Space
CartPole Grid LunarLander

-10 -5 0 5 10 15 20 -20 -10 0 10 20 30 -15 -10 -5 0 5 10 15 20

Figure 10: Two dimensional visualisations of the fractures formed for trained agents in CartPole,
Grid and LunarLander .

Action Space Procgen environments feature discrete actions like movement (up, down, left, right)
and interactions (e.g., jump, shoot). Depending on the task, the action space can range from 5 to 15
actions, covering basic navigation and task-specific interactions.

Observation Space Unlike grid-based environments, Procgen uses 64x64 RGB pixel observations,
providing rich visual input. The agent must interpret features such as walls, enemies, and obstacles
to navigate and interact effectively.

Rewards Rewards in Procgen are sparse, given for completing tasks like reaching goals or defeating
enemies. The agent must learn to explore efficiently and develop strategies for long-term success.

Optional Parameters To simplify learning and reduce computational cost, we activated the follow-
ing Procgen parameters:

* Distribution mode = “easy”: Provides easier levels.
» Use backgrounds = “False’’: Backgrounds are black to avoid additional noise.

* Restrict themes = “True”: Limits visual variation to a single theme, such as consistent
wall styles in environments like CoinRun.

Overall, these environments—ranging from grid-world environments with discrete action spaces
and ego-centric observations to the more complex Procgen environments with pixel-based observa-
tions—offer a diverse set of challenges for our agents. The combination of procedurally generated
environments in MetaGrid and Procgen ensures that the agents are tested on both fixed and highly
variable environments, making them suitable for evaluating the robustness of the learning algorithms
used in our experiments.

A.7 UMAP VISUALISATIONS OF OTHER ENVIRONMENTS

The structure observed in the latent projections of clustered fracos as seen in Section [4.1] is also
demonstrated in trained agents of other simple environments; Figure[T0|visualises fracture structures
in Grid, CartPole, and LunarLander. The Grid environment is shown in Figure [/| CartPole and
LunarLander are standard environments from the Farama Foundation Gymnasium suite Towers et al.
(2023)).

A.8 FRACOS CHAIN LENGTHS AND DEPTH LIMITS

In our FraCOs method, the process of matching clusters involves conducting a discrete search over
potential action permutations. This process requires forming all possible permutations of actions
and passing them through the saved clusterer to determine which permutation is currently viable for
the meta-policy to choose. The complexity of this search is captured by the permutation formula:

Under review as a conference paper at ICLR 2025

where B is the length of the action chain, and IV, is the total number of cluster-options. As a result,
the time complexity for performing this search grows factorially, O ((Nﬁvij'm,), as more cluster-

options are introduced or when the chain length is increased. This rapidly becomes computationally
expensive as these numbers increase.

A.8.1 CHAIN LENGTH AND DEPTH IN TABULAR EXPERIMENTS

Due to this factorial growth, it is crucial to limit the number of cluster-options and the chain length in
experiments that involve discrete cluster search (Experiments 1, 2 and 3.1). For all experiments using
cluster search, we chose a chain length of 2 to keep the computational complexity manageable.
Additionally, we restricted the depth of the FraCOs hierarchy to 3 or 4 levels, depending on the
complexity of the environment.

This limitation on depth and chain length helps maintain a balance between the richness of the
learned options and the feasibility of performing the cluster search in a reasonable amount of time.
The factorial growth of the search process becomes prohibitive as more cluster-options or deeper
chains are introduced, making this constraint necessary for efficient execution of our experiments.

A.8.2 WHY THIS ISN’T A PROBLEM FOR NEURAL NETWORK CLUSTER PREDICTIONS

In contrast, when we extend the FraCOs initiation and action estimation to be used with neural
networks, the limitation of conducting computationally expensive permutation searches is alleviated.
Neural networks can learn initiation sets and make predictions in a continuous manner, bypassing
the need for discrete cluster searches. This removes the necessity of factorially growing search
complexity, allowing for more flexibility in chain lengths and depth.

However, the challenge in neural network experiments lies in the sheer number of timesteps required
for training and evaluation. For example, in our deep experiments (at a depth of two), training
involved many millions of timesteps across nine different environments, totaling 180 million steps
for pre-training, repeated for three seeds. Testing required an additional 120 million steps, also
repeated for three seeds. This was only for FraCOs. When we include experiments using OC
(Option Critic), PPO, and PPO25, the total number of timesteps across all experiments becomes
3.06 billion.

To manage these computational demands, we used a chain length of 3. This allowed us to con-
duct only two warm-up phases, while ensuring that options could still be executed for a reasonable
duration (a maximum of nine steps, i.e., 3x3). This setup enabled us to complete the necessary
pre-training and testing without sacrificing the quality of the learned options while maintaining
computational feasibility.

A.9 FRACOS EXPERIMENT PARAMETERS FOR TABULAR METHODS

Tabular Q-Learning is a reinforcement learning algorithm where the agent learns the optimal action-
value function Q(s, a), which estimates the expected cumulative reward for taking action a in state
s and following the optimal policy thereafter. The agent interacts with the environment, updates the
Q-values for each state-action pair based on rewards, and converges to the optimal policy over time
Sutton & Barto|(2018). We implement a vectorized Q learning method.

The key hyperparameters used in all Tabular Q-Learning experiments are listed in Table [2]

In Tabular Q-Learning, the agent repeatedly updates its Q-values for each state-action pair, gradually
converging to the optimal policy. By balancing exploration and exploitation, adjusting the learning
rate, and prioritizing long-term rewards, the agent learns to optimize its decision-making in the given
environment.

FraCOs (Fracture Cluster Options) for Tabular Methods: For reproducibility, the key hyperpa-
rameters used in the clustering process and other implementation details are outlined below.

In all tabular experiments, we use HDBSCAN as the clustering method (Campello et al.,2013). The
clustering hyperparameters are:

The following table lists the minimum success rewards required for each environment:

18

Under review as a conference paper at ICLR 2025

Table 2: Hyperparameters for Tabular Q-Learning Experiment

Hyperparameter Value | Description

eps 0.1 Exploration rate for e-greedy policy. Determines the
probability of taking a random action instead of the ac-
tion with the highest Q-value.

alpha 0.1 Learning rate for Q-value updates. Controls how much
the Q-value is updated in each iteration.

gamma 0.99 Discount factor for future rewards.

num_steps 64 Number of steps per episode before environment reset.

max_ep_length 1000 | Maximum timesteps allowed in an episode.

anneal_lr True | Whether to anneal the learning rate as training pro-
gresses.

batch_size 64 Number of state-action-reward tuples processed in a
batch.

Number of Envs | 64 Number of vectorized environments

Table 3: Clustering Hyperparameters for FraCOs

Hyperparameter Value
Chain length (b) 2
Minimum cluster size 5

Metric Euclidean
Minimum samples 1
Generate minimum spanning tree | True

FraCOs-Specific Hyperparameters:

The generalisation strength represents the threshold a fracture cluster must pass to be considered
for initiation. The threshold is defined as 1 — HDBSCAN.predict.strength > generalisation
strength.

The FraCOs bias factor determines how much initial Q-values should be scaled to encourage transfer,
similar to optimistic initial values. For FraCOs bias depth annealing, the bias depth increases with
deeper FraCOs. For example, with a bias factor of 100 and depth of 3, the first bias is scaled by the
cube root of 100, the second by the square root, and the final by 100.

A.10 FRACOS MODIFICATIONS FOR DEEP LEARNING

In our experiments with deep learning, particularly in environments with large state spaces such
as the 64x64x3-dimensional Procgen environments, we found that HDBSCAN failed to accurately
capture meaningful clusters or predict clusters effectively. Initially, we attempted to integrate a
Variational Autoencoder (VAE) to use its latent space representation in the fracture formation pro-
cess [Kingma & Welling (2013). However, clustering methods still struggled to deliver satisfactory
results.

Consequently, we adopted a simpler clustering approach and shifted to using neural networks to
predict both the initiation states and the policy.

Simpler Clustering. To simplify the clustering process, we based clusters solely on sequences of
actions. For instance, with a chain length of three, any fracture formed by the action sequence “up”,
“up”, “right” was clustered together, independent of the state. While this approach overlooks some
intricacies captured by state-based fracture formations, it was necessary to handle the increased

complexity of environments like Procgen.

Cluster Selection. The cluster selection process remained unchanged. We continued to use the
usefulness metric, as defined in Equation to select clusters.

19

Under review as a conference paper at ICLR 2025

Table 4: Minimum Success Reward per Environment

Environment Minimum Success Reward
Four Rooms 0.97
Grid 0.60

Romesh Maze 0.70
MetaGrid 14x14 | 0.95

Table 5: FraCOs Hyperparameters

Hyperparameter Value
Generalisation strength 0.01
FraCOs bias factor 100
FraCOs bias depth anneal | True

Initiation Prediction. Instead of relying on clustering methods to predict initiation states, we trained
a neural network to predict the states corresponding to each fracture cluster. This process involved
two steps:

1. First, we trained a Generative Adversarial Network (GAN) to augment the states in each
fracture cluster (since neural networks typically require large datasets).

2. Using both the real and generated states, we trained a neural network as a classifier to
predict which fracture cluster a given state belonged to. One neural network was trained
to predict all initiations at each hierarchical level. This method significantly improved
efficiency, reducing the need for permutation-based discrete searches to a single forward
pass.

Policy Prediction. For policy prediction, we utilized a shortcut. Since all FraCOs are derived from
trajectories generated by a pre-trained agent, the policy of this trained agent already serves as an
approximation for the FraCO policy. We saved the agent’s policy at the end of trajectory generation
and used it as the policy for all FraCOs. This reuse of the agent’s policy minimized additional
computation without sacrificing accuracy.

Termination Condition. The termination condition for each FraCO was determined solely by the
chain length, maintaining a fixed execution limit per option.

A.11 EXPERIMENT PARAMETERS FOR DEEP METHODS

All deep methods in our experiments were based on CleanRL’s implementation of PPO for the
Procgen environments, and we used the same hyperparameters from this implementation. This
ensured that the PPO baseline was hyperparameter-tuned, providing a strong and well-optimized
baseline for comparison. However, FraCOs and OC-PPO were not specifically hyperparameter-
tuned for these environments. Despite this, we consider it reasonable to assume that FraCOs and OC-
PPO would perform near their best, as they share similar PPO update mechanisms and underlying
structures with the baseline PPO.

While there exists an implementation of OC-PPO by [Klissarov et al.|(2017), we opted to implement
our own version to maintain consistency with CleanRL’s PPO implementation. This approach was
necessary to ensure that any observed differences in performance were due to algorithmic design
rather than implementation differences.

We chose OC-PPO over the standard Option Critic for two primary reasons. First, in our experiments
with the standard Option Critic, we observed that the options collapsed quickly, converging to the
same behaviour. By integrating the entropy bonus provided by the PPO update, we were able to
alleviate this collapse and maintain more diverse option behaviours. Second, PPO has demonstrated
significantly better performance than Advantage Actor Critic (A2C) (Mnih, 2016) in the Procgen
environments. Given that the original Option Critic framework is based on A2C, using it as a
baseline would have led to an unfair comparison, as A2C has been shown to be less effective in

20

Under review as a conference paper at ICLR 2025

these environments. Therefore, incorporating PPO in both FraCOs and OC-PPO allowed for a fairer
and more balanced comparison.

We outline the hyperparameters which we used in the implementation below. All code will be
provided from the authors github upon publication.

A.11.1 PPO

We use CleanRL’s Procgen implementation as our baseline Huang et al.| (2022). The only adaption
we make is that we implement entropy annealing, we also have some wrappers which mean Procgen
can be used with the Gymnasium API. We have another wrapper which is used for handling multi-
level FraCOs in vectorized environments. These wrappers are also applied to the baseline PPO.

Hyperparameters Table [6] provide hyperparameters for PPO.

Parameter Value | Explanation

easy 1 1 activates “easy” Procgen setting

gamma 0.999 | The discount factor.

vf_coef 0.5 Coefficient for the value function loss.

ent_coef 0.01 Entropy coefficient.

norm_adv true Whether to normalize advantages.

num-envs 64 Number of parallel environments.

anneal Ir true Whether to linearly anneal the learning rate.

clip_coef 0.1 Clipping coefficient for the policy objective in PPO.

num-steps 256 Number of decisions per environment per update.

anneal _ent false | Whether to anneal the entropy coefficient over time.

clip_vloss true | Whether to clip the value loss in PPO.

gae_lambda 0.95 | The lambda parameter for Generalized Advantage Estimation
(GAE).

proc_start 1 Indicates the starting level for Procgen environments.

learning_rate 0.0005 | The learning rate for the PPO optimizer.

max_grad_norm 0.5 Maximum norm for gradient clipping.

update_epochs 2 Number of epochs per update.

num_minibatches 8 Number of minibatches.

max_clusters_per_clusterer 25 The maximum number FraCOs per level.

Table 6: Selected parameters for the FraCOs implementation with PPO

A.11.2 FRrRACOs

Neural Network architectures.

* Input: ¢ x h X w (image observation).

* Convolutional Layer 1: 16 filters, kernel size 3 x 3, stride 1, padding 1, followed by ReLU

activation.

* Convolutional Layer 2: 32 filters, kernel size 3 x 3, stride 1, padding 1, followed by ReLU

activation.

* Convolutional Layer 3: 32 filters, kernel size 3 x 3, stride 1, padding 1, followed by ReLU

activation.

 Flatten Layer: Converts the output of the last convolutional layer into a 1D tensor.

* Fully Connected Layer: 256 units, followed by ReLU activation.

* Actor Head: A linear layer with 256 input units and total_action_dims output units,
initialized with a standard deviation of 0.01.

* Critic Head: A linear layer with 256 input units and 1 output unit (for the value function),
initialized with a standard deviation of 1.

21

Under review as a conference paper at ICLR 2025

The model consists of two heads:

e Actor Head: Outputs a probability distribution over the action space for the agent to select
actions.

* Critic Head: Outputs the value function, which estimates the expected return for the cur-
rent state.

The network uses ReLU activations after each convolutional and fully connected layer, and the actor
and critic heads share the same convolutional layers but have distinct fully connected output layers.
In the FraCOs-SSR implementation, the convolutional layers are not reset after the warm-up phase.

Shared State Representation (SSR) details.

In the above architecture, both the actor and critic heads share a common set of convolutional layers.
These shared layers process the raw image observations from the environment and extract useful
spatial features that are fed into both the actor and critic branches. The use of shared convolutional
layers allows the model to leverage the same learned feature representations for both policy and
value estimation, promoting efficiency and consistency in learning.

In the FraCOs-SSR implementation, the shared convolutional layers are trained during the initial
warm-up phase, but they are not reset afterward. This allows the network to retain its learned feature
representations across multiple tasks and reuse them for both policy and value estimation during
subsequent training phases. By freezing these convolutional layers after the warm-up phase, the
network preserves its ability to generalize, while the distinct fully connected layers in the actor and
critic heads continue to adapt to new tasks.

Hyperparameters Table 7| provides the full list of FraCOs hyperparameters in experimentation.

Parameter Value | Explanation

easy 1 1 activates “easy” Procgen setting

gamma 0.999 | The discount factor.

vf_coef 0.5 Coefficient for the value function loss.

ent_coef 0.01 Entropy coefficient.

norm_adv true | Whether to normalize advantages.

num_envs 64 Number of parallel environments.

anneal Ir true Whether to linearly anneal the learning rate.

clip_coef 0.1 Clipping coefficient for the policy objective in PPO.

num-steps 128 Number of decisions per environment per update.

anneal _ent true Whether to anneal the entropy coefficient over time.

clip_vloss true | Whether to clip the value loss in PPO

gae_lambda 0.95 | The lambda parameter for Generalized Advantage Estimation
(GAE).

proc_start 1 Indicates the starting level for Procgen environments.

learning_rate 0.0005 | The learning rate for the PPO optimizer.

max_grad_norm 0.5 Maximum norm for gradient clipping

update_epochs 2 Number of epochs per update.

num_minibatches 8 Number of minibatches

max_clusters_per_clusterer 25 The maximum number FraCOs per level

Table 7: Selected parameters for the FraCOs implementation with PPO

A.11.3 OC-PPO

Architectures
e Input: ¢ X h X w (image observation).
* Convolutional Layer 1: 32 filters, kernel size 3x3, stride 2, followed by ReLLU activation.

* Convolutional Layer 2: 64 filters, kernel size 33, stride 2, followed by ReLLU activation.
* Convolutional Layer 3: 64 filters, kernel size 3x3, stride 2, followed by RelLU activation.

22

Under review as a conference paper at ICLR 2025

* Flatten Layer: Converts the output of the last convolutional layer into a 1D tensor.

* Fully Connected Layer: 512 units, followed by ReLU activation.
The model consists of several heads:
* Option Selection Head: A linear layer with 512 input units and num_options output units

(for selecting options), initialized with orthogonal weight initialization and a bias of 0.0.

* Intra-Option Action Head: A linear layer with 512 input units and num_actions output
units (for selecting actions within an option), initialized with orthogonal weight initializa-
tion and a bias of 0.0.

* Critic Head: A linear layer with 512 input units and 1 output unit (for the value function),
initialized with orthogonal weight initialization and a standard deviation of 1.

* Termination Head: A linear layer with 512 input units and 1 output unit (for predicting
termination probabilities), followed by a sigmoid activation to output a probability between
0 and 1.

The architecture is designed to share a common state representation across different heads (option
selection, intra-option action selection, value estimation, and option termination). Each head uses
the shared state representation for their specific outputs:

» Option Selection Head: Outputs a probability distribution over available options.

* Intra-Option Action Head: Outputs a probability distribution over the primitive actions
available within the current option.

* Critic Head: Outputs the value function, estimating the expected return for the current
state.

* Termination Head: Outputs a termination probability for each option, determining
whether the agent should terminate the option at the current state.

Hyperparameters. Table §|provide the hyperparameters used in OC-PPO.

Parameter Value | Explanation

easy 1 Activates the “easy” Procgen setting.

gamma 0.999 | The discount factor for future rewards.

vf_coef 0.5 Coefficient for the value function loss in PPO.
norm_adv true | Whether to normalize advantages before policy update.
num-envs 32 Number of parallel environments for training.

anneal _Ir true Linearly anneals the learning rate throughout training.
clip_coef 0.1 Clipping coefficient for the PPO policy objective.
num_steps 256 Number of steps per environment before an update is performed.
anneal _ent true Whether to anneal the entropy coefficient over time.
clip_vloss false | Whether to clip the value loss in PPO updates.
gae_lambda 0.95 | Lambda for Generalized Advantage Estimation (GAE).
proc_start 1 Indicates the starting level for the Procgen environment.
num_-options 25 Number of options learned by the agent.
ent_coef_action 0.01 | Coefficient for the entropy of the action policy.
ent_coef_option 0.01 Coefficient for the entropy of the option policy.
learning_rate 0.0005 | Learning rate for the PPO optimizer.

max_grad_norm 0.1 Maximum norm for gradient clipping.

update_epochs 2 Number of epochs per PPO update.

num_minibatches 4 Number of minibatches per PPO update.

Table 8: Selected hyperparameters for OC-PPO implementation

23

Under review as a conference paper at ICLR 2025

A.12 OC-PPO UPDATE MECHANISM

The Option-Critic with PPO (OC-PPO) extends the standard Proximal Policy Optimization (PPO)
algorithm by incorporating hierarchical options through the Option-Critic (OC) framework. The
following key components distinguish OC-PPO from the standalone PPO and OC implementations:

1. Separate Action and Option Policy Updates: In OC-PPO, two sets of policy updates are
performed: one for the action policy within an option and one for the option selection policy. Both
policies are optimized using the clipped PPO objective, but they operate at different levels of the
hierarchy:

* Action Policy: The action policy selects the primitive actions based on the current option.
For each option, the log-probabilities of actions are calculated, and the advantage function
is used to update the action policy.

* Option Policy: The option policy determines which option should be selected at each state.
This option selection is also updated using the PPO objective, with its own log-probabilities
and advantage terms.

Both the action and option policies are clipped to prevent overly large updates, following the stan-
dard PPO procedure:

Losspolicy = max <A(7r) . m, A(m) - clip (ﬂnew 11— 1+ e)>

Told Told

Here, mew and moiq represent the new and old policies for both actions and options, and A(7) is the
advantage function. This clipping is applied separately for both action and option updates, providing
stability in training.

2. Shared State Representation for Action and Option Policies: The OC-PPO architecture shares
the state representation between the action and option policies but maintains distinct linear layers
for each policy. The state representation is learned via a shared convolutional network. This shared
representation ensures that both action and option policies are informed by the same state encoding,
allowing for consistent hierarchical decision-making.

* Action Policy Head: Receives the state representation and outputs the action logits for the
current option.

» Option Policy Head: Receives the state representation and outputs the option logits for
option selection.

3. Termination Loss for Options: A unique component of OC-PPO is the termination loss, which
encourages the agent to decide when to terminate an option and select a new one. The termina-
tion function outputs the probability that the current option should terminate. This probability is
combined with the advantage function to compute the termination loss:

LoSStermination = E[termination_probability - (return — value)]

The termination loss is minimized when the agent terminates the option appropriately, i.e., when the
return associated with continuing the current option is less than the estimated value of switching to
a new option. The termination probability is computed by a separate network head from the shared
state representation.

4. Hierarchical Advantage Calculation: OC-PPO calculates separate advantage terms for actions
and options:
* Action Advantage: Based on the immediate rewards from the environment while following
the current option’s policy.

* Option Advantage: Based on the value of switching to a new option versus continuing with
the current option.

24

Under review as a conference paper at ICLR 2025

Each advantage is normalized independently, and separate PPO updates are applied to both the action
and option policies based on their respective advantage functions.

5. Regularization via Entropy for Both Action and Option Policies: As in standard PPO, en-
tropy regularization is applied to encourage exploration. However, in OC-PPO, this regularization
is applied both at the action level (to encourage diverse action selection within an option) and at
the option level (to encourage exploration of different options). The overall loss function includes
separate entropy terms for actions and options:

LOSSentropy = Qaction * H(’/Taclion) + Qloption H(’/Toption)
6. Clipping for Value Function: Like in PPO, OC-PPO also employs clipping for the value function
updates to prevent large changes in the value estimate between consecutive updates. This applies

to the shared value function, which evaluates the expected returns from both primitive actions and
options.

Lossyae = 0.5 - max ((Vnew — R)?, (Vg + clip(Vaew — Veia, —¢, 6))2>

A.13 FULL PROCGEN RESULTS

The below tables outline all results for all tested methods in all environments. They show the means
averaged over three seeds.

Environment | PPO-5 | PPO-25 | OC-PPO | FraCOs | FraCOs-SSR
BigFish 13.16 23.58 5.80 8.29 24.77
Climber 7.00 12.11 4.08 7.03 11.63
Coinrun 9.47 10.00 10.00 9.53 10.00
Fruitbot 25.33 32.81 30.90 29.85 31.96

Dodgeball 5.34 11.16 5.72 4.42 7.23
Leaper 5.63 5.63 3.13 5.52 5.63
Ninja 7.10 10.00 10.00 7.20 10.00
Plunder 10.33 16.16 8.00 12.24 13.15
StarPilot 24.41 37.63 21.33 33.27 31.04

Table 9: IID performance metrics for different methods

Environment | PPO-5 | PPO-25 | OC-PPO | FraCOs | FraCOs-SSR
BigFish 2.53 4.50 2.84 3.40 13.19
Climber 3.89 5.92 2.50 3.09 8.34
Coinrun 6.77 7.66 8.13 7.29 8.13
Fruitbot 15.81 22.00 24.10 25.07 27.54

Dodgeball 1.38 1.31 1.13 0.69 1.28
Leaper 2.71 2.50 2.19 2.71 391
Ninja 5.20 7.19 7.81 4.86 8.05
Plunder 6.25 8.78 5.39 8.75 8.20

StarPilot 15.53 14.59 15.58 20.31 24.63

Table 10: OOD performance metrics for different methods

A.14 EXPERIMENT LEGACY: DEEP STATE AND REWARD GENERALISATION IN SIMPLE
ENVIRONMENTS

In this experiment, we extend the Proximal Policy Optimization (PPO) algorithm (Schulman et al.,
2017) to incorporate multi-level hierarchies of FraCOs. Here, the MetaGrid environment layout
and reward location change after every episode (shuffle). An episode terminates after 1000 time
steps or when the goal is reached. We evaluate the agent in both MetaGrid 14x14 and MetaGrid
21x21 shuffled environments, using the same FraCOs discovered during Experiment 2; Importantly
all FraCOs are derived from tabular learning only. The results are presented in Figure

25

Under review as a conference paper at ICLR 2025

Environment | PPO-5 | PPO-25 | OC-PPO | FraCOs | FraCOs-SSR
BigFish 2.53 4.50 3.78 8.29 13.19
Climber 4.65 5.92 3.63 4.26 9.05
Coinrun 6.77 7.66 8.43 8.23 8.75
Fruitbot 15.81 24.81 24.70 26.13 27.54

Dodgeball 1.59 1.40 1.78 1.63 2.09
Leaper 2.91 3.75 2.50 3.44 4.38
Ninja 5.20 8.13 7.97 4.98 8.43
Plunder 6.61 8.78 5.95 10.28 9.06
StarPilot 15.53 17.21 17.49 20.31 28.84

Table 11: OOD Peak performance metrics for different methods

MetaGrid Average Evaluation Episode Reward
Shuffle 21x21

Shuffle 14x14
0.8

0.6

0.2

-0.2

0 20k 40k 60k 80k

Figure 11: Evaluation episode rewards for FraCOs-PPO in MetaGrid environments of size 14x14
and 21x21, where each domain is randomly shuffled after each episode. The 14x14 results are
averaged over 10 independent seeds, and the 21x21 results are averaged over 5 seeds. Shaded areas

represent the standard error.

Global Step

0.5

-0.5

100k 0

A.15 SuUcCCESS CRITERIA HYPERPARAMETERS

100k 200k 300k 400k

Depth: 4
— Depth: 3

= Depth: 1
Primitive

500k 600k 700k

Environment Minimum Success Returns
Four Rooms 0.97
Nine Rooms 0.60
Romesh Maze 0.70
MetaGrid 14x14 0.95
BigFish 5
Climber 7
CoinRun 7.5
Dodgeball 5
FruitBot 7.5
Leaper 7
Ninja 7.5
Plunder 10

Table 12: Minimum Success Returns for Various Environments

26

	Introduction
	Background
	Reinforcement Learning
	Hierarchical Reinforcement Learning
	Generalisation

	Related Work
	Fracture Cluster Options
	Identifying Patterns in Agent Behaviour
	Selecting Useful Fracture Clusters
	Using Fracture Clusters

	Experimental Results
	Experiment 1: Tabular Reward Generalisation
	Experiment 2: Tabular State Generalisation
	Experiment 3: Deep State and Reward Generalisation in Complex Environments

	Discussion and Limitations
	Appendix
	Derivation of Usefulness Metric
	Deriving P[c s | xs] Using Bayesian Inference
	Deriving P[c | s]
	Deriving H(c Ts)
	Expected Usefulness
	Environments
	Grid-World Environments
	MetaGrid Environment
	Procgen Environments

	UMAP visualisations of other environments
	FraCOs Chain Lengths and Depth Limits
	Chain Length and Depth in Tabular Experiments
	Why This Isn’t a Problem for Neural Network Cluster Predictions

	FraCOs Experiment Parameters for Tabular Methods
	FraCOs Modifications for Deep Learning
	Experiment Parameters for Deep Methods
	PPO
	FraCOs
	OC-PPO

	OC-PPO Update Mechanism
	Full Procgen results
	Experiment legacy: Deep State and Reward generalisation in Simple Environments
	Success Criteria Hyperparameters

