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Abstract001

Retrieval-augmented generation (RAG) is a002
mainstream method for improving performance003
on knowledge-intensive tasks. However, cur-004
rent RAG systems often place too much em-005
phasis on retrieved contexts. This can lead006
to reliance on inaccurate sources and over-007
look the model’s inherent knowledge, espe-008
cially when dealing with misleading or exces-009
sive information. To resolve this imbalance,010
we propose Knowledgeable-r1, an reinforce-011
ment learning (RL) framework that can dy-012
namically select, combine, and utilize paramet-013
ric and contextual knowledge. Unlike exist-014
ing methods that rely on complex prompting015
or training pipelines, Knowledgeable-r1 em-016
ploys adaptive prompts to elicit diverse knowl-017
edge preferences, then optimizes responses018
through reward-driven trajectories. Experi-019
ments show that Knowledgeable-r1 signifi-020
cantly enhances robustness and reasoning accu-021
racy in both parameters and contextual conflict022
tasks and general RAG tasks, especially outper-023
forming baselines by 17.07% in counterfactual024
scenarios and demonstrating consistent gains025
across RAG tasks.026

1 Introduction027

Retrieval-augmented generation (RAG) has be-028

come an effective strategy for knowledge-intensive029

tasks (Nakano et al., 2021; Gao et al., 2023). Cur-030

rent research reveals that LLMs exhibit a strong031

preference toward contextual knowledge over para-032

metric knowledge (Su et al., 2024a; Xie et al.,033

2024a). This preference becomes problematic in034

scenarios involving conflicting knowledge or con-035

textual inconsistencies (Lee et al., 2024; Dai et al.,036

2024; Sun et al., 2024; Wang et al., 2024; Tan037

et al., 2024), often resulting in erroneous outputs as038

shown in Figure 1. Therefore, enabling large mod-039

els to effectively integrate between parameter and040

contextual knowledge remains a critical challenge.041

Recent studies propose contextual misinformation042

discrimination mechanisms that shift faith to para- 043

metric knowledge when detecting context inaccura- 044

cies (Das et al., 2023; Upadhyay et al., 2024; Tor- 045

reggiani, 2025). The reliability of modern LLMs’ 046

parametric knowledge is growing, which makes 047

this approach effective (Mallen et al., 2023; Yang 048

et al., 2024). However, current implementations 049

face distinct challenges across three primary direc- 050

tions. Prompt-guided techniques (Pan et al., 2023; 051

Zhou et al., 2023; Wang et al., 2024; Xu et al., 2024; 052

Ying et al., 2024) alert models to potential inaccu- 053

racies through warning prompts, though they often 054

struggle with inconsistent sensitivity in real-world 055

applications. Another strategy (Xu et al., 2024; 056

Williams et al., 2018; Cheng et al., 2023; Zhang 057

et al., 2024b) employs question-augmented frame- 058

works that refine retrieval accuracy by rephras- 059

ing queries multiple times, but this iterative pro- 060

cess creates heavy computational overhead dur- 061

ing inference . The third category (Hong et al., 062

2024; Ju et al., 2025; Jin et al., 2024) enhances 063

detection through specialized training modules , 064

achieving better discrimination at the cost of in- 065

creased memory demands and operational complex- 066

ity. While these approaches improve knowledge 067

conflict recognition from different angles, they gen- 068

erally face efficiency-performance trade-offs (Mu 069

et al., 2021; Su et al., 2024b; Xu et al., 2024; Wang 070

et al., 2023). However, few study focuses on explor- 071

ing LLM’s abilities in solving the contextual and 072

parametric knowledge conflict problems without 073

using extra models or components. 074

To address this limitation, we propose a rein- 075

forcement learning framework Knowledgeable-r1 076

that enhances models’ capability to judiciously inte- 077

grate parametric and contextual knowledge through 078

factual grounding. While existing RL methods 079

like GRPO (Shao et al., 2024) enable contextual 080

knowledge utilization, they neglect systematic ex- 081

ploration of parametric knowledge. Our method 082

introduces two key components: knowledge capa- 083
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Ideal = RAG✅ + (LLM✅ | RAG❌)  53%

Which country won the women's World Cup 2023?

Spain won the Women's World Cup 2023

Incorrect fact in retrieval document

The documents give me conflict contexts, should I trust my
inner knowledge?

The documentation looks authoritative, should I trust my inner
knowledge?

Which country won the women's World Cup 2023?

In the 2023 Women's World Cup, the England team
showcased exceptional skill and teamwork, ultimately
winning the championship. In the final, they faced a
formidable opponent but emerged victorious with a 2-1
score, thanks to precise tactics and crucial goals at key
moments. 

correct answer：Spain correct answer：Spain

England won the Women's World Cup 2023

Held in 2023, the final saw England defeat Spain
with a score of 1-0.

Held in 2023, the final saw  Spain defeat England
with a score of 1-0.

Conflict facts in retrieval document

LLM Correct 31.22%

RAG Correct 44.79%

GRPO-RAG 46.44%

Ideally, if LLM trusts the correct parametric knowledge and makes the
right choice when internal and external knowledge conflict, the upper
limit of correct answers can rise to 53%.

Ours 49.12%

-- correct
-- incorrect or conflict

Figure 1: LLMs are prone to rely on completeness and conflict to judge the accuracy of article facts. When faced
with conflicting or misleading retrieval content, LLMs ignore known information, which reduces reasoning accuracy.

bility exploration and optimization. The knowl-084

edge exploration allows the model to systemati-085

cally probe its parametric knowledge, while knowl-086

edge capability optimization guide balanced use of087

contextual knowledge. This dual design enables088

the model to explore both contextual knowledge089

and parametric simultaneously, ensuring decisions090

align with factual accuracy.091

We evaluate Knowledgeable-r1 fact conflict092

resolution and QA capabilities in RAG scenarios.093

By implementing reinforcement learning to explore094

parametric knowledge and contextual knowledge095

paths, Knowledgeable-r1 achieves an average096

accuracy improvement of 8.39% on ConflictQA097

dataset(Bi et al., 2024), which involves counterfac-098

tual contextual knowledge and self-contradictory099

contextual knowledge. Notably, the improvement100

achieves 9.12% enhancement with correct contex-101

tual context and reaches 17.07% even contextual102

knowledge is error.103

2 RELATED WORK104

2.1 Parametric and Contextual Knowledge in105

LLMs106

Large Language Models (LLMs) store a substan-107

tial quantity of parametric knowledge post-training,108

but their ability to access and use this knowledge109

effectively varies (Inui et al., 2019; Hu et al., 2023;110

Gueta et al., 2023). The integration of too much111

contextual information can cause LLMs to forget112

previously learned knowledge, known as catas-113

trophic forgetting (Wen et al., 2024; Wang et al.,114

2025). LLMs may suppress their parametric knowl-115

edge in the presence of contextual cues, even when116

it’s beneficial (Cheng et al., 2024). Studies have117

tried combining parametric knowledge with con-118

textual data, but this process can be inefficient and119

prone to errors (Jeong et al., 2024; Fan et al., 2024). 120

2.2 Reinforcement Learning LLM Reasoning 121

OpenAI’s O1 model marked a significant advance- 122

ment in LLMs by incorporating extended reason- 123

ing (Jaech et al., 2024; Zelikman et al., 2024; Guan 124

et al., 2024; Shao et al., 2024). The DeepSeek R1 125

model made its training approach and weights pub- 126

lic, showing similar capabilities to O1 (Guo et al., 127

2025). DAPO addressed specific challenges in 128

LLM RL extensions, such as entropy collapse, and 129

suggested solutions to improve performance (Yu 130

et al., 2025). The Search-R1 model showed LLMs 131

using RL to generate search queries through rea- 132

soning(Jin et al., 2025). However, these methods 133

are limited by the prompts, with low-probability 134

outputs, like parametric knowledge during RAG 135

reasoning, often overlooked due to static prompts. 136

3 Method 137

3.1 Task Definition 138

Given an original prompt p and and its retrieval- 139

augmented version p′ , when processed by a large 140

language model (LLM), they produce outputs o 141

and o′ respectively, with o∗ representing the correct 142

response. Our goal is to develop the LLM policy 143

πθ(o
∗|p′) that can intelligently integrate parametric 144

knowledge and contextual knowledge, ultimately 145

generating accurate responses. The prompt repre- 146

sentations are in Appendix A. 147

3.2 Knowledge capability exploration 148

When input p′, model’s reasoning could be assessed 149

across three dimensions: parametric knowledge 150

based capacity, contextual knowledge based rea- 151

soning ability, and reasoning capability under in- 152

consistencies between parametric and contextual 153
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knowledge. If the model exhibits competence in all154

three aspects during reasoning, it can handle con-155

textual information more robustly. We thus aim to156

identify and optimize the distributions correspond-157

ing to these three capabilities within the model. We158

define these three distributions as π, π′, π̂.159

Basicly, we can employ reinforcement learning160

methods like GRPO to optimize the policy function161

by sampling p′ . This method’s unilateral sampling162

only enhances the ability of π′. Therefore, we aug-163

ment GRPO with joint sampling of both knowledge164

sources to improve another two ability.165

We sample n1 parametric knowledge reason-166

ing paths O = {oi}n1
i=1 from p and n2 contextual167

knowledge paths O′ = {o′j}
n2
j=1 from p′.168

We then gain the π and π′ as following:169

170 π = πθ (oi,t | p, oi,<t)

π′ = πθ
(
o′i,t | p′, oi,<t

) (1)171

172 Now, we need to obtain π̂. When the model re-173

ceives p′, its output distribution is π′. We now aim174

to modify it with partial capabilities of π′, i.e., the175

ability to reason based on its parametric parametric176

knowledge under p′. To achieve this, we calibrate177

the distribution of π′ by concatenating the output178

O based on p. This process effectively simulates179

the distribution of parametric knowledge reasoning180

when processing p′ thereby obtain π̂, as illustrated181

below.182

π̂ = πθ
(
oi,t | p′, oi,<t

)
(2)183

3.3 Knowledge capability optimization184

We have obtained the distributions corresponding185

to the three knowledge capabilities. To achieve this186

goal, we train our model following the GRPO train-187

ing framework, aiming to maximize the rewards188

of the three distributions. This approach allows us189

to dynamically integrate their strengths based on190

factual correctness, ultimately achieving optimal191

comprehensive capabilities across all distributions.192

Following GRPO, we compute group relativethe193

advantage for three types distributions responses.194

For π and π′, we derive advantage scores A and195

A′ that quantify each path’s relative quality within196

their respective groups. we calculate the advantage197

Ai and A′
j by normalizing their respective group-198

level rewards {Ri}n1
i=1 and {R′

j}
n2
j=1 as follows:199

Ai =
Ri −mean({Ri}n1

i=1)

std({Ri}n1
i=1)

, A′
j =

Rj −mean({R′
j}n2

j=1)

std({R′
j}

n2
j=1)

(3)200

This calculation evaluates response quality 201

within two distributions to enhance model capabili- 202

ties under each. For π̂, we compute its advantage 203

by aggregating rewards from O ∪O′ generated by 204

both p and p′, followed by global normalization. 205

This quantifies the relative effectiveness of para- 206

metric knowledge versus external knowledge when 207

processing p′, ensuring balanced synergy. The ad- 208

vantage of π̂ is calculated as follows: 209

Âi
′
=

Ri −mean({Ri}n1
i=1 ∪ {R

′
j}n2

j=1)

std({Ri}n1
i=1 ∪ {R′

j}
n2
j=1)

(4) 210

We then caculate policy object l(θ) , l′(θ) , l̂(θ) 211

for three distributions as follows: 212

l(θ) =
1

Z

n1∑
i=1

|oi|∑
t=1

min [ri,t(θ)Ai, CLIP(ri,t(θ)Ai] ,

l′(θ) =
1

Z

n2∑
j=1

|o′j |∑
t=1

min
[
r′j,t(θ)A

′
j , CLIP(r′j,t(θ)A

′
j

]
,

l̂(θ) =
1

Z

n1+n2∑
i=1

|oi|∑
t=1

[
r̂i,t, (θ)Â

′
i

]
,

where ri,t(θ) =
πθ (oi,t | p, oi,<t)

πθold (oi,t | p, oi,<t)
,

r′j,t(θ) =
πθ

(
o′j,t | p′, o′j,<t

)
πθold

(
o′j,t | p′, o′j,<t

) ,
r̂i,t(θ) = πθ

(
oi,t | p′, oi,<t

)
CLIP(x) = clip (x; 1− ϵ, 1 + ϵ)

(5) 213

For the optimization objective of l̂(θ), given that 214

our training samples are concatenated and thus lack 215

a reasonable old distribution, we have removed im- 216

portance sampling. Additionally, to facilitate better 217

exploration of parametric knowledge by the model, 218

we also omit gradient clipping. Our ultimate opti- 219

mization goal is to maximize the expected rewards 220

of the three distributions: 221

J (θ) = l(θ) + l′(θ) + l̂(θ) 222

3.4 Knowledge advantage adjustment 223

When the model receives p′, its output distribution 224

is π′. We now aim to modify it with partial capa- 225

bilities of π′, i.e., the ability to reason based on 226

its parametric parametric knowledge under p′. To 227

achieve this, we calibrate the distribution of π′ by 228

concatenating the output O based on p. This pro- 229

cess effectively simulates the distribution of para- 230

metric knowledge reasoning when processing p′ 231
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thereby obtain π̂, as illustrated below. Through232

joint optimization of the three distribution strate-233

gies, the model holistically enhances its internal234

and external knowledge capabilities based on fac-235

tual rewards. However, during reinforcement learn-236

ing training, the quality of training trajectories gen-237

erated from input p′ typically surpasses that of p.238

This imbalance leads the advantage calculation to239

inherently prioritize responses relying on external240

knowledge responses when the model struggles241

to generate correct solutions internally, potentially242

suppressing exploration of useful internal knowl-243

edge pathways. To balance exploration between π̂244

and π′, we introduce an advantage function trans-245

formation. For advantage of π̂, we apply the fol-246

lowing modified advantage calculation:247

LReLU(A′
j) =

{
αA′

j , if A′
j > 0

βA′
j , if A′

j ≤ 0
(6)248

Where Âj represents the advantage of the jth re-249

sponse triggered by the parametric cue, α and β250

are set to 2 and 0.05 as default for reducing the251

penalty for parametric knowledge exploration and252

encourage better parametric knowledge answers.253

4 Experiments254

This section evaluate the capability of our method255

and baselines in parametric/contextual knowledge256

conflict tasks and RAG tasks.257

4.1 General Experiments Setup258

We conduct model based on Qwen2.5-3B-Instruct259

and Qwen2.5-7B-Instruct, and across multiple260

datasets: ConflictQA (Xie et al., 2024b) for inte-261

grating parametric and contextual knowledge task;262

Hotpotqa (Yang et al., 2018), 2WikiMultiHopQA263

(Ho et al., 2020), and Musique (Trivedi et al., 2022)264

for retrieval-augmented general tasks. We compare265

our method against the following baseline methods:266

RAG prompting, SFT, and GRPO, and use query-267

only prompting, GRPO-prompting as auxiliaries.268

Following (Jin et al., 2025), Exact Match (EM)269

is used for evaluating the accuracy, more training270

details are shown in Appendix B.271

4.2 Knowledge Conflict in Parameters and272

Context Tasks273

We introduce the ConflictQA benchmark to evalu-274

ate the model performance of LLM in RAG scenar-275

ios involving knowledge conflicts. In order to deep276

analysis the situations of arrangement and combi- 277

nation of correct parametric and contextual knowl- 278

edge, we first construct a overall dataset, which is 279

constructed by 1:1 ratio ramdomly sampling incor- 280

rect context and correct context question-answer 281

pairs, and split it into a training dataset ‘CQ_train’ 282

and a testing dataset ‘CQ_test’. 283

In order to further analysis our method and base- 284

lines’s performance in each situations of knowledge 285

conflict, we then filter the ‘CQ_test’ into eight sub- 286

testing datasets. 287

4.2.1 Sub-testing Dataset and Metric 288

Construction 289

We construct the new sub-testing datasets and met- 290

rics in follow steps: 291

Step I: Adopting the approach of (Zhang et al., 292

2024a), parametric knowledge accuracy is gauged 293

using the EM score from query-only inputs. 294

Step II: Context knowledge accuracy is assessed 295

based on context source, comparing responses us- 296

ing correct versus incorrect evidence. 297

Step III: The ‘CQ_test’ dataset is partitioned 298

into four subgroups: ‘T_i’ for parametrically cor- 299

rect, ‘F_i’ for parametrically incorrect, ‘T_e’ for 300

contextually correct, and ‘F_e’ for contextually in- 301

correct QA pairs. 302

Step IV: We create five sub-testing datasets by 303

applying set operations to the AccFiFe. These op- 304

erations produce datasets: T_i ∩ F_e, F_i ∩ T_e, 305

F_e, T_e, T_i ∪ T_e, and F_i ∩ F_e. 306

Step V: For clarity and brevity in reporting, we 307

assign the following labels to the accuracy met- 308

rics for these sub-testing datasets: AccTiFe, AccFiTe, 309

AccFe, AccTe, AccTiTe, and AccFiFe. And the accu- 310

racy in ‘CQ_test’ is defined as AccCQ. 311

4.2.2 Capability 1: The performance in 312

parameters and context confict 313

Capability 1 (C1) is characterized by situations 314

where the context and parameters has conflict orig- 315

inal facts. Table 1 shows the performance of 316

Knowledgeable-r1 and baselines. We observe 317

that Knowledgeable-r1 outperforms all models 318

on the AccTiFe metric, achieving improvements of 319

14.9%, 13%, and 23.3% over the RAG prompting 320

baseline in their respective conflict question-answer 321

tasks. Higher accuracy in AccTiFe is indicative of 322

better identification and resistance to counterfac- 323

tual context input through the use of parametric 324

knowledge, aligning with the primary objective of 325

our method: to use correct parametric knowledge 326
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Table 1: Parameters and context conflict evaluation. AccTiFe demonstrates the capability of parameters knowledge
to aid counterfactual reasoning and AccFiTe reflects parameters skepticism.

ConflictQA-QA ConflictQA-MC ConflictQA-MR Avg.
Acc(EM) AccTiFe AccFiTe Avg. AccTiFe AccFiTe Avg. AccTiFe AccFiTe Avg. AccTiFe AccFiTe Avg.

query-only prompting 100% 0% 50% 100% 0% 50% 100% 0% 50% 100.00% 0.00% 50.00%
RAG prompting ↓ 51.90% 59.60% 55.75% ↓46.50% 52.30% 49.40% ↓ 55.20% 52.10% 53.65% ↓ 51.20% 54.67% 52.93%

SFT-RAG w/o CoT 20.40% 70.40% 45.40% 24.80% 54.40% 39.60% 34% 54.70% 44.35% 26.40% 59.83% 43.12%
GRPO-inner 92.80% 6.80% 49.80% 87.70% 19.20% 53.45% 86.70% 16.30% 51.50% 89.07% 14.10% 51.58%
GRPO-RAG 54.90% 62.10% 58.50% 54.60% 58.70% 56.65% 57% 57.40% 57.20% 55.50% 59.40% 57.45%

Knowledgeable-r1 w/o l̂ 65.50% 62.20% 63.85% 63.30% 49% 56.15% 74.40% 53% 63.70% 67.70% 54.70% 61.23%
Knowledgeable-r1 66.80% 61.60% 64.20% 59.50% 54.60% 57.05% 78.50% 46.90% 62.70% 68.27% 54.37% 61.32%

impro. vs RAG prompting +14.90% +2.00% +8.45% +13.00% +2.30% +7.65% +23.30% -5.20% +9.05% +17.07% -0.30% +8.39%
impro. vs GRPO-RAG +11.90% -0.50% +5.70% +4.90% -4.10% +0.40% +21.50% -10.50% +5.50% +12.77% -5.03% +3.87%

Table 2: The robustness performance for incorrect and correct context knowledge. AccFe indicates the anti-
interference ability and AccTe represents the consistency of correct context.

ConflictQA-QA ConflictQA-MC ConflictQA-MR Avg.
Acc(EM) AccFe AccTe Avg. AccFe AccTe Avg. AccFe AccTe Avg. AccFe AccTe Avg.

query-only prompting 30.80% 31.20% 31.00% 25.90% 26.80% 26.35% 26.30% 27.10% 26.70% 27.67% 27.80% 27.73%
RAG prompting ↓ 18.80% 70.50% 44.65% ↓ 15.90% 59.40% 37.65% ↓ 22.50% 61% 41.75% 19.07% 36.30% 27.68%

SFT-RAG w/o CoT 8% 77.70% 42.85% 7.90% 62.10% 35.00% 13.70% 54.90% 34.30% 9.87% 33.10% 21.48%
GRPO-inner 32% 34% 33.00% 32.60% 33.10% 32.85% 33.30% 36% 34.65% 32.63% 33.30% 32.97%
GRPO-RAG 20% 72.60% 46.30% 18.90% 66.50% 42.70% 24% 61.10% 42.55% 20.97% 38.50% 29.73%

Knowledgeable-r1 w/o l̂ 24.90% 73.10% 49.00% 23.80% 57.40% 40.60% 34% 63.50% 48.75% 27.57% 43.63% 35.60%
Knowledgeable-r1 25.40% 73.10% 49.25% 22.30% 62.70% 42.50% 34% 59% 46.50% 27.23% 43.13% 35.18%

impro. vs RAG prompting +6.60% +2.60% +4.60% +6.40% +3.30% +4.85% +11.50% -2.00% +4.75% +8.17% +6.83% +7.50%
impro. vs GRPO +5.40% +0.50% +2.95% +3.40% -3.80% -0.20% +10.00% -2.10% +3.95% +6.27% +4.63% +5.45%

Table 3: Evaluation on several other metrics. AccTiTe indicates the knowledge fusion ability based on the upper
limit of RAG prompting and query-only methods. AccFiFe represents the knowledge updating of models.

ConflictQA-QA ConflictQA-MC ConflictQA-MR Avg.
Acc(EM) AccCQ AccTiTe AccFiFe AccCQ AccTiTe AccFiFe AccCQ AccTiTe AccFiFe AccCQ AccTiTe AccFiFe

query-only prompting 31.22% 47.60% 0.00% 26.40% 43.40% 7.10% 26.73% 42.10% 0.00% 28.12% 44.37% 2.37%
RAG prompting 44.79% 66.20% 4.00% 37.25% 56.20% 6.00% 41.96% 59.80% 10.80% 41.33% 60.73% 6.93%

SFT-RAG w/o CoT 43.04% 64.30% 2.40% 34.36% 53.40% 3.30% 38.40% 56.70% 6.40% 38.60% 58.13% 4.03%
GRPO-inner 33.06% 47.80% 5.00% 32.88% 45.00% 12.90% 34.69% 46.40% 14.20% 33.54% 46.40% 10.70%
GRPO-RAG 46.44% 68.40% 4.50% 42.23% 62.60% 8.60% 44.79% 63.40% 12.30% 44.49% 64.80% 8.47%

Knowledgeable-r1 w/o l̂ 49.12% 71.30% 6.80% 40.25% 58.90% 9.50% 47.58% 65.80% 15.90% 45.65% 65.33% 10.73%
Knowledgeable-r1 49.30% 71.60% 6.90% 42.10% 62.10% 9.10% 46.60% 63.00% 18.10% 46.00% 65.57% 11.37%

impro. vs RAG prompting +4.51% +5.40% +2.90% +4.85% +5.90% +3.10% +4.64% +3.20% +7.30% +4.67% +4.83% +4.43%
impro. vs GRPO +2.86% +3.20% +2.40% -0.13% -0.50% +0.50% +1.81% -0.40% +5.80% +1.51% +0.77% +2.90%

to mitigate the effects of incorrect context input.327

In the case of the AccFiTe metric, our method328

shows a minimal performance reduction of only329

0.30%. From the GRPO-inner perspective, optimiz-330

ing the inner part will result in a decrease in the in-331

dicator when compared with RAG prompting. The332

slight decline in the AccFiTe metric is considered to333

be justifiable, as our method indeed places a greater334

emphasis on parametric knowledge compared to335

other methods. To maintain fairness between the336

two scenarios, we compute their average value as337

a general performance to minimize the impact of338

dataset ratios. This approach yields an 8.39% abso-339

lute improvement over the RAG prompting method340

and a 3.87% improvement over GRPO. Notably,341

the more complex the tasks, the more pronounced342

the performance gains associated with our method.343

4.2.3 Capability 2: The performance in 344

robustness for extra knowledge 345

Capability 2, represented as C2, assesses the perfor- 346

mance of knowledge processing when both correct 347

and incorrect context facts are incorporated across 348

two scenarios. As summarized in Table 2, the over- 349

all enhancement in C2 is more pronounced than 350

that in C1. Espect to C1, C2 addresses instances 351

where the context and parameters are congruent, 352

suggesting that our method additionally bolsters 353

knowledge consistency. Detail evaluation on both 354

parameters and context being correct is shown in 355

Appendix D, which improves by 4.7%. In par- 356

ticular, our approach shows superior performance 357

in the AccSCTI and AccSCFI metrics, with gains of 358

8.17% and 6.83% over RAG prompting, and 6.27% 359

and 4.63% over GRPO, respectively. Regarding the 360

robustness to extraneous knowledge, our method 361
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Figure 2: General performance of ConflictQA, including that ConFiQA contains three datasets: QA (Question and
Answer), MR (Multi-hop Reasoning), and MC (Multi-conflict).

registers advances of 7.5% and 5.45% relative to362

RAG prompting and GRPO, respectively.363

4.2.4 Capability 3: The performance in364

knowledge fusion365

In this section, we further explore the proficiency366

of knowledge fusion and knowledge expansion,367

shown in Table 3. AccTiTe requires the amalgama-368

tion of both contextual and parametric knowledge369

to effectively tackle the problem, with an ideal370

integration value of 100%. Nonetheless, the accu-371

racy achieved with RAG prompting stands at only372

60.73%, and SFT method registers just 58.13%373

accuracy. These outcomes highlight a significant374

issue where parametric knowledge is eclipsed by375

the influx of contextual information. In contrast,376

our method exhibits a marked improvement, with377

the highest gain of 5.4% in the ConflictQA-QA378

task, culminating in a 71.6% accuracy rate.379

4.2.5 Capability 4: The performance in380

knowledge extending381

Additionally, we consider a scenario where nei-382

ther the parameters nor the context are adequate383

to correctly resolve a question, deeming such in-384

quiries theoretically unanswerable. This scenario385

assesses the aptitude of our method to correctly386

answer the question when lacking pertinent para-387

metric knowledge and when contextual knowledge388

proves unbeneficial. Against RAG prompting, SFT,389

and GRPO methods, our method advances the per-390

formance by up to 6.7%.391

4.2.6 Capability 5: The performance in392

overall knowledge conflict393

Furthermore, we emphasize the uniform per-394

formance enhancement across the original395

ConflictQA-test set, showcasing a 4.67% improve-396

ment (Figure 2). Our method invariably maintains397

steady advancement.398

Table 4: Contextual self-conflict evaluation. AccSCTI
and AccSCFI indicate the accuracy of conflict context
when parameters have correct and incorrect knowledge,
respectively.

AccSCTI AccSCFI AccSC(Avg.)
query-only prompting 100% 0% 50%
RAG prompting 82.8% 46.5% 64.65%
SFT-RAG w/o CoT 77.7% 43.3% 60.5%
GRPO-RAG 85.4% 52.6% 69%
Knowledgeable-r1 w/o l̂ 89% 48.5% 68.75%
Knowledgeable-r1 89.6% 52% 70.8%
improv. vs RAG prompting +6.8% +5.5% +6.15%
improv. vs GRPO-RAG +4.2% -0.6% +2.4%

4.3 Context Self-Knowledge Conflict Tasks 399

In order to evaluate the scenarios where the context 400

contains conflicting facts, we partition the ‘CSCQ’ 401

test set into two distinct subsets: ‘CSCQ_Ti’ and 402

‘CSCQ_Fi’. These subsets are classify according to 403

the query-only prompting method is correct or not. 404

We define the accuracy on these subsets as follows: 405

• AccSCTI: Accuracy in the ‘CSCQ_Ti’ subset. 406

• AccSCFI: Accuracy in the ‘CSCQ_Fi’ subset. 407

The overall performance in context self- 408

knowledge conflict tasks is then evaluated by 409

computing the average of AccSCTI and AccSCFI, 410

which we define as AccSC. This metric is in- 411

tended to provide a balanced measure of how 412

Knowledgeable-r1 handles conflicting informa- 413

tion within the context and retains accurate knowl- 414

edge representation. 415

As depicted in Table 4, Knowledgeable-r1 out- 416

performs the baseline methods, achieving a 70.8% 417

success rate. This indicates a significant improve- 418

ment over the highest baseline performance, which 419

is 10.3%. 420
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Table 5: Performance comparison of various baselines
on both out-of-domain and in-domain benchmarks. We
report EM scores (%) for all benchmarks for clarity.
Avg. denotes the average EM scores(and %) across all
benchmarks.

Method Hotpotqa Musique 2wiki Avg.
Qwen2.5-7b-Instruct
query-only prompting 17.99% 2.57% 22.46% 14.34%
RAG prompting 24.13% 6% 26.73% 18.95%
SFT-RAG 23.92% 6.29% 26.92% 19.04%
GRPO-inner 21.74% 4.72% 26.77% 17.74%
GRPO-RAG 28.04% 10.01% 29.32% 22.46%
Knowledgeable-r1 w/o l̂ 31.33% 10.88% 38.51% 26.9%
Knowledgeable-r1 32.80% 12.00% 39.42% 28.07%
Qwen2.5-3b-Instruct
query-only prompting 16.25% 1.90% 11.10% 9.75%
RAG prompting 19.49% 5.83% 20.74% 15.35%
SFT-RAG 19.53% 5.67% 20.82% 15.34%
GRPO-inner 16.72% 2.52% 18.66% 12.63%
GRPO-RAG 25.36% 8.44% 30.42% 21.41%
Knowledgeable-r1 27.09% 7.53% 33.39% 22.67%

Table 6: The best performance of Knowledgeable-r1
in RAG tasks

Method Hotpotqa Musique 2wiki Avg.
Qwen2.5-7b
query-only prompting 17.99% 2.57% 22.46% 14.34%
CoT 19.18% 3.43% 21.84% 14.82%
RAG prompting 32.05% 13.65% 35.95% 27.22%
SFT-inner 16.21% 1.99% 21.73% 13.31%
SFT-RAG 32.17% 14.36% 35.93% 27.49%
Search-o1 18.70% 5.80% 17.60% 14.03%
GRPO-inner 21.74% 4.72% 26.77% 17.74%
GRPO-RAG 38.15% 24.64% 53.32% 38.70%
search-r1(Hotpotqa+nq) 38% 16.80% 32.60% 29.13%
Knowledgeable-r1 40.36% 24.95% 56.23% 40.51%
Qwen2.5-3b
query-only prompting 16.25% 1.90% 11.10% 9.75%
CoT 12.79% 2.28% 23.83% 12.97%
RAG prompting 25.44% 13.57% 29.83% 22.95%
SFT-inner 12.11% 1.53% 17.95% 10.53%
SFT-RAG 25.62% 13.28% 29.84% 22.91%
Search-o1 22.1% 5.4% 21.8% 16.43%
GRPO-inner 16.72% 2.52% 18.66% 12.63%
GRPO-RAG 33% 24.95% 50.6% 36.18%
search-r1(Hotpotqa+nq) 30.8% 10.5% 27.3% 22.87%
Knowledgeable-r1 34.57% 20.85% 47.97% 34.46%

4.4 General RAG tasks421

To further explore our method’s performance in422

general RAG tasks, we evaluate it on three datasets,423

using only HotpotQA as the training dataset. Tables424

5 and 6 show our method’s best performance com-425

pared to baselines, achieving an average improve-426

ment of 5.51% over the GRPO baseline. Table 5427

uses five retrieval documents for fairness. To find428

our method’s upper limit on these datasets, we use429

all retrieval documents, with performances shown430

in Table 6. We finally achieve 40.36%, 24.95%,431

and 56.23% accuracy in HotpotQA, Musique, and432

2wiki, respectively. Notably, these results exceed433

Search-R1 (Jin et al., 2025) and Search-O1 (Li434

Table 7: Knowledgeable-r1 component ablation study,
including adding importance sampling, using single-
group average, and deleting the LeakyRelu operation of
advantages.

Model Hotpotqa(1000step)
Knowledgeable-r1 28.36%

+ import sampling (πold(θ(o|p)) 13.94%
+ import sampling (πold(θ(o|p′)) 26.81%

improve + 14.42%
+ p prompt group averge 20.70%

improve + 7.66%
− leakrelu 21.30%
improve + 7.06%

et al., 2025), even though they use multi-step re- 435

trieval and two training datasets. 436

5 Ablation & Analysis Study 437

5.1 The Performance of Component in 438

Knowledgeable-r1 439

In this section, we conduct an ablation study to 440

investigate the influence of various components 441

of our Knowledgeable-r1 on its overall perfor- 442

mance, as detailed in Table 7. Both the computing 443

of Advantages subgroup and the leakyReLU en- 444

hancements contribute positively to the efficacy of 445

Knowledgeable-r1 training. Moreover, applying 446

importance sampling to fake distribution does not 447

lead to an enhancement, and instead introduces 448

greater variance into the training process. 449

5.2 The Training Efficiency of 450

Knowledgeable-r1 451

Figure 3 shows the training curve comparison be- 452

tween GRPO and our method. Compared with 453

GRPO, our method converges earlier and has a 454

higher reward (accuracy) when converging. Over- 455

all, Knowledgeable-r1 is more efficient due to di- 456

rected exploration, which enables faster and deeper 457

focus on internal information, thus leading to quick 458

convergence to higher performance. 459

5.3 The Upper Limit of Knowledge Processing 460

We analyze the theoretical upper limit according 461

to the correct union of RAG prompting correctness 462

and query-only prompting correctness. As depicted 463

in Figure 4, our method demonstrates performance 464

closest to the union metrics, and we observe that 465

the more space there is for improvement in RAG 466

prompting compared to the union, the better the per- 467

formance and improvement our method achieves. 468
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Figure 3: Comparison of training curves. The above one
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right side is the HotpotQA dataset, and green represents
Knowledgeable-r1.
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pare to theoretical accuracy rates.

469

5.4 Mitigating Misinformation in Context470

Evaluation471

It is necessary to investigate into the discriminatory472

capabilities of models when evaluating contexts473

potentially laden with misinformation. As delin-474

eated in Tables 1 and 2, the AccTiFe and AccFe475

metrics shows the accuracy when has misleading476

context, consider the the accuracy of the paramet-477

ric knowledge or not respectively. In this study,478

we have identified that supplementing LLMs with479

additional knowledge may lead to misinformation,480

resulting in inferior performance when utilizing the481

RAG prompting method as opposed to query-only482

prompting.483

The empirical evidence presented in Tables 1484

and 2 illustrates that Knowledgeable-r1 achieves485

significant enhancements over existing metrics. For486

example, our method attains a 34% accuracy rate in487

the ConflictQA-MR dataset, outperforming RAG488

prompting methods by an 11.5% margin and ex- 489

hibiting a 10% lead over the GRPO approach. Re- 490

markably, when parameters memeries are accu- 491

rate in the context of incorrect information, our 492

method demonstrates even more pronounced im- 493

provements—showing a 23.3% increase in accu- 494

racy compared to RAG prompting and a 21.5% 495

advance relative to GRPO. 496

5.5 Model emergence capability of more 497

capable base models 498

As shown in Tables 3 and 2, the performance of our 499

method based on Qwen2.5-7b-Instruct surpasses 500

that of Qwen2.5-3b-Instruct, with retrieval accu- 501

racy improvements of 4.71% for the top five docu- 502

ments (32.8% vs. 27.09%) and 5.79% for the top 503

twenty documents (40.36% vs. 34.57%). These 504

results lead us to conclude that our method bene- 505

fits from more capable base models, aligning with 506

our hypothesis that larger models possess more 507

extensive parametric knowledge, thereby enhanc- 508

ing their ability to leverage this knowledge for im- 509

proved performance. As base models continue to 510

evolve, our method demonstrates significant poten- 511

tial for achieving better performance with increas- 512

ingly larger models. 513

6 Conclusion 514

Our work introduces Knowledgeable-r1, a ver- 515

satile and novel framework for reinforcement 516

learning that has proven effective in guiding ex- 517

ploration through the use of supplemental cues 518

to encourage the proper use of both contextual 519

and parametric knowledge within large language 520

models (LLMs). Through extensive experiments 521

on knowledge conflict and general RAG tasks, 522

Knowledgeable-r1 has shown to significantly bol- 523

ster the ability of LLMs to amalgamate contextual 524

and parametric knowledge especially when the in- 525

put context is counterfactuals. As for future work, 526

there exists a wealth of opportunities to deploy 527

Knowledgeable-r1 in larger and more complex 528

settings, and to develop it further to incorporate 529

multiple directed exploration cues within a mixed 530

objective-conditioned policy framework. Such ex- 531

plorations promise to be both intriguing and chal- 532

lenging. 533
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Limitations534

Our method proposes a reinforcement learning535

framework to address knowledge conflicts in large536

language models (LLMs), primarily focusing on537

enabling autonomous integration of parametric and538

contextual knowledge through factual grounding.539

However, the current approach does not account540

for scenarios where both knowledge sources con-541

tain inaccuracies, leaving open the question of542

whether models can learn abstention capabilities543

under such conditions. Future research should es-544

tablish a multi-dimensional assessment framework545

to systematically evaluate LLMs’ abilities in cross-546

source knowledge utilization, including error detec-547

tion thresholds and dynamic knowledge reliability548

estimation.549
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