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Abstract

Retrieval-augmented generation (RAG) is a
mainstream method for improving performance
on knowledge-intensive tasks. However, cur-
rent RAG systems often place too much em-
phasis on retrieved contexts. This can lead
to reliance on inaccurate sources and over-
look the model’s inherent knowledge, espe-
cially when dealing with misleading or exces-
sive information. To resolve this imbalance,
we propose Knowledgeable-r1, an reinforce-
ment learning (RL) framework that can dy-
namically select, combine, and utilize paramet-
ric and contextual knowledge. Unlike exist-
ing methods that rely on complex prompting
or training pipelines, Knowledgeable-r1 em-
ploys adaptive prompts to elicit diverse knowl-
edge preferences, then optimizes responses
through reward-driven trajectories. Experi-
ments show that Knowledgeable-r1 signifi-
cantly enhances robustness and reasoning accu-
racy in both parameters and contextual conflict
tasks and general RAG tasks, especially outper-
forming baselines by 17.07% in counterfactual
scenarios and demonstrating consistent gains
across RAG tasks.

1 Introduction

Retrieval-augmented generation (RAG) has be-
come an effective strategy for knowledge-intensive
tasks (Nakano et al., 2021; Gao et al., 2023). Cur-
rent research reveals that LLMs exhibit a strong
preference toward contextual knowledge over para-
metric knowledge (Su et al., 2024a; Xie et al.,
2024a). This preference becomes problematic in
scenarios involving conflicting knowledge or con-
textual inconsistencies (Lee et al., 2024; Dai et al.,
2024; Sun et al., 2024; Wang et al., 2024; Tan
et al., 2024), often resulting in erroneous outputs as
shown in Figure 1. Therefore, enabling large mod-
els to effectively integrate between parameter and
contextual knowledge remains a critical challenge.
Recent studies propose contextual misinformation

discrimination mechanisms that shift faith to para-
metric knowledge when detecting context inaccura-
cies (Das et al., 2023; Upadhyay et al., 2024; Tor-
reggiani, 2025). The reliability of modern LL.Ms’
parametric knowledge is growing, which makes
this approach effective (Mallen et al., 2023; Yang
et al., 2024). However, current implementations
face distinct challenges across three primary direc-
tions. Prompt-guided techniques (Pan et al., 2023;
Zhou et al., 2023; Wang et al., 2024; Xu et al., 2024;
Ying et al., 2024) alert models to potential inaccu-
racies through warning prompts, though they often
struggle with inconsistent sensitivity in real-world
applications. Another strategy (Xu et al., 2024;
Williams et al., 2018; Cheng et al., 2023; Zhang
et al., 2024b) employs question-augmented frame-
works that refine retrieval accuracy by rephras-
ing queries multiple times, but this iterative pro-
cess creates heavy computational overhead dur-
ing inference . The third category (Hong et al.,
2024; Ju et al., 2025; Jin et al., 2024) enhances
detection through specialized training modules ,
achieving better discrimination at the cost of in-
creased memory demands and operational complex-
ity. While these approaches improve knowledge
conflict recognition from different angles, they gen-
erally face efficiency-performance trade-offs (Mu
et al., 2021; Su et al., 2024b; Xu et al., 2024; Wang
etal., 2023). However, few study focuses on explor-
ing LLM'’s abilities in solving the contextual and
parametric knowledge conflict problems without
using extra models or components.

To address this limitation, we propose a rein-
forcement learning framework Knowledgeable-r1
that enhances models’ capability to judiciously inte-
grate parametric and contextual knowledge through
factual grounding. While existing RL methods
like GRPO (Shao et al., 2024) enable contextual
knowledge utilization, they neglect systematic ex-
ploration of parametric knowledge. Our method
introduces two key components: knowledge capa-
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Figure 1: LLMs are prone to rely on completeness and conflict to judge the accuracy of article facts. When faced
with conflicting or misleading retrieval content, LLMs ignore known information, which reduces reasoning accuracy.

bility exploration and optimization. The knowl-
edge exploration allows the model to systemati-
cally probe its parametric knowledge, while knowl-
edge capability optimization guide balanced use of
contextual knowledge. This dual design enables
the model to explore both contextual knowledge
and parametric simultaneously, ensuring decisions
align with factual accuracy.

We evaluate Knowledgeable-r1 fact conflict
resolution and QA capabilities in RAG scenarios.
By implementing reinforcement learning to explore
parametric knowledge and contextual knowledge
paths, Knowledgeable-r1 achieves an average
accuracy improvement of 8.39% on ConflictQA
dataset(Bi et al., 2024), which involves counterfac-
tual contextual knowledge and self-contradictory
contextual knowledge. Notably, the improvement
achieves 9.12% enhancement with correct contex-
tual context and reaches 17.07 % even contextual
knowledge is error.

2 RELATED WORK

2.1 Parametric and Contextual Knowledge in
LLMs

Large Language Models (LLMs) store a substan-
tial quantity of parametric knowledge post-training,
but their ability to access and use this knowledge
effectively varies (Inui et al., 2019; Hu et al., 2023;
Gueta et al., 2023). The integration of too much
contextual information can cause LLMs to forget
previously learned knowledge, known as catas-
trophic forgetting (Wen et al., 2024; Wang et al.,
2025). LLMs may suppress their parametric knowl-
edge in the presence of contextual cues, even when
it’s beneficial (Cheng et al., 2024). Studies have
tried combining parametric knowledge with con-
textual data, but this process can be inefficient and

prone to errors (Jeong et al., 2024; Fan et al., 2024).

2.2 Reinforcement Learning LLLM Reasoning

OpenAl’s O1 model marked a significant advance-
ment in LLMs by incorporating extended reason-
ing (Jaech et al., 2024; Zelikman et al., 2024; Guan
et al., 2024; Shao et al., 2024). The DeepSeek R1
model made its training approach and weights pub-
lic, showing similar capabilities to O1 (Guo et al.,
2025). DAPO addressed specific challenges in
LLM RL extensions, such as entropy collapse, and
suggested solutions to improve performance (Yu
et al., 2025). The Search-R1 model showed LLMs
using RL to generate search queries through rea-
soning(Jin et al., 2025). However, these methods
are limited by the prompts, with low-probability
outputs, like parametric knowledge during RAG
reasoning, often overlooked due to static prompts.

3 Method

3.1 Task Definition

Given an original prompt p and and its retrieval-
augmented version p’ , when processed by a large
language model (LLM), they produce outputs o
and o’ respectively, with o* representing the correct
response. Our goal is to develop the LLM policy
7g(0*|p') that can intelligently integrate parametric
knowledge and contextual knowledge, ultimately
generating accurate responses. The prompt repre-
sentations are in Appendix A.

3.2 Knowledge capability exploration

When input p’, model’s reasoning could be assessed
across three dimensions: parametric knowledge
based capacity, contextual knowledge based rea-
soning ability, and reasoning capability under in-
consistencies between parametric and contextual



knowledge. If the model exhibits competence in all
three aspects during reasoning, it can handle con-
textual information more robustly. We thus aim to
identify and optimize the distributions correspond-
ing to these three capabilities within the model. We
define these three distributions as 7, 7/, 7.

Basicly, we can employ reinforcement learning
methods like GRPO to optimize the policy function
by sampling p’ . This method’s unilateral sampling
only enhances the ability of 7’. Therefore, we aug-
ment GRPO with joint sampling of both knowledge
sources to improve another two ability.

We sample n; parametric knowledge reason-
ing paths O = {o;};, from p and n, contextual
knowledge paths O" = {0}2, from p'.

We then gain the 7 and 7’ as following:

m =g (0t | P; 0i<t)
/ / / (1)
™ =T (Oi,t | b voi,<t)

Now, we need to obtain 7. When the model re-
ceives p/, its output distribution is 7/. We now aim
to modify it with partial capabilities of 7, i.e., the
ability to reason based on its parametric parametric
knowledge under p’. To achieve this, we calibrate
the distribution of 7’ by concatenating the output
O based on p. This process effectively simulates
the distribution of parametric knowledge reasoning
when processing p’ thereby obtain 7, as illustrated
below.

7 =g (0i | P, 0i,<t) (2)

3.3 Knowledge capability optimization

We have obtained the distributions corresponding
to the three knowledge capabilities. To achieve this
goal, we train our model following the GRPO train-
ing framework, aiming to maximize the rewards
of the three distributions. This approach allows us
to dynamically integrate their strengths based on
factual correctness, ultimately achieving optimal
comprehensive capabilities across all distributions.
Following GRPO, we compute group relativethe
advantage for three types distributions responses.
For 7 and 7/, we derive advantage scores A and
A’ that quantify each path’s relative quality within
their respective groups. we calculate the advantage
A; and A} by normalizing their respective group-
level rewards {R; };"!; and {R}}2, as follows:

o B —mean({Ri}2 )
T TCTAYEN

(3)

Ri —mean({R:}},)

A= TRy,

This calculation evaluates response quality
within two distributions to enhance model capabili-
ties under each. For 7, we compute its advantage
by aggregating rewards from O U (O’ generated by
both p and p’, followed by global normalization.
This quantifies the relative effectiveness of para-
metric knowledge versus external knowledge when
processing p’, ensuring balanced synergy. The ad-
vantage of 7 is calculated as follows:
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We then caculate policy object 1(6) , I'(0) , 1(6)
for three distributions as follows:
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For the optimization objective of [(f), given that
our training samples are concatenated and thus lack
a reasonable old distribution, we have removed im-
portance sampling. Additionally, to facilitate better
exploration of parametric knowledge by the model,
we also omit gradient clipping. Our ultimate opti-

mization goal is to maximize the expected rewards
of the three distributions:

J(0) =1(0) +1I'(0) +1(6)

7’3‘,1;(‘9) =

3.4 Knowledge advantage adjustment

When the model receives p/, its output distribution
is 7/. We now aim to modify it with partial capa-
bilities of 7/, i.e., the ability to reason based on
its parametric parametric knowledge under p’. To
achieve this, we calibrate the distribution of 7’ by
concatenating the output O based on p. This pro-
cess effectively simulates the distribution of para-
metric knowledge reasoning when processing p’



thereby obtain 7, as illustrated below. Through
joint optimization of the three distribution strate-
gies, the model holistically enhances its internal
and external knowledge capabilities based on fac-
tual rewards. However, during reinforcement learn-
ing training, the quality of training trajectories gen-
erated from input p’ typically surpasses that of p.
This imbalance leads the advantage calculation to
inherently prioritize responses relying on external
knowledge responses when the model struggles
to generate correct solutions internally, potentially
suppressing exploration of useful internal knowl-
edge pathways. To balance exploration between &
and 7/, we introduce an advantage function trans-
formation. For advantage of 7, we apply the fol-
lowing modified advantage calculation:

ady, if AL >0

. (6)
BAL, it A, <0

LReLU(4}) = {

Where Aj represents the advantage of the jth re-
sponse triggered by the parametric cue, « and
are set to 2 and 0.05 as default for reducing the
penalty for parametric knowledge exploration and
encourage better parametric knowledge answers.

4 Experiments

This section evaluate the capability of our method
and baselines in parametric/contextual knowledge
conflict tasks and RAG tasks.

4.1 General Experiments Setup

We conduct model based on Qwen2.5-3B-Instruct
and Qwen2.5-7B-Instruct, and across multiple
datasets: ConflictQA (Xie et al., 2024b) for inte-
grating parametric and contextual knowledge task;
Hotpotqa (Yang et al., 2018), 2WikiMultiHopQA
(Ho et al., 2020), and Musique (Trivedi et al., 2022)
for retrieval-augmented general tasks. We compare
our method against the following baseline methods:
RAG prompting, SFT, and GRPO, and use query-
only prompting, GRPO-prompting as auxiliaries.
Following (Jin et al., 2025), Exact Match (EM)
is used for evaluating the accuracy, more training
details are shown in Appendix B.

4.2 Knowledge Conflict in Parameters and
Context Tasks

We introduce the ConflictQA benchmark to evalu-
ate the model performance of LLM in RAG scenar-
ios involving knowledge conflicts. In order to deep

analysis the situations of arrangement and combi-
nation of correct parametric and contextual knowl-
edge, we first construct a overall dataset, which is
constructed by 1:1 ratio ramdomly sampling incor-
rect context and correct context question-answer
pairs, and split it into a training dataset ‘CQ_train’
and a testing dataset ‘CQ_test’.

In order to further analysis our method and base-
lines’s performance in each situations of knowledge
conflict, we then filter the ‘CQ_test’ into eight sub-
testing datasets.

4.2.1 Sub-testing Dataset and Metric
Construction

We construct the new sub-testing datasets and met-
rics in follow steps:

Step I: Adopting the approach of (Zhang et al.,
2024a), parametric knowledge accuracy is gauged
using the EM score from query-only inputs.

Step II: Context knowledge accuracy is assessed
based on context source, comparing responses us-
ing correct versus incorrect evidence.

Step III: The ‘CQ_test’ dataset is partitioned
into four subgroups: ‘T_i’ for parametrically cor-
rect, ‘F_1i’ for parametrically incorrect, ‘T_e’ for
contextually correct, and ‘F_e’ for contextually in-
correct QA pairs.

Step I'V: We create five sub-testing datasets by
applying set operations to the Accpire. These op-
erations produce datasets: T_i NF_e, F_i N T_e,
F_e,T_e,T_iUT_e,and F_iNF_e.

Step V: For clarity and brevity in reporting, we
assign the following labels to the accuracy met-
rics for these sub-testing datasets: Accrige, ACCFiTe,
Accpe, AcCte, AcCTiTe, and Accpire. And the accu-
racy in ‘CQ_test’ is defined as Acccq.

4.2.2 Capability 1: The performance in
parameters and context confict

Capability 1 (C'1) is characterized by situations
where the context and parameters has conflict orig-
inal facts. Table 1 shows the performance of
Knowledgeable-r1 and baselines. We observe
that Knowledgeable-r1 outperforms all models
on the Accrige metric, achieving improvements of
14.9%, 13%, and 23.3% over the RAG prompting
baseline in their respective conflict question-answer
tasks. Higher accuracy in Accripe is indicative of
better identification and resistance to counterfac-
tual context input through the use of parametric
knowledge, aligning with the primary objective of
our method: to use correct parametric knowledge



Table 1: Parameters and context conflict evaluation. Accrire demonstrates the capability of parameters knowledge
to aid counterfactual reasoning and Accrite reflects parameters skepticism.

ConflictQA-QA ConflictQA-MC ConflictQA-MR Avg.
Acc(EM) Accrire AcCiTe Avg. Accripe AcCFiTe Avg. Accripe AccCriTe Avg. Accripe ACCFiTe Avg.
query-only prompting 100% 0% 50% 100% 0% 50% 100% 0% 50%  100.00% 0.00%  50.00%
RAG prompting 151.90% 59.60% 55.75% 146.50% 52.30% 49.40% |5520% 52.10% 53.65% |5120% 54.67% 52.93%
SFT-RAG w/o CoT 2040% 70.40% 4540% 24.80% 54.40% 39.60%  34%  5470% 4435% 2640% 59.83% 43.12%
GRPO-inner 92.80%  6.80% 49.80% 87.70% 1920% 53.45%  86.70% 1630% 51.50% 89.07% 14.10% 51.58%
GRPO-RAG 5490% 62.10% 58.50% 54.60% 58.70% 56.65%  57%  51.40% 5120% 55.50% 59.40% 57.45%
" Knowledgeable-riw/ol 65.50% 62.20% 63.85% 6330%  49%  56.15% 7440%  53%  6370% 67.70% 5470% 61.23%
Knowledgeable-r1 66.80% 61.60% 64.20% 59.50% 54.60% 57.05% 78.50%  4690% 62.70% 68.27% 5437% 61.32%
“impro. vs RAG prompting  +14.90% +2.00% +845% +13.00% +230% +7.65% +23.30% -5.20% +9.05% +17.07% -030%  +8.39%
impro. vs GRPO-RAG  +11.90% -0.50% +5.70% +4.90% -4.10% +0.40% +21.50% -1050% +5.50% +12.77% -5.03% +3.87%
Table 2: The robustness performance for incorrect and correct context knowledge. Accg. indicates the anti-
interference ability and Accr. represents the consistency of correct context.
ConflictQA-QA ConflictQA-MC ConflictQA-MR Avg.
Acc(EM) Accpe AccTe Avg. Accre Accre Avg. Accpe Accre Avg. Accpe Accre Avg.
query-only prompting  30.80%  31.20% 31.00% 2590% 26.80% 26.35% 2630% 27.10% 26.70% 27.61% 21.80% 27.73%
RAG prompting 118.80% 70.50% 44.65% 11590% 59.40% 37.65% 12250% 61%  41.75% 19.07% 36.30% 27.68%
SFT-RAG w/o CoT 8%  71.70% 4285% 7.90%  62.10% 3500% 1370% 5490% 34.30% 9.87% 33.10% 21.48%
GRPO-inner 32% 34%  33.00% 32.60% 33.10% 32.85% 3330%  36%  34.65% 32.63% 3330% 32.97%
GRPO-RAG 20%  72.60% 4630% 18.90% 66.50% 4270%  24%  61.10% 42.55% 2097% 38.50% 29.73%
Knowledgeable-riw/ol 24.90% 73.10% 49.00% 23.80% 57.40% 40.60%  34%  63.50% 48.75% 21.57% 43.63% 35.60%
Knowledgeable-r1 2540% 73.10% 49.25% 2230%  62.70% 42.50%  34% 59%  4650% 27.23% 43.13%  35.18%
“impro. vs RAG prompting ~ +6.60%  +2.60% +4.60% +6.40% +3.30% +4.85% +1150% -2.00% +475% +8.17% +6.83% +1.50%
impro. vs GRPO +540% +050% +2.95% +3.40% -3.80% -020% +10.00% -2.10% +395% +6.27% +4.63% +5.45%

Table 3: Evaluation on several other metrics. Accrr. indicates the knowledge fusion ability based on the upper
limit of RAG prompting and query-only methods. Accgire represents the knowledge updating of models.

ConflictQA-QA ConflictQA-MC ConflictQA-MR Avg.

ACC(EM) ACCCQ ACCTiTe ACCFiFe ACCCQ ACCT',Te ACC]:iFe ACCCQ ACCTiTe ACC]:;]:E ACCCQ ACCTiTe ACCpipe
query-only prompting 31.22% 47.60% 0.00% 26.40% 43.40% 7.10% 26.73% 42.10% 0.00% 28.12% 4437% 2.37%
RAG prompting 44.79%  66.20%  4.00% 37.25% 56.20% 6.00% 41.96% 59.80% 10.80% 41.33% 60.73%  6.93%
SFT-RAG w/o CoT 43.04% 6430% 2.40% 3436% 53.40% 3.30% 38.40% 56.70%  6.40%  38.60% 58.13% 4.03%
GRPO-inner 33.06% 47.80% 5.00% 32.88% 45.00% 12.90% 34.69% 46.40% 1420% 33.54% 46.40% 10.70%
GRPO-RAG 46.44% 68.40% 4.50% 42.23% 62.60% 8.60% 44.79% 63.40% 12.30% 44.49% 64.80% 8.47%
Knowledgeable-riw/ol 49.12% 7130% 6.80% 40.25% 58.90% 9.50% 47.58% 65.80% 15.90% 45.65% 6533% 10.73%
Knowledgeable-ri 49.30% 71.60% 690% 42.10% 62.10% 9.10% 46.60% 63.00% 18.10% 46.00% 65.57% 11.37%

" impro. vs RAG prompting  +4.51% +5.40% +2.90% +4.85% +590% +3.10% +4.64% +3.20% +7.30% +4.67% +4.83% +4.43%
impro. vs GRPO +2.86% +3.20% +2.40% -0.13% -0.50% +0.50% +1.81% -0.40% +5.80% +1.51% +0.77% +2.90%

to mitigate the effects of incorrect context input.

In the case of the Accgite metric, our method
shows a minimal performance reduction of only
0.30%. From the GRPO-inner perspective, optimiz-
ing the inner part will result in a decrease in the in-
dicator when compared with RAG prompting. The
slight decline in the Accpit. metric is considered to
be justifiable, as our method indeed places a greater
emphasis on parametric knowledge compared to
other methods. To maintain fairness between the
two scenarios, we compute their average value as
a general performance to minimize the impact of
dataset ratios. This approach yields an 8.39% abso-
lute improvement over the RAG prompting method
and a 3.87% improvement over GRPO. Notably,
the more complex the tasks, the more pronounced
the performance gains associated with our method.

4.2.3 Capability 2: The performance in
robustness for extra knowledge

Capability 2, represented as C'2, assesses the perfor-
mance of knowledge processing when both correct
and incorrect context facts are incorporated across
two scenarios. As summarized in Table 2, the over-
all enhancement in C2 is more pronounced than
that in C'1. Espect to C1, C'2 addresses instances
where the context and parameters are congruent,
suggesting that our method additionally bolsters
knowledge consistency. Detail evaluation on both
parameters and context being correct is shown in
Appendix D, which improves by 4.7%. In par-
ticular, our approach shows superior performance
in the Accserr and Accscpr metrics, with gains of
8.17% and 6.83% over RAG prompting, and 6.27%
and 4.63% over GRPO, respectively. Regarding the
robustness to extraneous knowledge, our method
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registers advances of 7.5% and 5.45% relative to
RAG prompting and GRPO, respectively.

4.2.4 Capability 3: The performance in
knowledge fusion

In this section, we further explore the proficiency
of knowledge fusion and knowledge expansion,
shown in Table 3. Accrire requires the amalgama-
tion of both contextual and parametric knowledge
to effectively tackle the problem, with an ideal
integration value of 100%. Nonetheless, the accu-
racy achieved with RAG prompting stands at only
60.73%, and SFT method registers just 58.13%
accuracy. These outcomes highlight a significant
issue where parametric knowledge is eclipsed by
the influx of contextual information. In contrast,
our method exhibits a marked improvement, with
the highest gain of 5.4% in the ConflictQA-QA
task, culminating in a 71.6% accuracy rate.

4.2.5 Capability 4: The performance in
knowledge extending

Additionally, we consider a scenario where nei-
ther the parameters nor the context are adequate
to correctly resolve a question, deeming such in-
quiries theoretically unanswerable. This scenario
assesses the aptitude of our method to correctly
answer the question when lacking pertinent para-
metric knowledge and when contextual knowledge
proves unbeneficial. Against RAG prompting, SFT,
and GRPO methods, our method advances the per-
formance by up to 6.7%.

4.2.6 Capability 5: The performance in
overall knowledge conflict

Furthermore, we emphasize the uniform per-

formance enhancement across the original

ConflictQA-test set, showcasing a 4.67% improve-

ment (Figure 2). Our method invariably maintains

steady advancement.

Table 4: Contextual self-conflict evaluation. Accgscry
and Accgcpy indicate the accuracy of conflict context
when parameters have correct and incorrect knowledge,
respectively.

Accscrt Accscrr Accesc(Avg.)

query-only prompting 100% 0% 50%

RAG prompting 82.8%  46.5% 64.65%
SFT-RAG w/o CoT 777%  43.3% 60.5%
GRPO-RAG 854%  52.6% 69%

Knowledgeable-riw/ol  89%  48.5%  68.75%
Knowledgeable-ri 89.6% 52% 70.8%

" improv. vs RAG prompting  +6.8%  +5.5%  +6.15%

improv. vs GRPO-RAG +4.2%  -0.6% +2.4%

4.3 Context Self-Knowledge Conflict Tasks

In order to evaluate the scenarios where the context
contains conflicting facts, we partition the ‘CSCQ’
test set into two distinct subsets: ‘CSCQ_Ti’ and
‘CSCQ_F1i’. These subsets are classify according to
the query-only prompting method is correct or not.
We define the accuracy on these subsets as follows:

* Accscrr: Accuracy in the ‘CSCQ_Ti’ subset.
* Accscrr: Accuracy in the ‘CSCQ_Fi’ subset.

The overall performance in context self-
knowledge conflict tasks is then evaluated by
computing the average of Accscrr and Accscrr,
which we define as Accgc. This metric is in-
tended to provide a balanced measure of how
Knowledgeable-r1 handles conflicting informa-
tion within the context and retains accurate knowl-
edge representation.

As depicted in Table 4, Knowledgeable-r1 out-
performs the baseline methods, achieving a 70.8%
success rate. This indicates a significant improve-
ment over the highest baseline performance, which
is 10.3%.



Table 5: Performance comparison of various baselines
on both out-of-domain and in-domain benchmarks. We
report EM scores (%) for all benchmarks for clarity.
Avg. denotes the average EM scores(and %) across all
benchmarks.

Method Hotpotqa Musique 2wiki Avg.
Qwen2.5-7b-Instruct

query-only prompting 17.99% 2.57%  2246% 14.34%
RAG prompting 24.13% 6% 26.73% 18.95%
SFT-RAG 23.92% 6.29%  26.92% 19.04%
GRPO-inner 21.74% 4.72%  26.77% 17.74%
GRPO-RAG 28.04% 10.01%  29.32% 22.46%
Knowledgeable-r1 wiol  31.33% 10.88% 38.51% 26.9%
Knowledgeable-r1 32.80% 12.00%  39.42% 28.07%
Qwen2.5-3b-Instruct

query-only prompting 16.25% 1.90% 11.10%  9.75%
RAG prompting 19.49% 583%  20.74% 15.35%
SFT-RAG 19.53% 5.67%  20.82% 15.34%
GRPO-inner 16.72% 2.52% 18.66% 12.63%
GRPO-RAG 25.36% 844%  3042% 21.41%

" Knowledgeable-r1  27.09%  7.53%  3339% 22.67%

Table 6: The best performance of Knowledgeable-r1
in RAG tasks

Method Hotpotqa Musique 2wiki Avg.
Qwen2.5-7b

query-only prompting 17.99% 2.57%  22.46% 14.34%
CoT 19.18% 343%  21.84% 14.82%
RAG prompting 32.05% 13.65% 3595% 27.22%
SFT-inner 16.21% 1.99%  21.73% 13.31%
SFT-RAG 32.17% 14.36% 3593% 27.49%
Search-ol 18.70% 580%  17.60% 14.03%
GRPO-inner 21.74% 472%  2677% 17.74%
GRPO-RAG 38.15% 24.64%  53.32% 38.70%
search-r1(Hotpotqa+nq) 38% 16.80%  32.60% 29.13%

“Knowledgeable-r1  40.36%  2495% 56.23% 40.51%

Qwen2.5-3b

query-only prompting 16.25% 1.90% 11.10%  9.75%
CoT 12.79% 228%  23.83% 12.97%
RAG prompting 25.44% 13.57% 29.83% 22.95%
SFT-inner 12.11% 1.53%  17.95% 10.53%
SFT-RAG 25.62% 13.28% 29.84% 2291%
Search-ol 22.1% 5.4% 21.8% 16.43%
GRPO-inner 16.72% 2.52%  18.66% 12.63%
GRPO-RAG 33% 2495%  50.6% 36.18%
search-r1(Hotpotqa+nq) 30.8% 10.5% 27.3% 22.87%

“Knowledgeable-r1 — 34.57%  20.85% 47.97% 34.46%

4.4 General RAG tasks

To further explore our method’s performance in
general RAG tasks, we evaluate it on three datasets,
using only HotpotQA as the training dataset. Tables
5 and 6 show our method’s best performance com-
pared to baselines, achieving an average improve-
ment of 5.51% over the GRPO baseline. Table 5
uses five retrieval documents for fairness. To find
our method’s upper limit on these datasets, we use
all retrieval documents, with performances shown
in Table 6. We finally achieve 40.36%, 24.95%,
and 56.23% accuracy in HotpotQA, Musique, and
2wiki, respectively. Notably, these results exceed
Search-R1 (Jin et al., 2025) and Search-O1 (Li

Table 7: Knowledgeable-r1 component ablation study,
including adding importance sampling, using single-
group average, and deleting the LeakyRelu operation of
advantages.

Model Hotpotqa(1000step)
Knowledgeable-ri 28.36%
+ import sampling (7oq(6(0|p)) 13.94%
+ import sampling (7,4(6(0|p’)) 26.81%
- improve +1442%
+ p prompt group averge 20.70%
S improve +7.66%
— leakrelu 21.30%
S improve +7.06%

et al., 2025), even though they use multi-step re-
trieval and two training datasets.

5 Ablation & Analysis Study

5.1 The Performance of Component in
Knowledgeable-r1

In this section, we conduct an ablation study to
investigate the influence of various components
of our Knowledgeable-r1 on its overall perfor-
mance, as detailed in Table 7. Both the computing
of Advantages subgroup and the leakyReLU en-
hancements contribute positively to the efficacy of
Knowledgeable-r1 training. Moreover, applying
importance sampling to fake distribution does not
lead to an enhancement, and instead introduces
greater variance into the training process.

5.2 The Training Efficiency of
Knowledgeable-r1

Figure 3 shows the training curve comparison be-
tween GRPO and our method. Compared with
GRPO, our method converges earlier and has a
higher reward (accuracy) when converging. Over-
all, Knowledgeable-r1 is more efficient due to di-
rected exploration, which enables faster and deeper
focus on internal information, thus leading to quick
convergence to higher performance.

5.3 The Upper Limit of Knowledge Processing

We analyze the theoretical upper limit according
to the correct union of RAG prompting correctness
and query-only prompting correctness. As depicted
in Figure 4, our method demonstrates performance
closest to the union metrics, and we observe that
the more space there is for improvement in RAG
prompting compared to the union, the better the per-
formance and improvement our method achieves.



acc_correct_ratio_is_arguments0
— Tb-oursv2-MC = Tb-rag-grpo-MC

1k 1.5k
acc_correct_ratio_is_arguments0
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2k ak 6k

Figure 3: Comparison of training curves. The above one
is the Confilict-MC dataset, purple represents GRPO,
and bottom one represents Knowledgeable-r1. The
right side is the HotpotQA dataset, and green represents
Knowledgeable-r1.
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Figure 4: The performance of Knowledgeable-r1 com-
pare to theoretical accuracy rates.

5.4 Mitigating Misinformation in Context
Evaluation

It is necessary to investigate into the discriminatory
capabilities of models when evaluating contexts
potentially laden with misinformation. As delin-
eated in Tables 1 and 2, the Accrijge and Accge
metrics shows the accuracy when has misleading
context, consider the the accuracy of the paramet-
ric knowledge or not respectively. In this study,
we have identified that supplementing LLMs with
additional knowledge may lead to misinformation,
resulting in inferior performance when utilizing the
RAG prompting method as opposed to query-only
prompting.

The empirical evidence presented in Tables 1
and 2 illustrates that Knowledgeable-r1 achieves
significant enhancements over existing metrics. For
example, our method attains a 34% accuracy rate in
the ConflictQA-MR dataset, outperforming RAG

prompting methods by an 11.5% margin and ex-
hibiting a 10% lead over the GRPO approach. Re-
markably, when parameters memeries are accu-
rate in the context of incorrect information, our
method demonstrates even more pronounced im-
provements—showing a 23.3% increase in accu-
racy compared to RAG prompting and a 21.5%
advance relative to GRPO.

5.5 Model emergence capability of more
capable base models

As shown in Tables 3 and 2, the performance of our
method based on Qwen2.5-7b-Instruct surpasses
that of Qwen2.5-3b-Instruct, with retrieval accu-
racy improvements of 4.71% for the top five docu-
ments (32.8% vs. 27.09%) and 5.79% for the top
twenty documents (40.36% vs. 34.57%). These
results lead us to conclude that our method bene-
fits from more capable base models, aligning with
our hypothesis that larger models possess more
extensive parametric knowledge, thereby enhanc-
ing their ability to leverage this knowledge for im-
proved performance. As base models continue to
evolve, our method demonstrates significant poten-
tial for achieving better performance with increas-
ingly larger models.

6 Conclusion

Our work introduces Knowledgeable-r1, a ver-
satile and novel framework for reinforcement
learning that has proven effective in guiding ex-
ploration through the use of supplemental cues
to encourage the proper use of both contextual
and parametric knowledge within large language
models (LLMs). Through extensive experiments
on knowledge conflict and general RAG tasks,
Knowledgeable-r1 has shown to significantly bol-
ster the ability of LLMs to amalgamate contextual
and parametric knowledge especially when the in-
put context is counterfactuals. As for future work,
there exists a wealth of opportunities to deploy
Knowledgeable-r1 in larger and more complex
settings, and to develop it further to incorporate
multiple directed exploration cues within a mixed
objective-conditioned policy framework. Such ex-
plorations promise to be both intriguing and chal-
lenging.



Limitations

Our method proposes a reinforcement learning
framework to address knowledge conflicts in large
language models (LLMs), primarily focusing on
enabling autonomous integration of parametric and
contextual knowledge through factual grounding.
However, the current approach does not account
for scenarios where both knowledge sources con-
tain inaccuracies, leaving open the question of
whether models can learn abstention capabilities
under such conditions. Future research should es-
tablish a multi-dimensional assessment framework
to systematically evaluate LLMs’ abilities in cross-
source knowledge utilization, including error detec-
tion thresholds and dynamic knowledge reliability
estimation.
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