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ABSTRACT

We investigated Agentic RL with large language models on the TRAVELPLAN-
NER benchmark. Our approach, PLANNER-R1, achieved a 56.9% final-pass rate
with only 180 training queries, a 2.7x improvement over GPT-5’s 21.2% baseline
and the strongest agentic result on the public leaderboard. A central finding was
that smaller models (8B) were highly responsive to reward shaping: with dense
process-level signals, they reached competitive performance while being 3.5x
more compute-efficient and 1.5x more memory-efficient than 32B models. Larger
models were more robust under sparse rewards but exhibited smaller relative gains
from shaping and higher variance across runs. While curriculum learning offered
no significant benefit, shaped rewards consistently amplified learning dynamics,
making 8B models the most efficient setting for agentic RL. Crucially, these gains
did not come at the cost of overfitting: fine-tuned models mostly maintained or ex-
ceeded baseline performance on out-of-domain tasks, including MULTI-IF, NAT-
URALPLAN, and 7-BENCH. These results establish reward shaping as a decisive
lever for scaling agentic RL, highlight the competitive strength of smaller models,
and demonstrate that efficiency can be achieved without sacrificing generalization.
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Figure 1: Final-pass rate on the leaderboard test set for tool-use travel planning. Our Planner-R1
models outperformed SOTA LLMs reaching 56.9% average final pass rate.

1 INTRODUCTION

Large Language Models (LLMs) have recently posted striking gains in deliberate reasoning and
decision making, propelled in part by large-scale reinforcement learning (RL) that trains models to
think before they answer (OpenAl et al., 2024a; Guo et al., 2025). Beyond language understanding,
LLM agents now demonstrate emerging competence in structured reasoning, tool use, and multi-
step problem solving across embodied and web environments (Huang et al., 2024; Wang et al.,
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2023a; Feng et al., 2025; Zhang et al., 2025b). Yet turning these abilities into reliable long-horizon
execution under real-world constraints remains challenging: prompting-only agents such as ReAct
and Reflexion frequently mis-sequence actions, loop, or hallucinate when tasks demand coordinated
tool use and strict constraint satisfaction (Yao et al., 2023b; Shinn et al., 2023).

Planning tasks such as meeting scheduling and multi-day itineraries are demanding: agents must
coordinate heterogeneous tools (calendars, maps, flights, booking APIs), satisfy hard, interdepen-
dent constraints, and maintain global consistency over long horizons. TRAVELPLANNER makes
these difficulties concrete by casting travel itinerary creation as tool-augmented, constraint-driven
planning (Xie et al., 2024). The benchmark provides a sandbox with nearly four million records
and 1,225 curated intents with reference plans, and evaluates whether an agent can gather evidence
via tools and synthesize itineraries that satisfy both explicit user constraints and commonsense fea-
sibility. At release, even strong models struggled—e.g., GPT-4-Turbo with ReAct achieved only a
0.6% final pass rate on the 1,000-example test split—underscoring the gap between fluent language
modeling and dependable constraint-aware planning (Xie et al., 2024).

To close this gap, researchers have explored different training paradigms. A natural starting point is
behavior cloning via supervised fine-tuning (SFT), where a teacher generates “golden” trajectories
and a policy maximizes their likelihood, often masking environment observations and tool outputs.
While simple and widely used, SFT largely imitates expert behavior and is brittle under distribution
shift or suboptimal data. This motivates the search for approaches that directly optimize for end-
task success rather than imitation fidelity. RL provides precisely such a mechanism: rewards encode
task success, and the policy is updated to increase the likelihood of action sequences that satisfy con-
straints while suppressing those that fail. Recent work has shown that RL can deliver state-of-the-art
gains in model-based reasoning and planning (OpenAl et al., 2024a; Guo et al., 2025), making it a
promising direction for tackling long-horizon tool use in TRAVELPLANNER. In addition to model
performance, there is growing interest in building efficient agentic systems with smaller models
(Belcak et al., 2025). Such models show promising potential for inference and training efficiency,
but there remains limited understanding of how agentic RL can best improve their performance
without overfitting. Our study addresses this gap by examining how model size, reward shaping,
and efficiency interact in agentic RL.

We formulate TRAVELPLANNER as a multi-step, tool-use MDP with constraint-aware planning,
where the agent gathers missing facts, reconciles conflicts, and outputs a structured itinerary. Train-
ing uses agentic RL with trajectory-level rewards gated by schema validity. Our main focus is the
role of reward density: we vary feedback from dense, process-level signals to sparse final-pass re-
wards, and also test a curriculum that transitions between them. All reward variants are properly
shaped, ensuring they converge to the same optimal policy while revealing how granularity influ-
ences learning dynamics. Our contributions are summarized below.

¢ SOTA Tool-Use on TravelPlanner PLANNER-R 1-32B achieved a 56.9% final-pass rate
on the official 1,000-query test split, a 2.7 x improvement over GPT-5. This is the strongest
agentic result on TRAVELPLANNER, demonstrating that RL-tuned models can surpass
state-of-the-art proprietary models.!

* Reward shaping dynamics We find a strong link between reward granularity and policy
competence. Smaller models (8B) were especially responsive to shaped, process-level re-
wards, achieving performance competitive with 32B models while being up to 3.5x more
compute-efficient and 1.5x more memory-efficient. Larger models (32B) performed well
across reward settings and remained more robust under sparse signals, but exhibited higher
variance under dense rewards. In contrast, 8B models depended more heavily on dense
shaping. Curriculum learning alone provided no measurable benefit, whereas reward shap-
ing consistently amplified learning dynamics, making the 8B models the most efficient
setting for agentic RL.

* Generalization Beyond Training Domain Our agents did not overfit to TRAVELPLAN-
NER: Planner-R1 models maintained or exceeded baseline performance on out-of-domain
tasks including MULTI-IF, NATURALPLAN, and 7-BENCH, provided that excessive
domain-specific fine-tuning is avoided. This demonstrates that the efficiency gains from

"Hao et al. (2025) achieved 93.9% correctness with external SAT/SMT solvers; our focus is on end-to-end
agentic planning without such solvers.
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Figure 2: MDP Visualization. x; represent the ith token, while a; represents the action the agent
took at time . Notice that initial prompts and tool responses contain tokens, but they dont increase
the time step ¢.

agentic RL come without sacrificing robustness, supporting transfer to diverse planning
and tool-use settings.

* RL Benchmark Formulation We recast TRAVELPLANNER as a multi-step agentic RL
benchmark by leveraging the official sandbox and its seven tools, and we designed verifi-
able reward functions aligned with the task’s success criteria. Policies were trained with
VERL(ver, 2024), where our system-level optimizations reduced runtime and memory us-
age by 20%, enabling efficient large-scale experimentation. (see Appendix A for details)

2 PLANNER RL

2.1 PROBLEM FORMULATION

We cast tool-augmented planning as a Markov Decision Process (MDP) M = (S, A, P, r,~). Since
our MDP is episodic, we set v = 1. Each episode is initialized with two textual inputs: a system
prompt y, which defines the agent’s role and available tools (see Appendix B.1), and a user prompt
u, which specifies the task goal and user preferences. At each time step ¢, the agent interacts with the
environment by emitting a token, alternating between natural language and structured tool invoca-
tions, until it decides that a complete plan has been formed. Figure 2 illustrates this process. While
our instantiation focuses on the TRAVELPLANNER benchmark (Xie et al., 2024), the formulation is
general and extends naturally to other agentic RL tasks. We next describe the individual components
of the MDP:

States. s; € S denotes the complete history, including the initial system and user prompt, the agent’s
partial plan, and all tool calls and responses observed up to step ¢, beginning from so = (y, u).

Actions. a; € A is the generated token at time ¢. The agent issues fool calls
through tokens to gather the necessary information and then produces the final plan
through a fext action. Tool calls are realized as seven APIs connected to a sand-
box with millions of grounded records: search_flights, search_accommodations,
search_restaurants, search_attractions, search_ground_transportation,
get_cities, and calculator. Each call takes JSON arguments and is wrapped inside
<tool_call>...</tool_call>,returning a structured JSON object: successful calls yield a
list of serialized rows, while failures return an error field.

Compared to the original TRAVELPLANNER, we added the calculator API for explicit numeric
reasoning and disabled the lightweight semantic memory so that tool responses appear directly in the
context. The final text action directly outputs an itinerary enclosed in <answer>...</answer>.
This design standardizes iterative tool use while keeping the final deliverable unambiguous.

Transitions. The environment appends each action to the state; if a tool call is completed, it is
executed and the output o, is added, otherwise oy is null. The next state is s;1.1 = (¢, at, 0411), With
older context truncated when exceeding the window. A key difference from the original benchmark
(Xie et al., 2024) is that we append tokens chronologically to the state, making our transition more
generic, as opposed to moving the tool responses to a specific part of the context.
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Reward. In this domain, success is sparse and binary. A plan receives a reward of one only at
termination if it is schema-valid and satisfies both commonsense and user-specified constraints.
User queries are designed to ensure that at least one feasible plan exists.

To pass schema validation, the plan must be a valid JSON array of day-level objects,
each conforming to a fixed schema with fields for days, city, transportation,
attraction, accommodation, breakfast, lunch, dinner. Importantly, city
and transportation are typed objects with required fields (e.g., transportation must specify
mode, origin, destination, and duration), rather than free-form strings. The full schema is provided
in Appendix B.2.

Constraints fall into two categories. First, there are N.s commonsense constraints, which are not
explicitly given to the agent but must nonetheless be satisfied (e.g., transportation segments cannot
overlap). Second, there are Ny,.q hard constraints, explicitly specified in the user prompt, such as
departure and return dates. Formal definitions and the complete list of constraints are provided in
Appendix F and work of Xie et al. (2024).

Our objective is to learn a policy mg(a | s) that maximizes the expected cumulative reward, which
here reduces to optimizing the terminal reward: maxy E,[rr].

2.2 MULTI-STAGE REWARD

Due to the extreme sparsity of the reward function, we shape it using auxiliary metrics defined in
the original paper. In particular,

* T'schema = 1[plan conforms to schema]: indicator of schema compliance,

o TR0 = f,— fraction of satisfied commonsense constraints,

o ppmicro — f,“‘"d fraction of satisfied hard constraints,

* T = ]I[rg;‘“" = 1] indicator that all commonsense constraints pass,

o rmaco — [[pmico — 1] indicator that all hard constraints pass,

* Tpass = I[rge™ A read]: indicator that both commonsense and hard constraints pass.

Here, I is the indicator function. The micro rewards are necessary to provide partial credit when
all constraints are not met , the macro rewards emphasize satisfying entire categories, and 7pqss
corresponds to the original evaluation metric. The terminal reward in the generic form can then be
written as:

= Tanema (A7 4+ Ao A5 - Aar I 4 Ao ) 1)
By adjusting A = [A1, ..., As], we control the reward density. In practice, we consider three stages:

 Stage 1: A =1,1,1,1, 1] (dense feedback),
* Stage 2: A =[0,0, 1,1, 1] (category-level),
* Stage 3: A =0,0,0,0, 1] (sparse final pass).

This setup defines proper reward shaping: auxiliary terms provide intermediate guidance, while the
final-pass reward captures the true objective. Crucially, all of the above weightings preserve the same
optimal policy (see proof in Appendix E). Building on this, we define a curriculum that schedules
A across training, beginning with dense feedback for partial credit, then shifting to category-level
rewards, and finally collapsing to the sparse end reward. Transitions occur at predefined step counts.

2.3  OPTIMIZATION

We used GRPO (Shao et al., 2024), a clipped PPO-style objective without KL regularization. For

each planning query u € D, we sample G trajectories T = {Ti}f_zl with corresponding Returns

r = {ry,ra, -+ ,7g} from the behavior policy 7,,,, where 7; = (s, ap, . .., s, ). The loss is
=

= Z > min(pj Ai, clin(py’, 1 -, 1+ ) Ai) |, @)

Jerpo(0) = Eynup, {7;}~m old
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with clipping hyperparameter € > 0. The token-level importance ratio and trajectory-level advantage
are defined as -
g ol shaky) 4 r— mean(r)

o 0014 (a? ‘ si,aQt)’ e Std(r)

We theoretically proved (proof in Appendix G) that properly shaped rewards like Stage 1 lead to
faster convergence than the original sparse Stage 3 reward. This insight provide a fundamental justi-
fication for the effectiveness of reward shaping in agentic RL for LLMs. We also proved asymptotic
performance equivalence between our sparse and dense rewards under regular assumptions (proof
in Appendix H) . This guarantees that the performance of properly shaped rewards is no worse than
original sparse reward.

3  EMPIRICAL RESULTS

3.1 SETUP

In-Domain We fine-tuned Qwen3 8B/32B models across 5 runs with fixed set of seeds on TRAV-
ELPLANNER.? Due to GPU memory constraints and the 32K context limit, we conducted prelim-
inary evaluations with “thinking” enabled (qwe, 2025b;a) and found that the additional reasoning
quickly saturated the context window, leading to truncated trajectories and degraded performance
(see Appendix I). Combined with recent evidence that test-time thinking does not universally im-
prove model quality (Gema et al., 2025; Shojaee* et al., 2025), these observations motivated our
decision to disable thinking for all experiments. We named our fine-tuned models Planner-R1. The
official 45/180 train—validation split was merged and reshuffled into 180 training and 45 validation
queries, while preserving the easy/medium/hard ratio. We evaluated three single-stage reward con-
figurations with 500 steps and a curriculum regime for 8B and 32B models with 100/300/100 and
50/350/100 steps respectively.® 8 rollouts were executed in sglang with a standard ReAct-style
agent. We capped trajectories at 30 steps, tool responses at 8,192 tokens, and model outputs at
30, 500 tokens. All runs used two nodes (16 xH200 GPUs). We used learning rate of 10~°. Full
hyperparameters and implementation details are given in Appendix B.3, and decoding and sampling
presets are summarized in Appendix B.4.

Out-of-Domain A central concern with task-specific fine-tuning is whether it harms generaliza-
tion outside the target domain. To probe this, we evaluated our trained models on three comple-
mentary suites. All were unseen during training, with evaluation limited to task instructions. (i)
NATURAL PLAN (Zheng et al., 2024) (Trip Planning, Meeting Planning, Calendar Scheduling),
where tool outputs were provided as context and accuracy was scored by Exact Match; we followed
the official five-shot prompting protocol. (ii) MULTI-IF (He et al., 2024) (English), a multi-turn
instruction-following benchmark derived from IFEval, where the input at turn ¢ concatenated all
prior turns (< ¢t — 1); we reported the mean of turn-wise scores. (iii) 7-BENCH (Yao et al., 2024)
(retail, function-calling), which measured goal completion against a simulated backend and policy
documents; we reported pass@1.

3.2 EVALUATIONS

Table 1 depicts the TRAVELPLANNER results based on Qwen3 (Yang et al., 2025), GPT (OpenAl
et al., 2024b; OpenAl, 2025b;a), and our Planner-R1 models using four reward models across six
metrics defined in 2. Numbers after &+ indicates 95% confidence intervals.

Base models showed partial competence but struggled with full constraint satisfaction. While
stronger base models achieved 99%+ delivery rates and moderate commonsense and hard-constraint
coverage, they did not perform well end-to-end. For instance, GPT-5 and GPT-03 achieved final
pass rates of 21.2% and 11.3%, respectively. In contrast, the open-weight Qwen3 series performed
substantially worse: the 8B model failed entirely, and the 32B model achieved only 0.6% final pass
despite a 41.9% delivery rate. This stark disparity underscored that the challenge lay not in planning

>We excluded 4B model as preliminary results did not show any trajectory with non-zero return.
3Given the strong Stage 3 performance of larger models, we advanced them more quickly from Stage 1.
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individual items, but in coordinating tool calls and enforcing all constraints jointly. Prior work (Yao
et al., 2023b; Nakano et al., 2021) suggested that prompting alone often underutilized tool feedback,
whereas robustness emerged when models interleaved reasoning with actions to query, observe, and
update plans. Our findings, as we will see in Section 4, align with this view: base models were able to
generate fluent itineraries, but their failures centered on tool sequencing and constraint bookkeeping
rather than basic retrieval.

Agentic RL delivered large gains; smaller models were reward-sensitive.

RL fine tuning improved both 8B and 32B Qwen3 models. PLANNER-R1-8B with the Stage 1
dense reward reached 39.9%, while PLANNER-R1-32B with Curriculum reward reached 47%. The
8B model was highly sensitive to reward sparsity: Stage 2 and Stage 3 led to 3/5 and 5/5 collapses,
consistent with prior evidence that smaller models depend strongly on shaped feedback (Ng et al.,
1999; dos Santos et al., 2024; Qian et al., 2025). These collapses are expected. Under sparse
Stage 2 and 3 rewards, the 8B model rarely produces correct early trajectories, yielding near-zero
advantages and stalling learning within the available compute budget, which also explains the wide
confidence intervals for Stage 2 and the O performance at Stage 3. Dense process rewards supply
graded feedback across micro, macro, and final pass components, allowing steady improvement
and effectively acting as a soft curriculum. This implicit progression aligns with ToolRL (Qian
et al., 2025), which shows that gradual reward changes outperform hard switches, and explains why
explicit curriculum transitions added no measurable benefit in our setup. The 32B model, with
a stronger initial policy, can generate partial solutions even under sparse rewards, making it more
robust; all reward settings yielded over 42%, with sparsity primarily increasing variance (£8 at Stage
1 —=+14.1 at Stage 3). Although Curriculum achieved the highest 32B score, the improvement was
not statistically significant.

Smaller models delivered superior GPU efficiency compared to larger ones. Given the strong
performance of Stage 1 training, we extended experiments with high-capacity settings, training the
8B model for 3,000 steps and the 32B model for 2,000 steps. Figure 3 reports results from five
independent runs. The left panel, plotted against training steps, shows that both models achieved
broadly similar performance trajectories. The right panel, however, plots final pass rate against
estimated FLOPs (see Appendix B.6) and reveals a clear efficiency gap. While the 32B model
reached 90% of its peak performance (52.3%) at 7.6 x 10%° FLOPs, the 8B model achieved the
same value at only 2.1 x 10%° FLOPs, a 3.5 improvement in efficiency.

Although the 32B model attained a slightly higher peak accuracy (56.9% vs. 56.4%), this difference
was not statistically significant and was accompanied by higher variance. We hypothesize that this
variance stems from differences in exploration dynamics. TRAVELPLANNER is a challenging en-
vironment where essential information is often missing, requiring recovery and alternative solution
paths. Smaller models tend to explore less and behave more deterministically, concentrating prob-
ability mass on a narrow set of actions. Larger models, by contrast, can consider a broader set of
strategies under uncertainty (for example, switching transportation modes or hotel choices), leading
to higher variability across rollouts. This exploratory flexibility likely contributes to the increased
variance observed in the 32B runs.

A memory-efficiency analysis (see Appendix B.5) showed that the 32B model consistently required
at least 1.5x more GPU memory than the 8B model, reinforcing that smaller models offer signifi-
cantly better efficiency for long-context agentic RL when data generation is not the bottleneck.
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Table 1: Results on the TRAVELPLANNER test set. For Planner-R1 models, we report mean per-
formance with 95% confidence intervals over five runs at 500 training steps. Stage 1-3 denote
runs trained exclusively on one stage for 500 steps each. Curriculum uses three phases: for 8B,
100/300/100 steps; for 32B, 50/350/100 steps across Stages 1-3.

Method Delivery Commonsense Hard Constraint Final
Rate Micro Macro Micro Macro Pass Rate
(%) (%) (%) (%) (%) (%)
Qwen3-8B 0.0 0.0 0.0 0.0 0.0 0.0
Qwen3-32B 41.9 27.5 1.7 11.4 7.2 0.6
GPT-03 (high) 99.6 74.2 14.3 57.7 48.0 11.3
GPTS5 (high) 99.8 81.0 23.4 75.4 71.1 21.2
Planner-R1-8B
Stagel 99.540.8 94.841.2 69.0£6.9 61.0+2.6 46.2+2.5 39.944.3
Stage?2 99.940.2 80.6+18.2 30.2+£51.9 63.44+13.8 48.6+16.3 13.3+23.2
Stage3 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
Curriculum 99.7+0.8 92.7+3.1 57.9418.6 53.9+5.7 38.2+4.2 27.14+12.6
Planner-R1-32B
Stagel 99.3+1.6  95.2+1.6 70.4+13.4 742414 56.4+29 42.3£8.0
Stage?2 91.14£0.5 87.7+2.2 69.1£14.5 70.0+£5.6 55.0+7.6 44.1£9.4
Stage3 99.44+0.9 94.7+2.5 71.9£152 60.8416.6 48.2+15.1 44.3+14.1
Curriculum 99.1+1.7 95.9+2.5 785£7.9 72.1£50 55.1+£6.2 47.0£6.9

RL fine-tuned models generalized beyond the training domain. Table 2 shows that RL fine-tuned
models performed mostly on par with, and often surpassed, their pretrained counterparts across NAT-
URAL PLAN (Zheng et al., 2024), MULTI-IF (He et al., 2024), and 7-BENCH (Yao et al., 2024). Blue
and red indicate significant improvements and degradations, respectively. After 2,000 steps, both
models improved on most metrics, and even at 3,000 steps the 8B model outperformed baselines on
five of seven metrics with marginal regressions on two metrics. We attribute this robustness to the
JSON-gated output structure, which couples semantics with format and reinforces tool-conditioned
behaviors, consistent with prior findings that structured generation improves reliability (Oestreich
et al., 2025) and supports generalization to unseen schemas (Liu et al., 2019).
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Figure 3: Performance of 8B and 32B Planner-R1 during training based on learning steps (left)
and training FLOPS (right). The horizontal dashed line highlights 90% of the maximum average
performance of 32B models, while vertical dashed lines show the required FLOPs to reach that
performance by both 8B and 32B models.
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Table 2: Transferability to external benchmarks without target-domain training (percent). Models
are evaluated on NATURAL PLAN, MULTI-IF, and 7-BENCH. Blue = significant improvement over
the base model; red = significant degradation from the base model.

Method (Training Steps) NATURAL PLAN Multi-IF T-bench

Trip Meeting Calendar 1st-Turn 2nd-Turn 3rd-Turn Pass@1
Qwen3-8B 1294+0.2 82.0+0.0 22.7+0.3 88.9+0.6 82.8+0.6 75.4+0.5 9.5+2.1
Planner-R1-8B (500) 14.0£09 83.2+1.1 24.34+0.9 89.4+04 83.5+£0.7 76.9£0.6 11.1£0.9
Planner-R1-8B (2000) 14.0£2.1 84.0+0.6 23.24+2.1 89.8+0.4 84.0£0.5 77.2+04 12.14+2.3
Planner-R1-8B (3000) 10.7+1.8 84.5+£1.3 20.1£2.0 89.84+0.1 83.94+04 76.7+£0.4 15.1£3.1
Qwen3-32B 11.3+£0.0 77.0£0.0 32.2+0.0 89.1+0.3 83.1+0.3 77.1£0.4 28.0+2.2
Planner-R1-32B (500) 157422 79.84+1.6 33.2+0.5 88.7+£0.2 83.4+£0.6 77.7£0.6 28.7£2.1
Planner-R1-32B (2000)  19.54+1.2 80.2+1.1 344+14 89.8+£0.3 84.1£0.3 78.5+0.4 33.9+3.8

4  QUALITATIVE ANALYSIS

To illustrate the effects of RL and model scale, we present a qualitative analysis of Planner-R1 8B
and 32B models across training checkpoints, with GPT-5 included as a reference point. We highlight
progression in failure modes, tool use, and subreward acquisition for the trained models, and report
failure patterns for GPT-5.

Failure Progression Figure 4 shows the progression of the top five failure categories for Planner-R1
8B (left) and 32B (right) models during training*. For hallucination detection, we verify whether
the origin city, destination city, attractions, accommodations, and restaurants are present in the cor-
responding databases. Both models began with high failure rates, particularly on accommodation
and cost constraints. For the 8B model, hallucination and cost remain persistent challenges, while
all other failures fall below 10% after 800 steps. For the 32B model, accommodation and cost re-
main dominant errors, with all other failures dropping below 10% by 600 steps. Notably, the 32B
model exhibits substantially fewer hallucinations but struggles more with finding accommodations
that qualify, for example when the chosen accommodation has a minimum-night requirement and
the planned stay must meet this constraint. Another stark observation is the spike at 1,600 steps
which can be also observed in Figure 3. In our dense-reward setup, the 32B model exhibited no-
ticeably higher variability, with one run dropping from a 44% pass rate to 26% before recovering
to 51%, which substantially affected the average. As noted earlier, this instability aligns with the
larger model’s stronger exploratory behavior: the 32B model continues to pursue a broader set of
strategies when information is missing, whereas the 8B model behaves more deterministically. This
persistent exploratory breadth amplifies variance in the larger model’s RL trajectories.

“Top categories selected based on their AUC during training. For another lens with top 3 failures at each
learning step see Figure A.2
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Tool-Use Progression We observed clear improvements in tool-use behavior as training progressed.
Early checkpoints of both the 8B and 32B models exhibited poor sequencing, often looping on
repetitive calls (e.g., repeatedly invoking the calculator or restaurant tools), which led to incoherent
or incomplete plans. As training progressed, both model failures shifted from syntactic to semantic
failures: they returned schema valid plans but often failed to call necessary tools to meet the required
constraints. With more training, models could often return valid plans. For further details, see the
visualizations of tool-call trajectories in Appendix Figures A.3-A.12.

Sub-Reward Progression For both 8B and 32B models, the initial ranking of subrewards from
highest to lowest was consistent (see Figure A.1 in Appendix): (1) Schema, (2) Commonsense
Micro, (3) Hard Micro, (4) Commonsense Macro, (5) Hard Macro, and (6) Final Pass. As training
progressed, success rates increased across all categories, yet this relative ordering remained largely
unchanged. This pattern aligned with the A values defined in Section 2.2, reinforcing our intuition
about the relative difficulty of these subrewards and underscoring the role of reward shaping in
guiding models through progressively harder objectives.

GPT-5 Behavior Across multiple scenarios, GPT-5 exhibited several recurring error patterns.
These included repetition errors, such as selecting the same restaurant or revisiting a city multi-
ple times, violating commonsense constraints; incomplete plans, such as failing to return to the
departing city or omitting key itinerary elements; constraint violations, such as booking fewer than
the required minimum number of hotel nights; and hallucinations, including inventing nonexistent
hotels or omitting required meals (see Appendix A.4—A.8 for detailed examples).

5 RELATED WORK

Planning Early chain-of-thought prompting showed that writing out intermediate steps boosts LLM
performance on complex QA and math (Wei et al., 2022; Kojima et al., 2022). Subsequent variants,
most notably self-consistency and structured schemes such as Least-to-Most and Plan-and-Solve,
further reduce errors by decomposing problems and aggregating diverse solution paths (Wang et al.,
2023c; Zhou et al., 2023; Wang et al., 2023b). To address the brittleness of linear chains, search-
based methods recast reasoning as combinatorial exploration with lookahead and backtracking, op-
erating over trees (Tree of Thoughts) and graphs (Graph of Thoughts) (Yao et al., 2023a; Besta et al.,
2024). Multi-agent formulations extend this idea via division of labor: Chain-of-Agents partitions
long inputs among workers while a manager aggregates their outputs (Chen et al., 2024). Decoupling
planning from execution further improves robustness: Plan-and-Act pairs a planner with an execu-
tor and scales supervision via synthetic trajectories, while Iterative Programmatic Planning treats
planning as code synthesis (Erdogan et al., 2025; Aravindan et al., 2025). Formal methods offer
another angle: Hao et al. (2025) translate planning queries into SAT/SMT specifications solved by
external verifiers, achieving rigorous correctness guarantees; in contrast, we keep planning internal
to the agent and optimize policies end-to-end with RL. Finally, to reach beyond the context window,
recent systems interleave reasoning with targeted search: Search-ol triggers agentic retrieval under
uncertainty and distills evidence via a Reason-in-Documents step, while Al-SearchPlanner trains
a lightweight RL planner to trade off query utility and cost, yielding cross-model gains (Li et al.,
2025a; Mei et al., 2025). PilotRL introduces a planner—executor setup (AdaPlan) optimized with
GRPO + VERL, relying on LLM-as-judge rewards and DeepSeek-V3-simulated environments (Lu
et al., 2025). Its focus is modular agent optimization; it does not study how reward density interacts
with model scale or scaling-related sensitivities.

Agentic RL RL is increasingly used to make tool-use strategic and long-horizon: Search—R1 learns
to issue multi-turn web queries during reasoning (Jin et al., 2025), SkyRL trains multi-turn agents in-
side real software environments (Cao et al., 2025), and ReTool interleaves Python execution within
the reasoning loop under outcome-based rewards (Feng et al., 2025). Complementing these, the
Tool-Integrated Reasoning line embeds tools directly into the RL objective: ToRL scales tool-
integrated RL from base models and reports emergent selective tool invocation with strong math
gains (Li et al., 2025b), while ToolRL systematically studies reward design for tool selection, show-
ing that shaped rewards with GRPO improve over SFT (Qian et al., 2025). However, its tools and
traces are fully synthetic, since LLMs simulate both tool calls and responses, which means it opti-
mizes token imitation rather than performing agentic RL. In contrast, our work conducts true agentic
RL with real tools, real observations, and real decision loops. Biomni applies end-to-end reinforce-
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ment learning, creating rewards and RL environments tailored to biomedicine, scalably training the
agent to carry out research tasks more effectively (Huang et al., 2025). In parallel, large-scale RL
fine-tuning (Kimi k1.5, DeepSeek—RI) boosts general reasoning, and Qwen3 introduces dynamic
“thinking” vs. “non-thinking” modes to balance depth and latency (Kimi Team et al., 2025; Guo
et al., 2025; Yang et al., 2025). Building on this momentum, Kimi K2 emphasizes open agentic
intelligence with agentic data synthesis and a joint RL stage (Kimi Team, 2025); GLM-4.5 proposes
ARC (Agentic, Reasoning, Coding) foundation models with hybrid thinking/direct modes and RL
post-training (GLM-4.5 Team, 2025); and Microsoft’s rStar2—Agent explores reliable Python tool
use with a Resample-on-Correct strategy for agentic RL (Shang et al., 2025). Most closely related,
Chen et al. (2025) introduce LOOP, a data- and memory-efficient variant of PPO that enables rein-
forcement learning for interactive digital agents directly within stateful, multi-domain environments
such as AppWorld.

6 DISCUSSION

A key finding is that shaped rewards are crucial for smaller models. Under sparse rewards the 8B
model failed to learn stable trajectories, but with only 180 training queries, shaped guidance enabled
it to reach 32B-level accuracy while delivering 3.5 higher compute efficiency and 1.5x higher
memory efficiency. Larger models were stable under sparse rewards but gained less from shaping,
exhibited higher variance, and incurred higher compute cost, highlighting reward design as a central
efficiency lever. These gains at 2,000 steps did not reduce robustness. Fine tuned models matched
or exceeded baselines on MULTIIF, NATURALPLAN, and 7 BENCH with no overfitting. At 3,000
steps, the 8B model improved five of seven metrics but regressed on two, indicating the risk of
excessive fine tuning. Although we followed leaderboard rules and avoided prompt engineering,
both our method and baselines may benefit from prompt refinement.

The remaining 37% gap to the hybrid solver of Hao et al. (2025) is sizable yet tractable. Most
remaining errors are valid cost violations (Figure A.2), suggesting difficulty satisfying all hard con-
straints in a single pass. Recent work on reflect retry reward methods, including REA RL (Deng
etal., 2025), SRPO (Wan et al., 2025), and VL Rethinker (Wang et al., 2025), shows that lightweight
self verification and self correction can significantly improve constraint satisfaction. Integrating
similar mechanisms could close a substantial portion of this gap. A complementary direction is im-
proved sampling. Larger rollout volumes or strategic oversampling with downsampling, as in rStar2
Agent (Shang et al., 2025) and DAPO (Yu et al., 2025), provide richer trajectories and more stable
optimization. Although hybrid neuro symbolic solvers remain stronger on constraint heavy tasks,
advances in reward shaping, reflection, and sampling can move end to end agentic RL systems much
closer to parity, while maintaining the advantage of a single, general solution that transfers across
domains rather than a solver engineered for one specific problem.

7 LIMITATIONS

We focused on TRAVELPLANNER, a constrained benchmark, and smaller models may not remain
competitive on more complex or open-ended tasks. Although 8B models are more FLOP-efficient,
larger models still achieve higher peak accuracy and robustness, which can be essential when reli-
able intermediate feedback is unavailable. Our method also assumes access to dense, process-level
rewards, and its effectiveness may drop in settings with only sparse signals. Recent directions help
soften this requirement by automating the reward selection methods (Zhang et al., 2025a), using pre-
scribed LLM-as-judge (Lu et al., 2025) or using a structured reward design for tool-selection (Qian
et al., 2025). Finally, we used a fixed three-stage curriculum which did not yield advantages yet
exploring adaptive or automated scheduling strategies is an important direction for future work.
Overall, our results showed that with reliable dense feedback, reward shaping enables smaller mod-
els to become strong and compute-efficient alternatives.
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A  SYSTEM-LEVEL OPTIMIZATIONS

Overview. RL training with large-scale LLMs requires co-locating both training and inference
engines on the same set of GPUs. This dual demand creates severe memory pressure, often leading
to out-of-memory (OOM) errors when switching between training and rollout phases. To address
this, we integrated memory management techniques into our RL Pipelines.

Multi-Stage Awake Memory Management. In VERL, reinforcement learning (RL) training is
conducted in Colocate Mode, where both the training engine (e.g., FSDP) and inference engine
(e.g., SGLang) share the same GPU resources. A major bottleneck arises when transferring weights
from the training engine to the inference engine: model parameters must be copied from FSDP into
SGLang, often causing out-of-memory (OOM) failures under high memory pressure.

To address this, we extended the Sleep/Awake mechanism in SGLang and introduced the Multi-Stage
Awake strategy for fine-grained memory management during rollouts. Instead of a single monolithic
resume, memory resumption is divided into multiple stages:

Load training model weights into GPU memory.
Resume inference model weights at preserved virtual addresses.
Synchronize weights between training and rollout engines.

Offload training model weights back to CPU.

Resume the KV cache region for rollout execution.

A

This staged approach minimizes memory waste and prevents fragmentation. Our empirical results
show that it provides two key benefits:

* Enables training of larger models: With the same KV cache ratio, our approach reduces
peak GPU memory by 20-23 %, which unblocks stable training of a 32B-parameter model
on 8xH200 GPUs even at higher cache ratios (0.8, 0.85, and up to 0.9). Without Multi-
Stage Awake, training consistently ran out of memory beyond 0.7.

* Improves throughput: For the same model size, our method allows a larger KV cache ratio
to be used, directly improving inference throughput. While throughput gains are workload-
dependent and not easily comparable across setups, our experiments show that increasing
the ratio from 0.7 to 0.9 leads to significant improvements in rollout efficiency.

B IMPLEMENTATION DETAILS

B.1 SYSTEM PROMPT

We include the jinja template of our full system prompt used for Planner-R1 during training/evalua-
tion.
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You are a helpful travel assistant that plans detailed travel
itineraries by calling external functions (tools). You have access
to the following tools and must use them as needed to gather
accurate, up-to-date information.

il

# Behavior Guidelines

- If a task requires multiple steps or tools, proceed step by step,
— calling ONE TOOL per turn.

— Never assume details-always verify all information using tools.

— When you have gathered sufficient information to finalize the plan,
— respond with an <answer> block with the final itinerary in valid
— JSON format.

# Tool Usage Rules
— Do not repeat the same tool call with identical arguments.
- Always provide complete and correct function arguments.

# Final Plan Format
Once all necessary information is collected, respond with the final
— plan:
<answer>
[
{
// Day 1 plan following schema
by
{

// Day 2 plan following schema
}I
// ... additional days
]

</answer>
*x IMPORTANT CONSTRAINTSx*x*
— The <answer> must contain ONLY wvalid JSON, strictly following the
— plan_schema.
— Do not include any explanatory text inside the <answer> block.
- Do not output <answer> until all needed tool calls are completed.

# Final Plan Schema

Each element in the <answer> JSON array should represent a single day
— of the trip and follow this schema exactly:

""" json

{{ plan_schema }}

B.2 PLAN JSON SCHEMA

The final itinerary must be a JSON array of per-day objects. Each day object is validated against
the schema below. This structured contract doubles as a checklist (ensuring coverage of all required
fields) and enables automatic reward gating.

{
"typeﬂ . "Object ",
"required": |
"days", "city", "transportation", "attraction",
— "accommodation", "breakfast", "lunch", "dinner"
1,
"properties": {
lldaysll: {
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"description": "The day number of the plan starting from
- 1.",
"type": "integer"
}s
"ecity": {
"description": "Can be a city name string if no transfer

— 1s needed, or an dict with 'from' and 'to' keys that
— indicates the origin and destination city.",

"oneOf": [
{lltype": "Stril’lg"},
{
"type": "object",
"required": ["from", "to"],
"properties": {
"from": {"type": "string"},
llto": {lltypell: "Stril’lg"}

s
"additionalProperties": false

]

s

"transportation": ({
"description": "Either '-' if no transportation is needed,
< or an object describing the transportation details.
— Instead of total cost, use per person price for flight
— and per vehicle cost for taxi/self-driving as the
— cost.",

"oneOf": [
{
"type": "string",
”w const n . n_mn
by
{
"type": "object",
"required": ["mode", "from", "to", "duration",
— "distance", "cost"],
"properties": {
"mode": {
lltype": "Stril’lg",
"enum": ["flight", "taxi",
— "self-driving"],
"description": "Type of transportation."
by
"from": {"type": "string", "description":
— "Origin city"},
"to": {"type": "string", "description":
— "Destination city"},
"duration": {"type": "string", "description":
— "Transportation duration"},
"distance": {"type": "string", "description":
— "Distance of the trip"},
"cost": {"type": "integer", "description":
— "Cost of the transportation"},

"flight number": {"type": "string",

— "description": "Flight number (for flights
— only)"},

"departure_time": {"type": "string",

< "description": "Flight departure time"},
"arrival time": {"type": "string",

— "description": "Flight arrival time"}

s
"additionalProperties": false
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]
by

"attraction": {
"description": "A list of attraction names planned for the
— day, or '-' if no attractions are planned.",
"oneOf": |
{"type": "string", "const": "-"},
{
"type": "array",
"items": {"type": "string"},
"minItems": 1
}
1
b
"accommodation": {
"description": "The name of the accommodation for today.
«— '-'" if no accommodation is needed.",
lltype": "Stril’lg"

br
"breakfast": {

"description": "The name of the breakfast restaurant for
— today. '-' if no breakfast is planned.",
"type" . "Stril’lg"

by

"lunch": {
"description": "The name of the lunch restaurant for
— today. '-' if no lunch is planned.",
"type": "string"

}y

"dinner": {
"description": "The name of the dinner restaurant for
— today. '-' if no dinner is planned.",
"type": "Strinq"

}
}r
"additionalProperties": false

B.3 TRAINING, VALIDATION, AND EVALUATION SETUP

RL framework and resources. We train with VERL using GRPO on 2 nodes with 8 GPUs/node
(16 H200 GPUs total). Rollouts use sglang with a multi-turn, tool-augmented agent (ReAct-style).

Training configuration. Stage 1/2/3 share the same VERL configuration; only the reward weights
differ by stage (see Sec. 2). File paths are pseudonymized for readability.

# verl + GRPO. Stage-—-agnostic; change reward weights per stage.
actor_rollout_ref:
actor:
strategy: fsdp
ppo_mini_batch_size: 8
ppo_micro_batch_size: null
ppo_micro_batch_size per gpu: 1
use_dynamic_bsz: false
ppo_max_token_len per_gpu: 16384
clip_ratio: 0.2
clip_ratio_low: 0.2
clip_ratio_high: 0.2
policy loss:
loss_mode: vanilla
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clip _cov_ratio: 0.0002
clip _cov_1b: 1.0
clip_cov_ub: 5.0
kl cov_ratio: 0.0002
ppo_kl coef: 0.1
clip_ratio_c: 3.0
loss_agg _mode: token-mean
entropy coeff: 0
use_kl _loss: false
use_torch compile: true
kl_loss_coef: 0.001
k1l loss_type: low_var_kl
ppo_epochs: 1
shuffle: false
optim:
1lr: 1.0e-06
lr warmup_steps_ratio: 0.0
total training steps: -1
weight_decay: 0.01
lr warmup_steps: -1
min_lr ratio: 0.0
num_cycles: 0.5
warmup_style: constant
grad_clip: 1.0
ulysses_sequence_parallel_size: 1
entropy_from logits_with_chunking: false
entropy_checkpointing: false
fsdp_config:
wrap_policy:
min_num params: 0
param offload: true
optimizer offload: true
offload_policy: false
reshard after forward: true
fsdp_size: -1
forward prefetch: false
rollout:
name: sglang
mode: async
temperature: 1.0
top_k: -1
top_p: 1
prompt_length: 2268
response_length: 30500
dtype: bfloatl6
gpu_memory utilization: 0.6
ignore_eos: false
enforce_eager: true
free_cache_engine: true
tensor_model parallel_size: 4
max_num batched tokens: 8192
max_model_len: null
max_num_seqgs: 1024
log_prob_micro_batch_size: null
log_prob_micro_batch size_per gpu: 32
log_prob_use_dynamic_bsz: false
log_prob_max_token_len per gpu: 16384
disable_log _stats: true
do_sample: true
n: 8
multi_stage_wake_up: false
val_kwargs:
top_k: -1
top_p: 1.0
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temperature: 0
n: 1
do_sample: false
multi_ turn:
enable: true
max assistant turns: 30
tool_config _path: ${PROJ_ROOT}/config/tool_config.yaml
max_user_turns: 30
max_parallel _calls: 1
max_tool_response_length: 8192
tool_response_truncate_side: right
interaction_config path: null
completion_callback: null
use_inference_chat_template: false
tokenization_sanity_check _mode: strict
format: hermes
calculate_log probs: false
agent:
num_workers: 8
agent_loop_config path: ${PROJ_ROOT}/config/agent_loops.yaml
custom_async_server:
path: null
name: null
update_weights_bucket_megabytes: 512
enable_chunked prefill: true
load_format: dummy_dtensor
layered_summon: false
enable_thinking: false
hybrid engine: true
model:
path: Qwen/Qwen3-{8B|32B} # base model
custom_chat_template: null
use_shm: false
external_ lib: null
override_config: {}
enable_gradient_checkpointing: true
enable activation offload: false
use_remove_padding: true
target_modules: all-linear
exclude_modules: null
use_liger: false
use_fused _kernels: false
fused_kernel_options:
impl_backend: torch
trust _remote code: false
trainer:
balance batch: true
total_epochs: 300
total_training steps: 3000
profile_steps: null
logger:
- mlflow
log_val_generations: 0
rollout_data_dir: null
nnodes: 2
n_gpus_per_node: 8
save_freq: 100
esi_redundant_time: 0
resume_mode: auto
val _before_ train: true
val_only: false
test_freq: 50
critic_warmup: 0
default _hdfs dir: null

21




Under review as a conference paper at ICLR 2026

del_local_ ckpt_after load: false
max_actor_ckpt_to_keep: null
max_critic_ckpt_to_keep: null
ray_wait_register_center_ timeout: 300
device: cuda
use_legacy_worker_ impl: auto
data:
tokenizer: null
use_shm: false
train_files: ${PROJ_ROOT}/data/train.parquet
val_ files: ${PROJ_ROOT}/data/test.parquet
prompt_key: prompt
reward_fn key: data_source
max_prompt_length: 2268
max_response_length: 30500
train batch size: 16
val_batch_size: 64
return_raw_input_ids: false
return_raw chat: true
return_full prompt: false
shuffle: true
dataloader num workers: 8
validation_shuffle: false
filter overlong prompts: true
filter overlong prompts_workers: 1
truncation: error
image_key: images
video_key: videos
trust_remote code: false
custom_reward function:
path: ${PROJ_ROOT}/rewards_v3.py
name: compute_score
algorithm:
gamma: 1.0
lam: 1.0
adv_estimator: grpo
norm_adv_by std_in_grpo: true
use_kl_in_reward: false
kl_penalty: kl
kl_ctrl:
type: fixed
kl_coef: 0.001
horizon: 10000
target_kl: 0.1
use_pf _ppo: false
pf_ppo:
reweight_method: pow
weight_pow: 2.0

Listing 1: VERL/GRPO configuration (paths pseudonymized). Stage 2/3 reuse this config with
stage-specific reward weights.

Evaluation protocol. We evaluate on the TRAVELPLANNER official test set by reusing the VERL
validation pipeline to keep decoding/sampling consistent with validation:

1. Point the VERL validation loader to the official test split (same sampler settings as validation).
2. Run validation to dump trajectories locally (tool calls, responses, final answers) as JSONL.

3. Post-process each final answer: validate against the plan schema (App. B.2), enforce JSON-
gated output, and convert to the leaderboard’s submission format.

4. Upload the converted file to the TRAVELPLANNER leaderboard; report Delivery, micro/macro
commonsense, micro/macro hard, and Final.
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B.4 DECODING AND SAMPLING SETTINGS

We standardize decoding across training and evaluation to isolate the effect of learning. Table 3
summarizes the presets we use for different contexts; “Common runtime limits” apply to all scenar-
ios unless noted. For Validation/Test we reuse VERL’s validation path on the official TP test split
(Sec. B.3).

Common runtime limits.
¢ Max response tokens: 30,500 (response_length)
* Max tool response tokens: 8,192 (max_tool_response_length)
e Agent turns cap: 30 assistant turns; 30 tool turns

* Tool-call cap: 30 calls

Table 3: Decoding presets by context.

Context dosample Temp Top-p Top-k n
Training true 1.0 1.0 -1 8
Validation / Test false 0.0 1.0 -1 1
NaturalPlan true 1.0 1.0 -1 1
Multi-IF false 0.7 0.8 20 1
T-bench false 0.6 0.95 20 1

B.5 GPU MEMORY FOOTPRINT AND PRACTICAL EFFICIENCY

In the same 2-node/16-GPU training setup, PLANNER-R1-8B used approximately ~60 GB of GPU
memory per device, whereas PLANNER-R1-32B required >90 GB (1.5x more) per device. This
difference has practical consequences: the 8B configuration ran comfortably on H100s, while the
32B configuration necessitated higher-memory accelerators (e.g., H200). The gap is especially rele-
vant for agentic RL, where multi-turn interactions and tool feedback produce long contexts and large
key—value (KV) caches during rollouts, amplifying the memory pressure beyond the update phase.

B.6 ESTIMATING TRAINING FLOPS FROM vERL’S MFU
MFU in VERL (what it is). VERL reports a model FLOPs utilization (MFU): the fraction of the

cluster’s “promised” peak compute achieved during policy updates. Internally it is computed per
update as

fach E _ FLOPSupdate
fpcak w ’ ach tactor ’
where F is the number of GRPO epochs per batch, W' is the number of GPUs (world size), fpeak iS
the promised FLOPs rate per GPU used by VERL in its MFU denominator, ¢,¢o, i the time spent in

the parameter-update step, and FLOPs,pqate is the per-step FLOPs consumed by that update. The
in-tree FLOPs counter aggregates forward + backward over all layers/tokens.

Reconstruction used in this paper. Solving for FLOPs,pqatc gives

tac or
FLOPs,pdate = MFU X foeak X W X z;

In our runs £=1 and W=16. We set fpcax=19.89 X 10 FLOPs/s per GPU—the same constant
VERL uses for MFU—so the reconstruction matches its calculation.

Practical proxy for <{¢,.o;. VERL does not log {f,or e€ach step, but it logs
update_policy.-time (fpolicy), Which equals the actor update plus brief offload/reload
bookkeeping. Because the parameter update dominates, we use

tactor = 7fpolicy = FLOPSupdate ~ MFU x fpeak x W x tpolicy-

This yields a slight upper bound (since tpolicy > tactor); Spot checks in our regime found the gap
within ~3%.
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From per-step to camulative FLOPs. We compute FLOPS,,;,date per step from MFU and ¢,,licy
then sum over steps:

T
FLOPSI:T = Z MFUt fpeak w tpolicy,t .
t=1
These cumulative totals back the FLOPs—accuracy curves in Sec. 3.2.

Scope: what is counted and what is not. Our accounting includes only the parameter-update
compute (forward + backward). It excludes (i) the rollout engine’s generation compute and (ii)
the reference log-prob pass (both of which VERL does not report MFU/FLOPs for). Under our
settings (long responses, multi-sample trajectories), rollout consists of many forward passes, while
the update consists of forward+backward over similar tokens; thus their compute is typically of the
same order of magnitude, but exact ratios depend on response length, batching, and n (number of
sampled trajectories). A precise FLOPs tally for rollout and reference log-prob computation is left
to future work.

C FURTHER ANALYSIS

8B Model - All Rate Metrics 32B Model - All Rate Metrics
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0.8 » = P ARy o.8f

0.7 ;Y Hard-Macro 0.7 Hard-Macro

0.3| 0.3|

o 500 1000 1500 2000 2500 3000 0.2 250 500 750 1000 1250 1500 1750 2000

Training Steps Training Steps

Figure A.1: Progression of six sub rewards for 8B and 32B Planner-R1 during training on validation
set
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Top 3 Most Frequent Error Categories - Planner-R1 8B
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Figure A.2: Top 3 Most Frequent Error Categories for the Planner-R1 models. The upper heatmap
shows the 8B model and the lower heatmap shows the 32B model. Both plots visualize, at each
training step across five runs (up to 2000), the three most frequent failure categories and their relative
rates. Rows are aligned so categories match across models; blank cells indicate that a category did
not appear in the top three for that model at that step.
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n Can you organize a 5-day trip for two people from Newark to Ohio, where we will visit two cities? The dates will be from March 23rd to March 27th, 2022. Our travel budget is

$4,400. We anticipate hosting visitors at our accommodations, and we would like to try a variety of cuisines including French, Chinese, American, and Mexican during our trip. We
prefer not to drive ourselves during this trip.

Y2

et_flights’, "arguments":

rigin®; "Newark’,

‘get_flights’, "arguments"

: "Columbus’, "departure _date': "2022-03-23}} : "Columbus’, "departure_date": (B8 (name: "get _cities’, "arguments": {'state": *Ohio'}}
¥X (.. Deprecating Flight Information ..} ¥X (.. Deprecating Flight Information ..} X (. Alist of cities in Ohio ..}
set_ground_transportation’, "arguments": (B {name": *get_accommodations’, “arguments": {'city": (B {name": *get_ground_transportation’, "arguments’:
{origin"; "Columbus’, “destination"; ‘Cleveland"}} *Columbus} {origin": "Newark’, “destination”; "Cincinnati'}}
X (... Ground Transportation Information .} X (.. Accommodations Information ..} X (... Ground Transportation Information .}
(B {name": "get_accommodations’, "arguments": {'city": (B {name": "get _attractions’, "arguments": {city": "Columbus"}} B {name': "get _accommodations’ "arguments: {'city":
*Columbus'}}

o3 *Cincinnati'}}

A& ’{{'...mm:iansmformﬁon...') e
’§ {.. Accommodations Information ..} : ‘{ {.. Accommodations Information ..."}
: (B {name: "get _restaurants’, "arguments": {'city":

(B {name": "get_accommodations’, "arguments”: {'city": *Columbus'}}

“Cleveland}} P )
‘{ {.. Restaurants Information ..} (B {name": "get_ground _transportation’, "arguments’:

X (.. Accommodations Information .} {Corigin’; "Dayton’, "destination’: "Newark'}}

(B {name: "get_cities’, "arguments": {'state": "Ohio’}}

& ¥X (.. Returning Transportation Information ..}
X (.. Atist of cities in Ohio .}

(B8 {nam

asic_arithmetic_calculator’, "arguments”: :
{"expression": "2 * (96 + 230 + 1100 + 593 + 23 + 10 + 25 + 19 + 27 + 31 (B Cname': "get_flights’, "arguments’: {'origin': "Columbus’,
+80 +54+38 +36+29+ 71+ 34))} *destinatio eparture_date": "2022-03-25")}
y ’{ {'result": 4992} A\ {.."error": "There is no flight from Columbus to Cincinnati

on 2022-03-25."

$ {'name"; "basic_arithmetic _calculator’, "arguments":
{expression "2 * (96 + 230 + 1100 + 593 + 23 +10 + 25 +19 + 27 + 31 (B {name: *get_ground_transportation’, "arguments’:
+80+54+38+36+29+71+34+124+1100 + 593 +23 +10 + 25 +19
+27+31+80 +54 +38+36+29 +71+34)'}}

X fresult': 9580}

N 54
<

Replan due e
to no flight ttraction

"meals”

*: "get _flights’, ‘arguments’
lewark’, "departure _date

_—
“«E “transportation’: "',
‘{ {... Returning Flight Information ..} ion":

“attraction":
= *Cincinnati Zoo & Botanical Garden’,
l_] Plan “Cincinnati Art Museum’,
*American Sign Museum"
No valid plan produced; the model loops on tool calls. 3
— *accommodation”: "Private room with sleeping loft’,
U Plan *breakfast': "Bubba Jax Crab Shack’,
[ “lunch’: "Invitation Restaurant’,
{ “dinner”; "Tpot"
“days™ 1, b
“city": { "from": "Newark’, "to": "Columbus" },
“transportati {
“attraction' “days": 5,
“accommodati “city": { "from": "Dayton’, "to": "Newark" },
g "transportation": {
3 *mode": "taxi’,
fi * "Dayton’,

‘Newark',

K “duration": "9 hours 17 mins’,
incinnati’, “to": "Newark' }, “distance': "957 km'

3 “cost": 957

lays": 4,

“city": { "from"
“transportation’
"attraction”
*accommodation": *Spacious, bright room, prime Williamsburg

location’, 1
“meals"

1

Plan Delivery: © Plan Delivery: Plan Delivery:
Plan Pass: © Plan Pass: © Plan Pass:

Spacious, bright room in prime
Williamsburg, Cincinnati. Requires 3-night
minimum, but booked for 2.

Figure A.3: Model tool-call trajectories across checkpoints. The base model (left) loops on repeti-
tive tool calls once the context is saturated. After 100 training steps (middle), the model produces a
coherent travel plan but fails to satisfy all constraints. By 500 steps with the 32B Planner-R1 check-
point (right), the model successfully generates a valid plan that meets all requirements.
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Could you create a 5-day travel plan for a couple leaving from Baton Rouge and visiting 2 cities in Texas from March 16th to March 20th, 20222 We have allocated a budget of
$2,900 for this trip. Important to note is that our travels will not involve any flights; we prefer other modes of transportation. For our lodgings, we insist on not shared rooms, and
notably, we will be traveling with our pet, hence the need for pet-friendly accommodations.

GPT5 Generated Plan

Planner-R1 8B Generated Plan

Planner-R1 32B Generated Plan

“Baton Rouge,
"to": "Austin”

mnspomuon“ {
“mo

“duration’: '6 hours 28 mins’
“distance": "694 km',
“cost": 34

“attraction”; [
“Zilker Metropolitan Park’,
“Statesman Bat Observation Center”

*accommodatio
Brownstone\n Apt’,
“breakfast: Fifth Sreet Bagelry,
b

": "1 Bedroom , Beautiful Spacious

"transportation’: "
“attraction”: [
"McKinney Falls State Park’,
"Mayfield Park and Nature Preserve’,
"Pease Park Treehouse"

“"accommodatios
Brownstone\n Apt’,
akfast': Moksha',
“lunch’: "Frontier’,
*dinner”; "Talaga Sampireun"

:*1 Bedroom , Beautiful Spacious

)‘transportatwn“ {
“mode”; "self-driving’,
*"San Antonio’,
i Bamn Rouge’,
ion': "6 hours 52 mins’,
“dlstance" "746 k',
“cost": 37

dation’: ™,
“breakfast’: "Cafe Shaze,

“lunch: "Pita Pit,

“dinner”; Jimmy Jack's Rib Shack"

“lrom "Baton Rouge’,
o": "Houston"

transpnmllon {
ode": "self-driving’,
“from "Baton Rouge’,
"to": "Houston’,
“durat
"distance”:
"cost': 21

“attraction’:

{

“days": 2,

“city": "Houston',
“transportation”; "',
“attraction”: [
“Downtown Aquarium’,
"Space Center Houston',
"Water Wall"

*accommodation': "Spacious room in front of prospect park’,
*breakfast": *Sheetla Dhaba’,

“lunch’: "Matchbox’,

*dinner”; *Vinayaka Mylari*

eity's
“transportatlon“ =
“attraction”: [

“Texas Capitol’,

“Zilker Metropolitan Park’,
"Museum of the Weird"

J ion": "Spacious Willi: 1bedroom!",
“breakf t": "Chin Pokli,

inch": "Green Chilli",
“dmner‘ “Talaga Sampireun"

“city":
*from"; "Baton Rouge’,
"to”: "Austin”

attracuon

1bedroom!,

“Texas Capitol’,
“Zilker Metropolitan Park’,
“Museum of the Weird"

"breakfast
“lunch': "Tandoori Nights’,
"Subway"

1bedroom?,

*Spacious

“dinner”:

{

“days”: 4,

"city": "Houston’,

"transportation’ "'

“attraction”: [
"Downtown Aquarium’,
“Space Center Houston',
"Water Wall"

1
*accommodation’: "Spacious room in front of prospect park’,
ireafim i SHReHld Dy

"dmner" *Earthen Spices”

Plan Delivery: (%4

Plan Pass: ©

Common sense rule: Don’t pick the same
restaurant twice.

Plan Delivery: (%4
Plan Pass: (74

Plan Delivery: (%4
Plan Pass: (4

Figure A.4: The GPT-5 model (left) failed to avoid selecting the same restaurant twice, thus violating

the common-sense rule. In contrast, the Planner-R1 8B model (middle) and Planner-R1 32B model

(right) both generated plans that satisfied all requirements.
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! ‘!I need assistance in crafting a travel plan starting in Fort Lauderdale and covering 3 cities in Georgia. The trip, designed for 2 people, will span from March 24th to March 30th,

2022. Our budget is $8,000. Regarding accommodations, we require rooms that are not shared and should accommodate children under 10. As for dining options, we have diverse
tastes, including Indian, American, Chinese, and Mediterranean cuisines.

GPT5 Generated Plan

Planner-R1 8B Generated Plan

Planner-R1 32B Generated Plan

mnspomuon

l'mm Fon. Lauderdale’,
nta,

"arrival _time": "11:

3

"attraction”: [
*World of Coca-Cola’,
*Centennial Olympic Park’,
"SkyView Atlanta"

accommodanon“ "Charming Carroll Gardens 2 BR',
*breakfast': *-",

“lunch; "Chef Style’,

*dinner”; "Sethi's Restaurant & Barbeque"

s 2,
“city": "Atlanta’,

:[
“Georgia Aquarium’,
*Atlanta Botanical Garden’,
*Piedmont Park’,
"High Museum of Art"

“accommodation”: "Charming Cmou Gardens 2 BR',
“breakfast: "Daawat-e-Kashmi

‘to”: "Augusta’,

"duration”; "2 hours 28 mins’,
“distance": "195 km’,

‘cost”: 9

2amac:ion“: [
"Augusta Riverwalk’,
"Augusta Museum of History’,
"Morris Museum of Art"

"accommodation”: "Planta Baja Studio’,
“breakfast”: "New Raj Kachori Bhandar’,
“lunch'; "Karari Kurry’,

“dinner": "Just Kababs"

*from": "Augus
“to‘: "Atlanta"

"transportation: {

"attraction":

“Atlanta History Center’,
*Fox Theatre’,

"Krog Street Tunnel"

"accommodation’; "Charming Carroll Gardens 2 BR',
“breakfast”: "Haldiram's’,

"lunch": "Chaina Ram Sindhi Confectioners’,
“dinner": “Barkat"

“from": "Atlanta’,
“to": "Fort Lauderdale”

h
"transponatmn” {
: “flight,

P!
“arrival _time" 1839“

“attraction":

E Baba Au Rhum’,
‘Nawaab',

fr om":
"to": "Atlanta’

"cost™: 51

ng’,
Fon Lauderdale“

2,
“Atlanta’,
“transportation': "~
"attraction”:

“Atlanta Botanical Garden',
"World of Coca-Cola’,
"Georgia Aquarium"

-commodation’
Hospital’,

‘Spacious private room close St. Barnabas

“breakfast’" "Pizza Central, |

"Mercer-Williams House Museum’,
“"Savannah Historic District"

*accommodation’: “Family and Friendly Room’,

"breakfast™: "Sr.

Sol T
inch': "Bosphorous Turkish Cuisine’,
*dinner’; "The Mad Teapot,/ The Wishing Chair"

"Plnmzy Swamp Nature Park',
"Augusta Riverwalk
“Augusta Museum of History"

1
_sccommodation': Planta Baja Studic’,
“breakfast” -Vinny Van

ncl

* "Karari

ish Tales Lnkeslde GnllE",

Kurry'

ikl
“from': "Augusta’,

)
“transportatios

Fort Lauderdale”

“mode": "self-driving’,
“from' °

“cost": 46

ours 41 mins’,
"distance": "938 k',

[T pan
[

o
“from’": Fort Lauderdale’,
“to”; "Augusta’

lransportauon 8(i
" "self-driving,
"Fort Lauderdale’,
sLl

“cost”: 46

"transportation”:

“attraction”: [
"Phinizy Swamp Nature Park’,
“Augusta Riverwalk’,
"Augusta Museum of History"

“accommodation': Planta Baja Studio’,
“breakfast': "Vinny Vanucchi’s’,
“lunch’; “The Golden Dragon’,

“attraction’: [

*Forsyth Par}

“Wormsloe State Historic Site’,
“Mercer-Williams House Museum"

*accommodation: “Family and Friendly Room’,
'hrea.kfast.“ "Manohar Dairy And Restaurant’,

: *Bosphorous Turkish Cuisine’,

‘Dhaba On Wheels"

“attraction’:
accnmmndnuon 'Charming Carroll Gardens 2 BR',
“breakfast': ",

“transportation’:
"attraction":
“Atlanta Botanical Garden’,
*World of Coca-Cola’,
*Georgia Aquarium"

“accommodation’; “Charming Carroll Gardens 2 BR'
breakfast“ “Saffron’,

2za Central’,

‘Daawat-e-Kashmir"

‘from": "Atlant
“to": "Fort Lauderdale”

transportation”:
*mode": "self-driving’,
*from': "Atlanta’,

Fort Lauderdale’,

“cost”: 51

Plan Delivery: (%4

Plan Pass: ©

Common sense rule: City Atlanta is
visited multiple times.

Plan Delivery:
Plan Pass: (%4

V|

Plan Delivery: (4
Plan Pass: (4

Figure A.5: The GPT-5 model (left) selected the same restaurant twice on different dates, whereas
the Planner-R1 8B (middle) and Planner-R1 32B (right) models produced plans that satisfied all

requirements.
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Can you create a 5-day travel plan for me starting in Sun Valley and visiting 2 cities in California from March 22nd to March 26th, 20222 My budget for this trip is $2,600.

GPT5 Generated Plan

Planner-R1 8B Generated Plan

Planner-R1 32B Generated Plan

[ ptan

<answer>

{

"t0": "Los Angeles’,
“duration': *2 hours 1 minutes’,

"attraction": [
"Santa Monica Pier",
“Griffith Observatory”

*accommodation': "Lovely studio’,
*breakfast: "',
“lunch"; "Palmshore’,

*dinner": "Rajdhani Restaurant"

“Golden Gate Bridge’
“Golden Gate Park’,
“de Young Museum’,
“Japanese Tea Garden"

*accommodation”: “Room in Down town Brooklyn Parkslop’,
"breakfast": "Bonne Bouche’,

“lunch’; "Empress’,

*dinner": "Green Chick Chop"

b

“days"
“city":"San Francisco’,
*transportation; "',
“attractios

*Alcatraz Island’,

“PIER 39",

*San Francisco Cable Car Museum®

"accommodatios
*breakfast': "Coffee & Chai Co,
“lunch’; 'Gupta's Rasoi’,
*dinner’: "Moets Oh! Bao"

</answer>

Plan Delivery: (%4
Plan Pass: ©
Not returning to the departing city!

"t0": "Los Angeles’,
“duration”: "13 hours 16 mins’,

“cost': 68

‘city
"transponatwn

"Santa Monica Pier’,
“Hollywood Walk of Fame',
“Griffith Observatory"

Jacconunodztim-.“: "Best Nest.,
“breakfast": "Onokabe’,

“lunch’: "Punjabi Tandoori Tikka',
“dinner": "Choco Kraft"

{
“days™: 4,
“eity"s “Sncmmemn,
“transportation": ",
“attraction”: [
"California State Railroad Museum’,
"Old Sacramento Waterfront’,
*Crocker Art Museum"

“accommodation’: "HUGE SPACE, HEART OF BROOKLYN, 1 BLOCK
FROM SUBWAY’,
“breakfast”: "Gujarati Samaj Santushti’,
“lunch’; "Metro Fast Food",
“dinner": "Pasta Hut"

"from": "Sacramento’,
"to’: "Sun Valley"

"transportation {
‘mode’: self-driving’

*duration": "10 hours 24 mins’,
“distance’: "1,074 k',
"cost": 53

}
1

[ ] ptan
[

"attraction": [
*Golden Gate Bridge’,
*Golden Gate Park’,

“PIER 39"

*accommodation’: “spacious pretty east harlem apt”,
‘Coffee & Chai Co’,

v
“from’; "San Francisco’,
“to": "Los Angeles"

3
“transportation’: {

“from": “San Francisco’,

"to": "Los Angeles’,

“duration”: "5 hours 53 mins’,
15 k'

“cost": 30

‘attraction’; "'
nm:ommodatmn 8
"breakfast":

“luncl

“Best Nest!,

{

“days”: 4,

“city”: "Los Angeles’,

“transportation’:

"attraction”: [
"Santa Monica Pier’,
“Hollywood Walk of Fame’,
"Hollywood Sign"

*accommodation’: "Best Nest.,

*Shree Manakamna Fast Food',
‘Punjabi Zaika',

 “The Hangout by 1861"

*from": "Los Angeles’,
"to": "Sun Valley”

3
"lranspormlmn
“mo

Plan Delivery: 4
Plan Pass: (%

Plan Delivery: (%4
Plan Pass: (%4

Figure A.6: The GPT-5 model (left) failed to return to the departing city, whereas the Planner-R1
8B (middle) and Planner-R1 32B (right) models produced plans that satisfied all requirements.
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to March 12th, 2022, and our new budget is set at $4,400. For dining, we'd like to try local American and French cuisines.

I need assistance with planning a week-long trip for three people, starting from Punta Gorda and traveling to three different cities in Michigan. The trip dates are from March 6th

GPT5 Generated Plan

Planner-R1 8B Generated Plan

Planner-R1 32B Generated Plan

{
m’; "Punta Gorda',
“to":“Grand Rapids”

'tranlpona'.wn {

flight,
:“Punta Gorda’,
" Grand i,

ours 49 minutes’

“flight_ n\lmber'  T3s80%05,
departu

clty' eand Rapids’,
“transportation’:
attraction”:
“Proderik Mefjer Gandeas & Sculptare Park;
“Grand Rapids Art
“Grand Rapids Pubiic oseuar

‘"Sanny Dif
Lstiog

- “Cafe
"hlm:.h' el 65
“dinner": Paribar”

“from“Grand Rapids,

self-driving

“attra
“Meyer May House’
“Air Zoo Aempm &Science Museum™

1
ccommodation” ’Spm:u)\u & Quaint 1 Bed in Midtown’,

“bre:
"hlm:.h' Black Pe ppt
“dinn

“Bronson Park:

*accommodation’: "Spacious & Quaint 1 Bed in Midtown’,
“breakfast’: ‘Black Pep

Janeh’ -c lios Grck .1 alian Restaurant’,

“dinn

“City Opm House™

District Studio’,

“accommodation’: ‘Convenient Finan
reakfast': ‘Black Pepper’,

unch' French Toast,
“dinner" “Dragonfly”

'dzyl 6
Kl

“Traverse City,
o -Grand Rapids'

“transportation”:
Tade’ el dnvmg‘

“attraction’: [
“Mission Point Lighthouse’,
“The Blue Bridge”

Listing), i
“breakfast’: “French Toast’,
eociri{Cu Rty
“dinner’ P

[ un
[

_{
driving’,

“Campus Martius Park’,
“Motown Museum"

"accommodation’: “Lovely, charming and clean bedroom in
Manhattan’,

“breakfast”:"Mitalis Kitchen',

“lunch’: ‘Flavours of Punjab,

“dinner”: Desi Spice”

“Kalamazoo Institute of Arts"

1
“accommaodation’: ‘Apartment in Ridgewood/Bushwick

“breakfast

usew
“Frederik Meijer Gardens & Sculpture Park”

“accommodation’: Noel Palace’
“breakfaat” Hobing Korean Desser Cate,
“lunch’: ‘Swagath’,

“iinner “Unce Cake Shop®

Gorda’,
“19 hours 34 mins’,
ce': 2,160 k',

 “Punta Gorda,
“to’: Traverse City’

“transportation’:
“mode’: self-driving’,
e ol
 “Traverse City’,
'dunuon “21 hours 39 mins’,

e,

* “Traverse City,
“transportation

ra
“Clinch Park’

“Great Lakes Children's Museunn’,
“World's Largest Cherry Pie Pan”

“accommaodation’: “One bedroom apartment in NoLita’,

“from’: “Traverse City,
“to': Detroit”

3
“transportation'
“mode’: self-driving’
“from’ T

ttractior

ommodation': "Lovely, charming and clean bedroom in

Manhattan’,
“breakfast
“lunch’:
“dinner: -

it
Campus Martius Park-

1

“accommodation’: "Lovely, charming and clean bedroom in
Manhattan’,

“breakfast”: “Southern Bliss Bakery,

“lunch’: ‘A Dong Restaurant’,

“dinner”: "Vapour Pub & Brewery"

“Lansing’,
“duration’: "1 hour 24 mins’,
s e R

7]

'.um
ccommodation': Magical Brooklyn Space 20 MIN to
tant*

“Lansing’,
“transportation’:
traction’: [
impression 5 Science Center’,
“Potter Park Zoo',

“Michigan History Center”

“accommodation’: Magical Brooklyn Space 20 MIN to
Manhattan!*’,

“breakfast": Manuel's Bread Cafe’,

“lunch’: “Tony's Italian Restaurant & Pizza’,

“dinner”: Front Street Brewery"

“mode’: self-driving’,
i

e,

Plan Delivery:

Plan Pass: ©

1. Convenient Financial District Studio in
Traverse City requires a minimum of 2.0
nights, but got 1.

2. City Traverse City is visited multiple
times.

Plan Delivery:

Plan Pass: ©

Accommodation Noel Palace in Grand Rapids
requires a minimum of 3.0 nights, but got 2.

Plan Delivery:
Plan Pass:

Figure A.7: The GPT-5 model (left) violated the hotel booking rule by reserving only one night
instead of the required minimum of two, and also erred by visiting Traverse City multiple times,
failing the common-sense requirement. The Planner-R1 8B model (middle) likewise failed the ac-
commodation requirement, while only the Planner-R1 32B model (right) satisfied all requirements.
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) Could you create a travel plan for a party of 8 departing from Fayetteville and heading to New York
for 5 days, which will cover 2 cities between March 25th and March 29th, 2022? We have a maximum
budget of $6,900. We are particularly interested in experiencing American and Mexican cuisines during

our stay.

GPT5 Generated Plan

Planner-R1 8B Generated Plan

Planner-R1 32B Generated Plan

o New y York,

“1147.0 mi’
“cost’: 260,

3

*attraction": [
“Times Square’,
“Top of The Rock’,
“Central Park’

“accommodation’: "Magical rowhouse and garden in
Williamsburg (3 units)’,

"breakfast":

“lunch’; ‘Gurgaon Hights’

*dinner": ‘G Dot"

erty’
*9/11 Memorial & Museun’,
“Brooklyn Bridge’,

“The High Line"

“accommodation’: *Magical rowhouse and garden in
Williamsburg (3 units)’,

“lunch’; Amehur,
*dinner”: "Gurgaon Hights"

“days™: 3,
R {

“to": "Newark"

13
"transportation” {
“mode™ “taxi

*duration’: "29 mins’,
“distance”: "16.3 km’,
“cost™: 16

3
“attraction’: [
“The Newark Museum of Art’,
*Branch Brook Park’,
“Military Park"
“accommodation’: "Magical rowhouse and garden in
Williamsburg (;

*Empire State Building’,
“Rockefeller Center’,
*Radio City Music Hall"

“accommodation’: “Magical rowhouse and garden in
Williamsburg (3 units)’

“One World Observatory’,
“The Battery’,
*Flatiron Building"

accommodxnon -
“breakfast": ",
‘lunch’ Gmgnonmgms,
“dinner”: "G Dot’

d-muon 8 hours 19 mins’,
“distance": "873 km’,
“cost": 43

“transportation’
“attraction: [

“Empire State Building’,
“The High Line*

1
*accommodation’: "Modern Brooklyn oasis (PRIVATE ROOM);,
“breakfast": *Gurgaon Hights’,
“lunch’: *G Dot’,
“dinner" "Aryan's Rajasthani Pyaz Ki Kachori"

“duration’: 3 hours 41 mins’
“distance’: *346 km'
“cost™: 17

“attraction’: "
“accommodatios
"breakfast"
“Tunc 7
“dinner”:

“Sunlight + Space on Eastern Parkway’,

*days" 4,
“city": "Boston’
"transportation
"attraction”: [
“Public Garden’,
“Museum of Science’,
“New England Aquarium®

1

*accommodation’: *Sunlight + Space on Eastern Parkway’,
"breakfast": “Irish Democrat’,

“lunch’: *Apni Rasoi’,

*dinner": "Resunga Food Corner"

l:lf-driving‘,

“cost': 61

“attraction’: [
“The Buffalo Zoo',
“Buffalo and Erie County Botanical Gardens’,
“Buffalo AKG Art Museum"

*accommodation': Wl.llnmslmrg Gem: Sleepup to 5°,
“breakfast": "Red Manj

“lunch’: “Tibby's New Oricans Kitcherr,

“dinner: "Shokitini"

b

om"; Buffalo’
“to’ lew York"

3
“transportation': {

“from”: "Buffalo’,
“t0": "New York',

hours 14 mins’,
00 km',

“accommodation’: 'A Contemporary Homelike Stay in the Best of
BK',
“"breakfast”: "',

"transportatio
“attraction’: [
“Top of The Rock’,
*One World Observatory’,
*SUMMIT One Vanderbilt™

1

*accommodation’: ‘A Contemporary Homelike Stay in the Best of
K,

“breakfast': ‘Gurgaon Hights’

“lunch': *G Dot

“dinner": ‘Rambhog”

13
{

{
“from’; "New York’,
“to": "Fayetteville'

hours 21 mins’,

Plan Delivery:

Plan Delivery:

Plan Delivery:
Plan Pass:

Plan Pass: © )
1. Missing meals on day 2 Planibass.
2.A ion M rowh and

garden is not presented in database

Figure A.8: In this query, the user plans a trip for a party of 8. The GPT-5 model (left) missed meals
on Day 2 and hallucinated non-existent hotel names. The Planner-R1 8B model (middle) generated
a plan that exceeded the $6,900 budget, while only the Planner-R1 32B model (right) satisfied all
requirements.
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Current tool
(# transitions from tool)

Current tool
(# transitions from tool)

Tool transitions | condition=all | with_START - step 0

START 036

basic_arithmetic_calculator
a17

get_accommodations 0.02

get_attractions ¥ Y
0 028 0.04

get_cities
36
get_flights
105

9et ground transportation 0.03

get_restaurants
157

B
Next tool (or END)

Tool transitions | condition=all | with_START - step 500

START

45
get_accommodations
88

get_attractions

88

get_cities

2

get flights

112
get_ground_transportation
137

get_restaurants
88

Next tool (or END)

Probability

Current tool
(# transitions from tool)

Current tool
(# transitions from tool)

Tool transitions | condition=all | with_START - step 100

START

a5
basic_arithmetic_calculator
8

017

get_accommodations 010

get_attractions |
81 0.01

gek_ciki;; 054 015
get_flights
89

get_ground_transportation
82

get_restaurants
78

Next tool (or END)

Tool transitions | condition=all | with_START - step 1000

START

45
get_accommodations
87

get_attractions

87
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Figure A.9: Policy visualization for 8B model across 45 trajectories based on previous (y-axis) and
next (x-axis) tool calls across various steps of learning: {0, 100, 500, 1000}. As learning progresses,
the policy becomes more deterministic.
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Figure A.10: Policy visualization 32B model across 45 trajectories based on previous (y-axis) and
next (x-axis) tool calls across various steps of learning: {0, 100, 500, 1000}. As learning progresses,
the policy becomes more deterministic.
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Figure A.11: Tool call sequence behavior as 8B training progresses. The base model (leftmost)
repeatedly invoked the calculator and restaurant tools until reaching the rollout cap (30 turns), ex-
hibiting poor tool-use behavior as context grew. With longer training, the model developed more
consistent and structured patterns for tool calls.
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Figure A.12: Tool call sequence behavior as 32B training progresses. The base model (leftmost)
repeatedly invoked the calculator until reaching the rollout cap (30 turns), exhibiting poor tool-use
behavior as context grew, similar to the 8B model. With longer training, the model developed more
consistent and structured patterns for tool calls. In particular, it learned to invoke get cities early to
check available cities within states before searching for tickets and attractions. We also observed
that the model made fewer get flights calls across queries, instead preferring to select more grounded

transportation options.

34




Under review as a conference paper at ICLR 2026

D LLM USAGE DISCLOSURE

We used large language models (LLMs) only as general-purpose writing assistants for surface-
level language edits (grammar, phrasing, and clarity), LaTeX formatting suggestions (e.g., table/fig-
ure spacing, caption wording), and copyediting (e.g., consistent terminology, acronym expansion).
LLMs did not contribute to research ideation, dataset or method design, experimental planning,
implementation, analysis, or conclusions. All technical content, experiment setup, results, and in-
terpretations were created and verified by the authors, who take full responsibility for the paper’s
substance and correctness.

E REWARD SHAPING AND POLICY INVARIANCE

We treat Stage 3 as the ground-truth MDP, where the terminal reward is
7"(3) = T'schema T'pass € {07 1}

Hence (3) = 1 if and only if the plan is schema compliant and all commonsense and hard constraints
are satisfied, and 0 otherwise. The shaped rewards for Stage 1 and Stage 2 are

1 micro micro macro macro
T( ) = T’schema (Tcsl + Thalrd + Tes + Thara + rPaSS)7
2 macro macro
) = T'schema (Tcs + Tharda T Tpass) .
We assume throughout that for every initial state (task instance) there exists at least one plan that is
schema compliant and satisfies all commonsense and hard constraints.

o

Lemma 1. Assume that for every instance there exists at least one plan that is schema compliant
and satisfies all commonsense and hard constraints. Let r®) = rohema Tpass be the ground-truth

reward, and let vV, (2 denote the Stage 1 and Stage 2 rewards. Then any optimal policy with

respect to 7V or r) attains the ground-truth optimal value under r(3).

Proof. A plan is valid if it is schema compliant and all constraints pass. Such a plan yields
r® =1, r0 = 5, r2) — 3,

while any invalid plan yields
r® =0, WH<s s

Since a valid plan exists, there is a policy that outputs valid plans with probability 1, and therefore
V*(g) = 1. Let 7r>(kk) be an optimal policy for reward r(*), with corresponding optimal value of V*(l€>

I m(kk) produced an invalid plan with positive probability, its value V*(k) would be a strict convex

combination of the valid and invalid rewards, and thus strictly less than the maximal valid reward (5

for k = 1, 3 for k¥ = 2). This contradicts optimality. Therefore 7r>(kk) must output valid plans with

probability 1. Since 7(®) equals 1 exactly for valid plans and 0 otherwise, such a policy satisfies

v =v® =1

o

Thus any Stage 1 or Stage 2 optimal policy achieves the ground-truth optimal value under ). [J

F DETAILED CONSTRAINTS

The constraints used in our environment are identical to those in TRAVELPLANNER (Xie et al.,
2024). We group them into commonsense and hard constraints as summarized below.
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Commonsense Constraint

Within Sandbox
Complete Information

Within Current City
Reasonable City Route
Diverse Restaurants
Diverse Attractions
Non-conf. Transportation

All information in the plan must be within the closed sandbox; otherwise, it
will be considered a hallucination.

No key information should be left out of the plan, such as the lack of accom-
modation during travel.

All scheduled activities for the day must be located within that day’s city(s).
Changes in cities during the trip must be reasonable.

Restaurant choices should not be repeated throughout the trip.

Attraction choices should not be repeated throughout the trip.

Transportation choices within the trip must be reasonable. For example, hav-
ing both “self-driving” and “flight” would be considered a conflict.

Minimum Nights Stay The number of consecutive days spent in a specific accommodation during the

trip must meet the corresponding required minimum number of nights’ stay.
Hard Constraint

Budget The total budget of the trip.

Room Rule Room rules include “No parties”, “No smoking”, “No children under 107,
“No pets”, and “No visitors”.

Room Type Room types include “Entire Room”, “Private Room”, “Shared Room”, and
“No Shared Room”.

Cuisine Cuisines include “Chinese”, “American”, “Italian”, “Mexican”, “Indian”,
“Mediterranean”, and “French”.

Transportation Transportation options include “No flight” and “No self-driving”.

G BETTER CONVERGENCE SPEED FOR DENSE REWARD

Let’s focus on comparing stage 1 reward (dense) with stage 3 reward (sparse).
We compare the optimization dynamics induced by the dense stage—1 reward A(") = (1,1,1,1,1)
and the sparse stage—3 reward \(3) = (0,0,0,0,1) from equation 1. For clarity, we write these two

terminal rewards as

r(l)(u, T) := Tschema (U, T) (rgfc“’(u, T)+ rflnaic(f"(u, T) 4+ rog (U, T) + Tharg (U, T) + Tpass (0, T))7

3)

T(S) (U7 T) = Tschema(u7 T) Tpass (u7 T)’ @

for a prompt v and trajectory 7. By construction, r(®) coincides with the original sparse reward,
while (1) is a proper shaping of (3) (i.e., both induce the same optimal policy).

Let S denote the finite set of training prompts, and let 7y ) be the initial (tabular or autoregressive)
policy. For a generic terminal reward r, define the per-prompt reward variance at initialization as

Vr(u) = VarTNWe(o)('\u)[r(u’ T) ]’

Vi = Eyus [Vi(u)]. 5)

Lemma 2 (Dense reward has larger initial variance). Assume that, for every prompt u, € S,
(a) the auxiliary terms are non-negative and non-degenerate under Ty(q):

. micro micro macro macro
Z(U, T) T rlfé'hema(ua T) (rcs + Thard + Tes + Thard ) (U,, T) 2 07

(b) the auxiliary

signal is

positively  correlated  with  final-pass  success:

COVT [ Z(U, 7‘)7 Tpass(uv T) ] 2 0.

Then for every u € S,

Vi (u) > Vi) (u),

and consequently V,y > V).

Proof. By definition,

r(l)(u,T) =r® (u,7) + Z(u, 7).
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For a fixed u, write X := r(®)(u,7) and Z := Z(u, 7). Assumption (a) implies Var[Z] > 0, and
assumption (b) implies Cov[X, Z] > 0. Using Var[X + Z] = Var[X] + Var[Z] + 2 Cov[X, Z], we
obtain

V,

T

m (u) = Var[X 4+ Z] = Var[X| + Var[Z] + 2 Cov[X, Z] > Var[X] = V(s (u).
Averaging over u ~ S gives V1) > V). O

We now connect reward variance to convergence speed using Theorem 1 in (Razin et al., 2025),
which shows that the time required for the expected reward to increase is lower bounded by a term
inversely proportional to the initial reward variance:

Theorem 1 (Reward variance controls optimization time, informal). Under the regularity assump-
tions of (Razin et al., 2025), there exists a constant C, > 0 (depending on vy and problem parame-
ters, but not on the choice of r) such that for any terminal reward r,

ty(r) > =L (6)

Applying Theorem 1 to the dense and sparse rewards and combining with Lemma 2 yields:

Corollary 1 (Dense shaping converges faster than sparse reward, at the level of the lower bound).
Suppose the assumptions of Lemma 2 and Theorem 1 hold. Then
Ve
ty (r) < S t,(r®) < ¢, (T(g))’ 7

(1) -

whenever VT(U > ‘7T(3). In particular, the dense stage—I reward admits a strictly smaller (theoreti-
cal) lower bound on optimization time than the sparse stage—3 reward.

Intuitively, the shaped reward (1) spreads probability mass across many intermediate scores (partial
schema satisfaction, partial commonsense and hard-constraint satisfaction), thereby inducing higher
reward variance under the initial policy. By Theorem 1, this larger variance directly reduces the
worst-case time required for policy gradient (and its stochastic approximation via GRPO in Sec-
tion 2.3) to achieve a fixed improvement ~ in expected final-pass performance. This formalizes
the empirical observation that dense, properly shaped rewards lead to faster convergence than the
original sparse reward ().

H ASYMPTOTIC PERFORMANCE EQUIVALENCE BETWEEN SPARSE AND
DENSE REWARDS

We now show that, although the dense stage—1 reward (1) accelerates optimization compared to the
sparse stage—3 reward 7-(3), both induce the same asymptotic policy under GRPO.
For k € {1, 3}, define the population objective

J®(0) = EunsErarg(-u) [T(k) (u,7)], ®)

where (1) and r(®) are the dense and sparse terminal rewards defined in Section 2.2, and S is the
finite set of training prompts.
We assume:
(A1) (Proper shaping and local shared optimum) There exists a parameter vector 8* and a neigh-
borhood U C O of §* such that 6* is the unigue maximizer of both objectives restricted to
U:
* 3)(g) = )
0* = arg %1€a5<J (0) = arg I;leal}((] (0).
This is a local version of proper shaping: near 6* the dense reward (1) and sparse reward
3) induce the same optimal policy, but we do not require global uniqueness outside U.
(A2) (Local agreement of GRPO directions via normalized advantages) There exists a (possibly
smaller) neighborhood U’ C U such that for any § € U’ and any prompt u € S, the dense
and sparse returns differ by a positive affine transform on almost all trajectories sampled
from 7o (- | u):

D (u,7) = ag(u) r® (u, 7) + bg(u)  with ag(u) > 0  for mp-almost every 7.
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Since GRPO uses group-normalized returns, this implies that the group-normalized advan-
tages coincide:

flgl) = flgg) for all 4 and all groups in U’ (with probability 1.),
and hence the expected GRPO gradient fields agree locally:
1
gD (8) = E[VeJ o (0)] = E[VaJiho(@)] = ¢®(6), VoeU'.

This is due to the GRPO advantage normalization. Recall that for reward (*) and a group
of trajectories {rgk) 14 | for a fixed prompt u, the group-normalized advantage is

k G
i) TP~ ) = Z (k) (k) z,iz (k) (k)2
Ai - U(k) ) r ) - G < - (Tj Hy ) . (9)
J:

(A3) (Local convergence of GRPO) Starting from a common initialization 6, the GRPO iterates
{95\5) tn>o fork € {1,3} enter U’ with probability tending to 1 and remain there thereafter.
Moreover, within U " the stochastic GRPO dynamics form a standard stochastic approxima-
tion to the ODE 6 = ¢(*)(#), and 6* is a locally asymptotically stable equilibrium of this
ODE. In particular,

0% 2y 6* as N — oo for k € {1,3},

but we do not require global consistency of GRPO outside U’.
Under these assumptions we obtain:

- (1) (3)

Theorem 2 (Asymptotic performance equivalence). Let 7" := m,a) and 7Ty’ = T, be the
N N
policies obtained after N GRPO updates using the dense and sparse rewards, respectively. Then for

everye > 0,
P(||

4r§3>||>s) —5 0 asN — oo, (10)

P(||#
Proof sketch. By (Al) and (A3), for each k£ € {1,3} the GRPO iterates enter U’ and converge in
probability to the locally stable maximizer 8* of J(*). Assumption (A2) implies that within U’ the
expected GRPO update directions coincide: g (8) = ¢ () forall § € U”, since dense and sparse
rewards differ only by a positive affine transform and group-normalized advantages are invariant
under such transforms.

Thus, once both processes have entered U’, they follow (up to stochastic noise) the same limiting

ODE § = g(6) with the same locally attractive fixed point 8*. By standard stochastic approximation

arguments, this yields 9( ), 0* and hence W](V) = Ty(k) 2, 7*. Finally, for any ¢ > 0, applying

or equivalently,

Wl <e) — 1. (1)

the triangle inequality and a union bound as in the orlglnal argument gives

P(||#

which proves equation 10. O

S

|>€) — 0,
N —o0

I RESPONSE LENGTH CLIPPING ANALYSIS

Figure A.13 shows the evolution of agent response length across training steps for one run. The
model often reaches the model output context budget of 30,500 tokens (within a 32K full-context
window, where roughly 2K is reserved for the initial prompt), causing recurrent clipping. Once the
context is truncated, the agent loses tool outputs and partial trajectories, which forces it to rely on
shorter surviving segments of the conversation history. As training progresses the agent adapts by
constructing shorter plans to manage the context which leads to sub-par plans.
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Figure A.13: Response length over training steps capped at 30,500 tokens
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