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ABSTRACT

We investigated Agentic RL with large language models on the TRAVELPLAN-
NER benchmark. Our approach, PLANNER-R1, achieved a 56.9% final-pass rate
with only 180 training queries, a 2.7× improvement over GPT-5’s 21.2% baseline
and the strongest agentic result on the public leaderboard. A central finding was
that smaller models (8B) were highly responsive to reward shaping: with dense
process-level signals, they reached competitive performance while being 3.5×
more compute-efficient and 1.5× more memory-efficient than 32B models. Larger
models were more robust under sparse rewards but exhibited smaller relative gains
from shaping and higher variance across runs. While curriculum learning offered
no significant benefit, shaped rewards consistently amplified learning dynamics,
making 8B models the most efficient setting for agentic RL. Crucially, these gains
did not come at the cost of overfitting: fine-tuned models mostly maintained or ex-
ceeded baseline performance on out-of-domain tasks, including MULTI-IF, NAT-
URALPLAN, and τ -BENCH. These results establish reward shaping as a decisive
lever for scaling agentic RL, highlight the competitive strength of smaller models,
and demonstrate that efficiency can be achieved without sacrificing generalization.
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Figure 1: Final-pass rate on the leaderboard test set for tool-use travel planning. Our Planner-R1
models outperformed SOTA LLMs reaching 56.9% average final pass rate.

1 INTRODUCTION

Large Language Models (LLMs) have recently posted striking gains in deliberate reasoning and
decision making, propelled in part by large-scale reinforcement learning (RL) that trains models to
think before they answer (OpenAI et al., 2024a; Guo et al., 2025). Beyond language understanding,
LLM agents now demonstrate emerging competence in structured reasoning, tool use, and multi-
step problem solving across embodied and web environments (Huang et al., 2024; Wang et al.,
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2023a; Feng et al., 2025; Zhang et al., 2025b). Yet turning these abilities into reliable long-horizon
execution under real-world constraints remains challenging: prompting-only agents such as ReAct
and Reflexion frequently mis-sequence actions, loop, or hallucinate when tasks demand coordinated
tool use and strict constraint satisfaction (Yao et al., 2023b; Shinn et al., 2023).

Planning tasks such as meeting scheduling and multi-day itineraries are demanding: agents must
coordinate heterogeneous tools (calendars, maps, flights, booking APIs), satisfy hard, interdepen-
dent constraints, and maintain global consistency over long horizons. TRAVELPLANNER makes
these difficulties concrete by casting travel itinerary creation as tool-augmented, constraint-driven
planning (Xie et al., 2024). The benchmark provides a sandbox with nearly four million records
and 1,225 curated intents with reference plans, and evaluates whether an agent can gather evidence
via tools and synthesize itineraries that satisfy both explicit user constraints and commonsense fea-
sibility. At release, even strong models struggled—e.g., GPT-4-Turbo with ReAct achieved only a
0.6% final pass rate on the 1,000-example test split—underscoring the gap between fluent language
modeling and dependable constraint-aware planning (Xie et al., 2024).

To close this gap, researchers have explored different training paradigms. A natural starting point is
behavior cloning via supervised fine-tuning (SFT), where a teacher generates “golden” trajectories
and a policy maximizes their likelihood, often masking environment observations and tool outputs.
While simple and widely used, SFT largely imitates expert behavior and is brittle under distribution
shift or suboptimal data. This motivates the search for approaches that directly optimize for end-
task success rather than imitation fidelity. RL provides precisely such a mechanism: rewards encode
task success, and the policy is updated to increase the likelihood of action sequences that satisfy con-
straints while suppressing those that fail. Recent work has shown that RL can deliver state-of-the-art
gains in model-based reasoning and planning (OpenAI et al., 2024a; Guo et al., 2025), making it a
promising direction for tackling long-horizon tool use in TRAVELPLANNER. In addition to model
performance, there is growing interest in building efficient agentic systems with smaller models
(Belcak et al., 2025). Such models show promising potential for inference and training efficiency,
but there remains limited understanding of how agentic RL can best improve their performance
without overfitting. Our study addresses this gap by examining how model size, reward shaping,
and efficiency interact in agentic RL.

We formulate TRAVELPLANNER as a multi-step, tool-use MDP with constraint-aware planning,
where the agent gathers missing facts, reconciles conflicts, and outputs a structured itinerary. Train-
ing uses agentic RL with trajectory-level rewards gated by schema validity. Our main focus is the
role of reward density: we vary feedback from dense, process-level signals to sparse final-pass re-
wards, and also test a curriculum that transitions between them. All reward variants are properly
shaped, ensuring they converge to the same optimal policy while revealing how granularity influ-
ences learning dynamics. Our contributions are summarized below.

• SOTA Tool-Use on TravelPlanner PLANNER-R1-32B achieved a 56.9% final-pass rate
on the official 1,000-query test split, a 2.7× improvement over GPT-5. This is the strongest
agentic result on TRAVELPLANNER, demonstrating that RL-tuned models can surpass
state-of-the-art proprietary models.1

• Reward shaping dynamics We find a strong link between reward granularity and policy
competence. Smaller models (8B) were especially responsive to shaped, process-level re-
wards, achieving performance competitive with 32B models while being up to 3.5× more
compute-efficient and 1.5× more memory-efficient. Larger models (32B) performed well
across reward settings and remained more robust under sparse signals, but exhibited higher
variance under dense rewards. In contrast, 8B models depended more heavily on dense
shaping. Curriculum learning alone provided no measurable benefit, whereas reward shap-
ing consistently amplified learning dynamics, making the 8B models the most efficient
setting for agentic RL.

• Generalization Beyond Training Domain Our agents did not overfit to TRAVELPLAN-
NER: Planner-R1 models maintained or exceeded baseline performance on out-of-domain
tasks including MULTI-IF, NATURALPLAN, and τ -BENCH, provided that excessive
domain-specific fine-tuning is avoided. This demonstrates that the efficiency gains from

1Hao et al. (2025) achieved 93.9% correctness with external SAT/SMT solvers; our focus is on end-to-end
agentic planning without such solvers.
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Figure 2: MDP Visualization. xi represent the ith token, while at represents the action the agent
took at time t. Notice that initial prompts and tool responses contain tokens, but they dont increase
the time step t.

agentic RL come without sacrificing robustness, supporting transfer to diverse planning
and tool-use settings.

• RL Benchmark Formulation We recast TRAVELPLANNER as a multi-step agentic RL
benchmark by leveraging the official sandbox and its seven tools, and we designed verifi-
able reward functions aligned with the task’s success criteria. Policies were trained with
VERL(ver, 2024), where our system-level optimizations reduced runtime and memory us-
age by 20%, enabling efficient large-scale experimentation. (see Appendix A for details)

2 PLANNER RL

2.1 PROBLEM FORMULATION

We cast tool-augmented planning as a Markov Decision Process (MDP) M = (S,A, P, r, γ). Since
our MDP is episodic, we set γ = 1. Each episode is initialized with two textual inputs: a system
prompt y, which defines the agent’s role and available tools (see Appendix B.1), and a user prompt
u, which specifies the task goal and user preferences. At each time step t, the agent interacts with the
environment by emitting a token, alternating between natural language and structured tool invoca-
tions, until it decides that a complete plan has been formed. Figure 2 illustrates this process. While
our instantiation focuses on the TRAVELPLANNER benchmark (Xie et al., 2024), the formulation is
general and extends naturally to other agentic RL tasks. We next describe the individual components
of the MDP:

States. st ∈ S denotes the complete history, including the initial system and user prompt, the agent’s
partial plan, and all tool calls and responses observed up to step t, beginning from s0 = (y, u).

Actions. at ∈ A is the generated token at time t. The agent issues tool calls
through tokens to gather the necessary information and then produces the final plan
through a text action. Tool calls are realized as seven APIs connected to a sand-
box with millions of grounded records: search flights, search accommodations,
search restaurants, search attractions, search ground transportation,
get cities, and calculator. Each call takes JSON arguments and is wrapped inside
<tool_call>...</tool_call>, returning a structured JSON object: successful calls yield a
list of serialized rows, while failures return an error field.

Compared to the original TRAVELPLANNER, we added the calculator API for explicit numeric
reasoning and disabled the lightweight semantic memory so that tool responses appear directly in the
context. The final text action directly outputs an itinerary enclosed in <answer>...</answer>.
This design standardizes iterative tool use while keeping the final deliverable unambiguous.

Transitions. The environment appends each action to the state; if a tool call is completed, it is
executed and the output ot is added, otherwise ot is null. The next state is st+1 = (st, at, ot+1), with
older context truncated when exceeding the window. A key difference from the original benchmark
(Xie et al., 2024) is that we append tokens chronologically to the state, making our transition more
generic, as opposed to moving the tool responses to a specific part of the context.

3
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Reward. In this domain, success is sparse and binary. A plan receives a reward of one only at
termination if it is schema-valid and satisfies both commonsense and user-specified constraints.
User queries are designed to ensure that at least one feasible plan exists.

To pass schema validation, the plan must be a valid JSON array of day-level objects,
each conforming to a fixed schema with fields for days, city, transportation,
attraction, accommodation, breakfast, lunch, dinner. Importantly, city
and transportation are typed objects with required fields (e.g., transportation must specify
mode, origin, destination, and duration), rather than free-form strings. The full schema is provided
in Appendix B.2.

Constraints fall into two categories. First, there are Ncs commonsense constraints, which are not
explicitly given to the agent but must nonetheless be satisfied (e.g., transportation segments cannot
overlap). Second, there are Nhard hard constraints, explicitly specified in the user prompt, such as
departure and return dates. Formal definitions and the complete list of constraints are provided in
Appendix F and work of Xie et al. (2024).

Our objective is to learn a policy πθ(a | s) that maximizes the expected cumulative reward, which
here reduces to optimizing the terminal reward: maxθ Eπθ

[rT ] .

2.2 MULTI-STAGE REWARD

Due to the extreme sparsity of the reward function, we shape it using auxiliary metrics defined in
the original paper. In particular,

• rschema = I[plan conforms to schema]: indicator of schema compliance,

• rmicro
cs = Scs

Ncs
: fraction of satisfied commonsense constraints,

• rmicro
hard = Shard

Nhard
: fraction of satisfied hard constraints,

• rmacro
cs = I

[
rmicro

cs = 1
]
: indicator that all commonsense constraints pass,

• rmacro
hard = I

[
rmicro

hard = 1
]
: indicator that all hard constraints pass,

• rpass = I[rmacro
cs ∧ rmacro

hard ]: indicator that both commonsense and hard constraints pass.

Here, I is the indicator function. The micro rewards are necessary to provide partial credit when
all constraints are not met , the macro rewards emphasize satisfying entire categories, and rpass
corresponds to the original evaluation metric. The terminal reward in the generic form can then be
written as:

r = rschema

(
λ1r

micro
cs + λ2r

micro
hard + λ3r

macro
cs + λ4r

macro
hard + λ5rpass

)
. (1)

By adjusting λ = [λ1, . . . , λ5], we control the reward density. In practice, we consider three stages:

• Stage 1: λ = [1, 1, 1, 1, 1] (dense feedback),
• Stage 2: λ = [0, 0, 1, 1, 1] (category-level),
• Stage 3: λ = [0, 0, 0, 0, 1] (sparse final pass).

This setup defines proper reward shaping: auxiliary terms provide intermediate guidance, while the
final-pass reward captures the true objective. Crucially, all of the above weightings preserve the same
optimal policy (see proof in Appendix E). Building on this, we define a curriculum that schedules
λ across training, beginning with dense feedback for partial credit, then shifting to category-level
rewards, and finally collapsing to the sparse end reward. Transitions occur at predefined step counts.

2.3 OPTIMIZATION

We used GRPO (Shao et al., 2024), a clipped PPO-style objective without KL regularization. For
each planning query u ∈ D, we sample G trajectories T = {τi}Gi=1 with corresponding Returns
r = {r1, r2, · · · , rG} from the behavior policy πθold , where τi = (si0, a

i
0, . . . , s

i
Ti
). The loss is

JGRPO(θ) = Eu∼D, {τi}∼πθold

[
1

G

G∑
i=1

1

Ti

Ti−1∑
t=0

min
(
ρi,tθ Âi, clip(ρ

i,t
θ , 1− ϵ, 1 + ϵ) Âi

)]
, (2)
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with clipping hyperparameter ϵ > 0. The token-level importance ratio and trajectory-level advantage
are defined as

ρi,tθ =
πθ(a

i
t | sit, ai<t)

πθold(a
i
t | sit, ai<t)

, Âi =
ri −mean(r)

std(r)
.

We theoretically proved (proof in Appendix G) that properly shaped rewards like Stage 1 lead to
faster convergence than the original sparse Stage 3 reward. This insight provide a fundamental justi-
fication for the effectiveness of reward shaping in agentic RL for LLMs. We also proved asymptotic
performance equivalence between our sparse and dense rewards under regular assumptions (proof
in Appendix H) . This guarantees that the performance of properly shaped rewards is no worse than
original sparse reward.

3 EMPIRICAL RESULTS

3.1 SETUP

In-Domain We fine-tuned Qwen3 8B/32B models across 5 runs with fixed set of seeds on TRAV-
ELPLANNER.2 Due to GPU memory constraints and the 32K context limit, we conducted prelim-
inary evaluations with “thinking” enabled (qwe, 2025b;a) and found that the additional reasoning
quickly saturated the context window, leading to truncated trajectories and degraded performance
(see Appendix I). Combined with recent evidence that test-time thinking does not universally im-
prove model quality (Gema et al., 2025; Shojaee* et al., 2025), these observations motivated our
decision to disable thinking for all experiments. We named our fine-tuned models Planner-R1. The
official 45/180 train–validation split was merged and reshuffled into 180 training and 45 validation
queries, while preserving the easy/medium/hard ratio. We evaluated three single-stage reward con-
figurations with 500 steps and a curriculum regime for 8B and 32B models with 100/300/100 and
50/350/100 steps respectively.3 8 rollouts were executed in sglang with a standard ReAct-style
agent. We capped trajectories at 30 steps, tool responses at 8, 192 tokens, and model outputs at
30, 500 tokens. All runs used two nodes (16×H200 GPUs). We used learning rate of 10−6. Full
hyperparameters and implementation details are given in Appendix B.3, and decoding and sampling
presets are summarized in Appendix B.4.

Out-of-Domain A central concern with task-specific fine-tuning is whether it harms generaliza-
tion outside the target domain. To probe this, we evaluated our trained models on three comple-
mentary suites. All were unseen during training, with evaluation limited to task instructions. (i)
NATURAL PLAN (Zheng et al., 2024) (Trip Planning, Meeting Planning, Calendar Scheduling),
where tool outputs were provided as context and accuracy was scored by Exact Match; we followed
the official five-shot prompting protocol. (ii) MULTI-IF (He et al., 2024) (English), a multi-turn
instruction-following benchmark derived from IFEval, where the input at turn t concatenated all
prior turns (≤ t − 1); we reported the mean of turn-wise scores. (iii) τ -BENCH (Yao et al., 2024)
(retail, function-calling), which measured goal completion against a simulated backend and policy
documents; we reported pass@1.

3.2 EVALUATIONS

Table 1 depicts the TRAVELPLANNER results based on Qwen3 (Yang et al., 2025), GPT (OpenAI
et al., 2024b; OpenAI, 2025b;a), and our Planner-R1 models using four reward models across six
metrics defined in 2. Numbers after ± indicates 95% confidence intervals.

Base models showed partial competence but struggled with full constraint satisfaction. While
stronger base models achieved 99%+ delivery rates and moderate commonsense and hard-constraint
coverage, they did not perform well end-to-end. For instance, GPT-5 and GPT-o3 achieved final
pass rates of 21.2% and 11.3%, respectively. In contrast, the open-weight Qwen3 series performed
substantially worse: the 8B model failed entirely, and the 32B model achieved only 0.6% final pass
despite a 41.9% delivery rate. This stark disparity underscored that the challenge lay not in planning

2We excluded 4B model as preliminary results did not show any trajectory with non-zero return.
3Given the strong Stage 3 performance of larger models, we advanced them more quickly from Stage 1.
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individual items, but in coordinating tool calls and enforcing all constraints jointly. Prior work (Yao
et al., 2023b; Nakano et al., 2021) suggested that prompting alone often underutilized tool feedback,
whereas robustness emerged when models interleaved reasoning with actions to query, observe, and
update plans. Our findings, as we will see in Section 4, align with this view: base models were able to
generate fluent itineraries, but their failures centered on tool sequencing and constraint bookkeeping
rather than basic retrieval.

Agentic RL delivered large gains; smaller models were reward-sensitive.

RL fine tuning improved both 8B and 32B Qwen3 models. PLANNER-R1-8B with the Stage 1
dense reward reached 39.9%, while PLANNER-R1-32B with Curriculum reward reached 47%. The
8B model was highly sensitive to reward sparsity: Stage 2 and Stage 3 led to 3/5 and 5/5 collapses,
consistent with prior evidence that smaller models depend strongly on shaped feedback (Ng et al.,
1999; dos Santos et al., 2024; Qian et al., 2025). These collapses are expected. Under sparse
Stage 2 and 3 rewards, the 8B model rarely produces correct early trajectories, yielding near-zero
advantages and stalling learning within the available compute budget, which also explains the wide
confidence intervals for Stage 2 and the 0 performance at Stage 3. Dense process rewards supply
graded feedback across micro, macro, and final pass components, allowing steady improvement
and effectively acting as a soft curriculum. This implicit progression aligns with ToolRL (Qian
et al., 2025), which shows that gradual reward changes outperform hard switches, and explains why
explicit curriculum transitions added no measurable benefit in our setup. The 32B model, with
a stronger initial policy, can generate partial solutions even under sparse rewards, making it more
robust; all reward settings yielded over 42%, with sparsity primarily increasing variance (±8 at Stage
1 →±14.1 at Stage 3). Although Curriculum achieved the highest 32B score, the improvement was
not statistically significant.

Smaller models delivered superior GPU efficiency compared to larger ones. Given the strong
performance of Stage 1 training, we extended experiments with high-capacity settings, training the
8B model for 3,000 steps and the 32B model for 2,000 steps. Figure 3 reports results from five
independent runs. The left panel, plotted against training steps, shows that both models achieved
broadly similar performance trajectories. The right panel, however, plots final pass rate against
estimated FLOPs (see Appendix B.6) and reveals a clear efficiency gap. While the 32B model
reached 90% of its peak performance (52.3%) at 7.6 × 1020 FLOPs, the 8B model achieved the
same value at only 2.1× 1020 FLOPs, a 3.5× improvement in efficiency.

Although the 32B model attained a slightly higher peak accuracy (56.9% vs. 56.4%), this difference
was not statistically significant and was accompanied by higher variance. We hypothesize that this
variance stems from differences in exploration dynamics. TRAVELPLANNER is a challenging en-
vironment where essential information is often missing, requiring recovery and alternative solution
paths. Smaller models tend to explore less and behave more deterministically, concentrating prob-
ability mass on a narrow set of actions. Larger models, by contrast, can consider a broader set of
strategies under uncertainty (for example, switching transportation modes or hotel choices), leading
to higher variability across rollouts. This exploratory flexibility likely contributes to the increased
variance observed in the 32B runs.

A memory-efficiency analysis (see Appendix B.5) showed that the 32B model consistently required
at least 1.5× more GPU memory than the 8B model, reinforcing that smaller models offer signifi-
cantly better efficiency for long-context agentic RL when data generation is not the bottleneck.

6
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Table 1: Results on the TRAVELPLANNER test set. For Planner-R1 models, we report mean per-
formance with 95% confidence intervals over five runs at 500 training steps. Stage 1–3 denote
runs trained exclusively on one stage for 500 steps each. Curriculum uses three phases: for 8B,
100/300/100 steps; for 32B, 50/350/100 steps across Stages 1–3.

Method Delivery Commonsense Hard Constraint Final
Rate Micro Macro Micro Macro Pass Rate
(%) (%) (%) (%) (%) (%)

Qwen3-8B 0.0 0.0 0.0 0.0 0.0 0.0
Qwen3-32B 41.9 27.5 1.7 11.4 7.2 0.6
GPT-o3 (high) 99.6 74.2 14.3 57.7 48.0 11.3
GPT5 (high) 99.8 81.0 23.4 75.4 71.1 21.2

Planner-R1-8B
Stage1 99.5±0.8 94.8±1.2 69.0±6.9 61.0±2.6 46.2±2.5 39.9±4.3
Stage2 99.9±0.2 80.6±18.2 30.2±51.9 63.4±13.8 48.6±16.3 13.3±23.2
Stage3 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
Curriculum 99.7±0.8 92.7±3.1 57.9±18.6 53.9±5.7 38.2±4.2 27.1±12.6

Planner-R1-32B
Stage1 99.3±1.6 95.2±1.6 70.4±13.4 74.2±1.4 56.4±2.9 42.3±8.0
Stage2 91.1±0.5 87.7±2.2 69.1±14.5 70.0±5.6 55.0±7.6 44.1±9.4
Stage3 99.4±0.9 94.7±2.5 71.9±15.2 60.8±16.6 48.2±15.1 44.3±14.1
Curriculum 99.1±1.7 95.9±2.5 78.5±7.9 72.1±5.0 55.1±6.2 47.0±6.9

RL fine-tuned models generalized beyond the training domain. Table 2 shows that RL fine-tuned
models performed mostly on par with, and often surpassed, their pretrained counterparts across NAT-
URAL PLAN (Zheng et al., 2024), MULTI-IF (He et al., 2024), and τ -BENCH (Yao et al., 2024). Blue
and red indicate significant improvements and degradations, respectively. After 2,000 steps, both
models improved on most metrics, and even at 3,000 steps the 8B model outperformed baselines on
five of seven metrics with marginal regressions on two metrics. We attribute this robustness to the
JSON-gated output structure, which couples semantics with format and reinforces tool-conditioned
behaviors, consistent with prior findings that structured generation improves reliability (Oestreich
et al., 2025) and supports generalization to unseen schemas (Liu et al., 2019).

Figure 3: Performance of 8B and 32B Planner-R1 during training based on learning steps (left)
and training FLOPS (right). The horizontal dashed line highlights 90% of the maximum average
performance of 32B models, while vertical dashed lines show the required FLOPs to reach that
performance by both 8B and 32B models.
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Figure 4: Progression of top 5 failures for 8B (left) and 32B (right) Planner-R1 during training on
test set

Table 2: Transferability to external benchmarks without target-domain training (percent). Models
are evaluated on NATURAL PLAN, MULTI-IF, and τ -BENCH. Blue = significant improvement over
the base model; red = significant degradation from the base model.

Method (Training Steps) NATURAL PLAN Multi-IF τ -bench
Trip Meeting Calendar 1st-Turn 2nd-Turn 3rd-Turn Pass@1

Qwen3-8B 12.9±0.2 82.0±0.0 22.7±0.3 88.9±0.6 82.8±0.6 75.4±0.5 9.5±2.1
Planner-R1-8B (500) 14.0±0.9 83.2±1.1 24.3±0.9 89.4±0.4 83.5±0.7 76.9±0.6 11.1±0.9
Planner-R1-8B (2000) 14.0±2.1 84.0±0.6 23.2±2.1 89.8±0.4 84.0±0.5 77.2±0.4 12.1±2.3
Planner-R1-8B (3000) 10.7±1.8 84.5±1.3 20.1±2.0 89.8±0.1 83.9±0.4 76.7±0.4 15.1±3.1

Qwen3-32B 11.3±0.0 77.0±0.0 32.2±0.0 89.1±0.3 83.1±0.3 77.1±0.4 28.0±2.2
Planner-R1-32B (500) 15.7±2.2 79.8±1.6 33.2±0.5 88.7±0.2 83.4±0.6 77.7±0.6 28.7±2.1
Planner-R1-32B (2000) 19.5±1.2 80.2±1.1 34.4±1.4 89.8±0.3 84.1±0.3 78.5±0.4 33.9±3.8

4 QUALITATIVE ANALYSIS

To illustrate the effects of RL and model scale, we present a qualitative analysis of Planner-R1 8B
and 32B models across training checkpoints, with GPT-5 included as a reference point. We highlight
progression in failure modes, tool use, and subreward acquisition for the trained models, and report
failure patterns for GPT-5.

Failure Progression Figure 4 shows the progression of the top five failure categories for Planner-R1
8B (left) and 32B (right) models during training4. For hallucination detection, we verify whether
the origin city, destination city, attractions, accommodations, and restaurants are present in the cor-
responding databases. Both models began with high failure rates, particularly on accommodation
and cost constraints. For the 8B model, hallucination and cost remain persistent challenges, while
all other failures fall below 10% after 800 steps. For the 32B model, accommodation and cost re-
main dominant errors, with all other failures dropping below 10% by 600 steps. Notably, the 32B
model exhibits substantially fewer hallucinations but struggles more with finding accommodations
that qualify, for example when the chosen accommodation has a minimum-night requirement and
the planned stay must meet this constraint. Another stark observation is the spike at 1,600 steps
which can be also observed in Figure 3. In our dense–reward setup, the 32B model exhibited no-
ticeably higher variability, with one run dropping from a 44% pass rate to 26% before recovering
to 51%, which substantially affected the average. As noted earlier, this instability aligns with the
larger model’s stronger exploratory behavior: the 32B model continues to pursue a broader set of
strategies when information is missing, whereas the 8B model behaves more deterministically. This
persistent exploratory breadth amplifies variance in the larger model’s RL trajectories.

4Top categories selected based on their AUC during training. For another lens with top 3 failures at each
learning step see Figure A.2
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Tool-Use Progression We observed clear improvements in tool-use behavior as training progressed.
Early checkpoints of both the 8B and 32B models exhibited poor sequencing, often looping on
repetitive calls (e.g., repeatedly invoking the calculator or restaurant tools), which led to incoherent
or incomplete plans. As training progressed, both model failures shifted from syntactic to semantic
failures: they returned schema valid plans but often failed to call necessary tools to meet the required
constraints. With more training, models could often return valid plans. For further details, see the
visualizations of tool-call trajectories in Appendix Figures A.3-A.12.

Sub-Reward Progression For both 8B and 32B models, the initial ranking of subrewards from
highest to lowest was consistent (see Figure A.1 in Appendix): (1) Schema, (2) Commonsense
Micro, (3) Hard Micro, (4) Commonsense Macro, (5) Hard Macro, and (6) Final Pass. As training
progressed, success rates increased across all categories, yet this relative ordering remained largely
unchanged. This pattern aligned with the λ values defined in Section 2.2, reinforcing our intuition
about the relative difficulty of these subrewards and underscoring the role of reward shaping in
guiding models through progressively harder objectives.

GPT-5 Behavior Across multiple scenarios, GPT-5 exhibited several recurring error patterns.
These included repetition errors, such as selecting the same restaurant or revisiting a city multi-
ple times, violating commonsense constraints; incomplete plans, such as failing to return to the
departing city or omitting key itinerary elements; constraint violations, such as booking fewer than
the required minimum number of hotel nights; and hallucinations, including inventing nonexistent
hotels or omitting required meals (see Appendix A.4–A.8 for detailed examples).

5 RELATED WORK

Planning Early chain-of-thought prompting showed that writing out intermediate steps boosts LLM
performance on complex QA and math (Wei et al., 2022; Kojima et al., 2022). Subsequent variants,
most notably self-consistency and structured schemes such as Least-to-Most and Plan-and-Solve,
further reduce errors by decomposing problems and aggregating diverse solution paths (Wang et al.,
2023c; Zhou et al., 2023; Wang et al., 2023b). To address the brittleness of linear chains, search-
based methods recast reasoning as combinatorial exploration with lookahead and backtracking, op-
erating over trees (Tree of Thoughts) and graphs (Graph of Thoughts) (Yao et al., 2023a; Besta et al.,
2024). Multi-agent formulations extend this idea via division of labor: Chain-of-Agents partitions
long inputs among workers while a manager aggregates their outputs (Chen et al., 2024). Decoupling
planning from execution further improves robustness: Plan-and-Act pairs a planner with an execu-
tor and scales supervision via synthetic trajectories, while Iterative Programmatic Planning treats
planning as code synthesis (Erdogan et al., 2025; Aravindan et al., 2025). Formal methods offer
another angle: Hao et al. (2025) translate planning queries into SAT/SMT specifications solved by
external verifiers, achieving rigorous correctness guarantees; in contrast, we keep planning internal
to the agent and optimize policies end-to-end with RL. Finally, to reach beyond the context window,
recent systems interleave reasoning with targeted search: Search-o1 triggers agentic retrieval under
uncertainty and distills evidence via a Reason-in-Documents step, while AI-SearchPlanner trains
a lightweight RL planner to trade off query utility and cost, yielding cross-model gains (Li et al.,
2025a; Mei et al., 2025). PilotRL introduces a planner–executor setup (AdaPlan) optimized with
GRPO + VERL, relying on LLM-as-judge rewards and DeepSeek-V3–simulated environments (Lu
et al., 2025). Its focus is modular agent optimization; it does not study how reward density interacts
with model scale or scaling-related sensitivities.

Agentic RL RL is increasingly used to make tool-use strategic and long-horizon: Search–R1 learns
to issue multi-turn web queries during reasoning (Jin et al., 2025), SkyRL trains multi-turn agents in-
side real software environments (Cao et al., 2025), and ReTool interleaves Python execution within
the reasoning loop under outcome-based rewards (Feng et al., 2025). Complementing these, the
Tool-Integrated Reasoning line embeds tools directly into the RL objective: ToRL scales tool-
integrated RL from base models and reports emergent selective tool invocation with strong math
gains (Li et al., 2025b), while ToolRL systematically studies reward design for tool selection, show-
ing that shaped rewards with GRPO improve over SFT (Qian et al., 2025). However, its tools and
traces are fully synthetic, since LLMs simulate both tool calls and responses, which means it opti-
mizes token imitation rather than performing agentic RL. In contrast, our work conducts true agentic
RL with real tools, real observations, and real decision loops. Biomni applies end-to-end reinforce-
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ment learning, creating rewards and RL environments tailored to biomedicine, scalably training the
agent to carry out research tasks more effectively (Huang et al., 2025). In parallel, large-scale RL
fine-tuning (Kimi k1.5, DeepSeek–R1) boosts general reasoning, and Qwen3 introduces dynamic
“thinking” vs. “non-thinking” modes to balance depth and latency (Kimi Team et al., 2025; Guo
et al., 2025; Yang et al., 2025). Building on this momentum, Kimi K2 emphasizes open agentic
intelligence with agentic data synthesis and a joint RL stage (Kimi Team, 2025); GLM-4.5 proposes
ARC (Agentic, Reasoning, Coding) foundation models with hybrid thinking/direct modes and RL
post-training (GLM-4.5 Team, 2025); and Microsoft’s rStar2–Agent explores reliable Python tool
use with a Resample-on-Correct strategy for agentic RL (Shang et al., 2025). Most closely related,
Chen et al. (2025) introduce LOOP, a data- and memory-efficient variant of PPO that enables rein-
forcement learning for interactive digital agents directly within stateful, multi-domain environments
such as AppWorld.

6 DISCUSSION

A key finding is that shaped rewards are crucial for smaller models. Under sparse rewards the 8B
model failed to learn stable trajectories, but with only 180 training queries, shaped guidance enabled
it to reach 32B-level accuracy while delivering 3.5× higher compute efficiency and 1.5× higher
memory efficiency. Larger models were stable under sparse rewards but gained less from shaping,
exhibited higher variance, and incurred higher compute cost, highlighting reward design as a central
efficiency lever. These gains at 2,000 steps did not reduce robustness. Fine tuned models matched
or exceeded baselines on MULTIIF, NATURALPLAN, and τ BENCH with no overfitting. At 3,000
steps, the 8B model improved five of seven metrics but regressed on two, indicating the risk of
excessive fine tuning. Although we followed leaderboard rules and avoided prompt engineering,
both our method and baselines may benefit from prompt refinement.

The remaining 37% gap to the hybrid solver of Hao et al. (2025) is sizable yet tractable. Most
remaining errors are valid cost violations (Figure A.2), suggesting difficulty satisfying all hard con-
straints in a single pass. Recent work on reflect retry reward methods, including REA RL (Deng
et al., 2025), SRPO (Wan et al., 2025), and VL Rethinker (Wang et al., 2025), shows that lightweight
self verification and self correction can significantly improve constraint satisfaction. Integrating
similar mechanisms could close a substantial portion of this gap. A complementary direction is im-
proved sampling. Larger rollout volumes or strategic oversampling with downsampling, as in rStar2
Agent (Shang et al., 2025) and DAPO (Yu et al., 2025), provide richer trajectories and more stable
optimization. Although hybrid neuro symbolic solvers remain stronger on constraint heavy tasks,
advances in reward shaping, reflection, and sampling can move end to end agentic RL systems much
closer to parity, while maintaining the advantage of a single, general solution that transfers across
domains rather than a solver engineered for one specific problem.

7 LIMITATIONS

We focused on TRAVELPLANNER, a constrained benchmark, and smaller models may not remain
competitive on more complex or open-ended tasks. Although 8B models are more FLOP-efficient,
larger models still achieve higher peak accuracy and robustness, which can be essential when reli-
able intermediate feedback is unavailable. Our method also assumes access to dense, process-level
rewards, and its effectiveness may drop in settings with only sparse signals. Recent directions help
soften this requirement by automating the reward selection methods (Zhang et al., 2025a), using pre-
scribed LLM-as-judge (Lu et al., 2025) or using a structured reward design for tool-selection (Qian
et al., 2025). Finally, we used a fixed three-stage curriculum which did not yield advantages yet
exploring adaptive or automated scheduling strategies is an important direction for future work.
Overall, our results showed that with reliable dense feedback, reward shaping enables smaller mod-
els to become strong and compute-efficient alternatives.
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A SYSTEM-LEVEL OPTIMIZATIONS

Overview. RL training with large-scale LLMs requires co-locating both training and inference
engines on the same set of GPUs. This dual demand creates severe memory pressure, often leading
to out-of-memory (OOM) errors when switching between training and rollout phases. To address
this, we integrated memory management techniques into our RL Pipelines.

Multi-Stage Awake Memory Management. In VERL, reinforcement learning (RL) training is
conducted in Colocate Mode, where both the training engine (e.g., FSDP) and inference engine
(e.g., SGLang) share the same GPU resources. A major bottleneck arises when transferring weights
from the training engine to the inference engine: model parameters must be copied from FSDP into
SGLang, often causing out-of-memory (OOM) failures under high memory pressure.

To address this, we extended the Sleep/Awake mechanism in SGLang and introduced the Multi-Stage
Awake strategy for fine-grained memory management during rollouts. Instead of a single monolithic
resume, memory resumption is divided into multiple stages:

1. Load training model weights into GPU memory.
2. Resume inference model weights at preserved virtual addresses.
3. Synchronize weights between training and rollout engines.
4. Offload training model weights back to CPU.
5. Resume the KV cache region for rollout execution.

This staged approach minimizes memory waste and prevents fragmentation. Our empirical results
show that it provides two key benefits:

• Enables training of larger models: With the same KV cache ratio, our approach reduces
peak GPU memory by 20–23%, which unblocks stable training of a 32B-parameter model
on 8×H200 GPUs even at higher cache ratios (0.8, 0.85, and up to 0.9). Without Multi-
Stage Awake, training consistently ran out of memory beyond 0.7.

• Improves throughput: For the same model size, our method allows a larger KV cache ratio
to be used, directly improving inference throughput. While throughput gains are workload-
dependent and not easily comparable across setups, our experiments show that increasing
the ratio from 0.7 to 0.9 leads to significant improvements in rollout efficiency.

B IMPLEMENTATION DETAILS

B.1 SYSTEM PROMPT

We include the jinja template of our full system prompt used for Planner-R1 during training/evalua-
tion.
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You are a helpful travel assistant that plans detailed travel
itineraries by calling external functions (tools). You have access
to the following tools and must use them as needed to gather
accurate, up-to-date information.

↪→
↪→
↪→

# Behavior Guidelines
- If a task requires multiple steps or tools, proceed step by step,

calling ONE TOOL per turn.↪→
- Never assume details-always verify all information using tools.
- When you have gathered sufficient information to finalize the plan,

respond with an <answer> block with the final itinerary in valid
JSON format.

↪→
↪→

# Tool Usage Rules
- Do not repeat the same tool call with identical arguments.
- Always provide complete and correct function arguments.

# Final Plan Format
Once all necessary information is collected, respond with the final

plan:↪→
```
<answer>
[

{
// Day 1 plan following schema

},
{
// Day 2 plan following schema

},
// ... additional days

]
</answer>
```
**IMPORTANT CONSTRAINTS**
- The <answer> must contain ONLY valid JSON, strictly following the

plan_schema.↪→
- Do not include any explanatory text inside the <answer> block.
- Do not output <answer> until all needed tool calls are completed.

# Final Plan Schema
Each element in the <answer> JSON array should represent a single day

of the trip and follow this schema exactly:↪→
```json
{{ plan_schema }}
```

B.2 PLAN JSON SCHEMA

The final itinerary must be a JSON array of per-day objects. Each day object is validated against
the schema below. This structured contract doubles as a checklist (ensuring coverage of all required
fields) and enables automatic reward gating.

{
"type": "object",
"required": [

"days", "city", "transportation", "attraction",
"accommodation", "breakfast", "lunch", "dinner"↪→

],
"properties": {

"days": {
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"description": "The day number of the plan starting from
1.",↪→

"type": "integer"
},
"city": {

"description": "Can be a city name string if no transfer
is needed, or an dict with 'from' and 'to' keys that
indicates the origin and destination city.",

↪→
↪→
"oneOf": [

{"type": "string"},
{

"type": "object",
"required": ["from", "to"],
"properties": {

"from": {"type": "string"},
"to": {"type": "string"}

},
"additionalProperties": false

}
]

},
"transportation": {

"description": "Either '-' if no transportation is needed,
or an object describing the transportation details.
Instead of total cost, use per person price for flight
and per vehicle cost for taxi/self-driving as the
cost.",

↪→
↪→
↪→
↪→
"oneOf": [

{
"type": "string",
"const": "-"

},
{

"type": "object",
"required": ["mode", "from", "to", "duration",

"distance", "cost"],↪→
"properties": {

"mode": {
"type": "string",
"enum": ["flight", "taxi",

"self-driving"],↪→
"description": "Type of transportation."

},
"from": {"type": "string", "description":

"Origin city"},↪→
"to": {"type": "string", "description":

"Destination city"},↪→
"duration": {"type": "string", "description":

"Transportation duration"},↪→
"distance": {"type": "string", "description":

"Distance of the trip"},↪→
"cost": {"type": "integer", "description":

"Cost of the transportation"},↪→

"flight_number": {"type": "string",
"description": "Flight number (for flights
only)"},

↪→
↪→
"departure_time": {"type": "string",

"description": "Flight departure time"},↪→
"arrival_time": {"type": "string",

"description": "Flight arrival time"}↪→
},
"additionalProperties": false

}
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]
},
"attraction": {

"description": "A list of attraction names planned for the
day, or '-' if no attractions are planned.",↪→

"oneOf": [
{"type": "string", "const": "-"},
{

"type": "array",
"items": {"type": "string"},
"minItems": 1

}
]

},
"accommodation": {

"description": "The name of the accommodation for today.
'-' if no accommodation is needed.",↪→

"type": "string"
},
"breakfast": {

"description": "The name of the breakfast restaurant for
today. '-' if no breakfast is planned.",↪→

"type": "string"
},
"lunch": {

"description": "The name of the lunch restaurant for
today. '-' if no lunch is planned.",↪→

"type": "string"
},
"dinner": {

"description": "The name of the dinner restaurant for
today. '-' if no dinner is planned.",↪→

"type": "string"
}

},
"additionalProperties": false

}

B.3 TRAINING, VALIDATION, AND EVALUATION SETUP

RL framework and resources. We train with VERL using GRPO on 2 nodes with 8 GPUs/node
(16 H200 GPUs total). Rollouts use sglang with a multi-turn, tool-augmented agent (ReAct-style).

Training configuration. Stage 1/2/3 share the same VERL configuration; only the reward weights
differ by stage (see Sec. 2). File paths are pseudonymized for readability.

# verl + GRPO. Stage-agnostic; change reward weights per stage.
actor_rollout_ref:
actor:

strategy: fsdp
ppo_mini_batch_size: 8
ppo_micro_batch_size: null
ppo_micro_batch_size_per_gpu: 1
use_dynamic_bsz: false
ppo_max_token_len_per_gpu: 16384
clip_ratio: 0.2
clip_ratio_low: 0.2
clip_ratio_high: 0.2
policy_loss:
loss_mode: vanilla
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clip_cov_ratio: 0.0002
clip_cov_lb: 1.0
clip_cov_ub: 5.0
kl_cov_ratio: 0.0002
ppo_kl_coef: 0.1

clip_ratio_c: 3.0
loss_agg_mode: token-mean
entropy_coeff: 0
use_kl_loss: false
use_torch_compile: true
kl_loss_coef: 0.001
kl_loss_type: low_var_kl
ppo_epochs: 1
shuffle: false
optim:
lr: 1.0e-06
lr_warmup_steps_ratio: 0.0
total_training_steps: -1
weight_decay: 0.01
lr_warmup_steps: -1
min_lr_ratio: 0.0
num_cycles: 0.5
warmup_style: constant

grad_clip: 1.0
ulysses_sequence_parallel_size: 1
entropy_from_logits_with_chunking: false
entropy_checkpointing: false
fsdp_config:
wrap_policy:
min_num_params: 0

param_offload: true
optimizer_offload: true
offload_policy: false
reshard_after_forward: true
fsdp_size: -1
forward_prefetch: false

rollout:
name: sglang
mode: async
temperature: 1.0
top_k: -1
top_p: 1
prompt_length: 2268
response_length: 30500
dtype: bfloat16
gpu_memory_utilization: 0.6
ignore_eos: false
enforce_eager: true
free_cache_engine: true
tensor_model_parallel_size: 4
max_num_batched_tokens: 8192
max_model_len: null
max_num_seqs: 1024
log_prob_micro_batch_size: null
log_prob_micro_batch_size_per_gpu: 32
log_prob_use_dynamic_bsz: false
log_prob_max_token_len_per_gpu: 16384
disable_log_stats: true
do_sample: true
n: 8
multi_stage_wake_up: false
val_kwargs:
top_k: -1
top_p: 1.0
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temperature: 0
n: 1
do_sample: false

multi_turn:
enable: true
max_assistant_turns: 30
tool_config_path: ${PROJ_ROOT}/config/tool_config.yaml
max_user_turns: 30
max_parallel_calls: 1
max_tool_response_length: 8192
tool_response_truncate_side: right
interaction_config_path: null
completion_callback: null
use_inference_chat_template: false
tokenization_sanity_check_mode: strict
format: hermes

calculate_log_probs: false
agent:
num_workers: 8
agent_loop_config_path: ${PROJ_ROOT}/config/agent_loops.yaml
custom_async_server:
path: null
name: null

update_weights_bucket_megabytes: 512
enable_chunked_prefill: true
load_format: dummy_dtensor
layered_summon: false
enable_thinking: false

hybrid_engine: true
model:

path: Qwen/Qwen3-{8B|32B} # base model
custom_chat_template: null
use_shm: false
external_lib: null
override_config: {}
enable_gradient_checkpointing: true
enable_activation_offload: false
use_remove_padding: true
target_modules: all-linear
exclude_modules: null
use_liger: false
use_fused_kernels: false
fused_kernel_options:
impl_backend: torch

trust_remote_code: false
trainer:
balance_batch: true
total_epochs: 300
total_training_steps: 3000
profile_steps: null
logger:

- mlflow
log_val_generations: 0
rollout_data_dir: null
nnodes: 2
n_gpus_per_node: 8
save_freq: 100
esi_redundant_time: 0
resume_mode: auto
val_before_train: true
val_only: false
test_freq: 50
critic_warmup: 0
default_hdfs_dir: null
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del_local_ckpt_after_load: false
max_actor_ckpt_to_keep: null
max_critic_ckpt_to_keep: null
ray_wait_register_center_timeout: 300
device: cuda
use_legacy_worker_impl: auto

data:
tokenizer: null
use_shm: false
train_files: ${PROJ_ROOT}/data/train.parquet
val_files: ${PROJ_ROOT}/data/test.parquet
prompt_key: prompt
reward_fn_key: data_source
max_prompt_length: 2268
max_response_length: 30500
train_batch_size: 16
val_batch_size: 64
return_raw_input_ids: false
return_raw_chat: true
return_full_prompt: false
shuffle: true
dataloader_num_workers: 8
validation_shuffle: false
filter_overlong_prompts: true
filter_overlong_prompts_workers: 1
truncation: error
image_key: images
video_key: videos
trust_remote_code: false

custom_reward_function:
path: ${PROJ_ROOT}/rewards_v3.py
name: compute_score

algorithm:
gamma: 1.0
lam: 1.0
adv_estimator: grpo
norm_adv_by_std_in_grpo: true
use_kl_in_reward: false
kl_penalty: kl
kl_ctrl:

type: fixed
kl_coef: 0.001
horizon: 10000
target_kl: 0.1

use_pf_ppo: false
pf_ppo:

reweight_method: pow
weight_pow: 2.0

Listing 1: VERL/GRPO configuration (paths pseudonymized). Stage 2/3 reuse this config with
stage-specific reward weights.

Evaluation protocol. We evaluate on the TRAVELPLANNER official test set by reusing the VERL
validation pipeline to keep decoding/sampling consistent with validation:
1. Point the VERL validation loader to the official test split (same sampler settings as validation).

2. Run validation to dump trajectories locally (tool calls, responses, final answers) as JSONL.

3. Post-process each final answer: validate against the plan schema (App. B.2), enforce JSON-
gated output, and convert to the leaderboard’s submission format.

4. Upload the converted file to the TRAVELPLANNER leaderboard; report Delivery, micro/macro
commonsense, micro/macro hard, and Final.
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B.4 DECODING AND SAMPLING SETTINGS

We standardize decoding across training and evaluation to isolate the effect of learning. Table 3
summarizes the presets we use for different contexts; “Common runtime limits” apply to all scenar-
ios unless noted. For Validation/Test we reuse VERL’s validation path on the official TP test split
(Sec. B.3).

Common runtime limits.
• Max response tokens: 30,500 (response length)

• Max tool response tokens: 8,192 (max tool response length)

• Agent turns cap: 30 assistant turns; 30 tool turns

• Tool-call cap: 30 calls

Table 3: Decoding presets by context.

Context do sample Temp Top-p Top-k n

Training true 1.0 1.0 −1 8
Validation / Test false 0.0 1.0 −1 1
NaturalPlan true 1.0 1.0 −1 1
Multi-IF false 0.7 0.8 20 1
τ -bench false 0.6 0.95 20 1

B.5 GPU MEMORY FOOTPRINT AND PRACTICAL EFFICIENCY

In the same 2-node/16-GPU training setup, PLANNER-R1-8B used approximately ∼60 GB of GPU
memory per device, whereas PLANNER-R1-32B required ≥90 GB (1.5× more) per device. This
difference has practical consequences: the 8B configuration ran comfortably on H100s, while the
32B configuration necessitated higher-memory accelerators (e.g., H200). The gap is especially rele-
vant for agentic RL, where multi-turn interactions and tool feedback produce long contexts and large
key–value (KV) caches during rollouts, amplifying the memory pressure beyond the update phase.

B.6 ESTIMATING TRAINING FLOPS FROM VERL’S MFU
MFU in VERL (what it is). VERL reports a model FLOPs utilization (MFU): the fraction of the
cluster’s “promised” peak compute achieved during policy updates. Internally it is computed per
update as

MFU =
fach E

fpeak W
, fach =

FLOPsupdate
tactor

,

where E is the number of GRPO epochs per batch, W is the number of GPUs (world size), fpeak is
the promised FLOPs rate per GPU used by VERL in its MFU denominator, tactor is the time spent in
the parameter-update step, and FLOPsupdate is the per-step FLOPs consumed by that update. The
in-tree FLOPs counter aggregates forward + backward over all layers/tokens.

Reconstruction used in this paper. Solving for FLOPsupdate gives

FLOPsupdate = MFU × fpeak × W × tactor
E

In our runs E=1 and W=16. We set fpeak=9.89 × 1014 FLOPs/s per GPU—the same constant
VERL uses for MFU—so the reconstruction matches its calculation.

Practical proxy for tactor. VERL does not log tactor each step, but it logs
update policy time (tpolicy), which equals the actor update plus brief offload/reload
bookkeeping. Because the parameter update dominates, we use

tactor ≈ tpolicy ⇒ FLOPsupdate ≈ MFU × fpeak × W × tpolicy .

This yields a slight upper bound (since tpolicy ≥ tactor); spot checks in our regime found the gap
within ∼3%.
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From per-step to cumulative FLOPs. We compute FLOPsupdate per step from MFU and tpolicy,
then sum over steps:

FLOPs1:T =

T∑
t=1

MFUt fpeak W tpolicy,t .

These cumulative totals back the FLOPs–accuracy curves in Sec. 3.2.

Scope: what is counted and what is not. Our accounting includes only the parameter-update
compute (forward + backward). It excludes (i) the rollout engine’s generation compute and (ii)
the reference log-prob pass (both of which VERL does not report MFU/FLOPs for). Under our
settings (long responses, multi-sample trajectories), rollout consists of many forward passes, while
the update consists of forward+backward over similar tokens; thus their compute is typically of the
same order of magnitude, but exact ratios depend on response length, batching, and n (number of
sampled trajectories). A precise FLOPs tally for rollout and reference log-prob computation is left
to future work.

C FURTHER ANALYSIS

Figure A.1: Progression of six sub rewards for 8B and 32B Planner-R1 during training on validation
set
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Figure A.2: Top 3 Most Frequent Error Categories for the Planner-R1 models. The upper heatmap
shows the 8B model and the lower heatmap shows the 32B model. Both plots visualize, at each
training step across five runs (up to 2000), the three most frequent failure categories and their relative
rates. Rows are aligned so categories match across models; blank cells indicate that a category did
not appear in the top three for that model at that step.
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🧑Can you organize a 5-day trip for two people from Newark to Ohio, where we will visit two cities? The dates will be from March 23rd to March 27th, 2022. Our travel budget is 
$4,400. We anticipate hosting visitors at our accommodations, and we would like to try a variety of cuisines including French, Chinese, American, and Mexican during our trip. We 
prefer not to drive ourselves during this trip.

🤖 {"name": "get_flights", "arguments": {"origin": "Newark", 
"destination": "Columbus", "departure_date": "2022-03-23"}}

🛠 {... Deprecating Flight Information ...} 

🤖 {"name": "get_ground_transportation", "arguments": 
{"origin": "Columbus", "destination": "Cleveland"}}

🛠 {... Ground Transportation Information ...} 

🤖 {"name": "get_accommodations", "arguments": {"city": 
"Columbus"}}

🛠 {... Accommodations Information ...} 

🤖 {"name": "get_accommodations", "arguments": {"city": 
"Cleveland"}}

🛠 {... Accommodations Information ...} 
… A few more rounds of fetching attraction and restaurant 
informations … 

🤖 {"name": "basic_arithmetic_calculator", "arguments": 
{"expression": "2 * (96 + 230 + 1100 + 593 + 23 + 10 + 25 + 19 + 27 + 31 
+ 80 + 54 + 38 + 36 + 29 + 71 + 34)"}}

🛠 {"result": 4992} 

🤖 {"name": "basic_arithmetic_calculator", "arguments": 
{"expression": "2 * (96 + 230 + 1100 + 593 + 23 + 10 + 25 + 19 + 27 + 31 
+ 80 + 54 + 38 + 36 + 29 + 71 + 34 + 124 + 1100 + 593 + 23 + 10 + 25 + 19 
+ 27 + 31 + 80 + 54 + 38 + 36 + 29 + 71 + 34)"}}

🛠 {"result": 9580} 
It repeatedly invokes the calculator until the context limit is 
reached…

📋Plan

No valid plan produced; the model loops on tool calls.

🤖 {"name": "get_flights", "arguments": {"origin": "Newark", 
"destination": "Columbus", "departure_date": "2022-03-23"}}

🛠 {...  Deprecating Flight Information ...}

🤖 {"name": "get_accommodations", "arguments": {"city": 
"Columbus"}}

🛠 {... Accommodations Information ...} 

🤖 {"name": "get_attractions", "arguments": {"city": "Columbus"}}

🛠 {"... Attractions Information …"}

 🤖 {"name": "get_restaurants", "arguments": {"city": 
"Columbus"}}

🛠 {... Restaurants Information ...} 

 🤖 {"name": "get_cities", "arguments": {"state": "Ohio"}}

🛠 {... A list of cities in Ohio ...}

 🤖 {"name": "get_flights", "arguments": {"origin": "Columbus", 
"destination": "Cincinnati", "departure_date": "2022-03-25"}}

🛠 {... "error": "There is no flight from Columbus to Cincinnati 
on 2022-03-25." ...}

 🤖 {"name": "get_ground_transportation", "arguments": 
{"origin": "Columbus", "destination": "Cincinnati"}}

🛠 {... Ground Transportation Information ...}
… 5 more rounds of fetching attraction and restaurant 
informations for Cincinnati … 

 🤖 {"name": "get_flights", "arguments": {"origin": "Cincinnati", 
"destination": "Newark", "departure_date": "2022-03-27"}}

🛠 {...  Returning Flight Information ...} 

📋Plan
[
  {
    "days": 1,
    "city": { "from": "Newark", "to": "Columbus" },
    "transportation": "...",
    "attraction": "...",
    "accommodation": "...",
    "meals": "..."
  },
  …
  {
    "days": 4,
    "city": { "from": "Cincinnati", "to": "Newark" },
    "transportation": "...",
    "attraction": "...",
    "accommodation": "Spacious, bright room, prime Williamsburg 
location",
    "meals": "..."
  }
]

🤖 {"name": "get_cities", "arguments": {"state": "Ohio"}}

🛠 {... A list of cities in Ohio ...} 

🤖 {"name": "get_ground_transportation", "arguments": 
{"origin": "Newark", "destination": "Cincinnati"}}

🛠 {... Ground Transportation Information ...} 

🤖 {"name": "get_accommodations", "arguments": {"city": 
"Cincinnati"}}

🛠 {"... Accommodations Information …"}
… Many rounds of getting attractions, restaurants and necessary 
informations for Dayton and Cincinnati… 

🤖 {"name": "get_ground_transportation", "arguments": 
{"origin": "Dayton", "destination": "Newark"}}

🛠 {...  Returning Transportation Information ...} 

📋Plan
[
  {
    "days": 1,
    "city": { "from": "Newark", "to": "Cincinnati" },
    "transportation": "...",
    "attraction": "...",
    "accommodation": "...",
    "meals": "..."
  },
  {
    "days": 2,
    "city": "Cincinnati",
    "transportation": "-",
    "attraction": [
      "Cincinnati Zoo & Botanical Garden",
      "Cincinnati Art Museum",
      "American Sign Museum"
    ],
    "accommodation": "Private room with sleeping loft",
    "breakfast": "Bubba Jax Crab Shack",
    "lunch": "Invitation Restaurant",
    "dinner": "Tpot"
  },
  …
  {
    "days": 5,
    "city": { "from": "Dayton", "to": "Newark" },
    "transportation": {
      "mode": "taxi",
      "from": "Dayton",
      "to": "Newark",
      "duration": "9 hours 17 mins",
      "distance": "957 km",
      "cost": 957
    },
    …
  ]

Replan due 
to no flight 

Plan Delivery: ✅
Plan Pass: 🚫
Spacious, bright room in prime 
Williamsburg, Cincinnati. Requires 3-night 
minimum, but booked for 2.

Plan Delivery: 🚫
Plan Pass: 🚫

Plan Delivery: ✅
Plan Pass: ✅

Figure A.3: Model tool-call trajectories across checkpoints. The base model (left) loops on repeti-
tive tool calls once the context is saturated. After 100 training steps (middle), the model produces a
coherent travel plan but fails to satisfy all constraints. By 500 steps with the 32B Planner-R1 check-
point (right), the model successfully generates a valid plan that meets all requirements.
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GPT5 Generated Plan

📋Plan
[
    {
      "days": 1,
      "city": {
        "from": "Baton Rouge",
        "to": "Houston"
      },
      "transportation": {
        "mode": "self-driving",
        "from": "Baton Rouge",
        "to": "Houston",
        "duration": "4 hours 0 mins",
        "distance": "431 km",
        "cost": 21
      },
      "attraction": "-",
      "accommodation": "Spacious room in front of prospect park",
      "breakfast": "-",
      "lunch": "-",
      "dinner": "-"
    },
    {
      "days": 2,
      "city": "Houston",
      "transportation": "-",
      "attraction": [
        "Downtown Aquarium",
        "Space Center Houston",
        "Water Wall"
      ],
      "accommodation": "Spacious room in front of prospect park",
      "breakfast": "Sheetla Dhaba",
      "lunch": "Matchbox",
      "dinner": "Vinayaka Mylari"
    },
   …
    {
      "days": 4,
      "city": "Austin",
      "transportation": "-",
      "attraction": [
        "Texas Capitol",
        "Zilker Metropolitan Park",
        "Museum of the Weird"
      ],
      "accommodation": "Spacious Williamsburg 1 bedroom!",
      "breakfast": "Chin Pokli",
      "lunch": "Green Chilli",
      "dinner": "Talaga Sampireun"
    },
    …
  ]

Plan Delivery: ✅
Plan Pass: 🚫
Common sense rule: Don’t pick the same 
restaurant twice.

📋Plan
[
     {
      "days": 1,
      "city": {
        "from": "Baton Rouge",
        "to": "Austin"
      },
      "transportation": {
        "mode": "self-driving",
        "from": "Baton Rouge",
        "to": "Austin",
        "duration": "6 hours 28 mins",
        "distance": "694 km",
        "cost": 34
      },
      "attraction": [
        "Zilker Metropolitan Park",
        "Statesman Bat Observation Center"
      ],
      "accommodation": "1 Bedroom , Beautiful Spacious 
Brownstone\n Apt",
      "breakfast": "Fifth Street Bagelry",
      "lunch": "Moksha",
      "dinner": "Frontier"
    },
   …
    {
      "days": 3,
      "city": "Austin",
      "transportation": "-",
      "attraction": [
        "McKinney Falls State Park",
        "Mayfield Park and Nature Preserve",
        "Pease Park Treehouse"
      ],
      "accommodation": "1 Bedroom , Beautiful Spacious 
Brownstone\n Apt",
      "breakfast": "Moksha",
      "lunch": "Frontier",
      "dinner": "Talaga Sampireun"
    },
   {
      "days": 5,
      "city": {
        "from": "San Antonio",
        "to": "Baton Rouge"
      },
      "transportation": {
        "mode": "self-driving",
        "from": "San Antonio",
        "to": "Baton Rouge",
        "duration": "6 hours 52 mins",
        "distance": "746 km",
        "cost": 37
      },
      "attraction": "-",
      "accommodation": "-",
      "breakfast": "Cafe Shaze",
      "lunch": "Pita Pit",
      "dinner": "Jimmy Jack's Rib Shack"
    }
]

Planner-R1 8B Generated Plan Planner-R1 32B Generated Plan

📋Plan
[
    {
      "days": 1,
      "city": {
        "from": "Baton Rouge",
        "to": "Austin"
      },
      "transportation": {
        "mode": "self-driving",
        "from": "Baton Rouge",
        "to": "Austin",
        "duration": "6 hours 28 mins",
        "distance": "694 km",
        "cost": 34
      },
      "attraction": "-",
      "accommodation": "Spacious Williamsburg 1 bedroom!",
      "breakfast": "-",
      "lunch": "-",
      "dinner": "-"
    },
    {
      "days": 2,
      "city": "Austin",
      "transportation": "-",
      "attraction": [
        "Texas Capitol",
        "Zilker Metropolitan Park",
        "Museum of the Weird"
      ],
      "accommodation": "Spacious Williamsburg 1 bedroom!",
      "breakfast": "Chili's",
      "lunch": "Tandoori Nights",
      "dinner": "Subway"
    },
    …
    {
      "days": 4,
      "city": "Houston",
      "transportation": "-",
      "attraction": [
        "Downtown Aquarium",
        "Space Center Houston",
        "Water Wall"
      ],
      "accommodation": "Spacious room in front of prospect park",
      "breakfast": "Sheetla Dhaba",
      "lunch": "Matchbox",
      "dinner": "Earthen Spices"
    },
    …
  ]

Plan Delivery: ✅
Plan Pass: ✅

Plan Delivery: ✅
Plan Pass: ✅

🧑Could you create a 5-day travel plan for a couple leaving from Baton Rouge and visiting 2 cities in Texas from March 16th to March 20th, 2022? We have allocated a budget of 
$2,900 for this trip. Important to note is that our travels will not involve any flights; we prefer other modes of transportation. For our lodgings, we insist on not shared rooms, and 
notably, we will be traveling with our pet, hence the need for pet-friendly accommodations.

Figure A.4: The GPT-5 model (left) failed to avoid selecting the same restaurant twice, thus violating
the common-sense rule. In contrast, the Planner-R1 8B model (middle) and Planner-R1 32B model
(right) both generated plans that satisfied all requirements.
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Plan Delivery: ✅
Plan Pass: 🚫
Common sense rule: City Atlanta is 
visited multiple times.

📋Plan
[
    {
      "days": 1,
      "city": {
        "from": "Fort Lauderdale",
        "to": "Atlanta"
      },
      "transportation": {
        "mode": "flight",
        "from": "Fort Lauderdale",
        "to": "Atlanta",
        "duration": "1 hours 40 minutes",
        "distance": "581 miles",
        "cost": 136,
        "flight_number": "F3543994",
        "departure_time": "09:35",
        "arrival_time": "11:15"
      },
      "attraction": [
        "World of Coca-Cola",
        "Centennial Olympic Park",
        "SkyView Atlanta"
      ],
      "accommodation": "Charming Carroll Gardens 2 BR",
      "breakfast": "-",
      "lunch": "Chef Style",
      "dinner": "Sethi's Restaurant & Barbeque"
    },
    {
      "days": 2,
      "city": "Atlanta",
      "transportation": "-",
      "attraction": [
        "Georgia Aquarium",
        "Atlanta Botanical Garden",
        "Piedmont Park",
        "High Museum of Art"
      ],
      "accommodation": "Charming Carroll Gardens 2 BR",
      "breakfast": "Daawat-e-Kashmir",
      "lunch": "Asian Bistro",
      "dinner": "Sam and Scrooge"
    },
    …
    {
      "days": 5,
      "city": {
        "from": "Savannah",
        "to": "Augusta"
      },
      "transportation": {
        "mode": "self-driving",
        "from": "Savannah",
        "to": "Augusta",
        "duration": "2 hours 28 mins",
        "distance": "195 km",
        "cost": 9
      },
      "attraction": [
        "Augusta Riverwalk",
        "Augusta Museum of History",
        "Morris Museum of Art"
      ],
      "accommodation": "Planta Baja Studio",
      "breakfast": "New Raj Kachori Bhandar",
      "lunch": "Karari Kurry",
      "dinner": "Just Kababs"
    },
    {
      "days": 6,
      "city": {
        "from": "Augusta",
        "to": "Atlanta"
      },
      "transportation": {
        "mode": "self-driving",
        "from": "Augusta",
        "to": "Atlanta",
        "duration": "2 hours 13 mins",
        "distance": "233 km",
        "cost": 11
      },
      "attraction": [
        "Atlanta History Center",
        "Fox Theatre",
        "Krog Street Tunnel"
      ],
      "accommodation": "Charming Carroll Gardens 2 BR",
      "breakfast": "Haldiram's",
      "lunch": "Chaina Ram Sindhi Confectioners",
      "dinner": "Barkat"
    },
    {
      "days": 7,
      "city": {
        "from": "Atlanta",
        "to": "Fort Lauderdale"
      },
      "transportation": {
        "mode": "flight",
        "from": "Atlanta",
        "to": "Fort Lauderdale",
        "duration": "1 hours 38 minutes",
        "distance": "581 miles",
        "cost": 116,
        "flight_number": "F3963281",
        "departure_time": "17:01",
        "arrival_time": "18:39"
      },
      "attraction": "-",
      "accommodation": "-",
      "breakfast": "Baba Au Rhum",
      "lunch": "Nawaab",
      "dinner": "-"
    }
  ]

Plan Delivery: ✅
Plan Pass: ✅

Plan Delivery: ✅
Plan Pass: ✅

📋Plan
[
    {
      "days": 1,
      "city": {
        "from": "Fort Lauderdale",
        "to": "Atlanta"
      },
      "transportation": {
        "mode": "self-driving",
        "from": "Fort Lauderdale",
        "to": "Atlanta",
        "duration": "9 hours 5 mins",
        "distance": "1,031 km",
        "cost": 51
      },
      "attraction": "-",
      "accommodation": "Spacious private room close St. Barnabas 
Hospital",
      "breakfast": "-",
      "lunch": "-",
      "dinner": "-"
    },
    {
      "days": 2,
      "city": "Atlanta",
      "transportation": "-",
      "attraction": [
        "Atlanta Botanical Garden",
        "World of Coca-Cola",
        "Georgia Aquarium"
      ],
      "accommodation": "Spacious private room close St. Barnabas 
Hospital",
      "breakfast": "Pizza Central",
      "lunch": "Daawat-e-Kashmir",
      "dinner": "Chaina Ram Sindhi Confectioners"
    },
    …
    {
      "days": 4,
      "city": "Savannah",
      "transportation": "-",
      "attraction": [
        "Forsyth Park",
        "Mercer-Williams House Museum",
        "Savannah Historic District"
      ],
      "accommodation": "Family and Friendly Room",
      "breakfast": "Sr. Sol 1",
      "lunch": "Bosphorous Turkish Cuisine",
      "dinner": "The Mad Teapot/The Wishing Chair"
    },
    {
      "days": 5,
      "city": {
        "from": "Savannah",
        "to": "Augusta"
      },
      "transportation": {
        "mode": "self-driving",
        "from": "Savannah",
        "to": "Augusta",
        "duration": "2 hours 28 mins",
        "distance": "195 km",
        "cost": 9
      },
      "attraction": "-",
      "accommodation": "Planta Baja Studio",
      "breakfast": "-",
      "lunch": "-",
      "dinner": "-"
    },
    {
      "days": 6,
      "city": "Augusta",
      "transportation": "-",
      "attraction": [
        "Phinizy Swamp Nature Park",
        "Augusta Riverwalk",
        "Augusta Museum of History"
      ],
      "accommodation": "Planta Baja Studio",
      "breakfast": "Vinny Vanucchi's",
      "lunch": "Fish Tales Lakeside Grille",
      "dinner": "Karari Kurry"
    },
    {
      "days": 7,
      "city": {
        "from": "Augusta",
        "to": "Fort Lauderdale"
      },
      "transportation": {
        "mode": "self-driving",
        "from": "Augusta",
        "to": "Fort Lauderdale",
        "duration": "8 hours 41 mins",
        "distance": "938 km",
        "cost": 46
      },
      "attraction": "-",
      "accommodation": "-",
      "breakfast": "-",
      "lunch": "-",
      "dinner": "-"
    }
  ]

📋Plan
[
    {
      "days": 1,
      "city": {
        "from": "Fort Lauderdale",
        "to": "Augusta"
      },
      "transportation": {
        "mode": "self-driving",
        "from": "Fort Lauderdale",
        "to": "Augusta",
        "duration": "8 hours 39 mins",
        "distance": "936 km",
        "cost": 46
      },
      "attraction": "-",
      "accommodation": "Planta Baja Studio",
      "breakfast": "-",
      "lunch": "-",
      "dinner": "-"
    },
    {
      "days": 2,
      "city": "Augusta",
      "transportation": "-",
      "attraction": [
        "Phinizy Swamp Nature Park",
        "Augusta Riverwalk",
        "Augusta Museum of History"
      ],
      "accommodation": "Planta Baja Studio",
      "breakfast": "Vinny Vanucchi's",
      "lunch": "The Golden Dragon",
      "dinner": "Karari Kurry"
    },
    …
    {
      "days": 4,
      "city": "Savannah",
      "transportation": "-",
      "attraction": [
        "Forsyth Park",
        "Wormsloe State Historic Site",
        "Mercer-Williams House Museum"
      ],
      "accommodation": "Family and Friendly Room",
      "breakfast": "Manohar Dairy And Restaurant",
      "lunch": "Bosphorous Turkish Cuisine",
      "dinner": "Dhaba On Wheels"
    },
    {
      "days": 5,
      "city": {
        "from": "Savannah",
        "to": "Atlanta"
      },
      "transportation": {
        "mode": "self-driving",
        "from": "Savannah",
        "to": "Atlanta",
        "duration": "3 hours 40 mins",
        "distance": "399 km",
        "cost": 19
      },
      "attraction": "-",
      "accommodation": "Charming Carroll Gardens 2 BR",
      "breakfast": "-",
      "lunch": "-",
      "dinner": "-"
    },
    {
      "days": 6,
      "city": "Atlanta",
      "transportation": "-",
      "attraction": [
        "Atlanta Botanical Garden",
        "World of Coca-Cola",
        "Georgia Aquarium"
      ],
      "accommodation": "Charming Carroll Gardens 2 BR",
      "breakfast": "Saffron",
      "lunch": "Pizza Central",
      "dinner": "Daawat-e-Kashmir"
    },
    {
      "days": 7,
      "city": {
        "from": "Atlanta",
        "to": "Fort Lauderdale"
      },
      "transportation": {
        "mode": "self-driving",
        "from": "Atlanta",
        "to": "Fort Lauderdale",
        "duration": "9 hours 6 mins",
        "distance": "1,030 km",
        "cost": 51
      },
      "attraction": "-",
      "accommodation": "-",
      "breakfast": "-",
      "lunch": "-",
      "dinner": "-"
    }
  ]

GPT5 Generated Plan Planner-R1 8B Generated Plan Planner-R1 32B Generated Plan

🧑I need assistance in crafting a travel plan starting in Fort Lauderdale and covering 3 cities in Georgia. The trip, designed for 2 people, will span from March 24th to March 30th, 
2022. Our budget is $8,000. Regarding accommodations, we require rooms that are not shared and should accommodate children under 10. As for dining options, we have diverse 
tastes, including Indian, American, Chinese, and Mediterranean cuisines.

Figure A.5: The GPT-5 model (left) selected the same restaurant twice on different dates, whereas
the Planner-R1 8B (middle) and Planner-R1 32B (right) models produced plans that satisfied all
requirements.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

GPT5 Generated Plan

📋Plan
[
    {
      "days": 1,
      "city": {
        "from": "Sun Valley",
        "to": "Los Angeles"
      },
      "transportation": {
        "mode": "self-driving",
        "from": "Sun Valley",
        "to": "Los Angeles",
        "duration": "13 hours 16 mins",
        "distance": "1,362 km",
        "cost": 68
      },
      "attraction": "-",
      "accommodation": "Best Nest.",
      "breakfast": "-",
      "lunch": "-",
      "dinner": "-"
    },
    {
      "days": 2,
      "city": "Los Angeles",
      "transportation": "-",
      "attraction": [
        "Santa Monica Pier",
        "Hollywood Walk of Fame",
        "Griffith Observatory"
      ],
      "accommodation": "Best Nest.",
      "breakfast": "Onokabe",
      "lunch": "Punjabi Tandoori Tikka",
      "dinner": "Choco Kraft"
    },
    …
    {
      "days": 4,
      "city": "Sacramento",
      "transportation": "-",
      "attraction": [
        "California State Railroad Museum",
        "Old Sacramento Waterfront",
        "Crocker Art Museum"
      ],
      "accommodation": "HUGE SPACE, HEART OF BROOKLYN, 1 BLOCK 
FROM SUBWAY",
      "breakfast": "Gujarati Samaj Santushti",
      "lunch": "Metro Fast Food",
      "dinner": "Pasta Hut"
    },
    {
      "days": 5,
      "city": {
        "from": "Sacramento",
        "to": "Sun Valley"
      },
      "transportation": {
        "mode": "self-driving",
        "from": "Sacramento",
        "to": "Sun Valley",
        "duration": "10 hours 24 mins",
        "distance": "1,074 km",
        "cost": 53
      },
      "attraction": "-",
      "accommodation": "-",
      "breakfast": "-",
      "lunch": "-",
      "dinner": "-"
    }
  ]

Plan Delivery: ✅
Plan Pass: 🚫
Not returning to the departing city!

📋Plan
<answer>
  [
    {
      "days": 1,
      "city": {
        "from": "Sun Valley",
        "to": "Los Angeles"
      },
      "transportation": {
        "mode": "flight",
        "from": "Sun Valley",
        "to": "Los Angeles",
        "duration": "2 hours 1 minutes",
        "distance": "696 mi",
        "cost": 319,
        "flight_number": "F3824866",
        "departure_time": "16:37",
        "arrival_time": "17:38"
      },
      "attraction": [
        "Santa Monica Pier",
        "Griffith Observatory"
      ],
      "accommodation": "Lovely studio",
      "breakfast": "-",
      "lunch": "Palmshore",
      "dinner": "Rajdhani Restaurant"
    },
    …
    {
      "days": 4,
      "city": "San Francisco",
      "transportation": "-",
      "attraction": [
        "Golden Gate Bridge",
        "Golden Gate Park",
        "de Young Museum",
        "Japanese Tea Garden"
      ],
      "accommodation": "Room in Down town Brooklyn Parkslop",
      "breakfast": "Bonne Bouche",
      "lunch": "Empress",
      "dinner": "Green Chick Chop"
    },
    {
      "days": 5,
      "city": "San Francisco",
      "transportation": "-",
      "attraction": [
        "Alcatraz Island",
        "PIER 39",
        "San Francisco Cable Car Museum"
      ],
      "accommodation": "-",
      "breakfast": "Coffee & Chai Co.",
      "lunch": "Gupta's Rasoi",
      "dinner": "Moets Oh! Bao"
    }
  ]
</answer>

Planner-R1 8B Generated Plan Planner-R1 32B Generated Plan

📋Plan
[
    …
    {
      "days": 2,
      "city": "San Francisco",
      "transportation": "-",
      "attraction": [
        "Golden Gate Bridge",
        "Golden Gate Park",
        "PIER 39"
      ],
      "accommodation": "spacious pretty east harlem apt.",
      "breakfast": "Coffee & Chai Co.",
      "lunch": "Sudarshan",
      "dinner": "Ustad Moinuddin Kebab"
    },
    {
      "days": 3,
      "city": {
        "from": "San Francisco",
        "to": "Los Angeles"
      },
      "transportation": {
        "mode": "self-driving",
        "from": "San Francisco",
        "to": "Los Angeles",
        "duration": "5 hours 53 mins",
        "distance": "615 km",
        "cost": 30
      },
      "attraction": "-",
      "accommodation": "Best Nest.",
      "breakfast": "-",
      "lunch": "-",
      "dinner": "-"
    },
    {
      "days": 4,
      "city": "Los Angeles",
      "transportation": "-",
      "attraction": [
        "Santa Monica Pier",
        "Hollywood Walk of Fame",
        "Hollywood Sign"
      ],
      "accommodation": "Best Nest.",
      "breakfast": "Shree Manakamna Fast Food",
      "lunch": "Punjabi Zaika",
      "dinner": "The Hangout by 1861"
    },
    {
      "days": 5,
      "city": {
        "from": "Los Angeles",
        "to": "Sun Valley"
      },
      "transportation": {
        "mode": "self-driving",
        "from": "Los Angeles",
        "to": "Sun Valley",
        "duration": "13 hours 10 mins",
        "distance": "1,362 km",
        "cost": 68
      },
      "attraction": "-",
      "accommodation": "-",
      "breakfast": "-",
      "lunch": "-",
      "dinner": "-"
    }
  ]

Plan Delivery: ✅
Plan Pass: ✅

🧑 Can you create a 5-day travel plan for me starting in Sun Valley and visiting 2 cities in California from March 22nd to March 26th, 2022? My budget for this trip is $2,600.

Plan Delivery: ✅
Plan Pass: ✅

Figure A.6: The GPT-5 model (left) failed to return to the departing city, whereas the Planner-R1
8B (middle) and Planner-R1 32B (right) models produced plans that satisfied all requirements.
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GPT5 Generated Plan

📋Plan
[
    {
      "days": 1,
      "city": {
        "from": "Punta Gorda",
        "to": "Detroit"
      },
      "transportation": {
        "mode": "self-driving",
        "from": "Punta Gorda",
        "to": "Detroit",
        "duration": "18 hours 18 mins",
        "distance": "2,050 km",
        "cost": 102
      },
      "attraction": "-",
      "accommodation": "Lovely, charming and clean bedroom in 
Manhattan.",
      "breakfast": "-",
      "lunch": "-",
      "dinner": "-"
    },
    {
      "days": 2,
      "city": "Detroit",
      "transportation": "-",
      "attraction": [
        "Detroit Institute of Arts",
        "Campus Martius Park",
        "Motown Museum"
      ],
      "accommodation": "Lovely, charming and clean bedroom in 
Manhattan.",
      "breakfast": "Mitalis Kitchen",
      "lunch": "Flavours of Punjab",
      "dinner": "Desi Spice"
    },
    {
      "days": 3,
      "city": {
        "from": "Detroit",
        "to": "Kalamazoo"
      },
      "transportation": {
        "mode": "self-driving",
        "from": "Detroit",
        "to": "Kalamazoo",
        "duration": "2 hours 13 mins",
        "distance": "226 km",
        "cost": 11
      },
      "attraction": "-",
      "accommodation": "Apartment in Ridgewood/Bushwick 
Neighborhood",
      "breakfast": "-",
      "lunch": "-",
      "dinner": "-"
    },
    {
      "days": 4,
      "city": "Kalamazoo",
      "transportation": "-",
      "attraction": [
        "Kalamazoo Valley Museum",
        "Kalamazoo Institute of Arts"
      ],
      "accommodation": "Apartment in Ridgewood/Bushwick 
Neighborhood",
      "breakfast": "Tamasha In Tafree",
      "lunch": "Ruchi's Food Junction",
      "dinner": "Al Bake"
    },
    {
      "days": 5,
      "city": {
        "from": "Kalamazoo",
        "to": "Grand Rapids"
      },
      "transportation": {
        "mode": "self-driving",
        "from": "Kalamazoo",
        "to": "Grand Rapids",
        "duration": "49 mins",
        "distance": "81.3 km",
        "cost": 4
      },
      "attraction": "-",
      "accommodation": "Noel Palace",
      "breakfast": "-",
      "lunch": "-",
      "dinner": "-"
    },
    {
      "days": 6,
      "city": "Grand Rapids",
      "transportation": "-",
      "attraction": [
        "The Gerald R. Ford Presidential Museum",
        "Frederik Meijer Gardens & Sculpture Park"
      ],
      "accommodation": "Noel Palace",
      "breakfast": "Hobing Korean Dessert Cafe",
      "lunch": "Swagath",
      "dinner": "Uncle Cake Shop"
    },
    {
      "days": 7,
      "city": {
        "from": "Grand Rapids",
        "to": "Punta Gorda"
      },
      "transportation": {
        "mode": "self-driving",
        "from": "Grand Rapids",
        "to": "Punta Gorda",
        "duration": "19 hours 34 mins",
        "distance": "2,160 km",
        "cost": 108
      },
      "attraction": "-",
      "accommodation": "-",
      "breakfast": "-",
      "lunch": "-",
      "dinner": "-"
    }
  ]

Plan Delivery: ✅
Plan Pass: 🚫
1. Convenient Financial District Studio in 
Traverse City requires a minimum of 2.0 
nights, but got 1. 
2. City Traverse City is visited multiple 
times. 

📋Plan

[
    {
      "days": 1,
      "city": {
        "from": "Punta Gorda",
        "to": "Grand Rapids"
      },
      "transportation": {
        "mode": "flight",
        "from": "Punta Gorda",
        "to": "Grand Rapids",
        "duration": "2 hours 49 minutes",
        "distance": "1118.0 mi",
        "cost": 482,
        "flight_number": "F3580995",
        "departure_time": "16:16",
        "arrival_time": "19:05"
      },
      "attraction": [
        "La Grande Vitesse"
      ],
      "accommodation": "Sunny Ditmas Park Carriage House (Events 
Listing)",
      "breakfast": "-",
      "lunch": "-",
      "dinner": "Deli 63"
    },
    {
      "days": 2,
      "city": "Grand Rapids",
      "transportation": "-",
      "attraction": [
        "Frederik Meijer Gardens & Sculpture Park",
        "Grand Rapids Art Museum",
        "Grand Rapids Public Museum"
      ],
      "accommodation": "Sunny Ditmas Park Carriage House (Events 
Listing)",
      "breakfast": "Cafe Rasoi",
      "lunch": "Deli 63",
      "dinner": "Paribar"
    },
    {
      "days": 3,
      "city": {
        "from": "Grand Rapids",
        "to": "Kalamazoo"
      },
      "transportation": {
        "mode": "self-driving",
        "from": "Grand Rapids",
        "to": "Kalamazoo",
        "duration": "48 mins",
        "distance": "81.3 km",
        "cost": 4
      },
      "attraction": [
        "Meyer May House",
        "Air Zoo Aerospace & Science Museum"
      ],
      "accommodation": "Spacious & Quaint 1 Bed in Midtown",
      "breakfast": "Cafe Rasoi",
      "lunch": "Black Pepper",
      "dinner": "Giulios Greek & Italian Restaurant"
    },
    {
      "days": 4,
      "city": "Kalamazoo",
      "transportation": "-",
      "attraction": [
        "Kalamazoo Nature Center",
        "Kalamazoo Institute of Arts",
        "Bronson Park"
      ],
      "accommodation": "Spacious & Quaint 1 Bed in Midtown",
      "breakfast": "Black Pepper",
      "lunch": "Giulios Greek & Italian Restaurant",
      "dinner": "Shree Rathnam"
    },
    {
      "days": 5,
      "city": {
        "from": "Kalamazoo",
        "to": "Traverse City"
      },
      "transportation": {
        "mode": "self-driving",
        "from": "Kalamazoo",
        "to": "Traverse City",
        "duration": "2 hours 57 mins",
        "distance": "310 km",
        "cost": 15
      },
      "attraction": [
        "Clinch Park",
        "City Opera House"
      ],
      "accommodation": "Convenient Financial District Studio",
      "breakfast": "Black Pepper",
      "lunch": "French Toast",
      "dinner": "Dragonfly"
    },
    {
      "days": 6,
      "city": {
        "from": "Traverse City",
        "to": "Grand Rapids"
      },
      "transportation": {
        "mode": "self-driving",
        "from": "Traverse City",
        "to": "Grand Rapids",
        "duration": "2 hours 17 mins",
        "distance": "232 km",
        "cost": 11
      },
      "attraction": [
        "Mission Point Lighthouse",
        "The Blue Bridge"
      ],
      "accommodation": "Sunny Ditmas Park Carriage House (Events 
Listing)",
      "breakfast": "French Toast",
      "lunch": "Cafe Rasoi",
      "dinner": "Paribar"
    },
    …
  ]

Planner-R1 8B Generated Plan Planner-R1 32B Generated Plan

📋Plan
[
    {
      "days": 1,
      "city": {
        "from": "Punta Gorda",
        "to": "Traverse City"
      },
      "transportation": {
        "mode": "self-driving",
        "from": "Punta Gorda",
        "to": "Traverse City",
        "duration": "21 hours 39 mins",
        "distance": "2,387 km",
        "cost": 119
      },
      "attraction": "-",
      "accommodation": "One bedroom apartment in NoLita",
      "breakfast": "-",
      "lunch": "-",
      "dinner": "-"
    },
    {
      "days": 2,
      "city": "Traverse City",
      "transportation": "-",
      "attraction": [
        "Clinch Park",
        "Great Lakes Children's Museum",
        "World's Largest Cherry Pie Pan"
      ],
      "accommodation": "One bedroom apartment in NoLita",
      "breakfast": "Famous Dave's",
      "lunch": "Daily Eats",
      "dinner": "Sher 'A' Punjab Bhojnalya"
    },
    {
      "days": 3,
      "city": {
        "from": "Traverse City",
        "to": "Detroit"
      },
      "transportation": {
        "mode": "self-driving",
        "from": "Traverse City",
        "to": "Detroit",
        "duration": "3 hours 56 mins",
        "distance": "411 km",
        "cost": 7
      },
      "attraction": "-",
      "accommodation": "Lovely, charming and clean bedroom in 
Manhattan.",
      "breakfast": "-",
      "lunch": "-",
      "dinner": "-"
    },
    {
      "days": 4,
      "city": "Detroit",
      "transportation": "-",
      "attraction": [
        "Detroit Institute of Arts",
        "Detroit Historical Museum",
        "Campus Martius Park"
      ],
      "accommodation": "Lovely, charming and clean bedroom in 
Manhattan.",
      "breakfast": "Southern Bliss Bakery",
      "lunch": "A Dong Restaurant",
      "dinner": "Vapour Pub & Brewery"
    },
    {
      "days": 5,
      "city": {
        "from": "Detroit",
        "to": "Lansing"
      },
      "transportation": {
        "mode": "self-driving",
        "from": "Detroit",
        "to": "Lansing",
        "duration": "1 hour 24 mins",
        "distance": "146 km",
        "cost": 7
      },
      "attraction": "-",
      "accommodation": "Magical Brooklyn Space *20 MIN to 
Manhattan!*",
      "breakfast": "-",
      "lunch": "-",
      "dinner": "-"
    },
    {
      "days": 6,
      "city": "Lansing",
      "transportation": "-",
      "attraction": [
        "Impression 5 Science Center",
        "Potter Park Zoo",
        "Michigan History Center"
      ],
      "accommodation": "Magical Brooklyn Space *20 MIN to 
Manhattan!*",
      "breakfast": "Manuel's Bread Cafe",
      "lunch": "Tony's Italian Restaurant & Pizza",
      "dinner": "Front Street Brewery"
    },
    {
      "days": 7,
      "city": {
        "from": "Lansing",
        "to": "Punta Gorda"
      },
      "transportation": {
        "mode": "self-driving",
        "from": "Lansing",
        "to": "Punta Gorda",
        "duration": "19 hours 2 mins",
        "distance": "2,134 km",
        "cost": 106
      },
      "attraction": "-",
      "accommodation": "-",
      "breakfast": "-",
      "lunch": "-",
      "dinner": "-"
    }
  ]

Plan Delivery: ✅
Plan Pass: ✅

Plan Delivery: ✅
Plan Pass: 🚫
Accommodation Noel Palace in Grand Rapids 
requires a minimum of 3.0 nights, but got 2.

🧑 I need assistance with planning a week-long trip for three people, starting from Punta Gorda and traveling to three different cities in Michigan. The trip dates are from March 6th 
to March 12th, 2022, and our new budget is set at $4,400. For dining, we'd like to try local American and French cuisines.

Figure A.7: The GPT-5 model (left) violated the hotel booking rule by reserving only one night
instead of the required minimum of two, and also erred by visiting Traverse City multiple times,
failing the common-sense requirement. The Planner-R1 8B model (middle) likewise failed the ac-
commodation requirement, while only the Planner-R1 32B model (right) satisfied all requirements.
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GPT5 Generated Plan

📋Plan
[
    {
      "days": 1,
      "city": {
        "from": "Fayetteville",
        "to": "New York"
      },
      "transportation": {
        "mode": "self-driving",
        "from": "Fayetteville",
        "to": "New York",
        "duration": "8 hours 19 mins",
        "distance": "873 km",
        "cost": 43
      },
      "attraction": "-",
      "accommodation": "Modern Brooklyn oasis (PRIVATE ROOM)",
      "breakfast": "-",
      "lunch": "-",
      "dinner": "-"
    },
    {
      "days": 2,
      "city": "New York",
      "transportation": "-",
      "attraction": [
        "Top of The Rock",
        "Rockefeller Center",
        "Empire State Building",
        "The High Line"
      ],
      "accommodation": "Modern Brooklyn oasis (PRIVATE ROOM)",
      "breakfast": "Gurgaon Hights",
      "lunch": "G Dot",
      "dinner": "Aryan's Rajasthani Pyaz Ki Kachori"
    },
    {
      "days": 3,
      "city": {
        "from": "New York",
        "to": "Boston"
      },
      "transportation": {
        "mode": "self-driving",
        "from": "New York",
        "to": "Boston",
        "duration": "3 hours 41 mins",
        "distance": "346 km",
        "cost": 17
      },
      "attraction": "-",
      "accommodation": "Sunlight + Space on Eastern Parkway",
      "breakfast": "-",
      "lunch": "-",
      "dinner": "-"
    },
    {
      "days": 4,
      "city": "Boston",
      "transportation": "-",
      "attraction": [
        "Public Garden",
        "Museum of Science",
        "New England Aquarium"
      ],
      "accommodation": "Sunlight + Space on Eastern Parkway",
      "breakfast": "Irish Democrat",
      "lunch": "Apni Rasoi",
      "dinner": "Resunga Food Corner"
    },
    {
      "days": 5,
      "city": {
        "from": "Boston",
        "to": "Fayetteville"
      },
      "transportation": {
        "mode": "self-driving",
        "from": "Boston",
        "to": "Fayetteville",
        "duration": "11 hours 42 mins",
        "distance": "1,226 km",
        "cost": 61
      },
      "attraction": "-",
      "accommodation": "-",
      "breakfast": "-",
      "lunch": "-",
      "dinner": "-"
    }
  ]

Plan Delivery: ✅
Plan Pass: 🚫
1. Missing meals on day 2.
2. Accommodation Magical rowhouse and 
garden is not presented in database

📋Plan

[
    {
      "days": 1,
      "city": {
        "from": "Fayetteville",
        "to": "New York"
      },
      "transportation": {
        "mode": "flight",
        "from": "Fayetteville",
        "to": "New York",
        "duration": "3 hours 8 minutes",
        "distance": "1147.0 mi",
        "cost": 260,
        "flight_number": "F4057738",
        "departure_time": "07:15",
        "arrival_time": "11:23"
      },
      "attraction": [
        "Times Square",
        "Top of The Rock",
        "Central Park"
      ],
      "accommodation": "Magical rowhouse and garden in 
Williamsburg (3 units)",
      "breakfast": "-",
      "lunch": "Gurgaon Hights",
      "dinner": "G Dot"
    },
    {
      "days": 2,
      "city": "New York",
      "transportation": "-",
      "attraction": [
        "Statue of Liberty",
        "9/11 Memorial & Museum",
        "Brooklyn Bridge",
        "The High Line"
      ],
      "accommodation": "Magical rowhouse and garden in 
Williamsburg (3 units)",
      "breakfast": "-",
      "lunch": "Amchur",
      "dinner": "Gurgaon Hights"
    },
    {
      "days": 3,
      "city": {
        "from": "New York",
        "to": "Newark"
      },
      "transportation": {
        "mode": "taxi",
        "from": "New York",
        "to": "Newark",
        "duration": "29 mins",
        "distance": "16.3 km",
        "cost": 16
      },
      "attraction": [
        "The Newark Museum of Art",
        "Branch Brook Park",
        "Military Park"
      ],
      "accommodation": "Magical rowhouse and garden in 
Williamsburg (3 units)",
      "breakfast": "-",
      "lunch": "Anaicha's Food Joint",
      "dinner": "Mirage Restro Bar"
    },
    {
      "days": 4,
      "city": "New York",
      "transportation": "-",
      "attraction": [
        "Empire State Building",
        "Rockefeller Center",
        "Radio City Music Hall"
      ],
      "accommodation": "Magical rowhouse and garden in 
Williamsburg (3 units)",
      "breakfast": "-",
      "lunch": "G Dot",
      "dinner": "Amchur"
    },
    {
      "days": 5,
      "city": "New York",
      "transportation": "-",
      "attraction": [
        "One World Observatory",
        "The Battery",
        "Flatiron Building"
      ],
      "accommodation": "-",
      "breakfast": "-",
      "lunch": "Gurgaon Hights",
      "dinner": "G Dot"
    }
  ]

Planner-R1 8B Generated Plan Planner-R1 32B Generated Plan

📋Plan
[
    {
      "days": 1,
      "city": {
        "from": "Fayetteville",
        "to": "Buffalo"
      },
      "transportation": {
        "mode": "self-driving",
        "from": "Fayetteville",
        "to": "Buffalo",
        "duration": "11 hours 11 mins",
        "distance": "1,169 km",
        "cost": 58
      },
      "attraction": "-",
      "accommodation": "Williamsburg Gem: Sleep up to 5",
      "breakfast": "-",
      "lunch": "-",
      "dinner": "-"
    },
    {
      "days": 2,
      "city": "Buffalo",
      "transportation": "-",
      "attraction": [
        "The Buffalo Zoo",
        "Buffalo and Erie County Botanical Gardens",
        "Buffalo AKG Art Museum"
      ],
      "accommodation": "Williamsburg Gem: Sleep up to 5",
      "breakfast": "Red Mango",
      "lunch": "Tibby's New Orleans Kitchen",
      "dinner": "Shokitini"
    },
    {
      "days": 3,
      "city": {
        "from": "Buffalo",
        "to": "New York"
      },
      "transportation": {
        "mode": "self-driving",
        "from": "Buffalo",
        "to": "New York",
        "duration": "6 hours 14 mins",
        "distance": "600 km",
        "cost": 30
      },
      "attraction": "-",
      "accommodation": "A Contemporary Homelike Stay in the Best of 
BK",
      "breakfast": "-",
      "lunch": "-",
      "dinner": "-"
    },
    {
      "days": 4,
      "city": "New York",
      "transportation": "-",
      "attraction": [
        "Top of The Rock",
        "One World Observatory",
        "SUMMIT One Vanderbilt"
      ],
      "accommodation": "A Contemporary Homelike Stay in the Best of 
BK",
      "breakfast": "Gurgaon Hights",
      "lunch": "G Dot",
      "dinner": "Rambhog"
    },
    {
      "days": 5,
      "city": {
        "from": "New York",
        "to": "Fayetteville"
      },
      "transportation": {
        "mode": "self-driving",
        "from": "New York",
        "to": "Fayetteville",
        "duration": "8 hours 21 mins",
        "distance": "881 km",
        "cost": 44
      },
      "attraction": "-",
      "accommodation": "-",
      "breakfast": "-",
      "lunch": "-",
      "dinner": "-"
    }
  ]

Plan Delivery: ✅
Plan Pass: ✅

🧑 Could you create a travel plan for a party of 8 departing from Fayetteville and heading to New York 
for 5 days, which will cover 2 cities between March 25th and March 29th, 2022? We have a maximum 
budget of $6,900. We are particularly interested in experiencing American and Mexican cuisines during 
our stay.

Plan Delivery: ✅
Plan Pass: ✅

Figure A.8: In this query, the user plans a trip for a party of 8. The GPT-5 model (left) missed meals
on Day 2 and hallucinated non-existent hotel names. The Planner-R1 8B model (middle) generated
a plan that exceeded the $6,900 budget, while only the Planner-R1 32B model (right) satisfied all
requirements.
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Figure A.9: Policy visualization for 8B model across 45 trajectories based on previous (y-axis) and
next (x-axis) tool calls across various steps of learning: {0, 100, 500, 1000}. As learning progresses,
the policy becomes more deterministic.
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Figure A.10: Policy visualization 32B model across 45 trajectories based on previous (y-axis) and
next (x-axis) tool calls across various steps of learning: {0, 100, 500, 1000}. As learning progresses,
the policy becomes more deterministic.

Figure A.11: Tool call sequence behavior as 8B training progresses. The base model (leftmost)
repeatedly invoked the calculator and restaurant tools until reaching the rollout cap (30 turns), ex-
hibiting poor tool-use behavior as context grew. With longer training, the model developed more
consistent and structured patterns for tool calls.
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Figure A.12: Tool call sequence behavior as 32B training progresses. The base model (leftmost)
repeatedly invoked the calculator until reaching the rollout cap (30 turns), exhibiting poor tool-use
behavior as context grew, similar to the 8B model. With longer training, the model developed more
consistent and structured patterns for tool calls. In particular, it learned to invoke get cities early to
check available cities within states before searching for tickets and attractions. We also observed
that the model made fewer get flights calls across queries, instead preferring to select more grounded
transportation options.
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D LLM USAGE DISCLOSURE

We used large language models (LLMs) only as general-purpose writing assistants for surface-
level language edits (grammar, phrasing, and clarity), LaTeX formatting suggestions (e.g., table/fig-
ure spacing, caption wording), and copyediting (e.g., consistent terminology, acronym expansion).
LLMs did not contribute to research ideation, dataset or method design, experimental planning,
implementation, analysis, or conclusions. All technical content, experiment setup, results, and in-
terpretations were created and verified by the authors, who take full responsibility for the paper’s
substance and correctness.

E REWARD SHAPING AND POLICY INVARIANCE

We treat Stage 3 as the ground-truth MDP, where the terminal reward is

r(3) = rschema rpass ∈ {0, 1}.

Hence r(3) = 1 if and only if the plan is schema compliant and all commonsense and hard constraints
are satisfied, and 0 otherwise. The shaped rewards for Stage 1 and Stage 2 are

r(1) = rschema
(
rmicro

cs + rmicro
hard + rmacro

cs + rmacro
hard + rpass

)
,

r(2) = rschema
(
rmacro

cs + rmacro
hard + rpass

)
.

We assume throughout that for every initial state (task instance) there exists at least one plan that is
schema compliant and satisfies all commonsense and hard constraints.
Lemma 1. Assume that for every instance there exists at least one plan that is schema compliant
and satisfies all commonsense and hard constraints. Let r(3) = rschema rpass be the ground-truth
reward, and let r(1), r(2) denote the Stage 1 and Stage 2 rewards. Then any optimal policy with
respect to r(1) or r(2) attains the ground-truth optimal value under r(3).

Proof. A plan is valid if it is schema compliant and all constraints pass. Such a plan yields

r(3) = 1, r(1) = 5, r(2) = 3,

while any invalid plan yields

r(3) = 0, r(1) < 5, r(2) < 3.

Since a valid plan exists, there is a policy that outputs valid plans with probability 1, and therefore
V

(3)
∗ = 1. Let π(k)

∗ be an optimal policy for reward r(k), with corresponding optimal value of V (k)
∗

. If π(k)
∗ produced an invalid plan with positive probability, its value V

(k)
∗ would be a strict convex

combination of the valid and invalid rewards, and thus strictly less than the maximal valid reward (5
for k = 1, 3 for k = 2). This contradicts optimality. Therefore π

(k)
∗ must output valid plans with

probability 1. Since r(3) equals 1 exactly for valid plans and 0 otherwise, such a policy satisfies

V
(3)

π
(k)
∗

= V
(3)
∗ = 1.

Thus any Stage 1 or Stage 2 optimal policy achieves the ground-truth optimal value under r(3).

F DETAILED CONSTRAINTS

The constraints used in our environment are identical to those in TRAVELPLANNER (Xie et al.,
2024). We group them into commonsense and hard constraints as summarized below.
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Commonsense Constraint

Within Sandbox All information in the plan must be within the closed sandbox; otherwise, it
will be considered a hallucination.

Complete Information No key information should be left out of the plan, such as the lack of accom-
modation during travel.

Within Current City All scheduled activities for the day must be located within that day’s city(s).
Reasonable City Route Changes in cities during the trip must be reasonable.
Diverse Restaurants Restaurant choices should not be repeated throughout the trip.
Diverse Attractions Attraction choices should not be repeated throughout the trip.
Non-conf. Transportation Transportation choices within the trip must be reasonable. For example, hav-

ing both “self-driving” and “flight” would be considered a conflict.
Minimum Nights Stay The number of consecutive days spent in a specific accommodation during the

trip must meet the corresponding required minimum number of nights’ stay.

Hard Constraint

Budget The total budget of the trip.
Room Rule Room rules include “No parties”, “No smoking”, “No children under 10”,

“No pets”, and “No visitors”.
Room Type Room types include “Entire Room”, “Private Room”, “Shared Room”, and

“No Shared Room”.
Cuisine Cuisines include “Chinese”, “American”, “Italian”, “Mexican”, “Indian”,

“Mediterranean”, and “French”.
Transportation Transportation options include “No flight” and “No self-driving”.

G BETTER CONVERGENCE SPEED FOR DENSE REWARD

Let’s focus on comparing stage 1 reward (dense) with stage 3 reward (sparse).
We compare the optimization dynamics induced by the dense stage–1 reward λ(1) = (1, 1, 1, 1, 1)
and the sparse stage–3 reward λ(3) = (0, 0, 0, 0, 1) from equation 1. For clarity, we write these two
terminal rewards as

r(1)(u, τ) := rschema(u, τ)
(
rmicro

cs (u, τ) + rmicro
hard (u, τ) + rmacro

cs (u, τ) + rmacro
hard (u, τ) + rpass(u, τ)

)
,

(3)

r(3)(u, τ) := rschema(u, τ) rpass(u, τ), (4)

for a prompt u and trajectory τ . By construction, r(3) coincides with the original sparse reward,
while r(1) is a proper shaping of r(3) (i.e., both induce the same optimal policy).
Let S denote the finite set of training prompts, and let πθ(0) be the initial (tabular or autoregressive)
policy. For a generic terminal reward r, define the per-prompt reward variance at initialization as

Vr(u) := Varτ∼πθ(0)(·|u)[ r(u, τ) ], V̄r := Eu∼S

[
Vr(u)

]
. (5)

Lemma 2 (Dense reward has larger initial variance). Assume that, for every prompt u ∈ S,
(a) the auxiliary terms are non-negative and non-degenerate under πθ(0):

Z(u, τ) := rschema(u, τ)
(
rmicro

cs + rmicro
hard + rmacro

cs + rmacro
hard

)
(u, τ) ≥ 0,

(b) the auxiliary signal is positively correlated with final-pass success:
Covτ [Z(u, τ), rpass(u, τ) ] ≥ 0.

Then for every u ∈ S,
Vr(1)(u) ≥ Vr(3)(u),

and consequently V̄r(1) ≥ V̄r(3) .

Proof. By definition,
r(1)(u, τ) = r(3)(u, τ) + Z(u, τ).
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For a fixed u, write X := r(3)(u, τ) and Z := Z(u, τ). Assumption (a) implies Var[Z] > 0, and
assumption (b) implies Cov[X,Z] ≥ 0. Using Var[X +Z] = Var[X] +Var[Z] + 2Cov[X,Z], we
obtain

Vr(1)(u) = Var[X + Z] = Var[X] + Var[Z] + 2Cov[X,Z] ≥ Var[X] = Vr(3)(u).

Averaging over u ∼ S gives V̄r(1) ≥ V̄r(3) .

We now connect reward variance to convergence speed using Theorem 1 in (Razin et al., 2025),
which shows that the time required for the expected reward to increase is lower bounded by a term
inversely proportional to the initial reward variance:

Theorem 1 (Reward variance controls optimization time, informal). Under the regularity assump-
tions of (Razin et al., 2025), there exists a constant Cγ > 0 (depending on γ and problem parame-
ters, but not on the choice of r) such that for any terminal reward r,

tγ(r) ≥ Cγ

V̄r
. (6)

Applying Theorem 1 to the dense and sparse rewards and combining with Lemma 2 yields:

Corollary 1 (Dense shaping converges faster than sparse reward, at the level of the lower bound).
Suppose the assumptions of Lemma 2 and Theorem 1 hold. Then

tγ
(
r(1)

)
≤ V̄r(3)

V̄r(1)
tγ
(
r(3)

)
≤ tγ

(
r(3)

)
, (7)

whenever V̄r(1) ≥ V̄r(3) . In particular, the dense stage–1 reward admits a strictly smaller (theoreti-
cal) lower bound on optimization time than the sparse stage–3 reward.

Intuitively, the shaped reward r(1) spreads probability mass across many intermediate scores (partial
schema satisfaction, partial commonsense and hard-constraint satisfaction), thereby inducing higher
reward variance under the initial policy. By Theorem 1, this larger variance directly reduces the
worst-case time required for policy gradient (and its stochastic approximation via GRPO in Sec-
tion 2.3) to achieve a fixed improvement γ in expected final-pass performance. This formalizes
the empirical observation that dense, properly shaped rewards lead to faster convergence than the
original sparse reward r(3).

H ASYMPTOTIC PERFORMANCE EQUIVALENCE BETWEEN SPARSE AND
DENSE REWARDS

We now show that, although the dense stage–1 reward r(1) accelerates optimization compared to the
sparse stage–3 reward r(3), both induce the same asymptotic policy under GRPO.
For k ∈ {1, 3}, define the population objective

J (k)(θ) := Eu∼SEτ∼πθ(·|u)
[
r(k)(u, τ)

]
, (8)

where r(1) and r(3) are the dense and sparse terminal rewards defined in Section 2.2, and S is the
finite set of training prompts.
We assume:

(A1) (Proper shaping and local shared optimum) There exists a parameter vector θ⋆ and a neigh-
borhood U ⊂ Θ of θ⋆ such that θ⋆ is the unique maximizer of both objectives restricted to
U :

θ⋆ = argmax
θ∈U

J (3)(θ) = argmax
θ∈U

J (1)(θ).

This is a local version of proper shaping: near θ⋆ the dense reward r(1) and sparse reward
r(3) induce the same optimal policy, but we do not require global uniqueness outside U .

(A2) (Local agreement of GRPO directions via normalized advantages) There exists a (possibly
smaller) neighborhood U ′ ⊆ U such that for any θ ∈ U ′ and any prompt u ∈ S, the dense
and sparse returns differ by a positive affine transform on almost all trajectories sampled
from πθ(· | u):

r(1)(u, τ) = aθ(u) r
(3)(u, τ) + bθ(u) with aθ(u) > 0 for πθ-almost every τ .
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Since GRPO uses group-normalized returns, this implies that the group-normalized advan-
tages coincide:

Â
(1)
i = Â

(3)
i for all i and all groups in U ′ (with probability 1.),

and hence the expected GRPO gradient fields agree locally:

g(1)(θ) := E[∇θJ
(1)
GRPO(θ)] = E[∇θJ

(3)
GRPO(θ)] =: g(3)(θ), ∀θ ∈ U ′.

This is due to the GRPO advantage normalization. Recall that for reward r(k) and a group
of trajectories {r(k)i }Gi=1 for a fixed prompt u, the group-normalized advantage is

Â
(k)
i =

r
(k)
i − µ

(k)
r

σ
(k)
r

, µ(k)
r =

1

G

G∑
j=1

r
(k)
j , (σ(k)

r )2 =
1

G

G∑
j=1

(
r
(k)
j − µ(k)

r

)2
. (9)

(A3) (Local convergence of GRPO) Starting from a common initialization θ0, the GRPO iterates
{θ(k)N }N≥0 for k ∈ {1, 3} enter U ′ with probability tending to 1 and remain there thereafter.
Moreover, within U ′ the stochastic GRPO dynamics form a standard stochastic approxima-
tion to the ODE θ̇ = g(k)(θ), and θ⋆ is a locally asymptotically stable equilibrium of this
ODE. In particular,

θ
(k)
N

p−→ θ⋆ as N → ∞ for k ∈ {1, 3},
but we do not require global consistency of GRPO outside U ′.

Under these assumptions we obtain:

Theorem 2 (Asymptotic performance equivalence). Let π̂(1)
N := π

θ
(1)
N

and π̂
(3)
N := π

θ
(3)
N

be the
policies obtained after N GRPO updates using the dense and sparse rewards, respectively. Then for
every ε > 0,

P
(∥∥π̂(1)

N − π̂
(3)
N

∥∥ > ε
)

−→ 0 as N → ∞, (10)

or equivalently,
P
(∥∥π̂(1)

N − π̂
(3)
N

∥∥ < ε
)

−→ 1. (11)

Proof sketch. By (A1) and (A3), for each k ∈ {1, 3} the GRPO iterates enter U ′ and converge in
probability to the locally stable maximizer θ⋆ of J (k). Assumption (A2) implies that within U ′ the
expected GRPO update directions coincide: g(1)(θ) = g(3)(θ) for all θ ∈ U ′, since dense and sparse
rewards differ only by a positive affine transform and group-normalized advantages are invariant
under such transforms.
Thus, once both processes have entered U ′, they follow (up to stochastic noise) the same limiting
ODE θ̇ = g(θ) with the same locally attractive fixed point θ⋆. By standard stochastic approximation
arguments, this yields θ(k)N

p−→ θ⋆ and hence π̂
(k)
N = π

θ
(k)
N

p−→ π⋆. Finally, for any ε > 0, applying
the triangle inequality and a union bound as in the original argument gives

P
(∥∥π̂(1)

N − π̂
(3)
N

∥∥ > ε
)
−−−−→
N→∞

0,

which proves equation 10.

I RESPONSE LENGTH CLIPPING ANALYSIS

Figure A.13 shows the evolution of agent response length across training steps for one run. The
model often reaches the model output context budget of 30,500 tokens (within a 32K full-context
window, where roughly 2K is reserved for the initial prompt), causing recurrent clipping. Once the
context is truncated, the agent loses tool outputs and partial trajectories, which forces it to rely on
shorter surviving segments of the conversation history. As training progresses the agent adapts by
constructing shorter plans to manage the context which leads to sub-par plans.
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Figure A.13: Response length over training steps capped at 30,500 tokens
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