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ABSTRACT

We investigated Agentic RL with large language models on the TRAVELPLAN-
NER benchmark. Our approach, PLANNER-R1, achieved a 56.9% final-pass rate
with only 180 training queries, a 2.7x improvement over GPT-5’s 21.2% baseline
and the strongest agentic result on the public leaderboard. A central finding was
that smaller models (8B) were highly responsive to reward shaping: with dense
process-level signals, they reached competitive performance while being 3.5x
more compute-efficient and 1.5x more memory-efficient than 32B models. Larger
models were more robust under sparse rewards but exhibited smaller relative gains
from shaping and higher variance across runs. While curriculum learning offered
no significant benefit, shaped rewards consistently amplified learning dynamics,
making 8B models the most efficient setting for agentic RL. Crucially, these gains
did not come at the cost of overfitting: fine-tuned models mostly maintained or ex-
ceeded baseline performance on out-of-domain tasks, including MULTI-IF, NAT-
URALPLAN, and 7-BENCH. These results establish reward shaping as a decisive
lever for scaling agentic RL, highlight the competitive strength of smaller models,
and demonstrate that efficiency can be achieved without sacrificing generalization.
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Figure 1: Final-pass rate on the leaderboard test set for tool-use travel planning. Our Planner-R1
models outperformed SOTA LLMs reaching 56.9% average final pass rate.

1 INTRODUCTION

Large Language Models (LLMs) have recently posted striking gains in deliberate reasoning and
decision making, propelled in part by large-scale reinforcement learning (RL) that trains models to

think before they answer (OpenAl et all,[2024a; |Guo et al.} [2025). Beyond language understanding,
LLM agents now demonstrate emerging competence in structured reasoning, tool use, and multi-

step problem solving across embodied and web environments (Wang et al.| 20232} [Huang et al.
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2024; [Feng et al., 2025). Yet turning these abilities into reliable long-horizon execution under
real-world constraints remains challenging: prompting-only agents such as ReAct and Reflexion
frequently mis-sequence actions, loop, or hallucinate when tasks demand coordinated tool use and
strict constraint satisfaction (Yao et al., 2023b} |Shinn et al., [2023)).

Planning tasks such as meeting scheduling and multi-day itineraries are demanding: agents must
coordinate heterogeneous tools (calendars, maps, flights, booking APIs), satisfy hard, interdepen-
dent constraints, and maintain global consistency over long horizons. TRAVELPLANNER makes
these difficulties concrete by casting travel itinerary creation as tool-augmented, constraint-driven
planning (Xie et al., [2024). The benchmark provides a sandbox with nearly four million records
and 1,225 curated intents with reference plans, and evaluates whether an agent can gather evidence
via tools and synthesize itineraries that satisfy both explicit user constraints and commonsense fea-
sibility. At release, even strong models struggled—e.g., GPT-4-Turbo with ReAct achieved only a
0.6% final pass rate on the 1,000-example test split—underscoring the gap between fluent language
modeling and dependable constraint-aware planning (Xie et al.| 2024)).

To close this gap, researchers have explored different training paradigms. A natural starting point is
behavior cloning via supervised fine-tuning (SFT), where a teacher generates “golden” trajectories
and a policy maximizes their likelihood, often masking environment observations and tool outputs.
While simple and widely used, SFT largely imitates expert behavior and is brittle under distribution
shift or suboptimal data. This motivates the search for approaches that directly optimize for end-
task success rather than imitation fidelity. RL provides precisely such a mechanism: rewards encode
task success, and the policy is updated to increase the likelihood of action sequences that satisfy con-
straints while suppressing those that fail. Recent work has shown that RL can deliver state-of-the-art
gains in model-based reasoning and planning (OpenAl et al.l 2024a; |Guo et al, |2025), making it a
promising direction for tackling long-horizon tool use in TRAVELPLANNER. In addition to model
performance, there is growing interest in building efficient agentic systems with smaller models
(Belcak et al.l [2025). Such models show promising potential for inference and training efficiency,
but there remains limited understanding of how agentic RL can best improve their performance
without overfitting. Our study addresses this gap by examining how model size, reward shaping,
and efficiency interact in agentic RL.

We formulate TRAVELPLANNER as a multi-step, tool-use MDP with constraint-aware planning,
where the agent gathers missing facts, reconciles conflicts, and outputs a structured itinerary. Train-
ing uses agentic RL with trajectory-level rewards gated by schema validity. Our main focus is the
role of reward density: we vary feedback from dense, process-level signals to sparse final-pass re-
wards, and also test a curriculum that transitions between them. All reward variants are properly
shaped, ensuring they converge to the same optimal policy while revealing how granularity influ-
ences learning dynamics. Our contributions are summarized below.

¢ SOTA Tool-Use on TravelPlanner PLANNER-R 1-32B achieved a 56.9% final-pass rate
on the official 1,000-query test split, a 2.7 x improvement over GPT-5. This is the strongest
agentic result on TRAVELPLANNER, demonstrating that RL-tuned models can surpass
state-of-the-art proprietary modelsm

* Reward shaping dynamics We find a strong link between reward granularity and policy
competence. Smaller models (8B) were especially responsive to shaped, process-level re-
wards, achieving performance competitive with 32B models while being up to 3.5x more
compute-efficient and 1.5x more memory-efficient. Larger models (32B) performed well
across reward settings and remained more robust under sparse signals, but exhibited higher
variance. In contrast, 8B models depended more heavily on dense shaping. Curriculum
learning alone provided no measurable benefit, whereas reward shaping consistently am-
plified learning dynamics, making the 8B models the most efficient setting for agentic RL.

* Generalization Beyond Training Domain Our agents did not overfit to TRAVELPLAN-
NER: Planner-R1 models mostly maintained or exceeded baseline performance on out-of-
domain tasks including MULTI-IF, NATURALPLAN, and 7-BENCH. This demonstrates
that the efficiency gains from agentic RL come without sacrificing robustness, supporting
transfer to diverse planning and tool-use settings.

Hao et al|(2025) achieved 93.9% correctness with external SAT/SMT solvers; our focus is on end-to-end
agentic planning without such solvers.
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Figure 2: MDP Visualization. x; represent the ith token, while a; represents the action the agent
took at time . Notice that initial prompts and tool responses contain tokens, but they dont increase
the time step ¢.

* RL Benchmark Formulation We recast TRAVELPLANNER as a multi-step agentic RL
benchmark by leveraging the official sandbox and its seven tools, and we designed verifi-
able reward functions aligned with the task’s success criteria. Policies were trained with
VERL(ver, [2024), where our system-level optimizations reduced runtime and memory us-
age by 20%, enabling efficient large-scale experimentation. (see Appendix [A]for details)

2 PLANNER RL

2.1 PROBLEM FORMULATION

We cast tool-augmented planning as a Markov Decision Process (MDP) M = (S, A, P, r,~). Since
our MDP is episodic, we set v = 1. Each episode is initialized with two textual inputs: a system
prompt y, which defines the agent’s role and available tools (see Appendix [B-1)), and a user prompt
u, which specifies the task goal and user preferences. At each time step ¢, the agent interacts with the
environment by emitting a token, alternating between natural language and structured tool invoca-
tions, until it decides that a complete plan has been formed. Figure 2] illustrates this process. While
our instantiation focuses on the TRAVELPLANNER benchmark [2024)), the formulation is
general and extends naturally to other agentic RL tasks. We next describe the individual components
of the MDP:

States. s; € S denotes the complete history, including the initial system and user prompt, the agent’s
partial plan, and all tool calls and responses observed up to step ¢, beginning from so = (y, u).

Actions. a; € A is the generated token at time ¢. The agent issues fool calls
through tokens to gather the necessary information and then produces the final plan
through a fext action. Tool calls are realized as seven APIs connected to a sand-

box with millions of grounded records: search_flights, search_accommodations,
search_restaurants, search_attractions, search_ground_transportation,
get_cities, and calculator. Each call takes JSON arguments and is wrapped inside
<tool_call>...</tool_call>,returning a structured JSON object: successful calls yield a
list of serialized rows, while failures return an error field.

Compared to the original TRAVELPLANNER, we added the calculator API for explicit numeric
reasoning and disabled the lightweight semantic memory so that tool responses appear directly in the
context. The final text action directly outputs an itinerary enclosed in <answer>...</answer>.
This design standardizes iterative tool use while keeping the final deliverable unambiguous.

Transitions. The environment appends each action to the state; if a tool call is completed, it is
executed and the output o, is added, otherwise o, is null. The next state is s¢11 = (8¢, at, 0¢41), With
older context truncated when exceeding the window. A key difference from the original benchmark
2024) is that we append tokens chronologically to the state, making our transition more
generic, as opposed to moving the tool responses to a specific part of the context.

Reward. In this domain, success is sparse and binary. A plan receives a reward of one only at
termination if it is schema-valid and satisfies both commonsense and user-specified constraints.
User queries are designed to ensure that at least one feasible plan exists.



Under review as a conference paper at ICLR 2026

To pass schema validation, the plan must be a valid JSON array of day-level objects,
each conforming to a fixed schema with fields for days, city, transportation,
attraction, accommodation, breakfast, lunch, dinner. Importantly, city
and transportation are typed objects with required fields (e.g., transportation must specify
mode, origin, destination, and duration), rather than free-form strings. The full schema is provided

in Appendix

Constraints fall into two categories. First, there are N.s commonsense constraints, which are not
explicitly given to the agent but must nonetheless be satisfied (e.g., transportation segments cannot
overlap). Second, there are Ny,.q hard constraints, explicitly specified in the user prompt, such as
departure and return dates. Formal definitions and the complete list of constraints are provided in
the work of Xie et al.| (2024]).

Our objective is to learn a policy my(a | s) that maximizes the expected cumulative reward, which
here reduces to optimizing the terminal reward: maxy E,[rr].

2.2 MULTI-STAGE REWARD

Due to the extreme sparsity of the reward function, we shape it using auxiliary metrics defined in
the original paper. In particular,

* T'schema = 1[plan conforms to schema]: indicator of schema compliance,

o oo = f;s : fraction of satisfied commonsense constraints,
s cs
o pmicro — S - fraction of satisfied hard constraints,
hard Nhard
o i =1 [réﬁ‘c“’ = 1]: indicator that all commonsense constraints pass,

o pmacro — [[pmicro — 1] indicator that all hard constraints pass,

— macro macroj. ; ] 3
Tpass = L[rea™ A riaq®]: indicator that both commonsense and hard constraints pass.

Here, I is the indicator function. The micro rewards are necessary to provide partial credit when
all constraints are not met , the macro rewards emphasize satisfying entire categories, and 7paes
corresponds to the original evaluation metric. The terminal reward in the generic form can then be
written as:

T = Tschema </\1 rénsicro + >\27";1naifcc{o + )\Srg‘éacro + )\4T}r;;?-fjro + )\STpass) . (D
By adjusting A = [Aq, ..., As], we control the reward density. In practice, we consider three stages:

 Stage 1: A =[1,1, 1,1, 1] (dense feedback),

* Stage 2: A =[0,0, 1,1, 1] (category-level),

* Stage 3: A =0,0,0,0, 1] (sparse final pass).
This setup defines proper reward shaping: auxiliary terms provide intermediate guidance, while the
final-pass reward captures the true objective. Crucially, all of the above weightings preserve the
same optimal policy. Building on this, we define a curriculum that schedules \ across training,

beginning with dense feedback for partial credit, then shifting to category-level rewards, and finally
collapsing to the sparse end reward. Transitions occur at predefined step counts.

2.3  OPTIMIZATION

We used GRPO (Shao et al.| |2024), a clipped PPO-style objective without KL regularization. For
each planning query u € D, we sample G trajectories T = {Tl}lel with corresponding Returns
r = {ry,ra,--- ,7g} from the behavior policy 7,,,, Where 7; = (s, ap, - .., s}, ). The loss is

1 G 1 Ti—1 ) )
=3 = > min(py Ai, clip(pj, 1, 1+¢) Ay)
i=1 " t=0

with clipping hyperparameter € > 0. The token-level importance ratio and trajectory-level advantage
are defined as

(@

JGRrPO (9) = Eu”“Dv {ri}~mo g

>

v molaf| shal,)

r; — mean(r)
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3  EMPIRICAL RESULTS

3.1 SETUP

In-Domain We fine-tuned Qwen3 8B/32B models across 5 runs with fixed set of seeds on TRAV-
ELPLANNER. Due to GPU memory and context budget constraints, and inspired by the recent find-
ings that thinking may not always improve performance (Gema et al., 2025} Shojaee* et al.| |[2025),
we did not enable “thinking-in-context.” We named these models Planner-R1. The official 45/180
train—validation split was merged and reshuffled into 180 training and 45 validation queries, while
preserving the easy/medium/hard ratio. We evaluated three single-stage reward configurations with
500 steps and a curriculum regime for 8B and 32B models with 100/300/100 and 50/350/100 steps
respectivelyE] 8 rollouts were executed in sglang with a standard ReAct-style agent. We capped
trajectories at 30 steps, tool responses at 8,192 tokens, and model outputs at 30,500 tokens. All runs
used two nodes (16xH200 GPUs). We used learning rate of 10~5. Although Qwen3 provided an
explicit <think>...</think> mode (qwel 2025bja), the additional reasoning tokens inflated
context length and, in pilots, yielded no gains on task metrics. Full hyperparameters and imple-
mentation details are given in Appendix [B.3] and decoding and sampling presets are summarized in

Appendix [B.4]

Out-of-Domain A central concern with task-specific fine-tuning is whether it harms generaliza-
tion outside the target domain. To probe this, we evaluated our trained models on three comple-
mentary suites. All were unseen during training, with evaluation limited to task instructions. (i)
NATURAL PLAN (Zheng et al., |2024) (Trip Planning, Meeting Planning, Calendar Scheduling),
where tool outputs were provided as context and accuracy was scored by Exact Match; we followed
the official five-shot prompting protocol. (ii) MULTI-IF (He et al., [2024) (English), a multi-turn
instruction-following benchmark derived from IFEval, where the input at turn ¢ concatenated all
prior turns (< ¢ — 1); we reported the mean of turn-wise scores. (iii) 7-BENCH (Yao et al., 2024)
(retail, function-calling), which measured goal completion against a simulated backend and policy
documents; we reported pass@1.

3.2 EVALUATIONS

Table E] depicts the TRAVELPLANNER results based on Qwen3 (Yang et al.l [2025), GPT (OpenAl
et al., [2024b; |OpenAl, 2025ba), and our Planner-R1 models using four reward models across five
metrics defined in[2] Numbers after 4 indicates 95% confidence intervals.

Base models showed partial competence but struggled with full constraint satisfaction. While
stronger base models achieved 99%+ delivery rates and moderate commonsense and hard-constraint
coverage, they did not perform well end-to-end. For instance, GPT-5 and GPT-03 achieved final
pass rates of 21.2% and 11.3%, respectively. In contrast, the open-weight Qwen3 series performed
substantially worse: the 8B model failed entirely, and the 32B model achieved only 0.6% final pass
despite a 41.9% delivery rate. This stark disparity underscored that the challenge lay not in planning
individual items, but in coordinating tool calls and enforcing all constraints jointly. Prior work (Yao
et al.,[2023b; |Nakano et al.}[2021) suggested that prompting alone often underutilized tool feedback,
whereas robustness emerged when models interleaved reasoning with actions to query, observe, and
update plans. Our findings, as we will see in Section[d] align with this view: base models were able to
generate fluent itineraries, but their failures centered on tool sequencing and constraint bookkeeping
rather than basic retrieval.

Agentic RL delivered large gains; smaller models were reward-sensitive. RL fine tuning im-
proved both 8B and 32B Qwen3 substantially. Specifically PLANNER-R1-8B using Stage 1 reward
and PLANNER-R1-32B using Curriculum reward reached 39.9% and 47% final pass rates respec-
tively. Compared to the 32B model, the 8B model was more sensitive towards sparser rewards:
using Stage 2 and Stage 3 rewards resulted in 3/5 and 5/5 model collapses respectively, showing
the importance of reward shaping (Ng et al.,|1999; dos Santos et al., 2024;|Qian et al.,[2025b). These
collapses explain the large confidence intervals of Stage 2 results. 32B models were more robust. All

2Given the strong Stage 3 performance of larger models, we advanced them more quickly from Stage 1.
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reward resulted in 42%+ final pass rate, although increased sparsity resulted in increased variance.
32B model learnt best with Curriculum reward yet the difference were not statistically significant.

Smaller models delivered superior GPU efficiency compared to larger ones. Given the strong
performance of Stage 1 training, we extended experiments with high-capacity settings, training the
8B model for 3,000 steps and the 32B model for 2,000 steps. Figure [3| reports results from five
independent runs. The left panel, plotted against training steps, shows that both models achieved
broadly similar performance trajectories. The right panel, however, plots final pass rate against
estimated FLOPs (see Appendix [B.6|for details) and reveals a clear efficiency gap. While the 32B
model reached 90% of its peak performance (52.3%) at 7.6 x 102° FLOPs, the 8B model achieved
the same level at only 2.1 x 10%° FLOPs, a 3.5x improvement in efficiency. Although 32B models
attained a slightly higher peak accuracy (56.9% vs. 56.4%), this difference was not statistically
significant and came with higher variance. A complementary memory-efficiency analysis appears in
Appendix B.5] where we discuss GPU memory footprint and its implications for agentic RL with
long multi-turn contexts. Overall, the FLOPs-based comparison highlights that smaller models are
substantially more GPU-efficient for agentic RL training using shaped rewards when data generation
is not a limiting factor.

Table 1: Results on the TRAVELPLANNER test set. For Planner-R1 models, we report mean per-
formance with 95% confidence intervals over five runs at 500 training steps. Stage 1-3 denote
runs trained exclusively on one stage for 500 steps each. Curriculum uses three phases: for 8B,
100/300/100 steps; for 32B, 50/350/100 steps across Stages 1-3.

Method Delivery Commonsense Hard Constraint Final
Rate Micro Macro Micro Macro Pass Rate
(%) (%) (%) (%) (%) (%)
Qwen3-8B 0.0 0.0 0.0 0.0 0.0 0.0
Qwen3-32B 41.9 27.5 1.7 114 7.2 0.6
GPT-03 (high) 99.6 74.2 14.3 57.7 48.0 11.3
GPTS5 (high) 99.8 81.0 23.4 75.4 71.1 21.2
Planner-R1-8B
Stagel 99.5+0.8 94.8+1.2 69.0£6.9 61.0£2.6 46.242.5 39.944.3
Stage2 99.940.2 80.6+18.2 30.2+£51.9 63.4+13.8 48.64+16.3 13.3+23.2
Stage3 0.04+0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.040.0 0.040.0
Curriculum 99.7+0.8 92.7+£3.1 57.9+£18.6 53.9£5.7 38.244.2 27.1+12.6
Planner-R1-32B
Stagel 99.3+1.6 95.2+1.6 70.4+13.4 742414 56.442.9 42.3+8.0
Stage?2 91.140.5 87.7+22 69.1£14.5 70.04£5.6 55.0+7.6 44.1+49.4
Stage3 99.4+09 94.7£25 T71.9£15.2 60.8£16.6 48.24+15.1 44.3+14.1
Curriculum 99.1+1.7 95.9+25 T785£79 72.14£5.0 55.14£6.2 47.0+6.9

RL fine-tuned models generalized beyond the training domain. Table[2]shows that RL fine-tuned
models performed mostly on par with, and often surpassed, their pretrained counterparts across NAT-
URAL PLAN (Zheng et al.| 2024), MULTI-IF (He et al.,2024)), and 7-BENCH (Yao et al.,2024)). Blue
and red indicate significant improvements and degradations, respectively. After 2,000 steps, both
models improved on most metrics, and even at 3,000 steps the 8B model outperformed baselines on
five of seven metrics with marginal regressions on two metrics. We attribute this robustness to the
JSON-gated output structure, which couples semantics with format and reinforces tool-conditioned
behaviors, consistent with prior findings that structured generation improves reliability (Oestreich
et al.,[2025) and supports generalization to unseen schemas (Liu et al.,[2019).
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Figure 3: Performance of 8B and 32B Planner-R1 during training based on learning steps (left)
and training FLOPS (right). The horizontal dashed line highlights 90% of the maximum average
performance of 32B models, while vertical dashed lines show the required FLOPs to reach that
performance by both 8B and 32B models.

Table 2: Transferability to external benchmarks without target-domain training (percent). Models
are evaluated on NATURAL PLAN, MULTI-IF, and 7-BENCH. Blue = significant improvement over
the base model; red = significant degradation from the base model.

Method (Training Steps) NATURAL PLAN Multi-IF T-bench
Trip Meeting Calendar 1st-Turn 2nd-Turn 3rd-Turn Pass@1

Qwen3-8B 1294+0.2 82.0+£0.0 22.7+0.3 88.9+£0.6 82.8+£0.6 75.4£0.5 9.5+2.1

Planner-R1-8B (500) 14.0+£0.9 83.2+1.1 243+0.9 89.4+£0.4 83.5£0.7 76.9£0.6 11.1+0.9

Planner-R1-8B (2000) 140+£2.1 84.0£0.6 23.2+2.1 89.84+0.4 84.0+0.5 77.2+0.4 12.1£2.3
Planner-R1-8B (3000) 10.7£1.8 84.5+£1.3 20.1£2.0 89.84+0.1 83.9+0.4 76.7+£0.4 15.1£3.1

Qwen3-32B 11.3£0.0 77.0£0.0 32.2+0.0 89.1+0.3 83.1+£0.3 77.1£0.4 28.0+£2.2
Planner-R1-32B (500) 15.7£22 79.8+1.6 33.2+0.5 88.7+0.2 83.4+£0.6 77.7£0.6 28.7+2.1
Planner-R1-32B (2000)  19.5+1.2 80.2+1.1 344£1.4 89.8+0.3 84.1+0.3 78.5+0.4 33.9+£3.8

4 QUALITATIVE ANALYSIS

To illustrate the effects of RL and model scale, we present a qualitative analysis of Planner-R1 8B
and 32B models across training checkpoints, with GPT-5 included as a reference point. We highlight
progression in failure modes, tool use, and subreward acquisition for the trained models, and report
failure patterns for GPT-5.

Failure Progression Figure[d]shows the progression of the top five failure categories for Planner-R1
8B (left) and 32B (right) models during trainindﬂ For hallucination detection, we verify whether
the origin city, destination city, attractions, accommodations, and restaurants are present in the cor-
responding databases. Both models began with high failure rates, particularly on accommodation
and cost constraints. For the 8B model, hallucination and cost remain persistent challenges, while
all other failures fall below 10% after 800 steps. For the 32B model, accommodation and cost re-
main dominant errors, with all other failures dropping below 10% by 600 steps. Notably, the 32B
model exhibits substantially fewer hallucinations but struggles more with finding accommodations
that qualify, for example when the chosen accommodation has a minimum-night requirement and
the planned stay must meet this constraint. Another stark observation is the spike at 1,600 steps
which can be also observed in Figure E} In general, we found 32B models with more variations,
specially in one run the pass rate dropped from 44% to 26% to 51% impacting the average.

Tool-Use Progression We observed clear improvements in tool-use behavior as training progressed.
Early checkpoints of both the 8B and 32B models exhibited poor sequencing, often looping on

3Top categories selected based on their AUC during training. For another lens with top 3 failures at each
learning step see Figure[A.7)]
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Figure 4: Progression of top 5 failures for 8B (left) and 32B (right) Planner-R1 during training

repetitive calls (e.g., repeatedly invoking the calculator or restaurant tools), which led to incoherent
or incomplete plans. As training progressed, both model failures shifted from syntactic to semantic
failures: they returned schema valid plans but often failed to call necessary tools to meet the required
constraints. With more training, models could often return valid plans. For further details, see the
visualizations of tool-call trajectories in Appendix Figures

Sub-Reward Progression For both 8B and 32B models, the initial ranking of subrewards from
highest to lowest was consistent (see Figure in Appendix): (1) Schema, (2) Commonsense
Micro, (3) Hard Micro, (4) Commonsense Macro, (5) Hard Macro, and (6) Final Pass. As training
progressed, success rates increased across all categories, yet this relative ordering remained largely
unchanged. This pattern aligned with the A values defined in Section reinforcing our intuition
about the relative difficulty of these subrewards and underscoring the role of reward shaping in
guiding models through progressively harder objectives.

GPT-5 Behavior Across multiple scenarios, GPT-5 exhibits several recurring error patterns. These
include repetition errors, such as selecting the same restaurant or revisiting a city multiple times
in violation of commonsense constraints; incomplete plans, where the model fails to return to the
departing city or omits key itinerary elements; constraint violations, such as booking fewer than
the required minimum hotel nights; and hallucinations, including inventing non-existent hotels or
skipping required meals. Illustrative examples of these failure modes are provided in Appendix[A.4}-

5 RELATED WORK

Planning Early chain-of-thought prompting showed that writing out intermediate steps boosts LLM
performance on complex QA and math (Wei et al.l 2022} Kojima et al., [2022). Subsequent vari-
ants—most notably self-consistency and structured schemes such as Least-to-Most and Plan-and-
Solve—further reduce errors by decomposing problems and aggregating diverse solution paths
(Wang et al 2023c}, |Zhou et al.l 2023} [Wang et all 2023b). To address the brittleness of linear
chains, search-based methods recast reasoning as combinatorial exploration with lookahead and
backtracking, operating over trees (Tree of Thoughts) and graphs (Graph of Thoughts) (Yao et al.,
2023aj;|Besta et al., [2024). Multi-agent formulations extend this idea via division of labor: Chain-of-
Agents partitions long inputs among workers while a manager aggregates their outputs (Chen et al.,
2024). Decoupling planning from execution further improves robustness: Plan-and-Act pairs a
planner with an executor and scales supervision via synthetic trajectories, while Iterative Program-
matic Planning treats planning as code synthesis (Erdogan et al., |2025; |Aravindan et al., [2025).
Formal methods offer another angle: Hao et al.| (2025) translate planning queries into SAT/SMT
specifications solved by external verifiers, achieving rigorous correctness guarantees; in contrast,
we keep planning internal to the agent and optimize policies end-to-end with RL. Finally, to reach
beyond the context window, recent systems interleave reasoning with targeted search: Search-ol
triggers agentic retrieval under uncertainty and distills evidence via a Reason-in-Documents step,
while Al-SearchPlanner trains a lightweight RL planner to trade off query utility and cost, yielding
cross-model gains (Li et al.,|2025a; |Mei et al., 2025).
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Agentic RL RL is increasingly used to make tool-use strategic and long-horizon: Search—R1 learns
to issue multi-turn web queries during reasoning (Jin et al., 2025)), SkyRL trains multi-turn agents in-
side real software environments (Cao et al., [2025)), and ReTool interleaves Python execution within
the reasoning loop under outcome-based rewards (Feng et al.l 2025). Complementing these, the
Tool-Integrated Reasoning line embeds tools directly into the RL objective: ToRL scales tool-
integrated RL from base models and reports emergent selective tool invocation with strong math
gains (Li et al.,[2025b), while ToolRL systematically studies reward design for tool selection and pa-
rameterization, showing that carefully shaped rewards with GRPO yield robust improvements over
SFT (Qian et all [2025a). Biomni applies end-to-end reinforcement learning, creating rewards and
RL environments tailored to biomedicine, scalably training the agent to carry out research tasks more
effectively (Huang et al., 2025). In parallel, large-scale RL fine-tuning (Kimi k1.5, DeepSeek—R1)
boosts general reasoning, and Qwen3 introduces dynamic “thinking” vs. “non-thinking” modes to
balance depth and latency (Kimi Team et al.l [2025; |Guo et al., 2025} [Yang et al.| 2025). Building
on this momentum, Kimi K2 emphasizes open agentic intelligence with agentic data synthesis and
a joint RL stage (Kimi Team, 2025)); GLM-4.5 proposes ARC (Agentic, Reasoning, Coding) foun-
dation models with hybrid thinking/direct modes and RL post-training (GLM-4.5 Team), [2025); and
Microsoft’s rStar2—-Agent explores reliable Python tool use with a Resample-on-Correct strategy
for agentic RL (Shang et al. 2025). Most closely related, (Chen et al.| (2025)) introduce LOOP, a
data- and memory-efficient variant of PPO that enables reinforcement learning for interactive digital
agents directly within stateful, multi-domain environments such as AppWorld.

DISCUSSION AND LIMITATIONS

We showed that agentic RL can substantially enhance planning with tool use, using TRAVELPLAN-
NER as a testbed. Our method achieved state-of-the-art performance among open-weight models and
outperformed GPT-5 baselines by 2.7x. A key finding is that smaller models (8B) are especially re-
sponsive to shaped, process-level rewards: with only 180 training queries, they reached competitive
performance with 32B models while operating at up to 3.5x higher compute-efficiency and 1.5x
higher memory-efficiency. Larger models were more robust under sparse signals but gained less
from shaping and exhibited greater variability and higher compute demand, underscoring reward
design as a key lever for scaling efficiency.

These efficiency gains at 2,000 steps did not come at the expense of robustness. Fine-tuned models
maintained or exceeded baseline performance on out-of-domain benchmarks such as MULTI-IF,
NATURALPLAN, and 7-BENCH, showing no evidence of overfitting. At 3,000 steps, the 8B model
still improved 5 of 7 metrics but regressed on 2, highlighting a potential drawback of excessive
fine-tuning. Although our study followed leaderboard rules and avoided prompt engineering, both
baselines and our method may benefit from future prompt optimization.

Our study also has limitations. We focus on TRAVELPLANNER, a constrained benchmark, and
smaller models may not remain competitive on more complex or open-ended tasks. While 8B mod-
els are more FLOP-efficient, larger models can reach higher peak accuracy, which may be necessary
in applications where absolute performance is critical. Finally, we explored curriculum learning
only in a simple staged form, leaving richer scheduling strategies for future work. Overall, our re-
sults highlight reward shaping as central to agentic RL and position smaller models as an efficient,
generalizable path forward.
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A SYSTEM-LEVEL OPTIMIZATIONS

Overview. RL training with large-scale LLMs requires co-locating both training and inference
engines on the same set of GPUs. This dual demand creates severe memory pressure, often leading
to out-of-memory (OOM) errors when switching between training and rollout phases. To address
this, we integrated memory management techniques into our RL Pipelines.

Multi-Stage Awake Memory Management. In VERL, reinforcement learning (RL) training is
conducted in Colocate Mode, where both the training engine (e.g., FSDP) and inference engine
(e.g., SGLang) share the same GPU resources. A major bottleneck arises when transferring weights
from the training engine to the inference engine: model parameters must be copied from FSDP into
SGLang, often causing out-of-memory (OOM) failures under high memory pressure.

To address this, we extended the Sleep/Awake mechanism in SGLang and introduced the Multi-Stage
Awake strategy for fine-grained memory management during rollouts. Instead of a single monolithic
resume, memory resumption is divided into multiple stages:

1. Load training model weights into GPU memory.

2. Resume inference model weights at preserved virtual addresses.

3. Synchronize weights between training and rollout engines.

4. Offload training model weights back to CPU.

5. Resume the KV cache region for rollout execution.

This staged approach minimizes memory waste and prevents fragmentation. Our empirical results
show that it provides two key benefits:
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* Enables training of larger models: With the same KV cache ratio, our approach reduces
peak GPU memory by 20-23 %, which unblocks stable training of a 32B-parameter model
on 8xH200 GPUs even at higher cache ratios (0.8, 0.85, and up to 0.9). Without Multi-
Stage Awake, training consistently ran out of memory beyond 0.7.

* Improves throughput: For the same model size, our method allows a larger KV cache ratio
to be used, directly improving inference throughput. While throughput gains are workload-
dependent and not easily comparable across setups, our experiments show that increasing
the ratio from 0.7 to 0.9 leads to significant improvements in rollout efficiency.

B IMPLEMENTATION DETAILS

B.1

SYSTEM PROMPT

We include the jinja template of our full system prompt used for Planner-R1 during training/evalua-

tion.

Fid

—

—
—

—

]

—

—

You are a helpful travel assistant that plans detailed travel

# Behavior Guidelines
- If a task requires multiple steps or tools, proceed step by step,

- Never assume details-always verify all information using tools.
— When you have gathered sufficient information to finalize the plan,

# Tool Usage Rules
- Do not repeat the same tool call with identical arguments.
- Always provide complete and correct function arguments.

# Final Plan Format
Once all necessary information is collected, respond with the final

<answer>

[

</answer>

* % IMPORTANT CONSTRAINTS=*x*
- The <answer> must contain ONLY wvalid JSON, strictly following the

— Do not include any explanatory text inside the <answer> block.
- Do not output <answer> until all needed tool calls are completed.

# Final Plan Schema
Each element in the <answer> JSON array should represent a single day

itineraries by calling external functions (tools). You have access
to the following tools and must use them as needed to gather
accurate, up-to-date information.

calling ONE TOOL per turn.

respond with an <answer> block with the final itinerary in wvalid
JSON format.

plan:

{

// Day 1 plan following schema
by
{

// Day 2 plan following schema

}I
// ... additional days

plan_schema.

of the trip and follow this schema exactly:
json
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{{ plan_schema }}

B.2 PLAN JSON SCHEMA

The final itinerary must be a JSON array of per-day objects. Each day object is validated against
the schema below. This structured contract doubles as a checklist (ensuring coverage of all required
fields) and enables automatic reward gating.

"type": "object",
"required": |
"days", "city", "transportation", "attraction",
— "accommodation", "breakfast", "lunch", "dinner"
1,
"properties": {
"days": {
"description": "The day number of the plan starting from
- 1.",
"type": "integer"
s
"city": {
"description": "Can be a city name string if no transfer

— 1s needed, or an dict with 'from' and 'to' keys that
— indicates the origin and destination city.",

"oneOf": [
{"type": "string"},
{
"type": "object",
"required": ["from", "to"],
"properties": {
"from": {"type": "string"},
"to": {"type": "string"}
by
"additionalProperties": false
}
1
by
"transportation": {
"description": "Either '-' if no transportation is needed,

< or an object describing the transportation details.
< Instead of total cost, use per person price for flight
— and per vehicle cost for taxi/self-driving as the
« cost.",
"oneOf": |
{
"type": "string",
" const n . nwm_m
by

"type" . "object",
"required": ["mode", "from", "to", "duration",
— "distance", "cost"],
"properties": {
"mode": {
"type": "string",
"enum": ["flight", "taxi",
— "self-driving"],
"description": "Type of transportation."

by
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"from": {"type": "string", "description":

— "Origin city"},

"to": {"type": "string", "description":

— "Destination city"},

"duration": {"type": "string", "description":
— "Transportation duration"},

"distance": {"type": "string", "description":
— "Distance of the trip"},

"cost": {"type": "integer", "description":

— "Cost of the transportation"},

"flight number": {"type": "string",

— "description": "Flight number (for flights
— only)"},

"departure_time": {"type": "string",

< "description": "Flight departure time"},
"arrival_ time": {"type": "string",

— "description": "Flight arrival time"}

s
"additionalProperties": false

1
b
"attraction": ({

"description": "A list of attraction names planned for the
— day, or '-' if no attractions are planned.",
"oneOf": |
{lltype": llstringll, "econst": llill},
{
lltype": llarrayll,
"items": {"type": "string"},
"minItems": 1
}
]
by
"accommodation": {
"description": "The name of the accommodation for today.
— '-'" if no accommodation is needed.",
"typell: "String"

s
"breakfast": {

"description": "The name of the breakfast restaurant for
— today. '-' if no breakfast is planned.",
"type": "string"
1y
"lunch": {
"description": "The name of the lunch restaurant for
— today. '-' if no lunch is planned.",
lltype": "Stril’lg"
s
"dinner": ({
"description": "The name of the dinner restaurant for
— today. '-' if no dinner is planned.",
"type": "string"
}
by
"additionalProperties": false
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B.3 TRAINING, VALIDATION, AND EVALUATION SETUP

RL framework and resources. We train with VERL using GRPO on 2 nodes with 8 GPUs/node
(16 H200 GPUs total). Rollouts use sglang with a multi-turn, tool-augmented agent (ReAct-style).

Training configuration. Stage 1/2/3 share the same VERL configuration; only the reward weights
differ by stage (see Sec. 2). File paths are pseudonymized for readability.

# verl + GRPO. Stage—-agnostic; change reward weights per stage.
actor_rollout_ref:
actor:
strategy: fsdp
ppo_mini_batch_size: 8
ppo_micro_batch_size: null
ppo_micro_batch_size_per gpu: 1
use_dynamic_bsz: false
ppo_max_token_len per_gpu: 16384
clip_ratio: 0.2
clip_ratio_low: 0.2
clip_ratio_high: 0.2
policy loss:
loss_mode: vanilla
clip_cov_ratio: 0.0002
clip_cov_1b: 1.0
clip cov_ub: 5.0
k1l _cov_ratio: 0.0002
ppo_kl _coef: 0.1
clip_ratio_c: 3.0
loss_agg_mode: token-mean
entropy_coeff: 0
use_kl_loss: false
use_torch_compile: true
kl loss_coef: 0.001
kl_loss_type: low_var_kl
ppo_epochs: 1
shuffle: false
optim:
lr: 1.0e-06
lr warmup_steps_ratio: 0.0
total_training steps: -1
weight_decay: 0.01
lr warmup_steps: -1
min_lr ratio: 0.0
num_cycles: 0.5
warmup_style: constant
grad_clip: 1.0
ulysses_sequence_parallel size: 1
entropy from logits_with_chunking: false
entropy_checkpointing: false
fsdp_config:
wrap_policy:
min_num params: 0
param_offload: true
optimizer offload: true
offload policy: false
reshard after forward: true
fsdp_size: -1
forward prefetch: false
rollout:
name: sglang
mode: async
temperature: 1.0
top_k: -1
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top_p: 1

prompt_length: 2268
response_length: 30500

dtype: bfloatl6
gpu_memory_utilization: 0.6
ignore_eos: false
enforce_eager: true
free_cache_engine: true
tensor_model parallel_size: 4
max_num_batched tokens: 8192
max_model len: null
max_num_seqgs: 1024
log_prob_micro_batch_size: null
log_prob_micro_batch size_ per gpu: 32
log_prob_use_dynamic_bsz: false
log_prob_max_token_len per gpu: 16384
disable_log _stats: true
do_sample: true

n: 8

multi_stage_wake_up: false
val_kwargs:

top_k: -1
top_p: 1.0
temperature: 0
n: 1

do_sample: false
multi turn:
enable: true
max_ assistant_ turns: 30
tool_config path: ${PROJ_ROOT}/config/tool_config.yaml
max_user_turns: 30
max_parallel calls: 1
max_tool_response_length: 8192
tool_response_truncate_side: right
interaction_config path: null
completion_callback: null
use_inference_chat_template: false
tokenization_sanity_check mode: strict
format: hermes
calculate_log probs: false
agent:
num_workers: 8
agent_loop_config_path: ${PROJ_ROOT}/config/agent_loops.yaml
custom_async_server:
path: null
name: null
update_weights_bucket_megabytes: 512
enable_chunked prefill: true
load_format: dummy_dtensor
layered summon: false
enable_thinking: false
hybrid engine: true
model:
path: Qwen/Qwen3-{8B|32B} # base model
custom_chat_template: null
use_shm: false
external lib: null
override_config: {}
enable_gradient_checkpointing: true
enable_ activation offload: false
use_remove_padding: true
target_modules: all-linear
exclude_modules: null
use_liger: false
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use_fused_kernels: false
fused_kernel_options:
impl_backend: torch
trust _remote code: false

trainer:

balance_batch: true

total_epochs: 300

total training steps: 3000

profile_steps: null

logger:

- mlflow
log_val_generations: 0
rollout_data_dir: null
nnodes: 2
n_gpus_per_node: 8
save_freq: 100
esi_ redundant_time: 0
resume_mode: auto
val before train: true
val_only: false
test_freq: 50
critic_warmup: O
default _hdfs dir: null
del_local_ ckpt_after load: false
max_actor_ckpt_to_keep: null
max_critic_ckpt_to_keep: null
ray wait_register_ center_timeout: 300
device: cuda
use_legacy_worker_ impl: auto

data:
tokenizer: null
use_shm: false
train_files: ${PROJ_ROOT}/data/train.parquet
val_files: ${PROJ_ROOT}/data/test.parquet
prompt_key: prompt
reward_fn key: data_source
max_prompt_length: 2268
max_ response_length: 30500
train batch _size: 16
val_batch_size: 64
return_raw_input_ids: false
return_raw_chat: true
return_full prompt: false
shuffle: true
dataloader num workers: 8
validation_shuffle: false
filter overlong prompts: true
filter overlong prompts_workers: 1
truncation: error
image_key: images
video_key: videos
trust_remote_code: false
custom_reward function:
path: ${PROJ_ROOT}/rewards_v3.py
name: compute_score
algorithm:
gamma: 1.0
lam: 1.0
adv_estimator: grpo
norm_adv_by std _in_grpo: true
use_kl_in_reward: false
kl_penalty: k1l
kl _ctrl:
type: fixed
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k1l coef: 0.001
horizon: 10000
target_kl: 0.1
use_pf ppo: false
pf_ppo:
reweight_method: pow
weight_pow: 2.0

Listing 1: VERL/GRPO configuration (paths pseudonymized). Stage 2/3 reuse this config with
stage-specific reward weights.

Evaluation protocol. We evaluate on the TRAVELPLANNER official test set by reusing the VERL
validation pipeline to keep decoding/sampling consistent with validation:

1. Point the VERL validation loader to the official test split (same sampler settings as validation).
2. Run validation to dump trajectories locally (tool calls, responses, final answers) as JSONL.

3. Post-process each final answer: validate against the plan schema (App. [B.2), enforce JSON-
gated output, and convert to the leaderboard’s submission format.

4. Upload the converted file to the TRAVELPLANNER leaderboard; report Delivery, micro/macro
commonsense, micro/macro hard, and Final.
B.4 DECODING AND SAMPLING SETTINGS

We standardize decoding across training and evaluation to isolate the effect of learning. Table [3]
summarizes the presets we use for different contexts; “Common runtime limits” apply to all scenar-
ios unless noted. For Validation/Test we reuse VERL’s validation path on the official TP test split

(Sec.[B23).

Common runtime limits.
* Max response tokens: 30,500 (response_length)

* Max tool response tokens: 8,192 (max_tool_response_length)
» Agent turns cap: 30 assistant turns; 30 tool turns

* Tool-call cap: 30 calls

Table 3: Decoding presets by context.

Context do_sample Temp Top-p Top-k n
Training true 1.0 1.0 -1 8
Validation / Test false 0.0 1.0 -1 1
NaturalPlan true 1.0 1.0 -1 1
Multi-IF false 0.7 0.8 20 1
T-bench false 0.6 0.95 20 1

B.5 GPU MEMORY FOOTPRINT AND PRACTICAL EFFICIENCY

In the same 2-node/16-GPU training setup, PLANNER-R1-8B uses approximately ~60 GB of GPU
memory per device, whereas PLANNER-R1-32B requires >90 GB per device. This difference has
practical consequences: the 8B configuration runs comfortably on H100s, while the 32B configura-
tion necessitates higher-memory accelerators (e.g., H200). The gap is especially relevant for agentic
RL, where multi-turn interactions and tool feedback produce long contexts and large key—value
(KV) caches during rollouts, amplifying the memory pressure beyond the update phase.

B.6 ESTIMATING TRAINING FLOPS FROM vERL’S MFU
MFU in VERL (what it is). VERL reports a model FLOPs utilization (MFU): the fraction of the

9. 6

cluster’s “promised” peak compute achieved during policy updates. Internally it is computed per
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update as
MFU = fach E ’ b = FL()PSupdate7
f peak w tactor
where F is the number of GRPO epochs per batch, W' is the number of GPUs (world size), fpeak iS
the promised FLOPs rate per GPU used by VERL in its MFU denominator, ¢,¢to, is the time spent in
the parameter-update step, and FLOPs,pqate is the per-step FLOPs consumed by that update. The
in-tree FLOPs counter aggregates forward + backward over all layers/tokens.

Reconstruction used in this paper. Solving for FLOPspqatc gives

tactor
FLOPSupdate = MFU X fpeark X W X %“)

In our runs E=1 and W=16. We set fpeak=9.89 x 10'* FLOPs/s per GPU—the same constant
VERL uses for MFU—so the reconstruction matches its calculation.

Practical proxy for <{¢,.o;. VERL does not log {f.or each step, but it logs
update_policy.-time (fpolicy), Which equals the actor update plus brief offload/reload
bookkeeping. Because the parameter update dominates, we use

tactor = tpolicy = FLOPSupdatc ~ MFU x fpcak x W x tpolicy~

This yields a slight upper bound (since tpolicy > tactor); Spot checks in our regime found the gap
within ~3%.

From per-step to camulative FLOPs. We compute FLOPs,,,date per step from MFU and £,,licy
then sum over steps:

T
FLOPsy.7 = Z MFU, fpeak w tpolicy,t .
t=1
These cumulative totals back the FLOPs—accuracy curves in Sec. 3.2}

Scope: what is counted and what is not. Our accounting includes only the parameter-update
compute (forward + backward). It excludes (i) the rollout engine’s generation compute and (ii)
the reference log-prob pass (both of which VERL does not report MFU/FLOPs for). Under our
settings (long responses, multi-sample trajectories), rollout consists of many forward passes, while
the update consists of forward+backward over similar tokens; thus their compute is typically of the
same order of magnitude, but exact ratios depend on response length, batching, and n (number of
sampled trajectories). A precise FLOPs tally for rollout and reference log-prob computation is left
to future work.

C CASE STUDIES

8B Model - All Rate Metrics 32B Model - All Rate Metrics

Hard-Macro

0.3| 0.3|

L L L L L L L L L L L L L L L
[) 500 1000 1500 2000 2500 3000 0.2 250 500 750 1000 1250 1500 1750 2000

Training Steps Training Steps

Figure A.1: Progression of six sub rewards for 8B and 32B Planner-R1 during training
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Top 3 Most Frequent Error Categories - Planner-R1 8B
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Figure A.2: Top 3 Most Frequent Error Categories for the Planner-R1 models. The upper heatmap
shows the 8B model and the lower heatmap shows the 32B model. Both plots visualize, at each
training step across five runs (up to 2000), the three most frequent failure categories and their relative
rates. Rows are aligned so categories match across models; blank cells indicate that a category did
not appear in the top three for that model at that step.

23



Under review as a conference paper at ICLR 2026

n Can you organize a 5-day trip for two people from Newark to Ohio, where we will visit two cities? The dates will be from March 23rd to March 27th, 2022. Our travel budget is

$4,400. We anticipate hosting visitors at our accommodations, and we would like to try a variety of cuisines including French, Chinese, American, and Mexican during our trip. We
prefer not to drive ourselves during this trip.

Y2

et_flights’, "arguments":

rigin®; "Newark’,

‘get_flights’, "arguments"

: "Columbus’, "departure _date': "2022-03-23}} : "Columbus’, "departure_date": (B8 (name: "get _cities’, "arguments": {'state": *Ohio'}}
¥X (.. Deprecating Flight Information ..} ¥X (.. Deprecating Flight Information ..} X (. Alist of cities in Ohio ..}
set_ground_transportation’, "arguments": (B {name": *get_accommodations’, “arguments": {'city": (B {name": *get_ground_transportation’, "arguments’:
{origin"; "Columbus’, “destination"; ‘Cleveland"}} *Columbus} {origin": "Newark’, “destination”; "Cincinnati'}}
X (... Ground Transportation Information .} X (.. Accommodations Information ..} X (... Ground Transportation Information .}
(B {name": "get_accommodations’, "arguments": {'city": (B {name": "get _attractions’, "arguments": {city": "Columbus"}} B {name': "get _accommodations’ "arguments: {'city":
*Columbus'}}

o3 *Cincinnati'}}

A& ’{{'...mm:iansmformﬁon...') e
’§ {.. Accommodations Information ..} : ‘{ {.. Accommodations Information ..."}
: (B {name: "get _restaurants’, "arguments": {'city":

(B {name": "get_accommodations’, "arguments”: {'city": *Columbus'}}

“Cleveland}} P )
‘{ {.. Restaurants Information ..} (B {name": "get_ground _transportation’, "arguments’:

X (.. Accommodations Information .} {Corigin’; "Dayton’, "destination’: "Newark'}}

(B {name: "get_cities’, "arguments": {'state": "Ohio’}}

& ¥X (.. Returning Transportation Information ..}
X (.. Atist of cities in Ohio .}

(B8 {nam

asic_arithmetic_calculator’, "arguments”: :
{"expression": "2 * (96 + 230 + 1100 + 593 + 23 + 10 + 25 + 19 + 27 + 31 (B Cname': "get_flights’, "arguments’: {'origin': "Columbus’,
+80 +54+38 +36+29+ 71+ 34))} *destinatio eparture_date": "2022-03-25")}
y ’{ {'result": 4992} A\ {.."error": "There is no flight from Columbus to Cincinnati

on 2022-03-25."

$ {'name"; "basic_arithmetic _calculator’, "arguments":
{expression "2 * (96 + 230 + 1100 + 593 + 23 +10 + 25 +19 + 27 + 31 (B {name: *get_ground_transportation’, "arguments’:
+80+54+38+36+29+71+34+124+1100 + 593 +23 +10 + 25 +19
+27+31+80 +54 +38+36+29 +71+34)'}}

X fresult': 9580}

N 54
<

Replan due e
to no flight ttraction

"meals”

*: "get _flights’, ‘arguments’
lewark’, "departure _date

_—
“«E “transportation’: "',
‘{ {... Returning Flight Information ..} ion":

“attraction":
= *Cincinnati Zoo & Botanical Garden’,
l_] Plan “Cincinnati Art Museum’,
*American Sign Museum"
No valid plan produced; the model loops on tool calls. 3
— *accommodation”: "Private room with sleeping loft’,
U Plan *breakfast': "Bubba Jax Crab Shack’,
[ “lunch’: "Invitation Restaurant’,
{ “dinner”; "Tpot"
“days™ 1, b
“city": { "from": "Newark’, "to": "Columbus" },
“transportati {
“attraction' “days": 5,
“accommodati “city": { "from": "Dayton’, "to": "Newark" },
g "transportation": {
3 *mode": "taxi’,
fi * "Dayton’,

‘Newark',

K “duration": "9 hours 17 mins’,
incinnati’, “to": "Newark' }, “distance': "957 km'

3 “cost": 957

lays": 4,

“city": { "from"
“transportation’
"attraction”
*accommodation": *Spacious, bright room, prime Williamsburg

location’, 1
“meals"

1

Plan Delivery: © Plan Delivery: Plan Delivery:
Plan Pass: © Plan Pass: © Plan Pass:

Spacious, bright room in prime
Williamsburg, Cincinnati. Requires 3-night
minimum, but booked for 2.

Figure A.3: Model tool-call trajectories across checkpoints. The base model (left) loops on repeti-
tive tool calls once the context is saturated. After 100 training steps (middle), the model produces a
coherent travel plan but fails to satisfy all constraints. By 500 steps with the 32B Planner-R1 check-
point (right), the model successfully generates a valid plan that meets all requirements.
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Could you create a 5-day travel plan for a couple leaving from Baton Rouge and visiting 2 cities in Texas from March 16th to March 20th, 20222 We have allocated a budget of
$2,900 for this trip. Important to note is that our travels will not involve any flights; we prefer other modes of transportation. For our lodgings, we insist on not shared rooms, and
notably, we will be traveling with our pet, hence the need for pet-friendly accommodations.

GPT5 Generated Plan

Planner-R1 8B Generated Plan

Planner-R1 32B Generated Plan

“Baton Rouge,
"to": "Austin”

mnspomuon“ {
“mo

“duration’: '6 hours 28 mins’
“distance": "694 km',
“cost": 34

“attraction”; [
“Zilker Metropolitan Park’,
“Statesman Bat Observation Center”

*accommodatio
Brownstone\n Apt’,
“breakfast: Fifth Sreet Bagelry,
b

": "1 Bedroom , Beautiful Spacious

"transportation’: "
“attraction”: [
"McKinney Falls State Park’,
"Mayfield Park and Nature Preserve’,
"Pease Park Treehouse"

“"accommodatios
Brownstone\n Apt’,
akfast': Moksha',
“lunch’: "Frontier’,
*dinner”; "Talaga Sampireun"

:*1 Bedroom , Beautiful Spacious

)‘transportatwn“ {
“mode”; "self-driving’,
*"San Antonio’,
i Bamn Rouge’,
ion': "6 hours 52 mins’,
“dlstance" "746 k',
“cost": 37

dation’: ™,
“breakfast’: "Cafe Shaze,

“lunch: "Pita Pit,

“dinner”; Jimmy Jack's Rib Shack"

“lrom "Baton Rouge’,
o": "Houston"

transpnmllon {
ode": "self-driving’,
“from "Baton Rouge’,
"to": "Houston’,
“durat
"distance”:
"cost': 21

“attraction’:

{

“days": 2,

“city": "Houston',
“transportation”; "',
“attraction”: [
“Downtown Aquarium’,
"Space Center Houston',
"Water Wall"

*accommodation': "Spacious room in front of prospect park’,
*breakfast": *Sheetla Dhaba’,

“lunch’: "Matchbox’,

*dinner”; *Vinayaka Mylari*

eity's
“transportatlon“ =
“attraction”: [

“Texas Capitol’,

“Zilker Metropolitan Park’,
"Museum of the Weird"

J ion": "Spacious Willi: 1bedroom!",
“breakf t": "Chin Pokli,

inch": "Green Chilli",
“dmner‘ “Talaga Sampireun"

“city":
*from"; "Baton Rouge’,
"to”: "Austin”

attracuon

1bedroom!,

“Texas Capitol’,
“Zilker Metropolitan Park’,
“Museum of the Weird"

"breakfast
“lunch': "Tandoori Nights’,
"Subway"

1bedroom?,

*Spacious

“dinner”:

{

“days”: 4,

"city": "Houston’,

"transportation’ "'

“attraction”: [
"Downtown Aquarium’,
“Space Center Houston',
"Water Wall"

1
*accommodation’: "Spacious room in front of prospect park’,
ireafim i SHReHld Dy

"dmner" *Earthen Spices”

Plan Delivery: (%4

Plan Pass: ©

Common sense rule: Don’t pick the same
restaurant twice.

Plan Delivery: (%4
Plan Pass: (74

Plan Delivery: (%4
Plan Pass: (4

Figure A.4: The GPT-5 model (left) failed to avoid selecting the same restaurant twice, thus violating

the common-sense rule. In contrast, the Planner-R1 8B model (middle) and Planner-R1 32B model

(right) both generated plans that satisfied all requirements.
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! ‘!I need assistance in crafting a travel plan starting in Fort Lauderdale and covering 3 cities in Georgia. The trip, designed for 2 people, will span from March 24th to March 30th,

2022. Our budget is $8,000. Regarding accommodations, we require rooms that are not shared and should accommodate children under 10. As for dining options, we have diverse
tastes, including Indian, American, Chinese, and Mediterranean cuisines.

GPT5 Generated Plan

Planner-R1 8B Generated Plan

Planner-R1 32B Generated Plan

mnspomuon

l'mm Fon. Lauderdale’,
nta,

"arrival _time": "11:

3

"attraction”: [
*World of Coca-Cola’,
*Centennial Olympic Park’,
"SkyView Atlanta"

accommodanon“ "Charming Carroll Gardens 2 BR',
*breakfast': *-",

“lunch; "Chef Style’,

*dinner”; "Sethi's Restaurant & Barbeque"

s 2,
“city": "Atlanta’,

:[
“Georgia Aquarium’,
*Atlanta Botanical Garden’,
*Piedmont Park’,
"High Museum of Art"

“accommodation”: "Charming Cmou Gardens 2 BR',
“breakfast: "Daawat-e-Kashmi

‘to”: "Augusta’,

"duration”; "2 hours 28 mins’,
“distance": "195 km’,

‘cost”: 9

2amac:ion“: [
"Augusta Riverwalk’,
"Augusta Museum of History’,
"Morris Museum of Art"

"accommodation”: "Planta Baja Studio’,
“breakfast”: "New Raj Kachori Bhandar’,
“lunch'; "Karari Kurry’,

“dinner": "Just Kababs"

*from": "Augus
“to‘: "Atlanta"

"transportation: {

"attraction":

“Atlanta History Center’,
*Fox Theatre’,

"Krog Street Tunnel"

"accommodation’; "Charming Carroll Gardens 2 BR',
“breakfast”: "Haldiram's’,

"lunch": "Chaina Ram Sindhi Confectioners’,
“dinner": “Barkat"

“from": "Atlanta’,
“to": "Fort Lauderdale”

h
"transponatmn” {
: “flight,

P!
“arrival _time" 1839“

“attraction":

E Baba Au Rhum’,
‘Nawaab',

fr om":
"to": "Atlanta’

"cost™: 51

ng’,
Fon Lauderdale“

2,
“Atlanta’,
“transportation': "~
"attraction”:

“Atlanta Botanical Garden',
"World of Coca-Cola’,
"Georgia Aquarium"

-commodation’
Hospital’,

‘Spacious private room close St. Barnabas

“breakfast’" "Pizza Central, |

"Mercer-Williams House Museum’,
“"Savannah Historic District"

*accommodation’: “Family and Friendly Room’,

"breakfast™: "Sr.

Sol T
inch': "Bosphorous Turkish Cuisine’,
*dinner’; "The Mad Teapot,/ The Wishing Chair"

"Plnmzy Swamp Nature Park',
"Augusta Riverwalk
“Augusta Museum of History"

1
_sccommodation': Planta Baja Studic’,
“breakfast” -Vinny Van

ncl

* "Karari

ish Tales Lnkeslde GnllE",

Kurry'

ikl
“from': "Augusta’,

)
“transportatios

Fort Lauderdale”

“mode": "self-driving’,
“from' °

“cost": 46

ours 41 mins’,
"distance": "938 k',

[T pan
[

o
“from’": Fort Lauderdale’,
“to”; "Augusta’

lransportauon 8(i
" "self-driving,
"Fort Lauderdale’,
sLl

“cost”: 46

"transportation”:

“attraction”: [
"Phinizy Swamp Nature Park’,
“Augusta Riverwalk’,
"Augusta Museum of History"

“accommodation': Planta Baja Studio’,
“breakfast': "Vinny Vanucchi’s’,
“lunch’; “The Golden Dragon’,

“attraction’: [

*Forsyth Par}

“Wormsloe State Historic Site’,
“Mercer-Williams House Museum"

*accommodation: “Family and Friendly Room’,
'hrea.kfast.“ "Manohar Dairy And Restaurant’,

: *Bosphorous Turkish Cuisine’,

‘Dhaba On Wheels"

“attraction’:
accnmmndnuon 'Charming Carroll Gardens 2 BR',
“breakfast': ",

“transportation’:
"attraction":
“Atlanta Botanical Garden’,
*World of Coca-Cola’,
*Georgia Aquarium"

“accommodation’; “Charming Carroll Gardens 2 BR'
breakfast“ “Saffron’,

2za Central’,

‘Daawat-e-Kashmir"

‘from": "Atlant
“to": "Fort Lauderdale”

transportation”:
*mode": "self-driving’,
*from': "Atlanta’,

Fort Lauderdale’,

“cost”: 51

Plan Delivery: (%4

Plan Pass: ©

Common sense rule: City Atlanta is
visited multiple times.

Plan Delivery:
Plan Pass: (%4

V|

Plan Delivery: (4
Plan Pass: (4

Figure A.5: The GPT-5 model (left) selected the same restaurant twice on different dates, whereas
the Planner-R1 8B (middle) and Planner-R1 32B (right) models produced plans that satisfied all

requirements.
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Can you create a 5-day travel plan for me starting in Sun Valley and visiting 2 cities in California from March 22nd to March 26th, 20222 My budget for this trip is $2,600.

GPT5 Generated Plan

Planner-R1 8B Generated Plan

Planner-R1 32B Generated Plan

[ ptan

<answer>

{

"t0": "Los Angeles’,
“duration': *2 hours 1 minutes’,

"attraction": [
"Santa Monica Pier",
“Griffith Observatory”

*accommodation': "Lovely studio’,
*breakfast: "',
“lunch"; "Palmshore’,

*dinner": "Rajdhani Restaurant"

“Golden Gate Bridge’
“Golden Gate Park’,
“de Young Museum’,
“Japanese Tea Garden"

*accommodation”: “Room in Down town Brooklyn Parkslop’,
"breakfast": "Bonne Bouche’,

“lunch’; "Empress’,

*dinner": "Green Chick Chop"

b

“days"
“city":"San Francisco’,
*transportation; "',
“attractios

*Alcatraz Island’,

“PIER 39",

*San Francisco Cable Car Museum®

"accommodatios
*breakfast': "Coffee & Chai Co,
“lunch’; 'Gupta's Rasoi’,
*dinner’: "Moets Oh! Bao"

</answer>

Plan Delivery: (%4
Plan Pass: ©
Not returning to the departing city!

"t0": "Los Angeles’,
“duration”: "13 hours 16 mins’,

“cost': 68

‘city
"transponatwn

"Santa Monica Pier’,
“Hollywood Walk of Fame',
“Griffith Observatory"

Jacconunodztim-.“: "Best Nest.,
“breakfast": "Onokabe’,

“lunch’: "Punjabi Tandoori Tikka',
“dinner": "Choco Kraft"

{
“days™: 4,
“eity"s “Sncmmemn,
“transportation": ",
“attraction”: [
"California State Railroad Museum’,
"Old Sacramento Waterfront’,
*Crocker Art Museum"

“accommodation’: "HUGE SPACE, HEART OF BROOKLYN, 1 BLOCK
FROM SUBWAY’,
“breakfast”: "Gujarati Samaj Santushti’,
“lunch’; "Metro Fast Food",
“dinner": "Pasta Hut"

"from": "Sacramento’,
"to’: "Sun Valley"

"transportation {
‘mode’: self-driving’

*duration": "10 hours 24 mins’,
“distance’: "1,074 k',
"cost": 53

}
1

[ ] ptan
[

"attraction": [
*Golden Gate Bridge’,
*Golden Gate Park’,

“PIER 39"

*accommodation’: “spacious pretty east harlem apt”,
‘Coffee & Chai Co’,

v
“from’; "San Francisco’,
“to": "Los Angeles"

3
“transportation’: {

“from": “San Francisco’,

"to": "Los Angeles’,

“duration”: "5 hours 53 mins’,
15 k'

“cost": 30

‘attraction’; "'
nm:ommodatmn 8
"breakfast":

“luncl

“Best Nest!,

{

“days”: 4,

“city”: "Los Angeles’,

“transportation’:

"attraction”: [
"Santa Monica Pier’,
“Hollywood Walk of Fame’,
"Hollywood Sign"

*accommodation’: "Best Nest.,

*Shree Manakamna Fast Food',
‘Punjabi Zaika',

 “The Hangout by 1861"

*from": "Los Angeles’,
"to": "Sun Valley”

3
"lranspormlmn
“mo

Plan Delivery: 4
Plan Pass: (%

Plan Delivery: (%4
Plan Pass: (%4

Figure A.6: The GPT-5 model (left) failed to return to the departing city, whereas the Planner-R1
8B (middle) and Planner-R1 32B (right) models produced plans that satisfied all requirements.
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to March 12th, 2022, and our new budget is set at $4,400. For dining, we'd like to try local American and French cuisines.

I need assistance with planning a week-long trip for three people, starting from Punta Gorda and traveling to three different cities in Michigan. The trip dates are from March 6th

GPT5 Generated Plan

Planner-R1 8B Generated Plan

Planner-R1 32B Generated Plan

{
m’; "Punta Gorda',
“to":“Grand Rapids”

'tranlpona'.wn {

flight,
:“Punta Gorda’,
" Grand i,

ours 49 minutes’

“flight_ n\lmber'  T3s80%05,
departu

clty' eand Rapids’,
“transportation’:
attraction”:
“Proderik Mefjer Gandeas & Sculptare Park;
“Grand Rapids Art
“Grand Rapids Pubiic oseuar

‘"Sanny Dif
Lstiog

- “Cafe
"hlm:.h' el 65
“dinner": Paribar”

“from“Grand Rapids,

self-driving

“attra
“Meyer May House’
“Air Zoo Aempm &Science Museum™

1
ccommodation” ’Spm:u)\u & Quaint 1 Bed in Midtown’,

“bre:
"hlm:.h' Black Pe ppt
“dinn

“Bronson Park:

*accommodation’: "Spacious & Quaint 1 Bed in Midtown’,
“breakfast’: ‘Black Pep

Janeh’ -c lios Grck .1 alian Restaurant’,

“dinn

“City Opm House™

District Studio’,

“accommodation’: ‘Convenient Finan
reakfast': ‘Black Pepper’,

unch' French Toast,
“dinner" “Dragonfly”

'dzyl 6
Kl

“Traverse City,
o -Grand Rapids'

“transportation”:
Tade’ el dnvmg‘

“attraction’: [
“Mission Point Lighthouse’,
“The Blue Bridge”

Listing), i
“breakfast’: “French Toast’,
eociri{Cu Rty
“dinner’ P

[ un
[

_{
driving’,

“Campus Martius Park’,
“Motown Museum"

"accommodation’: “Lovely, charming and clean bedroom in
Manhattan’,

“breakfast”:"Mitalis Kitchen',

“lunch’: ‘Flavours of Punjab,

“dinner”: Desi Spice”

“Kalamazoo Institute of Arts"

1
“accommaodation’: ‘Apartment in Ridgewood/Bushwick

“breakfast

usew
“Frederik Meijer Gardens & Sculpture Park”

“accommodation’: Noel Palace’
“breakfaat” Hobing Korean Desser Cate,
“lunch’: ‘Swagath’,

“iinner “Unce Cake Shop®

Gorda’,
“19 hours 34 mins’,
ce': 2,160 k',

 “Punta Gorda,
“to’: Traverse City’

“transportation’:
“mode’: self-driving’,
e ol
 “Traverse City’,
'dunuon “21 hours 39 mins’,

e,

* “Traverse City,
“transportation

ra
“Clinch Park’

“Great Lakes Children's Museunn’,
“World's Largest Cherry Pie Pan”

“accommaodation’: “One bedroom apartment in NoLita’,

“from’: “Traverse City,
“to': Detroit”

3
“transportation'
“mode’: self-driving’
“from’ T

ttractior

ommodation': "Lovely, charming and clean bedroom in

Manhattan’,
“breakfast
“lunch’:
“dinner: -

it
Campus Martius Park-

1

“accommodation’: "Lovely, charming and clean bedroom in
Manhattan’,

“breakfast”: “Southern Bliss Bakery,

“lunch’: ‘A Dong Restaurant’,

“dinner”: "Vapour Pub & Brewery"

“Lansing’,
“duration’: "1 hour 24 mins’,
s e R

7]

'.um
ccommodation': Magical Brooklyn Space 20 MIN to
tant*

“Lansing’,
“transportation’:
traction’: [
impression 5 Science Center’,
“Potter Park Zoo',

“Michigan History Center”

“accommodation’: Magical Brooklyn Space 20 MIN to
Manhattan!*’,

“breakfast": Manuel's Bread Cafe’,

“lunch’: “Tony's Italian Restaurant & Pizza’,

“dinner”: Front Street Brewery"

“mode’: self-driving’,
i

e,

Plan Delivery:

Plan Pass: ©

1. Convenient Financial District Studio in
Traverse City requires a minimum of 2.0
nights, but got 1.

2. City Traverse City is visited multiple
times.

Plan Delivery:

Plan Pass: ©

Accommodation Noel Palace in Grand Rapids
requires a minimum of 3.0 nights, but got 2.

Plan Delivery:
Plan Pass:

Figure A.7: The GPT-5 model (left) violated the hotel booking rule by reserving only one night
instead of the required minimum of two, and also erred by visiting Traverse City multiple times,
failing the common-sense requirement. The Planner-R1 8B model (middle) likewise failed the ac-
commodation requirement, while only the Planner-R1 32B model (right) satisfied all requirements.
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) Could you create a travel plan for a party of 8 departing from Fayetteville and heading to New York
for 5 days, which will cover 2 cities between March 25th and March 29th, 2022? We have a maximum
budget of $6,900. We are particularly interested in experiencing American and Mexican cuisines during

our stay.

GPT5 Generated Plan

Planner-R1 8B Generated Plan

Planner-R1 32B Generated Plan

o New y York,

“1147.0 mi’
“cost’: 260,

3

*attraction": [
“Times Square’,
“Top of The Rock’,
“Central Park’

“accommodation’: "Magical rowhouse and garden in
Williamsburg (3 units)’,

"breakfast":

“lunch’; ‘Gurgaon Hights’

*dinner": ‘G Dot"

erty’
*9/11 Memorial & Museun’,
“Brooklyn Bridge’,

“The High Line"

“accommodation’: *Magical rowhouse and garden in
Williamsburg (3 units)’,

“lunch’; Amehur,
*dinner”: "Gurgaon Hights"

“days™: 3,
R {

“to": "Newark"

13
"transportation” {
“mode™ “taxi

*duration’: "29 mins’,
“distance”: "16.3 km’,
“cost™: 16

3
“attraction’: [
“The Newark Museum of Art’,
*Branch Brook Park’,
“Military Park"
“accommodation’: "Magical rowhouse and garden in
Williamsburg (;

*Empire State Building’,
“Rockefeller Center’,
*Radio City Music Hall"

“accommodation’: “Magical rowhouse and garden in
Williamsburg (3 units)’

“One World Observatory’,
“The Battery’,
*Flatiron Building"

accommodxnon -
“breakfast": ",
‘lunch’ Gmgnonmgms,
“dinner”: "G Dot’

d-muon 8 hours 19 mins’,
“distance": "873 km’,
“cost": 43

“transportation’
“attraction: [

“Empire State Building’,
“The High Line*

1
*accommodation’: "Modern Brooklyn oasis (PRIVATE ROOM);,
“breakfast": *Gurgaon Hights’,
“lunch’: *G Dot’,
“dinner" "Aryan's Rajasthani Pyaz Ki Kachori"

“duration’: 3 hours 41 mins’
“distance’: *346 km'
“cost™: 17

“attraction’: "
“accommodatios
"breakfast"
“Tunc 7
“dinner”:

“Sunlight + Space on Eastern Parkway’,

*days" 4,
“city": "Boston’
"transportation
"attraction”: [
“Public Garden’,
“Museum of Science’,
“New England Aquarium®

1

*accommodation’: *Sunlight + Space on Eastern Parkway’,
"breakfast": “Irish Democrat’,

“lunch’: *Apni Rasoi’,

*dinner": "Resunga Food Corner"

l:lf-driving‘,

“cost': 61

“attraction’: [
“The Buffalo Zoo',
“Buffalo and Erie County Botanical Gardens’,
“Buffalo AKG Art Museum"

*accommodation': Wl.llnmslmrg Gem: Sleepup to 5°,
“breakfast": "Red Manj

“lunch’: “Tibby's New Oricans Kitcherr,

“dinner: "Shokitini"

b

om"; Buffalo’
“to’ lew York"

3
“transportation': {

“from”: "Buffalo’,
“t0": "New York',

hours 14 mins’,
00 km',

“accommodation’: 'A Contemporary Homelike Stay in the Best of
BK',
“"breakfast”: "',

"transportatio
“attraction’: [
“Top of The Rock’,
*One World Observatory’,
*SUMMIT One Vanderbilt™

1

*accommodation’: ‘A Contemporary Homelike Stay in the Best of
K,

“breakfast': ‘Gurgaon Hights’

“lunch': *G Dot

“dinner": ‘Rambhog”

13
{

{
“from’; "New York’,
“to": "Fayetteville'

hours 21 mins’,

Plan Delivery:

Plan Delivery:

Plan Delivery:
Plan Pass:

Plan Pass: © )
1. Missing meals on day 2 Planibass.
2.A ion M rowh and

garden is not presented in database

Figure A.8: In this query, the user plans a trip for a party of 8. The GPT-5 model (left) missed meals
on Day 2 and hallucinated non-existent hotel names. The Planner-R1 8B model (middle) generated
a plan that exceeded the $6,900 budget, while only the Planner-R1 32B model (right) satisfied all
requirements.
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Current tool
(# transitions from tool)
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(# transitions from tool)

Tool transitions | condition=all | with_START - step 0

START 036

basic_arithmetic_calculator
a17

get_accommodations 0.02

get_attractions ¥ Y
0 028 0.04

get_cities
36
get_flights
105

9et ground transportation 0.03

get_restaurants
157

B
Next tool (or END)
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START

45
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88

get_attractions
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get_cities

2

get flights

112
get_ground_transportation
137

get_restaurants
88

Next tool (or END)

Probability

Current tool
(# transitions from tool)

Current tool
(# transitions from tool)

Tool transitions | condition=all | with_START - step 100

START

a5
basic_arithmetic_calculator
8

017

get_accommodations 010

get_attractions |
81 0.01

gek_ciki;; 054 015
get_flights
89
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get_restaurants
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Tool transitions | condition=all | with_START - step 1000

START

45
get_accommodations
87

get_attractions

87

get_cities

13

get_flights

143
get_ground_transportation
144

get_restaurants
87

Next tool (or END)

Probability

Probability

Figure A.9: Policy visualization for 8B model across 45 trajectories based on previous (y-axis) and
next (x-axis) tool calls across various steps of learning: {0, 100, 500, 1000}. As learning progresses,
the policy becomes more deterministic.
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Figure A.10: Policy visualization 32B model across 45 trajectories based on previous (y-axis) and
next (x-axis) tool calls across various steps of learning: {0, 100, 500, 1000}. As learning progresses,
the policy becomes more deterministic.
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B basic_arithmetic_calculator
[ get_accommodations
I get_attractions
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| —
|

get_ground_transportation
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Figure A.11: Tool call sequence behavior as 8B training progresses. The base model (leftmost)
repeatedly invoked the calculator and restaurant tools until reaching the rollout cap (30 turns), ex-
hibiting poor tool-use behavior as context grew. With longer training, the model developed more
consistent and structured patterns for tool calls.
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Toining Step 100 (45/45 rllouts)
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B basic_arithmetic_calculator
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[ get_ground_transportation
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Figure A.12: Tool call sequence behavior as 32B training progresses. The base model (leftmost)
repeatedly invoked the calculator until reaching the rollout cap (30 turns), exhibiting poor tool-use
behavior as context grew, similar to the 8B model. With longer training, the model developed more
consistent and structured patterns for tool calls. In particular, it learned to invoke get cities early to
check available cities within states before searching for tickets and attractions. We also observed
that the model made fewer get flights calls across queries, instead preferring to select more grounded

transportation options.
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LLM USAGE DISCLOSURE

We used large language models (LLMs) only as general-purpose writing assistants for surface-
level language edits (grammar, phrasing, and clarity), LaTeX formatting suggestions (e.g., table/fig-
ure spacing, caption wording), and copyediting (e.g., consistent terminology, acronym expansion).
LLMs did not contribute to research ideation, dataset or method design, experimental planning,
implementation, analysis, or conclusions. All technical content, experiment setup, results, and in-
terpretations were created and verified by the authors, who take full responsibility for the paper’s
substance and correctness.
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