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Abstract
Learning models have been shown to rely on
spurious correlations between non-predictive fea-
tures and the associated labels in the training data,
with negative implications on robustness, bias
and fairness. In this work, we provide a statisti-
cal characterization of this phenomenon for high-
dimensional regression, when the data contains a
predictive core feature x and a spurious feature
y. Specifically, we quantify the amount of spuri-
ous correlations C learned via linear regression,
in terms of the data covariance and the strength λ
of the ridge regularization. As a consequence, we
first capture the simplicity of y through the spec-
trum of its covariance, and its correlation with
x through the Schur complement of the full data
covariance. Next, we prove a trade-off between C
and the in-distribution test loss L, by showing that
the value of λ that minimizes L lies in an inter-
val where C is increasing. Finally, we investigate
the effects of over-parameterization via the ran-
dom features model, by showing its equivalence
to regularized linear regression. Our theoretical
results are supported by numerical experiments on
Gaussian, Color-MNIST, and CIFAR-10 datasets.

1. Introduction
Machine learning systems have been shown to learn from
patterns that are statistically correlated with the intended
task, despite not being causally predictive (Geirhos et al.,
2020; Xiao et al., 2021). As a concrete example, a blue
background in a picture might be positively correlated with
the presence of a boat in the foreground, and while not
being a predictive feature per se, a trained deep learning
model could use this information to bias its prediction. In
the literature, this statistical (but non causal) connection is
referred to as a spurious correlation between a feature and
the learning task. A recent and extensive line of research
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has investigated the extent to which deep learning models
manifest this behavior (Geirhos et al., 2019; Xiao et al.,
2021) and has proposed different mitigation approaches
(Sagawa et al., 2020a; Liu et al., 2021), given its implica-
tions to robustness, bias, and fairness (Zliobaite, 2015; Zhou
et al., 2021). The phenomenon, also referred to as shortcut
learning, is often attributed to the relative “simplicity” of
spurious features (Geirhos et al., 2020; Shah et al., 2020;
Hermann & Lampinen, 2020) and to the implicit bias of
over-parameterized models toward learning simpler patterns
(Belkin et al., 2019; Rahaman et al., 2019; Kalimeris et al.,
2019). Consequently, the core features that are informative
about the task (e.g., the boat in the foreground) may be
neglected, as spurious features (e.g., the blue background)
provide an easier shortcut to minimize the loss function.

Prior work has attempted to formalize the simplicity bias re-
lying on boolean functions (Qiu et al., 2024), model-specific
biases (Morwani et al., 2023), one-dimensional features
(Shah et al., 2020) and their pairwise interactions (Pezeshki
et al., 2021). However, when considering high-dimensional
natural data (e.g., the boat and its background in Figure
1), it remains unclear, based on these notions, what ex-
actly makes the features easy or difficult to learn, and to
what extent a trained model relies on spurious correlations.
Furthermore, while Sagawa et al. (2020b) show that over-
parameterization can exacerbate spurious correlations when
re-weighting the objective on minority groups (e.g., boats
with a green background), its effect on models trained via
empirical risk minimization (ERM) is less understood. This
is a critical point when additional group membership anno-
tations are too expensive to obtain, and ERM is a key part
of training (Liu et al., 2021; Ahmed et al., 2021).

Our work tackles these issues: we provide a rigorous char-
acterization of the statistical mechanisms behind learning
spurious correlations in high-dimensional data, focusing on
the solution obtained via ERM. Formally, we model the
input sample z as composed by two distinct features, i.e.,
z = [x, y], where x ∈ Rd is the core feature and y ∈ Rd
the spurious one. The first panel of Figure 1 provides an
illustration with a boat in the foreground (x) and its blue
background (y). Then, we quantify spurious correlations
via the covariance C (see (3)) between the label g (“boat”)
and the model output given z̃ = [x̃, y] as input. Here, x̃ (a
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truck in the foreground) is a new core feature independent
of everything else, see the second panel of Figure 1. Now,
if C is positive, it means that the model is biased towards
g only because of y, since x̃ is independent from x and g.
More precisely, we provide a sharp, non-asymptotic charac-
terization of C for linear regression (Theorem 4.3). Armed
with such a characterization, we then:

• Interpret C via upper bounds on its magnitude (Proposition
5.1). This highlights the role of the regularization strength
and of the data covariance via (i) its Schur complement
with respect to the covariance of the core feature x, and (ii)
the covariance of the spurious feature y. Specifically, we
link the smallest eigenvalue of the Schur complement to the
strength of the correlation between y and x, and the largest
eigenvalue of the spurious covariance to the simplicity of y.

• Prove a trade-off between C and the test loss (Propo-
sition 5.3), which implies that spurious correlations can
be beneficial to performance when learning in-distribution.
Specifically, we show that the optimal regularization min-
imizing the test loss lies in an interval where C is positive
and monotonically increasing.

• Investigate the role of over-parameterization via a random
features (RF) model. Specifically, we show that the RF
model is equivalent to linear regression with an effective
regularization that depends on the over-parameterization
(Theorem 6.4). This allows to leverage the earlier anal-
ysis on regularized linear regression to quantify spurious
correlations in over-parameterized, non-linear models.

Throughout the paper, the theoretical results are supported
by numerical experiments on synthetic Gaussian data, Color-
MNIST, and CIFAR-10, which validates our analysis even
in settings not strictly following the modeling choices.
Our code is publicly available at the GitHub repository
simone-bombari/spurious-correlations.

2. Related Work
Spurious correlations. Learning from spurious correla-
tions in a training dataset is rather common (Geirhos et al.,
2019; Arjovsky et al., 2020; Geirhos et al., 2020; Sagawa
et al., 2020a; Xiao et al., 2021; Singla & Feizi, 2022) and it
has unwanted consequences, e.g., lack of robustness towards
domain shift, prediction bias and compromised algorithmic
fairness (Zliobaite, 2015; Geirhos et al., 2019; Zhou et al.,
2021; Veitch et al., 2021; Seo et al., 2022). Thus, multiple
mitigation approaches have been proposed, with (Sagawa
et al., 2020a; Zhang et al., 2021) or without (Liu et al.,
2021; Ahmed et al., 2021) available annotations. Specifi-
cally, Tiwari & Shenoy (2023) exploit the difference in the
features learned at different layers of a deep neural network;
Izmailov et al. (2022); Kirichenko et al. (2023) re-train the
last layer of the ERM solution to adapt the features to the

x
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Figure 1. Left two panels: pictorial representation of the core (spu-
rious) feature x (y) and an independent core feature x̃, taken from
an image of a boat and a truck in the CIFAR-10 dataset. Right two
panels: examples from a binary Color-MNIST dataset, where the
labels correspond to the number shapes, and the zeros (ones) are
colored in blue (red) with probability (1 + α)/2.

distribution shift; and Chang et al. (2021a); Plumb et al.
(2022) mitigate the problem via data augmentation.

Simplicity bias. Recent work has shown that deep learn-
ing models have a bias towards learning from “easier” pat-
terns (Belkin et al., 2019; Rahaman et al., 2019; Kalimeris
et al., 2019). In shortcut learning, this property is formalized
in different ways across the literature. The difficulty of a
feature is defined in terms of the minimum complexity of a
network that learns it by Hermann & Lampinen (2020) and
in terms of the smallest amount of linear segments that sep-
arate different classes by Shah et al. (2020). Moayeri et al.
(2022) connect the simplicity to the position and size of the
features in an image. Morwani et al. (2023) define the sim-
plicity bias in 1-hidden layer neural networks via the rank of
a projection operator that does not alter them substantially,
and they focus on a dataset generated via an independent
features model learned via the NTK. The NTK is also used
to analyze gradient starvation (Pezeshki et al., 2021) and
feature availability (Hermann et al., 2024), regarded as ex-
planations of the simplicity bias. Qiu et al. (2024) focus
on parity functions and staircases, analyzing the learning
dynamics of features having different complexity.

High-dimensional regression. The test loss of linear re-
gression when the input dimension d scales proportionally
with the sample size n has been characterized precisely both
in-distribution (Hastie et al., 2022; Cheng & Montanari,
2024) and under covariate shift (Yang et al., 2023; Mallinar
et al., 2024; Song et al., 2024). Furthermore, Montanari
et al. (2019); Chang et al. (2021b); Han & Xu (2023) have
studied the distribution of the ERM solution via the convex
Gaussian min-max Theorem (Thrampoulidis et al., 2015).
Specifically, our work builds on the non-asymptotic charac-
terization provided by Han & Xu (2023).

In contrast with linear regression where the number of pa-
rameters equals the input dimension, random features mod-
els (Rahimi & Recht, 2007) capture the effects of over-
parameterization, as the number of parameters is indepen-
dent of d and n. Mei & Montanari (2022) have characterized
the test loss of random features, showing that it displays a
double descent (Belkin et al., 2019). Furthermore, the RF
model has been used to understand a wide family of phe-
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nomena such as feature learning (Ba et al., 2022; Damian
et al., 2022; Moniri et al., 2024), robustness under adver-
sarial attacks (Dohmatob & Bietti, 2022; Bombari et al.,
2023; Hassani & Javanmard, 2024), and distribution shift
(Tripuraneni et al., 2021; Lee et al., 2023). This model has
been also considered in the setting where the data has two
dependent components (Loureiro et al., 2021), although it
was used to study the training and generalization error when
only partial information is available. The equivalence be-
tween an over-parameterized RF model and a regularized
linear one has also been studied in detail (Goldt et al., 2022;
2020; Hu & Lu, 2023; Montanari & Saeed, 2022). However,
existing rigorous results show the equivalence at the level
of training and test error. In contrast, we are interested in
the covariance defined in (3) and, for this reason, we prove
an equivalence at the level of the predictor (Theorem 6.4).

3. Preliminaries
Notation. Given a vector v, we denote by ∥v∥2 its Eu-
clidean norm. Given a matrix A, we denote by tr(A) and
∥A∥op its trace and operator (spectral) norm. Given a sym-
metric matrix A, we denote by λmin (A) (λmax (A)) its
smallest (largest) eigenvalue. We denote by λ (without a
sub-script) the ℓ2 regularization term in ridge regression.
All complexity notations Ω(·), O(·), ω(·), o(·) and Θ(·) are
understood for large data size n, input dimension d, and
number of parameters p. We indicate with C, c > 0 nu-
merical constants, independent of n, d, p, whose value may
change from line to line.

Setting. We consider supervised learning with n training
samples {(z1, g1), . . . , (zn, gn)} and labels defined by a
(not necessarily deterministic) function of the inputs gi =
f∗(zi), where zi ∈ R2d denotes the i-th training input
and gi ∈ R the corresponding label. Input samples are
composed by two distinct parts (or features), i.e., z⊤i =
[x⊤
i , y

⊤
i ], with xi, yi ∈ Rd, and they are sampled i.i.d. from

the distribution PXY . We further denote with PX (PY ) the
marginal distribution of the xi-s (yi-s). The features x and
y have the same dimension d to ease the presentation. We
opted to focus on the setting z = [x, y] due to its connection
with the motivating example of images with background,
but the analysis could be extended to other cases, such as
z = x+ y, briefly discussed in Appendix D.

We focus on the setting where the labels gi depend only on
xi, i.e., gi = f∗(zi) = f∗

x(xi) for some (not necessarily de-
terministic) function f∗

x . Hence, yi is independent from gi,
after conditioning on xi. We highlight that the independence
between yi and gi is conditional on xi, and that the covari-
ance between yi and xi is in general non-zero. We refer to
yi as the spurious feature of the i-th sample, and to xi as
its core feature. As an example, xi may represent the main
object in an image and yi the (not necessarily independent)

background, see Figure 1.

In this setup, the training data is used to learn f∗(z) through
a parametric model f(θ, z) via regularized empirical risk
minimization (ERM). Specifically, we perform the follow-
ing optimization in parameter space:

θ̂ = argminθ

(
1

n

n∑
i=1

ℓ (f(θ, zi), gi) + λ ∥θ∥22

)
, (1)

for some regularization term λ ≥ 0, where ℓ is a loss func-
tion1. We define the test loss associated to the model f(θ̂, ·)
as

L(θ̂) = Ez∼PXY , g=f∗(z)

[
ℓ
(
f(θ̂, z), g

)]
. (2)

We note that this test loss is in distribution.

Spurious correlations. We express the extent to which
a model f(θ̂, ·) learns spurious correlations between the
spurious feature y and the label g as

C(θ̂) = Cov
(
f
(
θ̂, [x̃⊤, y⊤]⊤

)
, g
)
, (3)

where the covariance is computed on the probability space
of [x⊤, y⊤]⊤ ∼ PXY , g = f∗

x(x) and of the independent
core feature x̃ ∼ PX . In words, C(θ̂) expresses how the out-
put of the model f(θ̂, ·) evaluated on an out-of-distribution
sample [x̃⊤, y⊤]⊤ (where the two features are sampled in-
dependently from the marginal distributions PX and PY )
correlates to the label associated to the in-distribution sam-
ple g = f∗(z) = f∗

x(x). We highlight that, if the model
f(θ̂, ·) does not rely on the spurious feature y, then C(θ̂) = 0
as x and x̃ are independent.

We note that (3) formalizes to the regression setting the def-
inition in the survey (Ye et al., 2024) and the fairness metric
in (Zliobaite, 2015) (when interpreting y as the protected
variable). Furthermore, in the context of classification, it
can be connected to the worst group accuracy (Sagawa et al.,
2020a;b). In fact, our definition (3) is also related to the
out-of-distribution test loss: assuming E[f(θ̂, [x̃⊤, y])2] =

E[f∗
x(x̃)

2] = 1 and E[f(θ̂, [x̃⊤, y])] = E[f∗
x(x̃)] = 0 for

simplicity and considering a quadratic loss, we have

Ex̃,y
[(

f(θ̂, [x̃⊤, y])− f∗
x(x̃)

)2]
≥ 2− 2

√
1− C(θ̂)2.

(4)
This implies that an increase in C(θ̂) hurts the performance
of the model when core and spurious features are sam-
pled independently (and, thus, the model is tested out-of-
distribution). The proof of (4) is in Appendix E.

1In general, existence and uniqueness of θ̂ depend on the choice
of the model f(θ, z), the loss function ℓ and the regularization term
λ. For the purposes of our work, we will precisely define θ̂ for
linear regression (Section 4) and for random features (Section 6).
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4. Precise Analysis for Linear Regression
To study C(·) as defined in (3), we focus on a high-
dimensional linear regression model, i.e.,

fLR(θ, z) = z⊤θ, (5)

where θ ∈ R2d. The data also follows a linear model, i.e.,

gi = z⊤i θ
∗ + ϵi = x⊤

i θ
∗
x + ϵi, (6)

where θ∗ ∈ R2d, θ∗x ∈ Rd, and ϵi is label noise. The
second equality in (6) implies that θ∗ = [θ∗x

⊤,0⊤
d ]

⊤, where
θ∗x,0d ∈ Rd and each entry of 0d is 0. We set ∥θ∗∥2 =
∥θ∗x∥2 = 1 and let the ϵi-s be i.i.d. (and independent from
the zi-s), mean-0, sub-Gaussian, with variance σ2 > 0.

We introduce the shorthands Z = [z⊤1 , . . . , z⊤n ]
⊤ ∈ Rn×2d,

G = [g1, . . . , gn]
⊤ ∈ Rn, and E = [ϵ1, . . . , ϵn]

⊤ ∈ Rn
to indicate the data matrix, the labels, and the noise vector
respectively. Then, using a quadratic loss, (1) reads

θ̂LR(λ) = argminθ

(
1

n
∥Zθ −G∥22 + λ ∥θ∥22

)
, (7)

which admits the unique solution

θ̂LR(λ) =
(
Z⊤Z + nλI

)−1
Z⊤G, (8)

for λ > 0 and, if Z⊤Z is invertible, also for λ = 0.

Assumption 4.1 (Data distribution). {zi}ni=1 are n i.i.d.
samples from the multivariate, mean-0, Gaussian distribu-
tion PXY , such that its covariance Σ := E

[
zz⊤

]
∈ R2d×2d

is invertible, with λmax (Σ) = O (1), λmin (Σ) = Ω(1),
and tr(Σ) = 2d.

This requirement could be relaxed to having sub-Gaussian
data. We focus on the Gaussian case for simplicity, deferring
the discussion on the generalization to Appendix B.2.

Warm-up: no regularization (λ = 0). Our first result
concerns the amount of spurious correlations learned in the
un-regularized setting.

Proposition 4.2. Let λ = 0 and Z⊤Z ∈ R2d×2d be invert-
ible2. Let C(θ̂LR(0)) be the amount of spurious correlations
learned by the model fLR(θ̂LR(0), ·). Then, we have that

EE [C(θ̂LR(0))] = 0. (9)

Furthermore, if Assumption 4.1 holds and n = ω(d),

|C(θ̂LR(0))| = O(log d/
√
d), (10)

with probability at least 1 − 2 exp(−c log2 d) over Z and
E , where c is an absolute constant.

2Under Assumption 4.1, this holds with probability 1 for n ≥
2d.
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Figure 2. Test loss L(θ̂LR(λ)) (black) and spurious correlations
C(θ̂LR(λ) (red) as a function of the regularization term λ for two
values of the number of samples n. Left: synthetic Gaussian
dataset, with d = 400 (additional details in Appendix F); right:
binary Color-MNIST dataset with correlation

√
1− α2 = 0.25

between color and digit (see Figure 1).

In words, fLR(θ̂LR(0), ·) does not learn any spurious corre-
lation between the spurious feature y and the label g. This
is also clear from Figure 2, where we report in red the value
of C(θ̂LR(λ)), which approaches 0 as λ becomes small.

The idea of the argument is to write explicitly the solution

θ̂LR(0) =
(
Z⊤Z

)−1
Z⊤G = θ∗ +

(
Z⊤Z

)−1
Z⊤E , (11)

where in the second step we separate the ground truth θ∗

(which does not capture any dependence on y) from a term
only depending on the label noise, which is mean-0 and
independent from y. This directly gives (9). Then, the
bound in (10) is obtained via standard concentration results
on λmin

(
Z⊤Z

)
. The details are in Appendix B.

General case with regularization (λ > 0). Setting a
regularizer λ > 0 often reduces the test loss, see the black
curve in Figure 2. However, it also leads to non-trivial
spurious correlations, and our main result provides a non-
asymptotic characterization of this phenomenon.

Theorem 4.3. Let Assumption 4.1 hold, n = Θ(d) and
C(θ̂LR(λ)) be the amount of spurious correlations learned
by the model fLR(θ̂LR(λ), ·) for λ > 0. Denote by Py ∈
R2d×2d the projector on the last d elements of the canonical
basis in R2d, and set

CΣ(λ) := θ∗⊤Σ (Σ + τ(λ)I)
−1

PyΣθ
∗, (12)

where τ := τ(λ) is implicitly defined as the unique positive
solution of

1− λ

τ
=

1

n
tr
(
(Σ + τI)

−1
Σ
)
. (13)

Then, for every t ∈ (0, 1/2),

PZ,E
(∣∣∣C(θ̂LR(λ))− CΣ(λ)

∣∣∣ ≥ t
)
≤ Cd exp

(
−dt4/C

)
,

where C is an absolute constant.
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In words, Theorem 4.3 guarantees that |C(θ̂LR(λ)) −
CΣ(λ)| = o(1) with high probability (e.g., setting t =
d−1/5). Thus, for large d, n, we can theoretically analyze
C(θ̂LR(λ)) via the deterministic quantity CΣ(λ), which, as
highlighted by (12), depends on θ∗, the covariance of the
data Σ, and the regularization λ via the parameter τ(λ) in-
troduced in (13). We further analyze the object CΣ(λ) in
Section 5 that immediately follows.

Note that, since θ̂LR(λ) is given by (8), when λ > 0 it can-
not be decomposed as θ∗ +

(
Z⊤Z

)−1
Z⊤E (as in the proof

of Proposition 4.2 for λ = 0). Thus, we rely on the non-
asymptotic characterization of θ̂LR(λ) recently provided by
Han & Xu (2023). In particular, their analysis focuses on the
proportional regime n = Θ(d) (as opposed to the regime
n = ω(d), considered in (10)), and it allows to provide con-
centration bounds on a certain family of low-dimensional
functions of θ̂LR(λ), which includes C as defined in (3). The
details are in Appendix B.

5. Roles of Regularization and Simplicity Bias
We now interpret CΣ(λ), which characterizes the spurious
correlations via Theorem 4.3, in terms of the data covariance
Σ and the regularization λ. To do so, we express Σ as

Σ =

(
Σxx Σxy
Σyx Σyy

)
, (14)

where the block Σxx = Ex∼PX

[
xx⊤] ∈ Rd×d (Σyy =

Ey∼PY

[
yy⊤

]
∈ Rd×d) denotes the covariance of the

core (spurious) feature sampled from its marginal dis-
tribution. The off-diagonal blocks are Σxy = Σ⊤

yx =

E[x⊤,y⊤]⊤∼PXY

[
xy⊤

]
∈ Rd×d. Let us denote by

SΣ
x := Σyy − ΣyxΣ

−1
xxΣxy (15)

the Schur complement of Σ with respect to the top-left d×d
block Σxx. In our setting, SΣ

x offers a helpful statistical
interpretation. In fact, for multivariate Gaussian data, it
corresponds to the conditional covariance of y given x, i.e.,

SΣ
x = Cov (y|x = x̄)

= Ey|x=x̄
[(
y − Ey|x=x̄[y]

) (
y − Ey|x=x̄[y]

)⊤]
.

(16)

Therefore, the spectrum of SΣ
x describes the degree of depen-

dence between y and x: on the one hand, if its eigenvalues
are small, the feature y is close to be determined by the
knowledge of the feature x (i.e., y is highly correlated with
x); on the other hand, if its eigenvalues are large, the two
features tend to be independent.

As an intuitive example, let us interpret classification for
the binary Color-MNIST dataset (see Figure 1) as a 2-
dimensional problem: the core feature is x = +1 (−1)

if the digit on the image is 1 (0); and the spurious feature
is y = +1 (−1) if the color is red (blue). If the digits and
the colors have a correlation of α, then Σxx = Σyy = 1 and
Σxy = Σyx = α. Thus, SΣ

x = 1− α2, which becomes 0 if
|α| = 1 (full correlation), and it is maximized in the setting
of independence between colors and parity (α = 0).

At this point, leveraging the decomposition of Σ in (14) and
the Schur complement in (15), we provide the following
bounds on CΣ(λ), which are proved in Appendix B.

Proposition 5.1. Let CΣ(λ) and SΣ
x be defined in (12) and

(15), respectively. Then,

∣∣CΣ(λ)
∣∣ ≤ min

(
∥Σyx∥op ,

λmax (Σ)
2

τ(λ)
,

τ(λ)
√
Var(g)− σ2

λmax (Σyy)− λmin

(
SΣ
x

)
λmin (SΣ

x )
√

λmin (Σxx)

)
.

(17)

We discuss the three upper bounds in (17) below.

(i): |CΣ(λ)| ≤ ∥Σyx∥op. The off-diagonal blocks Σyx =

E[yx⊤] and Σxy = Σ⊤
yx describe the correlation between y

and x. In the limit case ∥Σyx∥op = 0, we have that x and y

are uncorrelated and, therefore, CΣ(λ) = 0, as there is no
spurious correlation that the model can learn.

(ii): |CΣ(λ)| ≤ λmax (Σ)
2
/τ(λ). From (13), one obtains

that τ(λ) → ∞ as λ → ∞. Thus, the bound implies
that CΣ(λ) approaches 0 as λ grows large. This captures
the intuition that, when the regularization λ is large, the
minimization in (7) is biased towards solutions with small
norm and, therefore, the output of the model is small, which
drives to 0 the spurious correlations as defined in (3). The
behavior is confirmed by Figure 2: |C(θ̂LR(λ))| is decreasing
for large values of λ and it eventually vanishes; at the same
time, large values of λ make the output of the model small,
which in turn increases the test loss L(θ̂LR(λ)).

(iii): The third bound in (17) can be rewritten as

|CΣ(λ)|
√

λmin (Σxx)√
Var(g)− σ2

≤ τ(λ)
λmax (Σyy)− λmin

(
SΣ
x

)
λmin (SΣ

x )
,

(18)
where we have isolated on the LHS the terms depending
on the covariance of the core feature x (

√
λmin (Σxx)) and

on the scaling of the labels (
√

Var(g)− σ2). We now dis-
cuss the dependence of the RHS of (18) w.r.t. (a) τ(λ), (b)
λmin

(
SΣ
x

)
, and (c) λmax (Σyy). As for (a), we note that

CΣ(λ) approaches 0 for small values of λ. In fact, the RHS
of (13) is smaller or equal to 2d/n; thus, if we consider
2d < n, we also get τ ≤ λ (1− 2d/n)

−1, which implies
τ(λ) → 0 as λ → 0. This is in agreement with Proposi-
tion 4.2, which handles the case without regularization, and
also with the numerical experiments of Figure 2. As for
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Figure 3. Test loss L(θ̂LR/RF(λ)) (black) and spurious correla-
tions C(θ̂LR/RF(λ) (red) as a function of λmax (Σyy) (left) and
λmin

(
SΣ
x

)
(right) on a synthetic Gaussian dataset, for both linear

regression and random features, with λ = 1 (additional details in
Appendix F).

(b), we note that the bound is decreasing with λmin

(
SΣ
x

)
.

This is in agreement with the earlier discussion on how the
spectrum of the Schur complement SΣ

x measures the degree
of independence between the spurious feature y and the
core feature x. Finally, as for (c), we note that the bound
is increasing with λmax (Σyy), which is connected below
to the simplicity of the spurious feature y. The increasing
(decreasing) trend of CΣ(λ) w.r.t. λmax (Σyy) (λmin

(
SΣ
x

)
)

is clearly displayed in Figure 3 for Gaussian data.

The connection between λmax (Σyy) and the simplicity bias
of ERM can be illustrated via our initial image recognition
example. The (spurious) background feature is intuitively
an easy pattern to learn from the model: the pixels corre-
sponding to the spurious feature behave consistently across
the training data. This in turn skews the spectrum of Σyy,
which has few dominant directions with eigenvalues much
larger than the others. Note that this interpretation is similar
to the model-dependent definition of simplicity in (Morwani
et al., 2023). An empirical verification is provided in Figure
4, where we consider the CIFAR-10 dataset, restricted to
the “boat” and “truck” classes. Before training a regression
model, we whiten up to some level the background feature
(as defined in Figure 1) to make it harder to learn, see the
right side of Figure 4. Then, for different levels of whiten-
ing, we report C(θ̂LR(λ)) as a function of λmax (Σyy). We
normalize λmax (Σyy) by the trace tr(Σyy) to exclude the
size of the pattern from our experiment3. The red curve
shows an increasing trend analogous to that displayed in
Figure 3 for Gaussian data: small values of λmax (Σyy)
correspond to significant whitening and, hence, to small
spurious correlations, as predicted by Proposition 5.1.

We remark that our results concern the parameter θ̂ as de-
fined in (1), which can be interpreted as the convergence
point of an optimization algorithm such as gradient descent.
This perspective differs from the prior work of Pezeshki

3If y has 0-mean, then E∥y∥22 = tr(Σyy), i.e., the trace cap-
tures the size of the pattern.

0.1 0.2 0.3

max( yy) / tr( yy)

0.0

0.2

0.4

0.6

0.8

CIFAR-10 (spurious background)

( LR( ))
( RF( ))
( LR( ))
( RF( ))

Increasing level of whitening

Figure 4. Test loss L(θ̂LR/RF(λ)) (black) and spurious correlations
C(θ̂LR/RF(λ) (red) as a function of λmax (Σyy) / tr(Σyy) on a
CIFAR-10 dataset for different levels of whitening (details on the
whitening process in Appendix F). We restrict to the classes “boat”
and “truck” (n = 10000) and consider both linear regression and
random features, with λ = 1.

et al. (2021); Qiu et al. (2024), which focus on how spu-
rious correlations evolve during training. On the other
hand, in linear regression, solving the gradient flow equa-
tion dθ = −∇θLλ(θ)dt, where Lλ(θ) is defined as the
argument of the argmin in (1), gives

θ(t) =
(
1− exp

(
−2
(
X⊤X/n+ λI

)
t
))

θ̂. (19)

Thus, the components of θ̂ aligned with the top eigen-spaces
of X⊤X converge earlier than the others. Hence, from a
dynamical point of view, if X⊤X ∼ nΣ, our results suggest
that spurious features are learned faster the easier they are.

Trade-off between L(θ̂LR(λ)) and C(θ̂LR(λ)). Figure 2
shows that there is an interval of values for the regularization
(λ ∼ 10−1) where the test loss L(θ̂LR(λ)) is decreasing in
λ, while the spurious correlations C(θ̂LR(λ)) are increasing.
This evidence suggests a natural trade-off between these
two quantities, mediated by λ. To theoretically capture such
trade-off, we first provide a non-asymptotic concentration
bound for L(θ̂LR(λ)).

Proposition 5.2. Let Assumption 4.1 hold, n = Θ(d)

and L(θ̂LR(λ)) be the in-distribution test loss of the model
fLR(θ̂LR(λ), ·) for λ > 0. Set

LΣ(λ) :=
σ2 + τ(λ)2

∥∥∥(Σ + τ(λ)I)
−1

Σ1/2θ∗
∥∥∥2
2

1− tr((Σ+τ(λ)I)−2Σ2)
n

, (20)

where τ(λ) is defined via (13). Then, for every t ∈ (0, 1/2),

PZ,E
(∣∣∣L(θ̂LR(λ))− LΣ(λ)

∣∣∣ ≥ t
)
≤ Cd exp

(
−dt4/C

)
,

where C is an absolute constant.

In words, Proposition 5.2 guarantees that |L(θ̂LR(λ)) −
LΣ(λ)| = o(1) with high probability. Its proof is an adapta-
tion of Theorem 3.1 in (Han & Xu, 2023), and the details
are in Appendix B.
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Armed with the non-asymptotic bounds of Theorem 4.3
and Proposition 5.2, we characterize the trade-off between
L(θ̂LR(λ)) and C(θ̂LR(λ)) by studying the monotonicity of
LΣ(λ) and CΣ(λ).

Proposition 5.3. Let CΣ(λ) and LΣ(λ) be defined as in
(12) and (20). Then, if 2d < n, we have that LΣ(λ) is
monotonically decreasing in a right neighborhood of λ = 0,
and there exists λL > 0 such that LΣ(λ) is monotonically
increasing for λ ≥ λL. Furthermore, if Σxx = I , then
CΣ(λ) is non-negative and there exists λC such that CΣ(λ)
is monotonically increasing for λ ≤ λC . Finally, as long as

2d

n
≤ λmin(Σ)

4
min

(
1,

2λmax(Σ)/σ
2

(λmax(Σ)/λmin(Σ) + 1)
2

)
,

(21)
we have that λC ≥ λL.

In words, Proposition 5.3 shows that CΣ(λ) grows with λ at
least until the regularization equals a value λC . For example,
in Figure 2, λC ∼ 1 for a Gaussian data and λC ∼ 10
for Color-MNIST. Furthermore, in this interval, LΣ(λ) is
initially decreasing and then increasing as λ ≥ λL. These
trends in turn imply that the optimal value λ∗

L that minimizes
the test loss is s.t. λ∗

L ∈ (0, λC ] – an interval where the
spurious correlations are strictly positive and increasing.

The proof of Proposition 5.3 (whose details are in Appendix
B) relies on the monotonicity of τ(λ) in λ, and the last state-
ment follows from showing that τ(λC) ≥ λmin

(
SΣ
x

)
≥

λmin (Σ) ≥ τ(λL). The upper bound on 2d/n in (21) is
required to prove that λmin (Σ) ≥ τ(λL) and, due to As-
sumption 4.1, it is implied by taking n = ω(d). We note that
the latter scaling holds in standard datasets, e.g., MNIST
(n = 6 · 104, 2d ≈ 2 · 103 when considering the 3 color
channels) and CIFAR-10 (n = 5 · 104, 2d ≈ 3 · 103).

We conclude the section by noting that learning spurious cor-
relations can be beneficial to minimize the (in-distribution)
test loss. In fact, the spurious features in y are effectively
correlated with the labels, due to their correlation with the
core feature x, and hence they can be helpful at prediction
time. This phenomenon is numerically supported by Figures
3 and 4, where for a fixed value of λ, easier spurious fea-
tures (or higher correlations) generate both higher values of
C(θ̂LR(λ)) and lower values of L(θ̂LR(λ)). In words, while
a blue background cannot strictly predict the label “boat”, it
is a useful feature in prediction as long as the boats in the
test data tend to have a blue background.

The same conclusion does not hold for the out-of-
distribution test loss, where the features x and y are sam-
pled independently: the lower bound in (4) increases with
C. Figure 6 in Appendix E provides an additional numerical
validation of this statement.

10
4

10
2

10
0

10
2

0.0

0.2

0.4

0.6

0.8

1.0
width = 300

( NN( )), C-MNIST

( NN( )), CIFAR-10

( NN( )), C-MNIST

( NN( )), CIFAR-10

10
2

10
0

10
2

Synthetic, p = 20000

( RF( )), tanh
( RF( )), 1

( RF( )), tanh
( RF( )), 1

Figure 5. Test loss L(θ̂NN/RF(λ)) (black) and spurious correlations
C(θ̂NN/RF(λ) (red) as a function of λ. Left: 2-layer fully connected
ReLU network, trained on the binary color(C)-MNIST and CIFAR-
10 (boats and trucks). Right: RF model with tanh and ϕ1 =
h1 + 0.1h3 activation. Implementation details are in Appendix F.

6. Role of Over-parameterization
Our analysis has so far focused on linear regression, high-
lighting the role of data covariance and regularization. How-
ever, moving to complex predictive models, such as neural
networks, may lead to differences in the degree to which
spurious correlations are learned. As an example, in the left
panel of Figure 5, we train an over-parameterized two-layer
neural network on the binary Color-MNIST and CIFAR-10
datasets, for different values of the regularizer λ. While
for high values of λ the results are qualitatively similar to
the ones in Figure 2, a striking difference is that spurious
correlations remain significant even when there is little to
no regularization (i.e., λ ≈ 0), in sharp contrast with Propo-
sition 4.2. We also note that the phenomenon is in line with
previous empirical work (Sagawa et al., 2020a).

We bridge the gap between linear regression and over-
parameterized models by focusing on random features:

fRF(θ, z) = ϕ(V z)⊤θ, (22)

where V is a p×2d matrix s.t. Vi,j∼i.i.d.N (0, 1/(2d)), and
ϕ is an activation applied component-wise. The number of
parameters of this model is p, as V is a fixed random matrix
and θ ∈ Rp contains trainable parameters. The scaling of
input data (tr(Σ) = 2d) and the variance of the entries of
V guarantee that the pre-activations of the model (i.e., the
entries of the vector V z ∈ Rp) are of constant order.

We consider the ERM in (1) with a quadratic loss

θ̂RF(λ) = argminθ

(
1

n
∥Φθ −G∥22 + λ ∥θ∥22

)
, (23)

where we set Φ := [ϕ(V z1), . . . , ϕ(V zn)]
⊤ ∈ Rn×p.

When λ = 0, if ΦΦ⊤ is invertible, the minimization above
does not necessarily have a unique solution. In that case, we
set θ̂RF(0) to be the solution obtained via gradient descent

7
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with 0 initialization, which corresponds to the min-norm
interpolator (see equation (33) in (Bartlett et al., 2021)).
Then4, we can write, for λ ≥ 0,

θ̂RF(λ) = Φ⊤ (ΦΦ⊤ + nλI
)−1

G. (24)

Assumption 6.1 (Activation function). The activation ϕ :
R → R is a non-linear, odd, Lipschitz function, such that
its first Hermite coefficient µ1 ̸= 0.

This choice is motivated by theoretical convenience and is
similar to the one considered in (Hu & Lu, 2023). We
believe that our result can be extended to a more gen-
eral setting, as the ones in (Mei & Montanari, 2022; Mei
et al., 2022), with a more involved analysis. We refer to
(O’Donnell, 2014) for background on Hermite coefficients.

Assumption 6.2 (Over-parameterization). We let p grow
s.t. p = ω

(
n log4 n

)
and log p = Θ(log n).

This requires the width of the model (and, hence, its number
of parameters) to grow faster (by at least a poly-log factor)
than the number of training samples.

Finally, our requirements on the data are less restrictive than
those coming from Assumption 4.1.

Assumption 6.3 (Data distribution, less restrictive).
{zi}ni=1 are n i.i.d. samples from a mean-0, Lipschitz con-
centrated distribution PXY , with covariance Σ s.t. tr(Σ) =
2d. Furthermore, the labels gi are i.i.d. sub-Gaussian ran-
dom variables.

Note that the labels gi are not required to follow a linear
model gi = z⊤i θ

∗+ϵi. The Lipschitz concentration property
(see Appendix A for details) corresponds to data having
well-behaved tails, it includes the distributions considered
in Assumption 4.1, as well as the uniform distribution on
the sphere or the hypercube (Vershynin, 2018), and it is a
common requirement in the related literature (Nguyen et al.,
2021; Bubeck & Sellke, 2021; Bombari et al., 2022).

Theorem 6.4. Let Assumptions 6.1, 6.2, and 6.3 hold, n =
Θ(d), and z ∈ R2d be sampled from a distribution satisfying
Assumption 6.3, not necessarily with the same covariance as
PXY , independent from everything else. Let fRF(θ̂RF(λ), z)

be the RF model defined in (22) with θ̂RF(λ) given by (24),
and fLR(θ̂LR(λ̃), z) be the linear regression model defined
in (5) with θ̂LR(λ̃) given by (8). Then, for λ ≥ 0,∣∣∣fRF(θ̂RF(λ), z)− fLR(θ̂LR(λ̃), z)

∣∣∣
= O

(
d1/4 log d

p1/4
+

log3/2 d

d1/8

)
= o(1),

(25)

4ΦΦ⊤ is proved to be invertible with high probability in
Lemma C.3.

with probability at least 1 − C
√
d log2 d/

√
p −

C log3 d/d1/4, where the effective regularization λ̃
is given by

λ̃ =
2µ̃2d

µ2
1n

+
2d

µ2
1p

λ, (26)

and µ̃2 =
∑
k≥2 µ

2
k, with µk denoting the k-th Hermite

coefficient of ϕ.

In words, Theorem 6.4 shows that the over-parameterized
RF model, when evaluated on a new test sample (not nec-
essarily from the same distribution as the input data), is
asymptotically equivalent to linear regression with regular-
ization λ̃ given by (26). In particular, even in the ridgeless
case (λ = 0), the RF model is equivalent to linear regression
with strictly positive regularization. Thus, we expect the
presence of spurious correlations, just like in Figure 5, since
C(θ̂RF(0)) approaches CΣ(λ̃) with λ̃ > 0 . Notably, the
effective regularization λ̃ depends on the activation ϕ via its
Hermite coefficients, and it increases with the ratio µ̃2/µ2

1.

We point out some differences between Theorem 6.4 and
earlier work on the equivalence of random features with
regularized linear regression (Goldt et al., 2020; 2022; Hu
& Lu, 2023; Montanari & Saeed, 2022). First, as mentioned
in Section 2, existing results prove equivalence of training
and test loss, which does not imply either the equivalence
of the covariance in (3) nor the point-wise guarantee of
(25). Second, existing results focus on the regime where
p and n are proportional, while Assumption 6.2 requires
p = ω

(
n log4 n

)
. This reflects on the third difference which

is in the proof technique: existing results use Lindeberg
method, while our strategy (summarized below) relies on
concentration tools.

Proof sketch: The proof builds on 3 core steps.

Step 1: We show that, with high probability,∥∥∥∥ΦΦ⊤

p
− µ2

1

ZZ⊤

2d
− µ̃2I

∥∥∥∥
op

= o

(
λmin

(
ΦΦ⊤)
p

)
,

which is a consequence of the concentration of ΦΦ⊤ to its
expectation with respect to V , then expressed in terms of
the Hermite coefficients of ϕ (Lemmas C.2 and C.3).

Step 2: In Lemma C.5 we upper bound the term
∥Ez[ϕ̃(V z)ϕ̃(V z)⊤]∥op (where we set ϕ̃(·) := ϕ(·)−µ1(·)),
which is then used to show that∣∣∣ϕ(V z)⊤θ̂RF − µ1z

⊤V ⊤θ̂RF

∣∣∣ = o(1),

with high probability, due to Markov inequality. This means
that the non-linear component of ϕ(V z) has a negligible
effect on the output (see (149) in Lemma C.7).
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Step 3: Using a similar intuition, we use matrix Bernstein
inequality (Lemma C.6) to show that ∥(Φ− µ1ZV ⊤)V ∥op
is small with high probability, so that∣∣∣µ1z

⊤V ⊤ (Φ⊤ − µ1V Z⊤) (ΦΦ⊤ + nλI
)−1

G
∣∣∣ = o(1),

i.e., the non-linear component of Φ⊤ in (24) is also negligi-
ble (see (145)).

Finally, by combining Step 2 and Step 3 with standard con-
centration arguments, we conclude that∣∣∣∣ϕ(V z)⊤θ̂RF − µ2

1p
z⊤Z⊤

2d
(ΦΦ⊤ + nλI)−1G

∣∣∣∣ = o(1),

and the thesis follows from Step 1 and Woodbury matrix
identity for the inverse.

The right panel of Figure 5 presents the test loss L(θ̂RF(λ))

(in black) and the spurious correlations C(θ̂RF(λ)) (in red)
for two activation functions: tanh and ϕ1 = h1 + 0.1h3,
where h1 and h3 denote the first and third Hermite poly-
nomials, respectively. Notice that this gives µ̃2/µ2

1 ∼ 0.1
for tanh, µ̃2/µ2

1 ∼ 0.01 for ϕ1, and we take d = 400

and n = 2000. As expected, C(θ̂RF(0)) > 0 for the
tanh activation function, since λ̃ ∼ 0.05 (which matches
the corresponding value in Figure 2). On the other hand,
C(θ̂RF(0)) ∼ 0 for the activation ϕ1, since λ̃ ∼ 0.005. As
λ grows, C(θ̂RF(λ)) goes to 0 faster for the tanh activation
function (which has higher λ̃), as predicted by the second
upper bound in Proposition 5.1. These results match the
qualitative behavior of the 2-layer neural network trained
on the Color-MNIST dataset (left panel).

7. Conclusions
Our work provides a rigorous study of spurious correlations
in high-dimensional regression models, with the purpose
of connecting the statistical foundation of this phenomenon
with its practical intuition. Specifically, we translate the
problem into characterizing the deterministic object CΣ(λ),
which allows us to quantitatively capture the roles of ridge
regularization, data covariance and over-parameterization.

An interesting future direction is to employ our principled
approach to design algorithms that go beyond ERM to miti-
gate spurious correlations. In that regard, let us mention the
usage of multiple models with different ridge regularization
or early stopping (connected to ridge penalties, see (Raskutti
et al., 2014)), in order to generate additional supervision.
Here, having a quantitative control on which features (core
or spurious) are learned by which model would allow to op-
timally use the extra labels (e.g., for up-weighting minority
groups, as in (Liu et al., 2021)).
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A. Additional Notation
We define a sub-Gaussian random variable according to Proposition 2.5.2 in (Vershynin, 2018), and ∥X∥ψ2

:= inf{t > 0 :

E
[
exp(X2/t2)

]
≤ 2}. If X ∈ Rn is a random vector, then ∥X∥ψ2

:= sup∥u∥2=1

∥∥u⊤X
∥∥
ψ2

. When we state that a random
variable or vector X is sub-Gaussian, we implicitly mean ∥X∥ψ2

= O (1), i.e. its sub-Gaussian norm does not increase
with the scalings of the problem.

We say that X respects the Lipschitz concentration property if, for all 1-Lipschitz continuous functions φ, we have
∥φ(X)− E [φ(X)]∥ψ2

= O (1). Notice that then, if X is Lipschitz concentrated, then X − E[X] is sub-Gaussian.

Given two symmetric matrices A,B, we use the notation A ⪰ B if A − B is p.s.d. Notice that if A ⪰ B ≻ 0, then we
also have B−1 ⪰ A−1. We denote with ∥A∥F the Frobenius norm of A, and with ker(A) its kernel space. If A is a square
matrix, we use the notation diag(A) to denote a matrix identical to A on the diagonal, and 0 everywhere else. We let A ◦B
denote the Hadamard (component-wise) product between matrices, and A◦k denote A ◦A ◦ ... ◦A, where A appears k times.

B. Proofs for Linear Regression
Proof of Proposition 4.2. Note that

θ̂LR(0) =
(
Z⊤Z

)−1
Z⊤G. (27)

Since we have gi = z⊤i θ
∗ + ϵi, (27) reads

θ̂LR(0) =
(
Z⊤Z

)−1
Z⊤ (Zθ∗ + E) = θ∗ +

(
Z⊤Z

)−1
Z⊤E . (28)

Then, we can plug this result in the definition of C(θ̂) in (3) to obtain

EE

[
C(θ̂LR(0))

]
= EE

[
Cov[x⊤,y⊤]⊤∼PXY , g=f∗

x (x), x̃∼PX

(
fLR

(
θ̂LR(0), [x̃

⊤, y⊤]⊤
)
, g
)]

= EE

[
Cov[x⊤,y⊤]⊤∼PXY , x̃∼PX

(
[x̃⊤, y⊤]θ̂LR(0), x

⊤θ∗x

)]
= EE

[
Cov[x,y]∼PXY , x̃∼PX

(
x̃⊤θ∗x + [x̃⊤, y⊤]

(
Z⊤Z

)−1
Z⊤E , x⊤θ∗x

)]
= Cov[x,y]∼PXY , x̃∼PX

(
x̃⊤θ∗x, x

⊤θ∗x
)

= 0,

(29)

where in the second line we used that E is independent from everything else, in fourth line we used E [E ] = 0, and that E is
independent from all the other random variables, and the last step holds since x̃ is independent from x.

For the second part of the statement we have that

C(θ̂LR(0)) = Cov[x⊤,y⊤]⊤∼PXY , x̃∼PX

(
[x̃⊤, y⊤]

(
Z⊤Z

)−1
Z⊤E , x⊤θ∗x

)
= Cov[x⊤,y⊤]⊤∼PXY , x̃∼PX

(
E⊤Z

(
Z⊤Z

)−1
Py[x

⊤, y⊤]⊤, [x⊤, y⊤]θ∗
)

= E⊤Z
(
Z⊤Z

)−1
PyΣθ

∗,

(30)

where in the second line we introduced Py ∈ R2d×2d, defined as the projector on the last d elements of the canonical basis
in R2d. Then, since E is a sub-Gaussian vector (the entries are mean-0, i.i.d. sub-Gaussian) independent from everything
else, we have that, with probability at least 1− 2 exp

(
−c1 log

2 d
)
,

∣∣∣C(θ̂LR(0))
∣∣∣ ≤ log d

∥∥∥Z (Z⊤Z
)−1

PyΣθ
∗
∥∥∥
2
≤ log d

∥∥∥Z (Z⊤Z
)−1
∥∥∥

op
∥Py∥op ∥Σ∥op ∥θ

∗∥2 ≤
log d ∥Σ∥op√
λmin (Z⊤Z)

, (31)

where we used ∥Py∥op = 1 and ∥θ∗∥2 = 1. Since Z is a n× 2d matrix with independent rows having second moment Σ, by
Theorem 5.39 in (Vershynin, 2012) (see Remark 5.40), we have that∥∥∥∥Z⊤Z

n
− Σ

∥∥∥∥
op

= O

(√
d

n

)
= o(1), (32)
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with probability at least 1− 2 exp (−c2d). Hence, with this probability, by Weyl’s inequality, we also have

λmin

(
Z⊤Z

)
≥ nλmin (Σ)−

∥∥Z⊤Z − nΣ
∥∥

op = Θ(n), (33)

where the last step holds because of Assumption 4.1. Thus, we have that (31) reads∣∣∣C(θ̂LR(0))
∣∣∣ ≤ log d ∥Σ∥op√

λmin (Z⊤Z)
= O

(
log d√

n

)
, (34)

with probability at least 1− 2 exp
(
−c3 log

2 d
)

over Z and E , which gives the desired result.

Proof of Theorem 4.3. As in (Han & Xu, 2023), we define the Gaussian sequence model θ̂ρ ∈ R2d as

θ̂ρ = (Σ + τ(λ)I)
−1

Σ1/2

(
Σ1/2θ∗ +

γρ√
2d

)
, (35)

where ρ is a standard Gaussian vector in R2d (the Gaussian sequence model is defined in Equation (1.5) in (Han & Xu,
2023), via the different notation µ̂seq

(Σ,µ0)
, and our Gaussian vector ρ is denoted as g in the same equation). In the equation

above, γ > 0 is implicitly defined via

nγ2

2d
= σ2 + Eρ

[∥∥∥Σ1/2
(
θ̂ρ − θ∗

)∥∥∥2
2

]
. (36)

On the other hand, following a similar argument as the one in (29), we have that, for every θ ∈ R2d,

C(θ) = Cov[x⊤,y⊤]⊤∼PXY , x̃∼PX

(
[x̃⊤, y⊤]θ, x⊤θ∗x

)
= θ⊤E[x⊤,y⊤]⊤∼PXY , x̃∼PX

[
[x̃⊤, y⊤]⊤x⊤] θ∗x

= θ⊤E[x⊤,y⊤]⊤∼PXY

[
[0⊤, y⊤]⊤[x⊤,0⊤]

]
θ∗

= θ⊤PyE[x⊤,y⊤]⊤∼PXY

[
[x⊤, y⊤]⊤[x⊤, y⊤]

]
θ∗

= θ⊤PyΣθ
∗,

(37)

where the third line holds since x̃ has 0 mean and is independent from x and y, and by definition of θ∗x, and the fourth
line holds because Py[x

⊤, y⊤]⊤ = [0⊤, y⊤]⊤ and because the last d entries of θ∗ are 0 (i.e., Pyθ∗ = 0). Thus, since
we have that ∥PyΣθ∗∥2 ≤ ∥Py∥op ∥Σ∥op ∥θ∗∥2 ≤ ∥Σ∥op because of Assumption 4.1 (and since ∥θ∗∥ ≤ 1), we have that
C(·) : R2d → R is a ∥Σ∥op-Lipschitz function.

Now, since PXY is multivariate Gaussian, Theorem 2.3 of (Han & Xu, 2023) gives that, for any 1-Lipschitz function
φ : R2d → R (denoted as g in (Han & Xu, 2023)), and any t ∈ (0, 1/2),

PZ,G
(∣∣∣φ(θ̂LR(λ))− Eρ

[
φ
(
θ̂ρ
)]∣∣∣ ≥ t

)
≤ C1d exp

(
−dt4/C1

)
, (38)

where C1 is a constant depending on λmin (Σ), ∥Σ∥op, σ2, and n/d = Θ(1). Since C(·) is linear, notice that we have

Eρ
[
C
(
θ̂ρ
)]

= C
(
Eρ
[
θ̂ρ
])

= C
(
(Σ + τ(λ)I)

−1
Σθ∗

)
= θ∗⊤Σ (Σ + τ(λ)I)

−1
PyΣθ

∗ = CΣ(λ), (39)

where we used (37) in the third step, and the definition of CΣ(λ) in (12) in the last one. Thus, setting φ(·) to be C(·)/ ∥Σ∥op,
and plugging (39) in (38) we obtain

PZ,G


∣∣∣C(θ̂LR(λ))− CΣ(λ)

∣∣∣
∥Σ∥op

≥ t

 ≤ C1d exp
(
−dt4/C1

)
, (40)

which gives the thesis after absorbing the constant ∥Σ∥op in t, and noticing that the bound is still true for t ∈ (0, 1/2) since
∥Σ∥op ≥ tr(Σ)/2d = 1 by Assumption 4.1.
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Proposition B.1. Let CΣ(λ) be defined in (12), and let SΣ+τ(λ)I
x be the Schur complement of Σ+ τ(λ)I with respect to the

top-left d× d block. Then, we have that

CΣ(λ) = τ(λ) θ∗x
⊤ (Σxx + τ(λ)I)

−1
Σxy

(
SΣ+τ(λ)I
x

)−1

Σyxθ
∗
x. (41)

Proof. During the proof, to ease the notation, we will often leave implicit the dependence of τ on λ. Then, we can write

CΣ(λ) = θ∗⊤Σ (Σ + τI)
−1

PyΣθ
∗

= θ∗⊤(Σ + τI − τI) (Σ + τI)
−1

PyΣθ
∗

= −τθ∗⊤ (Σ + τI)
−1

PyΣθ
∗ + θ∗⊤PyΣθ

∗

= −τθ∗⊤ (Σ + τI)
−1

PyΣθ
∗,

(42)

where the last step holds since Pyθ
∗ = 0. This expression can be further manipulated using the notation introduced in (14).

We also introduce the following notation

(Σ + τI)
−1

=


[
(Σ + τI)

−1
]
xx

[
(Σ + τI)

−1
]
xy[

(Σ + τI)
−1
]
yx

[
(Σ + τI)

−1
]
yy

,

 (43)

where we divided (Σ + τI)
−1 in four d× d blocks. Notice that, the expression in (42) only depends on

[
(Σ + τI)

−1
]
xy

,

i.e.,

CΣ(λ) = −τθ∗⊤Px (Σ + τI)
−1

PyΣθ
∗ = −τθ∗x

⊤
[
(Σ + τI)

−1
]
xy

Σyxθ
∗
x, (44)

where we denoted the projector on the first d elements of the canonical basis of R2d as Px ∈ R2d×2d. Exploiting the Schur
complement SΣ+τI

x , it holds that

[
(Σ + τI)

−1
]
xy

= − (Σxx + τI)
−1

Σxy
(
SΣ+τI
x

)−1
, (45)

which combined with (44) proves (41).

Proof of Proposition 5.1. During the proof, to ease the notation, we will often leave implicit the dependence of τ on λ.
Then, according to (12), we have that

∣∣CΣ(λ)
∣∣ = ∣∣∣θ∗⊤Σ (Σ + τI)

−1
PyΣPxθ

∗
∣∣∣ ≤ ∥θ∗∥22

∥∥∥Σ (Σ + τI)
−1
∥∥∥

op
∥PyΣPx∥op ≤ ∥Σyx∥op , (46)

and

∣∣CΣ(λ)
∣∣ = ∣∣∣θ∗⊤Σ (Σ + τI)

−1
PyΣθ

∗
∣∣∣ ≤ ∥θ∗∥22 ∥Σ∥

2
op

1

λmin (Σ) + τ
≤ λmax (Σ)

2

τ
. (47)
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Then, using (41), we get

CΣ(λ) = τ θ∗x
⊤ (Σxx + τI)

−1
Σxy

(
SΣ+τI
x

)−1
Σyxθ

∗
x

= τ θ∗x
⊤ (Σxx + τI)

−1/2
(Σxx + τI)

−1/2
Σxy

(
SΣ+τI
x

)−1
Σyx (Σxx + τI)

−1/2
(Σxx + τI)

1/2
θ∗x

≤ τ
∥∥∥(Σxx + τI)

−1/2
θ∗x

∥∥∥
2

∥∥∥(Σxx + τI)
1/2

θ∗x

∥∥∥
2

∥∥∥(Σxx + τI)
−1/2

Σxy
(
SΣ+τI
x

)−1
Σyx (Σxx + τI)

−1/2
∥∥∥

op

≤ τ
1√

λmin (Σxx) + τ

√
θ∗x

⊤Σxxθ∗x + τ
∥∥∥(Σxx + τI)

−1/2
Σxy

(
SΣ+τI
x

)−1
Σyx (Σxx + τI)

−1/2
∥∥∥

op

≤ τ

√
Ex∼PX

[
(x⊤θ∗x)

2
]
+ τ√

λmin (Σxx) + τ

∥∥∥(Σxx + τI)
−1/2

Σxy

∥∥∥2
op

λmin

(
SΣ+τI
x

)
= τ

√
Eg=x⊤θ∗x+ϵ

[g2]− σ2 + τ√
λmin (Σxx) + τ

λmax

(
Σyx (Σxx + τI)

−1
Σxy

)
λmin

(
Σyy + τI − Σyx (Σxx + τI)

−1
Σxy

)
≤ τ

√
Eg [g2]− σ2 + τ√
λmin (Σxx) + τ

λmax

(
ΣyxΣ

−1
xxΣxy

)
λmin

(
Σyy + τI − ΣyxΣ

−1
xxΣxy

)
= τ

√
Eg [g2]− σ2 + τ√
λmin (Σxx) + τ

λmax (Σyy)− λmin

(
SΣ
x

)
λmin (SΣ

x ) + τ

≤ τ
√
Var(g)− σ2

λmax (Σyy)− λmin

(
SΣ
x

)
λmin (SΣ

x )
√
λmin (Σxx)

,

(48)
where in the fifth line we denoted with PX the marginal distribution of the core feature x, and Eg [·] from the sixth line
on denotes an expectation with respect to g distributed as the labels of the model. The last step simplifies the expression
with respect to τ , and it holds since Var(g)− σ2 = θ∗x

⊤Σxxθ
∗
x ≥ λmin (Σxx). This, together with (46) and (47) gives the

desired result.

Proof of Proposition 5.2. During the proof, to ease the notation, we will often leave implicit the dependence of τ on λ.
Then, as in (Han & Xu, 2023) and in the proof of Theorem 4.3, we define the Gaussian sequence model θ̂ρ ∈ R2d as (35)
where ρ is a standard Gaussian vector in R2d and γ > 0 is implicitly defined via

nγ2

2d
= σ2 + Eρ

[∥∥∥Σ1/2
(
θ̂ρ − θ∗

)∥∥∥2
2

]
= σ2 +

∥∥∥Σ1/2
(
(Σ + τI)

−1
Σ− I

)
θ∗
∥∥∥2
2
+

γ2

2d
tr
(
(Σ + τI)

−2
Σ2
)
, (49)

which also reads

nγ2

2d
=

σ2 + τ2
∥∥∥(Σ + τI)

−1
Σ1/2θ∗

∥∥∥2
2

1− tr((Σ+τI)−2Σ2)
n

. (50)

Then, due to Theorem 3.1 of (Han & Xu, 2023) on the prediction risk, since PXY is a multivariate Gaussian due to
Assumption 4.1, we have that, for any t ∈ (0, 1/2),

PZ,G
(∣∣∣L(θ̂LR(λ))− LΣ(λ)

∣∣∣ ≥ t
)
≤ Cd exp

(
−dt4/C

)
, (51)

where C is a positive constant depending on λmin (Σ), ∥Σ∥op, σ2, and n/d = Θ(1).

Proof of Proposition 5.3 As τ(λ) is an increasing function of λ, all the statements on the monotonicity of LΣ(λ) and
CΣ(λ) can be proved by showing monotonicity w.r.t. τ (whose dependence w.r.t. λ is left implicit throughout the argument).
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In particular, we have

dLΣ(λ)

dτ
=

d
dτ

(
τ2
∥∥∥(Σ + τI)

−1
Σ1/2θ∗

∥∥∥2
2

)(
1− tr((Σ+τI)−2Σ2)

n

)
(
1− tr((Σ+τI)−2Σ2)

n

)2

−

(
σ2 + τ2

∥∥∥(Σ + τI)
−1

Σ1/2θ∗
∥∥∥2
2

)
d

dτ

(
1− tr((Σ+τI)−2Σ2)

n

)
(
1− tr((Σ+τI)−2Σ2)

n

)2 .

(52)

To study the sign of the above expression, it suffices to focus on the numerators, as the denominator is always positive.

Note that the RHS of (13) is smaller or equal to 2d/n; thus, as 2d < n, we also get τ ≤ λ (1− 2d/n)
−1, which implies

τ(λ) → 0 as λ → 0. Hence, to show that LΣ(λ) is monotonically decreasing in a right neighborhood of λ = 0, it suffices to
show that (52) evaluated in τ = 0 is strictly negative. For τ = 0, the first factor in the numerator of the first term in (52) is 0,
as the following chain of equalities holds:

d
dτ

(
τ2
∥∥∥(Σ + τI)

−1
Σ1/2θ∗

∥∥∥2
2

)
=

d
dτ

(∥∥∥(Σ/τ + I)
−1

Σ1/2θ∗
∥∥∥2
2

)
= θ∗⊤

d
dτ

(Σ/τ + I)
−2

Σθ∗

= −θ∗⊤ (Σ/τ + I)
−2

(
d

dτ
(Σ/τ + I)

2

)
(Σ/τ + I)

−2
Σθ∗

= −θ∗⊤ (Σ/τ + I)
−2

(
−2Σ

τ2
(Σ/τ + I)

)
(Σ/τ + I)

−2
Σθ∗

= 2τθ∗⊤ (Σ + τI)
−3

Σ2θ∗.

(53)

Furthermore, the second term gives

−σ2 d
dτ

1−
tr
(
(Σ + τI)

−2
Σ2
)

n

 =
σ2

n

d
dτ

(
2d∑
k=1

λ2
k

(λk + τ)
2

)
= −2σ2

n

2d∑
k=1

λ2
k

(λk + τ)
3 < 0, (54)

where λk denotes the k-th eigenvalue of Σ. This gives the first claim.

To show that there exists λL > 0 such that LΣ(λ) is monotonically increasing for λ ≥ λL we will show that the derivative
of LΣ(λ) with respect to τ is positive for all τ ≥ τL := τ(λL). For simplicity, in the rest of the argument we use the
notation λmax and λmin to indicate the largest and smallest eigenvalues of Σ, respectively. Instead, the notation λmin (·) still
represents the smallest eigenvalue of its argument. For the first factor of the first term of (52), continuing from (53), we have

d
dτ

(
τ2
∥∥∥(Σ + τI)

−1
Σ1/2θ∗

∥∥∥2
2

)
≥ 2

1

λmax (Σ/τ + I)
3λmin (Σ/τ)

2
=

2λ2
min

τ2 (λmax/τ + 1)
3 . (55)

For the second factor of the first term of (52), we have

1−
tr
(
(Σ + τI)

−2
Σ2
)

n
= 1− 1

n

2d∑
k=1

λ2
k

(λk + τ)
2 ≥ 1− 2dλ2

max

nτ2
. (56)

For the first factor of the second term of (52), we have

τ2
∥∥∥(Σ + τI)

−1
Σ1/2θ∗

∥∥∥2
2
≤ τ2

λmax

(λmin + τ)
2 (57)
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For the second factor of the second term of (52), we have

d
dτ

1−
tr
(
(Σ + τI)

−2
Σ2
)

n

 = − 1

n

d
dτ

(
2d∑
k=1

λ2
k

(λk + τ)
2

)
=

2

n

2d∑
k=1

λ2
k

(λk + τ)
3 ≤ 4dλ2

max

nτ3
. (58)

Thus, putting together (52), (55), (56), (57), and (58), the monotonicity of LΣ(λ) is implied by

2λ2
min

τ2 (λmax/τ + 1)
3

(
1− 2dλ2

max

nτ2

)
?
≥

(
σ2 + τ2

λmax

(λmin + τ)
2

)
4dλ2

max

nτ3
. (59)

Now, we have that the above inequality holds for sufficiently large τ : the LHS is Θ(1/τ2) (considering fixed the other
quantities), while the RHS is Θ(1/τ3); and the desired statement is therefore proved.

Next, we set τC := τ(λC) =
√
λmin (SΣ

x ) and show that CΣ(λ) is monotonically increasing for τ ∈ [0, τC ]. Plugging
Σxx = I in (41) we get

CΣ(λ) = τ θ∗x
⊤ (Σx + τI)

−1
Σxy

(
SΣ+τI
x

)−1
Σyxθ

∗
x =

τ

1 + τ
θ∗x

⊤Σxy

(
Σyy + τI − ΣyxΣxy

1 + τ

)−1

Σyxθ
∗
x. (60)

By the product rule, and introducing the shorthand A(τ) = Σyy + τI − Σ⊤
xyΣxy

1+τ , we have

dCΣ(λ)

dτ
=

(
d

dτ

(
τ

1 + τ

))(
θ∗x

⊤ΣxyA(τ)−1Σ⊤
xyθ

∗
x

)
+

(
τ

1 + τ

)(
d

dτ

(
θ∗x

⊤ΣxyA(τ)−1Σ⊤
xyθ

∗
x

))
=

1

(1 + τ)2
θ∗x

⊤ΣxyA(τ)−1Σ⊤
xyθ

∗
x +

(
τ

1 + τ

)(
θ∗x

⊤ΣxyA(τ)−1

(
− d

dτ
A(τ)

)
A(τ)−1Σ⊤

xyθ
∗
x

)
=

1

(1 + τ)2
θ∗x

⊤ΣxyA(τ)−1Σ⊤
xyθ

∗
x −

τ

1 + τ

(
θ∗x

⊤ΣxyA(τ)−1

(
I +

Σ⊤
xyΣxy

(1 + τ)2

)
A(τ)−1Σ⊤

xyθ
∗
x

)

=
1

(1 + τ)
θ∗x

⊤ΣxyA(τ)−1

(
A(τ)

1 + τ
− τ

(
I +

Σ⊤
xyΣxy

(1 + τ)2

))
A(τ)−1Σ⊤

xyθ
∗
x

=
1

(1 + τ)
θ∗x

⊤ΣxyA(τ)−1

(
Σyy + τI

1 + τ
−

Σ⊤
xyΣxy

(1 + τ)2
− τI − τ

Σ⊤
xyΣxy

(1 + τ)2

)
A(τ)−1Σ⊤

xyθ
∗
x

=
1

(1 + τ)2
θ∗x

⊤ΣxyA(τ)−1
(
Σyy − Σ⊤

xyΣxy − τ2I
)
A(τ)−1Σ⊤

xyθ
∗
x

=
1

(1 + τ)2
θ∗x

⊤ΣxyA(τ)−1
(
SΣ
x − τ2I

)
A(τ)−1Σ⊤

xyθ
∗
x,

(61)

where in the second line we used the identity d
dτ

(
A(τ)−1

)
= A(τ)−1

(
− d

dτA(τ)
)
A(τ)−1. Then, if τ ≤

√
λmin (SΣ

x ) = τC ,

we have that
(
SΣ
x − τ2I

)
is p.s.d., which in turn implies dCΣ(λ)

dτ ≥ 0, thus giving the desired claim. The non-negativity of
CΣ(λ) readily follows from (60).

For the last statement, setting τL = λmin (Σ) we show that LΣ(λ) is monotonically increasing for all τ ∈ [τL,+∞) as long
as the additional bound on 2d/n holds. As λmin

(
SΣ
x

)
≤ λmin (Σyy) ≤ tr (Σyy) /d = tr (Σ− Σxx) /d = 1, we also have

τC =
√

λmin (SΣ
x ) ≥ λmin

(
SΣ
x

)
≥ λmin (Σ) = τL, (62)

where the second inequality follows from Lemma B.3. Thus, from the monotonicity of τ(λ) in λ, the final result readily
follows.

It remains to prove the monotonicity of LΣ(λ) in [λmin (Σ) ,+∞). To do so, we again study the sign of (52).
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For the first factor of the first term of (52), we have

d
dτ

(
τ2
∥∥∥(Σ + τI)

−1
Σ1/2θ∗

∥∥∥2
2

)
= 2θ∗⊤ (Σ/τ + I)

−3
(Σ/τ)

2
θ∗

= 2θ∗⊤Σ1/2 (Σ + τI)
−1

(Σ + τI)
−1

τΣ (Σ + τI)
−1

Σ1/2θ∗

≥ 2

τ
λmin

(
Σ (Σ + τ)

−1
)
τ2
∥∥∥(Σ + τI)

−1
Σ1/2θ∗

∥∥∥2
2

=
2

τ

λmin

λmin + τ
τ2
∥∥∥(Σ + τI)

−1
Σ1/2θ∗

∥∥∥2
2
.

(63)

For the second factor of the first term of (52), we have

1−
tr
(
(Σ + τI)

−2
Σ2
)

n
= 1− 1

n

2d∑
k=1

λ2
k

(λk + τ)
2 ≥ 1− 2d

n
. (64)

For the second factor of the second term of (52), we have

d
dτ

1−
tr
(
(Σ + τI)

−2
Σ2
)

n

 =
2

n

2d∑
k=1

λ2
k

(λk + τ)
3 ≤ 2

n

1

τ (λmin + τ)

2d∑
k=1

λ2
k

(λk + τ)
≤ 4d

nτ (λmin + τ)
. (65)

Thus, putting together (52), (63), (64), and (65), the monotonicity of LΣ(λ) is implied by

2

τ

λmin

λmin + τ
τ2
∥∥∥(Σ + τI)

−1
Σ1/2θ∗

∥∥∥2
2

(
1− 2d

n

)
?
≥
(
σ2 + τ2

∥∥∥(Σ + τI)
−1

Σ1/2θ∗
∥∥∥2
2

)
4d

nτ (λmin + τ)
(66)

Since we assumed that 2d/n ≤ λmin/4 ≤ 1/4, we have

2

τ

λmin

λmin + τ

(
1− 2d

n

)
− 4d

nτ (λmin + τ)
=

2

τ

λmin

λmin + τ

(
1− 2d

n
− 2d

nλmin

)
≥ 1

τ

λmin

λmin + τ
, (67)

and
τ2
∥∥∥(Σ + τI)

−1
Σ1/2θ∗

∥∥∥2
2
≥ λmin

(
τ2Σ (Σ + τI)

−2
)

= mink
τ2λk

(λk + τ)
2

= mink
λk

(λk/τ + 1)
2

≥ mink
λk

(λk/λmin + 1)
2

= λmin mink
λk/λmin

(λk/λmin + 1)
2

=
λmax

(λmax/λmin + 1)
2 ,

(68)

where in the fourth line we used that τ ≥ λmin, and in the last step we used that f(x) := x/(x + 1)2 is decreasing for
x ≥ 1.

Thus, using (67) and (68) gives that (66) is implied by

λmax

(λmax/λmin + 1)
2

1

τ

λmin

λmin + τ

?
≥ σ2 4d

nτ (λmin + τ)
, (69)

which holds since we assumed
2d

n
≤ 1

2σ2

λmaxλmin

(λmax/λmin + 1)
2 . (70)
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B.1. Proofs on SΣ
x

For completeness, in this section we prove two known results about SΣ
x .

Lemma B.2. Let z =
[
x⊤, y⊤

]⊤ ∼ PXY be distributed according to a mean-0, multivariate Gaussian distribution with
covariance Σ, such that Σ is invertible. Then, the Schur complement SΣ

x of Σ with respect to the top left block Σxx (see
(14)) corresponds to the conditional covariance of y given x, i.e.,

SΣ
x = Cov (y|x = x̄) = Ey|x=x̄

[(
y − Ey|x=x̄[y]

) (
y − Ey|x=x̄[y]

)⊤]
. (71)

Proof. Consider the expression z⊤Σ−1z. According to the notation in (14) and in (43), we have

z⊤Σ−1z = x⊤ [Σ−1
]
xx

x+ y⊤
[
Σ−1

]
yy

y + x⊤ [Σ−1
]
xy

y + y⊤
[
Σ−1

]
yx

x. (72)

Then, the formulas for the inverse of a block matrix give

z⊤Σ−1z

= x⊤
(
Σ−1
xx +Σ−1

xxΣxyS
Σ
x

−1
ΣyxΣ

−1
xx

)
x+ y⊤SΣ

x

−1
y + x⊤

(
−Σ−1

xxΣxyS
Σ
x

−1
)
y + y⊤

(
−SΣ

x

−1
ΣyxΣ

−1
xx

)
x

= x⊤Σ−1
xxx+

(
y − ΣyxΣ

−1
xxx

)⊤
SΣ
x

−1 (
y − ΣyxΣ

−1
xxx

)
.

(73)

Then, denoting with p(x, y) and p(x) the probability density functions of z =
[
x⊤, y⊤

]⊤
and x respectively, we get that the

probability density function of y conditioned on x takes the form

p(y|x) = p(x, y)

p(x)

=

√
(2π)

d
det (Σxx)√

(2π)
2d

det (Σ)

exp
(
−
[
x⊤, y⊤

]
Σ−1

[
x⊤, y⊤

]⊤
/2
)

exp
(
−x⊤Σ−1

xxx/2
)

=
1√

(2π)
d
det (SΣ

x )
exp

(
−
[
x⊤, y⊤

]
Σ−1

[
x⊤, y⊤

]⊤
/2 + x⊤Σ−1

xxx/2
)

=
exp

(
−
(
y − ΣyxΣ

−1
xxx

)⊤
SΣ
x
−1 (

y − ΣyxΣ
−1
xxx

)
/2
)

√
(2π)

d
det (SΣ

x )
,

(74)

where we used Schur formula for the determinants in the third line, and (73) in the last step. Thus, we have that p(y|x)
describes the density of a multivariate Gaussian random variable, with covariance SΣ

x .

Lemma B.3. Let Σ ∈ R2d×2d be a p.s.d., invertible matrix. Then, the Schur complement SΣ
x ∈ Rd×d of Σ with respect to

the top left block Σxx (see (14)) is such that
λmin

(
SΣ
x

)
≥ λmin (Σ) . (75)

Proof. Let Γ ∈ R2d×d be the rank-d matrix defined as

Γ =

(
Σ

1/2
xx

ΣyxΣ
−1/2
xx

)
, (76)

and S ∈ R2d×2d as the matrix containing SΣ
x in its bottom-right d× d block, and 0 everywhere else. Then, we have that

Σ = S + ΓΓ⊤, (77)

where both S and ΓΓ⊤ are rank-d p.s.d. matrices.

Denoting by λk(S) the k-th largest eigenvalue of S, by the Courant–Fischer–Weyl min-max principle, we can write

λk(S) = maxW, dim(W )=kminu∈W, ∥u∥2=1

(
u⊤Su

)
, (78)
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where with W we denote a generic k-dimensional subspace of R2d. Thus, the desired result follows from

λmin (Σ) = λmin

(
S + ΓΓ⊤)

= min∥u∥2=1 u
⊤ (S + ΓΓ⊤)u

≤ minu∈ker(ΓΓ⊤), ∥u∥2=1 u
⊤ (S + ΓΓ⊤)u

= minu∈ker(ΓΓ⊤), ∥u∥2=1 u
⊤Su

≤ maxW, dim(W )=dminu∈W, ∥u∥2=1 u
⊤Su

= λd(S)

= λmin

(
SΣ
x

)
,

(79)

where the last step holds since the d smallest eigenvalues of S are equal to 0, and the d largest correspond to the ones of
SΣ
x .

B.2. Remarks on Assumption 4.1
Our results on linear regression rely on Assumption 4.1, and in particular on the training samples to be normally distributed.
This assumption is made for technical convenience, as the concentration results in Theorem 4.3 and Proposition 5.2 still
hold under the following milder requirement.

Assumption B.4 (Data distribution). The input samples {zi}ni=1 are n i.i.d. samples from a mean-0, sub-Gaussian distribution
PXY , such that

1. its covariance Σ ∈ R2d×2d is invertible, with λmax (Σ) = O (1), λmin (Σ) = Ω(1), and tr(Σ) = 2d;

2. for z ∼ PZ , the random variable Σ−1/2z has independent, mean-0, unit variance, sub-Gaussian entries.

This assumption resembles the requirements A-B in Section 2.2 in (Han & Xu, 2023), where we also included the scaling
of the trace. To formally state the equivalent of Theorem 4.3 and Proposition 5.2, one also has to enforce the following
technical condition on the true parameter θ∗.

Assumption B.5. Let δ = 1/72, then we assume that

θ∗ s.t.
∥∥∥Σ1/2τ(Σ + τI)−1θ∗

∥∥∥
∞

≤ Cdδ−1/2. (80)

In Proposition 10.3 in (Han & Xu, 2023), it is shown that this condition excludes a negligible fraction (Ce−n
2δ/C ) of the θ∗

on the unit ball. Since we set δ = 1/72, following the same arguments of the proofs of Theorem 4.3 and Proposition 5.2, we
have that Theorems 2.4 and 3.1 in (Han & Xu, 2023) imply the results below.

Theorem B.6. Let Assumptions 6.3 and B.5 hold, and let n = Θ(d). Let θ̂LR(λ) be defined as in (8), and let C(θ̂LR(λ)) be

the amount of spurious correlations learned by the model fLR

(
θ̂LR(λ), ·

)
as defined in (3). Then, for any λ > 0, we have

that, for every t ∈ (0, 1/2),

PZ,G
(∣∣∣C(θ̂LR(λ))− CΣ(λ)

∣∣∣ ≥ t
)
≤ Ct−13d−1/8, (81)

where CΣ(λ) is defined in (12), and C is a an absolute constant.

Proposition B.7. Let Assumptions 6.3 and B.5 hold, and let n = Θ(d). Let θ̂LR(λ) be defined as in (8), and let L(θ̂LR(λ))

be the in-distribution test loss of the model fLR(θ̂LR(λ), ·) as defined in (5). Then, , for any λ > 0, we have that, for every
t ∈ (0, 1/2),

PZ,G
(∣∣∣L(θ̂LR(λ))− LΣ(λ)

∣∣∣ ≥ t
)
≤ Ct−cd−1/6.5, (82)

where LΣ(λ) is defined in (20), and C and c are positive absolute constants.

C. Proofs for Random Features
Lemma C.1. We have that

∥V ∥op = O
(√

p

d

)
, (83)
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∥Z∥op = O
(√

d
)
, (84)

with probability at least 1− 2 exp (−cd) over V and Z, where c is an absolute constant. Furthermore, for every i ∈ [n], we
have ∥∥∥∥zi∥2 −√

2d
∥∥∥
ψ2

= O (1) . (85)

Proof. V has independent, mean-0, unit variance, sub-Gaussian entries. Then, the first statement is a direct consequences of
Theorem 4.4.5 of (Vershynin, 2018) and of the scaling d = o(p).

By Assumption 6.3, we have that Z has i.i.d. mean-0, Lipschitz concentrated rows. This property also implies that the rows
are i.i.d. sub-Gaussian. Thus, by Remark 5.40 in (Vershynin, 2012), we have that∥∥Z⊤Z − nΣ

∥∥
op = O

(
n
d

n

)
= O (d) , (86)

with probability at least 1− 2 exp (−c1d). Then, conditioning on this high probability event, by Weyl’s inequality, we have∥∥Z⊤Z
∥∥

op ≤ ∥nΣ∥op +
∥∥Z⊤Z − nΣ

∥∥
op = O (d) , (87)

where the last step follows from the argument used to prove ∥Σ∥op = O (1) in Lemma C.1 in (Bombari & Mondelli, 2024).

For the last statement, we have

2d = tr(Σ) = tr
(
E
[
zz⊤

])
= E

[
tr
(
zz⊤

)]
= E

[
tr
(
z⊤z

)]
= E

[
∥z∥22

]
, (88)

where we used the cyclic property of the trace. Furthermore, we have

∥∥z∥2 − E [∥z∥2]∥ψ2
= O (1) , (89)

since z is Lipschitz concentrated. Then,

0 ≤ 2d− E [∥z∥2]
2
= E

[
(∥z∥2 − E [∥z∥2])

2
]
≤ C1, (90)

for some absolute constant C1. Thus, as
√
1− x ≥ 1− x for x ∈ [0, 1], we obtain

1− C1

2d
≤
√

1− C1

2d
≤

E [∥z∥2]√
2d

≤ 1. (91)

Plugging this last result in (89) gives the desired claim.

Lemma C.2. We have that, denoting with µ̃2 =
∑
k≥2 µ

2
k, with µk denoting the k-th Hermite coefficient of ϕ,∥∥∥∥EV [ΦΦ⊤]− p

(
µ2
1

ZZ⊤

2d
+ µ̃2I

)∥∥∥∥
op

= O
(
p log3 d√

d

)
, (92)

with probability at least 1− 2 exp
(
−c log2 d

)
over Z, where c is an absolute constant.

Proof. For all i ∈ [n], we define the functions ϕ(i) : R → R as ϕ(i)(·) = ϕ(∥zi∥2 · /
√
2d). Note that ϕ(i) is odd, since ϕ

is odd by Assumption 6.1. Thus, denoting with µ
(i)
k the k-th Hermite coefficient of ϕ(i), for every i ∈ [n], we have that

µ
(i)
k = 0 for all even k. This implies that, by denoting with v a random vector distributed as the rows of V , i.e.,

√
2d v is a

standard Gaussian vector, we have[
EV
[
ΦΦ⊤]]

ij
= pEv

[
ϕ(z⊤i v)ϕ(z

⊤
j v)

]
= pEv

[
ϕ(i)

(
z⊤i

∥zi∥2

√
2dv

)
ϕ(j)

(
z⊤j

∥zj∥2

√
2dv

)]

= p

+∞∑
k=0

µ
(i)
k µ

(j)
k

(
z⊤i zj

∥zi∥2 ∥zj∥2

)k

= pµ
(i)
1 µ

(j)
1

z⊤i zj
∥zi∥2 ∥zj∥2

+ p
∑
k≥3

µ
(i)
k µ

(j)
k

(
z⊤i zj

∥zi∥2 ∥zj∥2

)k
.

(93)
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Then, denoting with Dk ∈ Rn×n the diagonal matrix containing µ
(i)
k / ∥zi∥k2 in its i-th entry, we can write

EV
[
ΦΦ⊤] = pD1ZZ⊤D1 + p

∑
k≥3

Dk

(
ZZ⊤)◦kDk. (94)

Notice that, due to the last statement in Lemma C.1, we have that, jointly for all i ∈ [n],∣∣∣∣∥zi∥2√
2d

− 1

∣∣∣∣ = O
(
log d√

d

)
, (95)

with probability at least 1− 2 exp(−c1 log
2 d). Then, conditioning on such high probability event and denoting with ρ a

standard Gaussian random variable, for all i ∈ [n] we have∣∣∣µ(i)
1 − µ1

∣∣∣ = ∣∣∣Eρ [ρϕ(i)(ρ)
]
− Eρ [ρϕ(ρ)]

∣∣∣
=

∣∣∣∣Eρ [ρ(ϕ(∥zi∥2√
2d

ρ

)
− ϕ(ρ)

)]∣∣∣∣
=

∣∣∣∣Eρ [ρ(ϕ((∥zi∥2√
2d

− 1

)
ρ+ ρ

)
− ϕ(ρ)

)]∣∣∣∣
≤ Eρ

[
|ρ|
∣∣∣∣ϕ((∥zi∥2√

2d
− 1

)
ρ+ ρ

)
− ϕ(ρ)

∣∣∣∣]
≤ LEρ

[
|ρ|
∣∣∣∣∥zi∥2√

2d
− 1

∣∣∣∣ |ρ|]
= L

∣∣∣∣∥zi∥2√
2d

− 1

∣∣∣∣Eρ [ρ2]
= O

(
log d√

d

)
,

(96)

where we used Jensen’s inequality in the fourth line, the L-Lipschitzness of ϕ in the fifth line, and (95) in the last step. With
a similar approach, denoting with ∥·∥L2 the L2 norm with respect to the Gaussian measure, we have that for all i ∈ [n]

∣∣∣∥∥∥ϕ(i)
∥∥∥
L2

− ∥ϕ∥L2

∣∣∣ ≤ ∥∥∥ϕ(i) − ϕ
∥∥∥
L2

= Eρ
[(

ϕ(i)(ρ)− ϕ(ρ)
)2]1/2

= Eρ

[(
ϕ

((
∥zi∥2√

2d
− 1

)
ρ+ ρ

)
− ϕ(ρ)

)2
]1/2

≤ L

∣∣∣∣∥zi∥2√
2d

− 1

∣∣∣∣Eρ [ρ2]1/2
= O

(
log d√

d

)
,

(97)

which directly implies that, for all i ∈ [n],
∥∥ϕ(i)

∥∥
L2 =

∑
k≥0

(
µ
(i)
k

)2
= Θ(1), and that

∣∣∣∣∣∣
∑
k≥3

(
µ
(i)
k

)2
−
∑
k≥3

µ2
k

∣∣∣∣∣∣ ≤
∣∣∣∣∥∥∥ϕ(i)

∥∥∥2
L2

− ∥ϕ∥2L2

∣∣∣∣+ ∣∣∣∣(µ(i)
1

)2
− µ2

1

∣∣∣∣ = O
(
log d√

d

)
. (98)
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Thus, we are ready to estimate the operator norm of the off-diagonal part of the second term on the RHS of (94), specifically∥∥∥∥∥∥
∑
k≥3

Dk

(
ZZ⊤)◦kDk − diag

∑
k≥3

Dk

(
ZZ⊤)◦kDk

∥∥∥∥∥∥
op

≤
∑
k≥3

∥∥∥Dk

(
ZZ⊤)◦kDk − diag

(
Dk

(
ZZ⊤)◦kDk

)∥∥∥
F

≤
∑
k≥3

maxi ̸=j

( ∣∣z⊤i zj∣∣
∥zi∥2 ∥zj∥2

)k ∑
i∈[n],j∈[n]

(
µ
(i)
k µ

(j)
k

)21/2

≤ maxi̸=j

( ∣∣z⊤i zj∣∣
∥zi∥2 ∥zj∥2

)3 n∑
i=0

∑
k≥3

(
µ
(i)
k

)2
= O

(
1

d3/2
log3 dn

)
= O

(
log3 d√

d

)
,

(99)

where in the first step we replaced the operator norm with the Frobenius norm, and used triangle inequality; in the
fifth line we used that ∥zi∥2 = Θ(

√
d) for all i ∈ [n] (true because of (95)), and that jointly for all i ̸= j we have∣∣z⊤i zj∣∣ / ∥zj∥2 = O (log d) with probability at least 1 − 2 exp(−c2 log

2 d) since the zi-s are independent sub-Gaussian
vectors (since they are mean-0 and Lipschitz concentrated). The diagonal part of the second term on the RHS of (94)
respects ∥∥∥∥∥∥diag

∑
k≥3

Dk

(
ZZ⊤)◦kDk

− µ̃2I

∥∥∥∥∥∥
op

= maxi∈[n]

∣∣∣∣∣∣
∑
k≥3

(
µ
(i)
k

)2
−
∑
k≥3

µ2
k

∣∣∣∣∣∣ = O
(
log d√

d

)
, (100)

because of (98). Lastly, notice that,∥∥∥∥D1ZZ⊤D1 − µ2
1

ZZ⊤

2d

∥∥∥∥
op

= sup
∥u∥2=1

∣∣∣∣u⊤D1ZZ⊤D1u− µ2
1u

⊤ZZ⊤

2d
u

∣∣∣∣
= sup

∥u∥2=1

∣∣∣∣∣∥∥Z⊤D1u
∥∥2
2
− µ2

1

∥∥∥∥ Z⊤
√
2d

u

∥∥∥∥2
2

∣∣∣∣∣
≤ sup

∥u∥2=1

(∥∥Z⊤D1u
∥∥
2
+ µ1

∥∥∥∥ Z⊤
√
2d

u

∥∥∥∥
2

)
sup

∥u∥2=1

(∥∥∥∥Z⊤D1u− µ1
Z⊤
√
2d

u

∥∥∥∥
2

)

≤

(∥∥Z⊤D1

∥∥
op + µ1

∥∥∥∥ Z⊤
√
2d

∥∥∥∥
op

)∥∥∥∥Z⊤D1 − µ1
Z⊤
√
2d

∥∥∥∥
op

≤

(
∥Z∥op ∥D1∥op + µ1

∥Z∥op√
2d

)
∥Z∥op

∥∥∥∥D1 −
µ1√
2d

∥∥∥∥
op
.

(101)

By Lemma C.1, we have that ∥Z∥op = O
(√

d
)

with probability at least 1− 2 exp (−c2d), and since ∥zi∥2 = Θ(
√
d) and

µ
(i)
1 = O (1) for all i ∈ [n] (true because of (95) and (96) respectively), we have that ∥D1∥op = O

(
1/
√
d
)

. Furthermore,
we have ∥∥∥∥D1 −

µ1√
2d

∥∥∥∥
op

= maxi

∣∣∣∣∣ µ(i)
1

∥zi∥2
− µ1√

2d

∣∣∣∣∣
≤ maxi

1

∥zi∥2

(∣∣∣µ(i)
1 − µ1

∣∣∣+ µ1

∣∣∣∣1− ∥zi∥2√
2d

∣∣∣∣)
= O

(
log d

d

)
,

(102)
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where the last step is a consequence of (95) and (96). Then, we have that (101) reads∥∥∥∥D1ZZ⊤D1 − µ2
1

ZZ⊤

2d

∥∥∥∥
op

= O
(
log d√

d

)
. (103)

A standard application of the triangle inequality to (99), (100) and (103) gives∥∥∥∥∥∥
D1ZZ⊤D1 +

∑
k≥3

Dk

(
ZZ⊤)◦kDk

−
(
µ2
1

ZZ⊤

2d
+ µ̃2I

)∥∥∥∥∥∥
op

= O
(
log3 d√

d

)
, (104)

with probability at least 1 − 2 exp
(
−c3 log

2 d
)

over Z (where we used µ2 = 0 since ϕ is odd), which readily gives the
thesis when plugged in (94).

Lemma C.3. We have that
∥Φ∥op = O (

√
p) , (105)∥∥ΦΦ⊤ − EV

[
ΦΦ⊤]∥∥

op = O
(√

pd
)
, (106)

λmin

(
ΦΦ⊤) = Ω(p) , (107)

with probability at least 1− 2 exp
(
−c log2 d

)
over Z and V , where c is an absolute constant.

Proof. Φ⊤ is a matrix with i.i.d. rows in the probability space of V . In particular, its i-th row takes the form[
Φ⊤]

i:
= ϕ (ZVi:) = ϕ (ZVi:)− EV [ϕ (ZVi:)] , (108)

where the last step holds since the (Gaussian) distribution of Vi: is symmetric and ϕ is an odd function by Assumption
6.1. Then, since

√
2d Vi: is a standard Gaussian (and hence Lipschitz concentrated) random vector, and ϕ is a Lipschitz

continuous function, we have that ∥∥[Φ⊤]
i:

∥∥
ψ2

= O

(
∥Z∥op√

d

)
= O (1) , (109)

where the ∥·∥ψ2
is meant on the probability space of V , and the second step holds with probability at least 1− 2 exp (−c1d)

over Z due to Lemma C.1. Conditioning on this high probability event, Φ⊤ is a p× n matrix whose rows are i.i.d. mean-0
sub-Gaussian random vectors in Rn. Then, by Lemma B.7 in (Bombari et al., 2022), we have∥∥Φ⊤∥∥

op = O
(√

n+
√
p
)
= O (

√
p) , (110)

with probability at least 1− 2 exp(−c2n) over V , where the second step holds because n = o(p).

For the second part of the proof, we again follow the argument in Lemma B.7 in (Bombari et al., 2022), which in turn
exploits the discussion in Remark 5.40 in (Vershynin, 2012), and conclude that∥∥ΦΦ⊤ − EV

[
ΦΦ⊤]∥∥

op = O
(
p

√
n

p

)
= O (

√
pn) = O

(√
pd
)
, (111)

with probability at least 1− 2 exp(−c3n) over Z and V .

For the last statement, Lemma C.2 and Weyl’s inequality imply that, with probability at least 1− 2 exp
(
−c2 log

2 d
)

over Z
we have

λmin

(
ΦΦ⊤) ≥ p λmin

(
µ2
1

ZZ⊤

2d
+ µ̃2I

)
−
∥∥∥∥EV [ΦΦ⊤]− p

(
µ2
1

ZZ⊤

2d
+ µ̃2I

)∥∥∥∥
op
−
∥∥ΦΦ⊤ − EV

[
ΦΦ⊤]∥∥

op

≥ pµ̃2 −O
(
p log3 d√

d

)
−O

(√
pd
)
= Ω(p),

(112)

where the last step is true since µ̃ ̸= 0, as ϕ is non-linear by Assumption 6.1.
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Lemma C.4. Let ϕ̃ : R → R be defined as ϕ̃(·) := ϕ(·)− µ1(·), and set

n′ = min

(⌊
p

log4 p

⌋
,

⌊
d3/2

log3 d

⌋)
. (113)

Let {ẑi}n
′

i=1 be n′ i.i.d. random variables sampled from a distribution respecting Assumption 6.3, not necessarily with the
same covariance as PXY , and independent from V . Then, if Φ̃n′ ∈ Rn′×p is defined as the matrix containing ϕ̃(V ẑi) in its
i-th row, we have that ∥∥∥Φ̃n′

∥∥∥
op

= O (
√
p) , (114)

with probability at least 1− 2 exp
(
−c log2 d

)
over {ẑi}n

′

i=1 and V , where c is an absolute constant.

Proof. The proof follows the same strategy as Lemma C.8 in (Bombari & Mondelli, 2024), with the only difference that they
work under their Assumption 1.2, i.e. that the data is normalized as ∥ẑi∥2 =

√
2d (in our notation). This difference, however,

does not affect the result. We can in fact condition on the high probability event that all ẑi are such that ∥ẑi∥2 = Θ(
√
d),

which holds with probability at least 1− 2 exp (−cd) by Lemma C.1, and proceed in the same way (as their Equation (C.78)
now holds) until their Equation (C.81), which requires their Lemma C.7, i.e. that∥∥∥EV [Φ̃n′Φ̃⊤

n′

]∥∥∥
op

= O (p) . (115)

This holds also in our case, as it can be proven following the argument in (99) and (100), where now the n in the last
line of (99) has to be replaced with n′, making the RHS there being O (1), as n′ = O

(
d3/2

log3 d

)
by definition. Lastly,

the normalization of the data is used one more time in their Equation (C.91), but it is not critical to obtain the result, as
∥ẑi∥2 = Θ(

√
d) is sufficient. We remark that Assumption 1.2 in (Bombari & Mondelli, 2024) also requires the covariance of

the distribution to be well-conditioned, which however is not required for the purposes of the above mentioned lemmas.

Lemma C.5. Let ϕ̃ : R → R be defined as ϕ̃(·) := ϕ(·)− µ1(·), and let z ∈ R2d be sampled from a distribution respecting
Assumption 6.3, not necessarily with the same covariance as PXY , and independent from V . Then we have that∥∥∥Ez [ϕ̃(V z)ϕ̃(V z)⊤

]∥∥∥
op

= O
(
log4 d+

p log3 d

d3/2

)
, (116)

with probability at least 1− 2p2 exp
(
−c log2 d

)
over V , where c is an absolute constant.

Proof. The proof follows a similar path as the one in Lemma C.15 in (Bombari & Mondelli, 2024). In particular, set

n′ = min

(⌊
p

log4 p

⌋
,

⌊
d3/2

log3 d

⌋)
, N = p2n′, (117)

and let Φ̃N ∈ RN×p be a matrix containing ϕ̃(V ẑi) in its i-th row, where every {ẑi}Ni=1 is sampled independently from the
same distribution of z. Thus, Φ̃N can be seen as the vertical stacking of p2 matrices with size n′ × p. All these matrices
respect the hypotheses of Lemma C.4, and hence have their operator norm bounded by O

(√
p
)

with probability at least
1− 2 exp

(
−c1 log

2 d
)
. Thus, performing a union bound over these p2 matrices, we get

∥∥∥Φ̃⊤
N Φ̃N

∥∥∥
op

= O
(
p2 p

)
= O

(
Np

n′

)
= O

(
N log4 p+

Np log3 d

d3/2

)
, (118)

with probability at least 1− 2p2 exp
(
−c1 log

2 d
)

over V and {ẑi}Ni=1.

Via the same argument used for the last statement of Lemma C.1, denoting with vk ∈ R2d the k-th row of V , we have that
∥vk∥2 = O (1) uniformly for every k with probability at least 1 − 2p exp(−c2d). Conditioning on such event, we have
that each entry of ϕ̃(V ẑ1) is sub-Gaussian (with uniformly bounded sub-Gaussian norm), since ẑ1 is sub-Gaussian (as it is
mean-0 and Lipschitz concentrated) and ϕ̃ is a Lipschitz function. Thus, we have that each entry of Eẑ1

[
ϕ̃(V ẑ1)

]
is O (1)
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(see Proposition 2.5.2 in (Vershynin, 2018)), and therefore that
∥∥∥Ez1 [ϕ̃(V ẑ1)

]∥∥∥
ψ2

= O
(∥∥∥Ez1 [ϕ̃(V ẑ1)

]∥∥∥
2

)
= O

(√
p
)
.

Then, conditioning on the high probability event ∥V ∥op = O
(√

p/d
)

given by Lemma C.1, we have

∥∥∥ϕ̃(V ẑ1)
∥∥∥
ψ2

≤
∥∥∥ϕ̃(V ẑ1)− Ez1

[
ϕ̃(V ẑ1)

]∥∥∥
ψ2

+
∥∥∥Ez1 [ϕ̃(V ẑ1)

]∥∥∥
ψ2

= O
(√

p

d
+

√
p

)
= O (

√
p) , (119)

where the second step holds because ẑ1 is Lipschitz concentrated and ϕ̃ is Lipschitz. Since the rows of Φ̃N are identically
distributed, this also holds jointly for all other ẑi-s, for i ∈ [N ]. Then, Φ̃N/

√
p is a matrix with independent sub-Gaussian

rows, and by Theorem 5.39 in (Vershynin, 2012) (see their Remark 5.40 and Equation (5.25)), we have that

1

p

∥∥∥∥∥ Φ̃⊤
N Φ̃N
N

− Ez
[
ϕ̃(V z)ϕ̃(V z)⊤

]∥∥∥∥∥
op

= O
(√

p

N

)
, (120)

with probability at least 1− 2 exp (−c3p) over {ẑi}Ni=1. Then, we have

∥∥∥Ez [ϕ̃(V z)ϕ̃(V z)⊤
]∥∥∥

op
≤

∥∥∥∥∥ Φ̃⊤
N Φ̃N
N

− Ez
[
ϕ̃(V z)ϕ̃(V z)⊤

]∥∥∥∥∥
op

+

∥∥∥Φ̃⊤
N Φ̃N

∥∥∥
op

N

= O
(
p

√
p

N

)
+O

(
log4 p+

p log3 d

d3/2

)

= O

√
p

√
log4 p

p
+
√
p

√
log3 d

d3/2

+O
(
log4 p+

p log3 d

d3/2

)

= O
(
log4 p+

p log3 d

d3/2

)
,

(121)

where the first step follows from the triangle inequality, the second step is a consequence of (120) and (118), and the third
step follows from the definition of N .

Taking the intersection between the high probability events in (118), (119) and (120), the previous equation then holds
with probability at least 1− 2p2 exp

(
−c4 log

2 d
)

over V and {ẑi}Ni=1. Also note that its LHS does not depend on {ẑi}Ni=1,
which were introduced as auxiliary random variables. Thus, the high probability bound holds restricted to the probability
space of V , and the desired result follows.

Lemma C.6. Let ϕ̃ : R → R be defined as ϕ̃(·) := ϕ(·)− µ1(·) and Φ̃ ∈ Rn×p as the matrix containing ϕ̃(V zi) in its i-th
row. Then, we have ∥∥∥Φ̃V ∥∥∥

op
= O

(
√
p log d+

p log d

d

)
, (122)

with probability at least 1− 2 exp
(
−c log2 d

)
over Z and V , where c is an absolute constant.

Proof. Note that ϕ̃ is Lipschitz (since ϕ is Lipschitz by Assumption 6.1). During all the proof, we condition on the event
∥Z∥op = O

(√
d
)

and ∥zi∥2 = Θ
(√

d
)

for all i ∈ [n], which holds with probability at least 1− 2 exp (−c1d) by Lemma

C.1. During the proof we also use the shorthand v ∈ R2d to denote a random vector such that
√
2d v is a standard Gaussian

vector, i.e., it has the same distribution as the rows of V . This implies

Ev
[∥∥∥ϕ̃ (Zv)

∥∥∥
2

]
= O

(√
n
)
,

∥∥∥∥∥∥ϕ̃ (Zv)
∥∥∥
2
− Ev

[∥∥∥ϕ̃ (Zv)
∥∥∥
2

]∥∥∥
ψ2

= O (1) , (123)

and

Ev [∥v∥2] = O (1) , ∥∥v∥2 − Ev [∥v∥2]∥ψ2
= O

(
1√
d

)
, (124)
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where both sub-Gaussian norms are meant on the probability space of v, and where the very first equation follows from the
discussion in Lemma C.3 in (Bombari et al., 2022). Then, there exists an absolute constant C1 such that we jointly have∥∥∥ϕ̃ (Zv)

∥∥∥
2
≤ C1

√
d, ∥v∥2 ≤ C1 (125)

with probability at least 1− 2 exp (−c2d) over v.

Let Ek be the indicator defined on the high probability event above with respect to the random variable vk := V:k (the k-th
row of V ), i.e.

Ek := 1
(
∥vk∥2 ≤ C1 and

∥∥∥ϕ̃ (Zvk)
∥∥∥
2
≤ C1

√
d
)
, (126)

and we define E ∈ Rp×p as the diagonal matrix containing Ek in its k-th entry. Notice that we have ∥I − E∥op = 0 with

probability at least 1− 2p exp (−c2d), and EV
[
∥I − E∥op

]
≤ 2p exp (−c2d).

Thus, we have ∥∥∥EV [Φ̃ (I − E)V
]∥∥∥

op
≤ EV

[∥∥∥Φ̃∥∥∥
op
∥1− E∥op ∥V ∥op

]
≤ EV

[∥∥∥Φ̃∥∥∥2
op
∥V ∥2op

]1/2
EV
[
∥I − E∥2op

]1/2
≤ EV

[∥∥∥Φ̃∥∥∥4
op

]1/4
EV
[
∥V ∥4op

]1/4
(2p exp (−c2d))

1/2

≤ EV
[∥∥∥Φ̃∥∥∥4

F

]1/4
EV
[
∥V ∥4F

]1/4
(2p exp (−c2d))

1/2

= o(1),

(127)

where the last step holds because of our initial conditioning on Z: the first two terms are the sum of finite powers of
sub-Gaussian random variables (the entries of Φ̃ and V ), and thus (see Proposition 2.5.2 in (Vershynin, 2018)) the first two
factors in the third line of the previous equation will be O (pα) for some finite α, which gives the last line due to Assumption
6.2.

As in Lemma C.2, we introduce the notation (for all i ∈ [n]) ϕ̃(i) : R → R such that ϕ̃(i)(·) = ϕ̃(∥zi∥2 · /
√
2d). Thus,

denoting with v ∈ R2d a random vector such that
√
2dv is standard Gaussian (i.e., distributed as the rows of V ), we can

write[
EV
[
Φ̃V
]]
ij
= p

[
Ev
[
ϕ̃(Zv)v⊤

]]
ij
=

p√
2d

Ev
[
ϕ̃(i)

(
z⊤i

∥zi∥2

√
2dv

)(
e⊤j

(√
2dv
))]

=
p√
2d

µ̃
(i)
1 z⊤i ej
∥zi∥2

, (128)

where µ̃(i)
1 is the first Hermite coefficient of ϕ̃(i). Then, denoting with D̃ ∈ Rn×n the diagonal matrix containing µ̃

(i)
1 / ∥zi∥2

in its i-th entry, we can write ∥∥∥EV [Φ̃V ]∥∥∥
op

=
p√
2d

∥∥∥D̃Z
∥∥∥

op
≤ p√

2d

∥∥∥D̃∥∥∥
op
∥Z∥op . (129)

Then, since we conditioned on ∥zi∥2 = Θ
(√

d
)

for all i ∈ [n], following the same argument as in (96), and since the first

Hermite coefficient of ϕ̃ is 0 by definition, we have∥∥∥EV [Φ̃V ]∥∥∥
op

= O
(

p√
d

log d

d

√
d

)
= O

(
p log d

d

)
, (130)

with probability at least 1− 2 exp
(
−c3 log

2 d
)

over Z. A standard application of the triangle inequality to this last equation
and (127) then gives ∥∥∥EV [Φ̃EV

]∥∥∥
op

≤
∥∥∥EV [Φ̃V ]∥∥∥

op
+
∥∥∥EV [Φ̃ (I − E)V

]∥∥∥
op

= O
(
p log d

d

)
, (131)
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with probability at least 1− 2 exp
(
−c4 log

2 d
)

over Z.

Let’s now look at

Φ̃EV − EV
[
Φ̃EV

]
=

p∑
k=1

ϕ̃(Zvk)Ekv
⊤
k − Evk

[
ϕ̃(Zvk)Ekv

⊤
k

]
=:

p∑
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Wk, (132)

where we defined the shorthand Wk = ϕ̃(Zvk)Ekv
⊤
k − Evk

[
ϕ̃(Zvk)Ekv

⊤
k

]
. (132) is the sum of p i.i.d. mean-0 random

matrices Wk (in the probability space of V ), such that

sup
vk

∥∥∥ϕ̃(Zvk)Ekv
⊤
k − Evk

[
ϕ̃(Zvk)Ekv

⊤
k

]∥∥∥
op

≤ 2 sup
vk

∥∥∥ϕ̃(Zvk)Ekv
⊤
k

∥∥∥
op

= 2 sup
vk

∥∥∥ϕ̃(Zvk)
∥∥∥
2
∥vk∥2 Ek

≤ 2C2
1

√
d,

(133)

because of (126). Then, by matrix Bernstein’s inequality for rectangular matrices (see Exercise 5.4.15 in (Vershynin, 2018)),
we have that

PV
(∥∥∥Φ̃EV − EV

[
Φ̃EV

]∥∥∥
op

≥ t

)
≤ (n+ d) exp

(
− t2/2

σ2 + 2C2
1

√
dt/3

)
, (134)

where σ2 is defined as
σ2 = pmax

(∥∥Evk [WkW
⊤
k

]∥∥
op ,
∥∥Evk [W⊤

k Wk

]∥∥
op

)
. (135)

For every matrix A, we have E
[
(A− E[A]) (A− E[A])

⊤
]
= E

[
AA⊤]− E[A]E[A]⊤ ⪯ E

[
AA⊤]. Thus,

∥∥Evk [WkW
⊤
k

]∥∥
op ≤

∥∥∥Evk [ϕ̃(Zvk)Ekv
⊤
k vkEkϕ̃(Zvk)

⊤
]∥∥∥

op

≤
∥∥∥Evk [ϕ̃(Zvk)ϕ̃(Zvk)

⊤
]∥∥∥

op
sup
vk

(
Ek ∥vk∥22

)
≤ C2

1

∥∥∥Evk [ϕ̃(Zvk)ϕ̃(Zvk)
⊤
]∥∥∥

op

= O (1) ,

(136)

where the last step is a direct consequence of Lemma C.2, applied to Φ̃ instead of to Φ, and holds with probability at least
1− 2 exp

(
−c5 log

2 d
)

over Z. For the other argument in the max in (135) we similarly have∥∥E [W⊤
k Wk

]∥∥
op ≤

∥∥∥Evk [vkEkϕ̃(Zvk)
⊤ϕ̃(Zvk)Ekv

⊤
k

]∥∥∥
op

≤
∥∥Evk [vkv⊤k ]∥∥op sup

vk

(
Ek

∥∥∥ϕ̃(Zvk)
∥∥∥2
2

)
≤ 1

d
C2

1d

= O (1) .

(137)

Then, plugging these last two equations in (134) we get

PV
(∥∥∥Φ̃EV − EV

[
Φ̃EV

]∥∥∥
op

≥ √
p log d

)
≤ (n+ d) exp

(
− p log2 d/2

C2p+ 2C2
1

√
d
√
p log d/3

)
≤ 2 exp

(
−c6 log

2 d
)
,

(138)
where we used Assumption 6.2. Then, applying a triangle inequality and using (131) and (138), we get∥∥∥Φ̃EV

∥∥∥
op

= O
(
√
p log d+

p log d

d

)
, (139)
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with probability at least 1− 2 exp
(
−c7 log

2 d
)

over Z, V . Then, since E = I with probability at least 1− 2p exp (−c3d),
using Assumption 6.2 we get the desired result.

Lemma C.7. Let z ∈ R2d be sampled from a distribution respecting Assumption 6.3, not necessarily with the same
covariance as PXY , independent from everything else, and let fRF(θ̂RF(λ), z) be the RF model defined in (22) with θ̂RF(λ)
defined in (24), with λ ≥ 0. Then, we have that∣∣∣∣fRF(θ̂RF(λ), z)− µ2

1p
z⊤Z⊤

2d

(
ΦΦ⊤ + nλI

)−1
G

∣∣∣∣ = O

(
d1/4 log d

p1/4
+

log3/2 d

d1/8

)
= o(1), (140)

with probability 1− C
√
d log2 d/

√
p− C log3 d/d1/4 over Z, G, V and z, where C is an absolute constant

Proof. Let ϕ̃ : R → R be defined as ϕ̃(·) := ϕ(·)− µ1(·), and let Φ̃ ∈ Rn×p be defined as the matrix containing ϕ̃ (V zi) in
its i-th row. Then, introducing the shorthand Ĝ =

(
ΦΦ⊤ + nλI

)−1
G, we can write

fRF(θ̂RF(λ), z) =
(
µ1V z + ϕ̃ (V z)

)⊤ (
µ1V Z⊤ + Φ̃⊤

)
Ĝ

= µ2
1p

z⊤Z⊤

2d
Ĝ+ µ2

1z
⊤
(
V ⊤V − p

2d
I
)
Z⊤Ĝ+ µ1z

⊤V ⊤Φ̃⊤Ĝ+ ϕ̃ (V z)
⊤
ΦĜ.

(141)

Notice that since every entry of G is sub-Gaussian and independent by Assumption 6.3, Theorem 3.1.1 in (Vershynin, 2018)
readily gives ∥G∥2 = O (

√
n) = O

(√
d
)

with probability at least 1 − 2 exp(−c1d) over G. Then, conditioning on the
high probability event described by Lemma C.3, we get∥∥∥Ĝ∥∥∥

2
≤
(
λmin

(
ΦΦ⊤ + nλI

))−1 ∥G∥2 ≤
(
λmin

(
ΦΦ⊤))−1 ∥G∥2 = O

(√
d

p

)
, (142)

with probability at least 1− 2 exp
(
−c2 log

2 d
)

over V , Z and G. We will condition on this high probability event until the
end of the proof. Let’s then investigate the last 3 terms on the RHS of (141) separately:

(i) A direct application of Theorem 5.39 of (Vershynin, 2012) (see their Equation 5.23) gives∥∥∥∥2dp V ⊤V − I

∥∥∥∥
op

= O

(√
d

p

)
, (143)

with probability at least 1− 2 exp (−c3d) over V . Then, since z is sub-Gaussian and independent from everything else,
with probability 1− 2 exp

(
−c4 log

2 d
)

over itself we have∣∣∣µ2
1z

⊤
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I
)
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√
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d log d
√
p

)
,

(144)

where the third step holds with probability at least 1− 2 exp (−c5d) over Z due to Lemma C.1.

(ii) As before, since z is sub-Gaussian and independent from everything else, with probability 1− 2 exp
(
−c4 log

2 d
)

we
have ∣∣∣µ1z

⊤V ⊤Φ̃⊤Ĝ
∣∣∣ ≤ log d

∥∥∥V ⊤Φ̃⊤
∥∥∥

op

∥∥∥Ĝ∥∥∥
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(
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= O
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(√
d

p
+

1√
d
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,

(145)

where the second step holds because of Lemma C.6, and holds with probability at least 1− 2 exp
(
−c6 log

2 d
)

over Z
and V .
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(iii) For the last term of the RHS of (141), its second moment in the probability space of z reads

Ez
[
Ĝ⊤Φ⊤ϕ̃ (V z) ϕ̃ (V z)

⊤
ΦĜ
]
≤
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p
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log3 d√
d

)
,

(146)

where the second step follows from Lemmas C.5 and C.3, and holds with probability at least 1− 2 exp
(
−c7 log

2 d
)

over Z and V . Then, by Markov inequality, we have that there exists a constant C1 such that(
ϕ̃ (V z)

⊤
ΦĜ
)2

< C1

(
d log4 d

p
+

log3 d√
d

)
t, (147)

with probability at least 1− 1/t over z. Setting

t = min

( √
p

√
d log2 d

, d1/4
)

= ω(1), (148)

since p = ω
(
d log4 d

)
by Assumption 6.2, we have

∣∣∣ϕ̃ (V z)
⊤
ΦĜ
∣∣∣ = O

(
d1/4 log d

p1/4
+

log3/2 d

d1/8

)
, (149)

with probability at least 1−
√
d log2 d/

√
p− log3 d/d1/4.

Then, plugging (i), (ii) and (iii) in (141) gives∣∣∣∣fRF(θ̂RF(λ), z)− µ2
1p

z⊤Z⊤

2d
Ĝ

∣∣∣∣ = O

(
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log3/2 d
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)
, (150)

with probability at least 1− c8
√
d log2 d√

p − c8
log3 d
d1/4

, which gives the desired result.

Proof of Theorem 6.4 Let E ∈ Rn×n be the matrix defined as

E = ΦΦ⊤ − p

(
µ2
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ZZ⊤

2d
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)
. (151)

Note that
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with probability at least 1− 2 exp
(
−c1 log

2 d
)

over Z, V due to Lemmas C.2 and C.3. By the Woodbury matrix identity
(or Hua’s identity), we have
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31



Spurious Correlations in High Dimensional Regression

which gives∣∣∣∣∣µ2
1p
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(154)

Here, the second step holds with probability at least 1− 2 exp
(
−c2 log

2 d
)

since z is sub-Gaussian and independent from

everything else; the fourth step is a consequence of Lemma C.1, (152), Lemma C.3, and ∥G∥2 = O
(√

d
)

(see the argument

prior to (142)), and as a whole holds with probability 1− 2 exp
(
−c3 log

2 d
)

over Z, G, and V .

Note that the second term in the LHS of (154) can be written as
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(155)

where the second line is due to the classical identity A⊤ (AA⊤ + κI
)−1

=
(
A⊤A+ κI

)−1
A⊤, and the third line uses the

definition in (5), with θ̂LR(λ̃) defined in (8) and

λ̃ =
2µ̃2d

µ2
1n

+
2d

µ2
1p

λ. (156)

Furthermore, the first term of the LHS of (154) satisfies∣∣∣∣µ2
1p

z⊤Z⊤

2d

(
ΦΦ⊤ + nλI

)−1
G− fRF(θ̂RF(λ), z)

∣∣∣∣ = O

(
d1/4 log d

p1/4
+

log3/2 d

d1/8

)
, (157)

with probability 1− C1

√
d log2 d/

√
p− C1 log

3 d/d1/4 over Z, G, V and z, due to Lemma C.7. Thus, an application of
the triangle inequality together with (154), (155) and (157) gives the desired result.

D. Features Composed as z = x+ y
In this work, we consider the data to be composed as z = [x⊤, y⊤]⊤. However, some of the high level results we obtain can
be recovered for settings where the features are composed differently. As an example, let us consider the model

z = x+ y, g = x⊤θ∗ + ε. (158)

Then, according to (3), we have
C(θ̂) = Cov

(
(x̃+ y)⊤θ̂, x⊤θ∗

)
= θ̂⊤Σyxθ

∗, (159)
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Figure 6. Out-of-distribution test loss L(θ̂LR/RF(λ)) (black) and spurious correlations C(θ̂LR/RF(λ) (red) as a function of λmax (Σyy) (first
panel) and λmin

(
SΣ
x

)
(second panel) on a Gaussian synthetic dataset, and for the CIFAR-10 experiment (third panel). We consider the

same set-up as Figures 3 and 4, for Gaussian and CIFAR-10 data, respectively.

which provides a quantity that could be studied again via the analysis in (Han & Xu, 2023). In this new setup, we remark
that the full data covariance takes the form

Σzz = Σxx +Σyy +Σxy +Σyx. (160)

In a nutshell, we expect the analysis for this setting to provide a qualitative behavior similar to that unveiled by the case
z = [x⊤, y⊤]⊤. In fact, the experiments on Color-MNIST (which does not strictly follow the model z = [x⊤, y⊤]⊤, as the
color overlaps with the core feature pattern as in the model z = x+ y) suggest that our conclusions hold beyond the setting
of “orthogonal features”. We further remark that in the setting z = [x⊤, y⊤]⊤ the optimal solution θ̂ = θ∗ gives C = 0,
while this is not necessarily the case in the setting z = x+ y.

E. Proof of (4): Connection with Out-of-distribution Loss
Let x̃ and [x⊤, y⊤]⊤ be sampled independently from PX and PXY respectively. For simplicity, assume that
E
[
f(θ̂, [x̃⊤, y])2

]
= E

[
f∗
x(x̃)

2
]
= 1 and E

[
f(θ̂, [x̃⊤, y])

]
= E [f∗

x(x̃)] = 0. Thus, for the quadratic loss, we read-
ily get

Ex̃,y
[(

f(θ̂, [x̃⊤, y])− f∗
x(x̃)

)2]
= 2− 2Ex̃,y

[
f(θ̂, [x̃⊤, y])f∗

x(x̃)
]
= 2− 2Cov

(
f(θ̂, [x̃⊤, y]), f∗

x(x̃)
)
. (161)

Denoting with S the covariance matrix of the three random variables f(θ̂, [x̃⊤, y]), f∗
x(x̃), and f∗

x(x), we have

S =

1 ρ C
ρ 1 0
C 0 1

 , (162)

where we introduced the shorthands C = Cov
(
f(θ̂, [x̃⊤, y]), f∗

x(x)
)

and ρ = Cov
(
f(θ̂, [x̃⊤, y]), f∗

x(x̃)
)

. Since S is
p.s.d., its determinant has to be non-negative, hence

1− ρ2 − C2 ≥ 0, (163)

which, when plugged in (161), gives (4).

This bound suggests the close connection between C and the out-of-distribution test loss. In Figure 6, we repeat the same
experiments of Figures 3-4 and report in black the out-of-distribution test loss. The plots clearly show that C and the
out-of-distribution test loss follow a similar trend, for both linear regression and random features.

F. Experimental Details
All the plots in the figures report the average over 10 independent trials, with a shaded area describing a confidence interval
of 1 standard deviation. For the Gaussian and Color-MNIST datasets, every iteration involves re-generating (or re-coloring)
the data, while for the CIFAR-10 dataset the randomness comes from the model and the training algorithm.
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Figure 7. Test loss L(θ̂NN/LR(λ)) (black) and spurious correlations C(θ̂NN/LR(λ) (red) as a function of λ. First and second panel: 2-layer
fully connected ReLU network, trained on the multi-class color(C)-MNIST, for two different values of α. Third and fourth panel: Same
setup as in Figure 2, for the binary C-MNIST dataset, with multiple values of α.

Synthetic Gaussian data generation. This follows the same model across all the numerical experiments presented in the
paper. In particular, we fix d = 400 and set Σxx = I . Σyy is a diagonal matrix, such that its first entry equals λmax (Σyy)
and all the other entries equal (d− λmax (Σyy)) /(d− 1). In this way, tr(Σ) = 2d. Then, we set the off-diagonal blocks
Σxy and Σyx to the same diagonal matrix, so that

Σxy = Σyx = (Σyy − βI)1/2, (164)

which implies that the Schur complement SΣ
x = βI and, therefore, λmin

(
SΣ
x

)
= β. To conclude, we set the ground truth

θ∗x = e1, i.e., the first element of the canonical basis in Rd. This design choice is motivated by our interest in capturing the
role of λmax (Σyy) and to have an easy control on the Schur complement SΣ

x (which is therefore chosen to be proportional
to the identity).

Unless differently stated in the figure, n = 2000, λmax (Σyy) = 2, β = 0.5, and λ = 1. Furthermore, to generate the labels,
we add an independent noise with variance σ2 = 0.25, and we subtract this quantity from the test loss, so that the optimal
predictor θ∗ has a test loss equal to 0.

When we use an RF model, on every dataset, unless differently stated in the figure, we use tanh as activation function, with
p = 20000 neurons.

Binary color MNIST. This dataset is graphically shown in Figure 1. To generate it, we take a subset of the MNIST
training dataset (n = 1000 samples as default, unless differently specified) made only of zeros and ones. Then, for every
training image, we color the white portion in blue (red) with probability (1 + α)/2 if the digit is a zero (one), and red (blue)
otherwise. For the test set, we proceed in the same way, but setting α = 0, to make the core feature (the digit) effectively
independent from the spurious one (the color). For all the experiments, we set β = 1− α2 = 0.25.

CIFAR-10. For the experiments on CIFAR-10, we implicitly suppose that the middle 22× 22 square contains the core,
predictive feature x. Thus, we sum to all the channels of the outer region white noise with increasing variance, and we later
clamp the pixels to ensure their value is between 0 and 1. Increasing the variance of the noise, this progressively makes
the outer portion being dominated by random noise, thus reducing its value of λmax (Σyy) / tr(Σyy) when estimating the
covariance on the perturbed training set. At test time, we take the images from the CIFAR-10 test set, and we add the same
level of noise. To compute C, we create an out-of-distribution dataset where the core features are randomly permuted across
different backgrounds. We always consider the subset of boats and trucks, which contains n = 10000 images.

2-layer neural network. In the experiments shown in Figure 5, we consider a 2-layer neural network trained with gradient
descent and quadratic loss on the Color-MNIST and CIFAR-10 datasets. For both datasets, we train for 1000 epochs, with
learning rate 0.003, and batch size 1000.

F.1. Additional Experiments
In the left two panels of Figure 7 we consider Color-MNIST including all 10 digits. We train a 2-layer network on all classes
with one-hot encoding and MSE loss. Odd (even) digits are red (blue) with probability (1 + α)/2, and blue (red) with
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probability (1− α)/2. To compute C, at test time we consider the parity of the logit with the highest value, with respect
to the color of the image. The first and the second panel correspond to two values of α-s and follow a similar profile as
Figure 5 (left), showing the same qualitative behavior of L and C with respect to λ for the full Color-MNIST dataset (i.e., in
the multi-class setting). In the third and fourth panel of Figure 7 we repeat the experiment in Figure 2 (right) for multiple
values of α, reporting L and C with respect to λ for linear regression. The curves behave as expected: for any value of λ,
as α decreases, C decreases. Furthermore, the (in-distribution) test loss decreases as α increases, in agreement with our
discussion at the end of Section 5.
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Figure 8. Test loss L(θ̂NN/RF(λ)) (black) and spurious correlations
C(θ̂NN/RF(λ) (red) as a function of λ. Left: 2-layer fully connected
ReLU network, trained on the Corrupted CIFAR-10 dataset (boats
and trucks, with added textures “brightness” and “glass blur”). Right:
RF model with tanh.

In Figure 8 we train a 2-layer network and a random
feature model on the classes “trucks” and “boats” from
the Corrupted CIFAR-10 dataset (used in the context of
spurious correlations in (Liu et al., 2023)), enforcing a
correlation in the training set with respectively the tex-
tures “brightness” and “glass blur”, with a correlation
α = 0.95. In both panels, we see a mild increase in C as
λ initially increases, until the later decrease predicted by
Proposition 5.1. The profiles are also qualitatively similar
to the ones of Figure 5 (left).
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