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Abstract

proteins differ considerably between approaches.

analyses.

Background: Proteomic measurements, which closely reflect phenotypes, provide insights into gene expression
regulations and mechanisms underlying altered phenotypes. Further, integration of data on proteome and
transcriptome levels can validate gene signatures associated with a phenotype. However, proteomic data is not as
abundant as genomic data, and it is thus beneficial to use genomic features to predict protein abundances when
matching proteomic samples or measurements within samples are lacking.

Results: We evaluate and compare four data-driven models for prediction of proteomic data from mRNA measured
in breast and ovarian cancers using the 2017 DREAM Proteogenomics Challenge data. Our results show that
Bayesian network, random forests, LASSO, and fuzzy logic approaches can predict protein abundance levels with
median ground truth-predicted correlation values between 0.2 and 0.5. However, the most accurately predicted

Conclusions: In addition to benchmarking aforementioned machine learning approaches for predicting protein
levels from transcript levels, we discuss challenges and potential solutions in state-of-the-art proteogenomic

Keywords: Proteogenomics, mRNA, Random forests, Fuzzy logic, Bayesian networks

Background

Proteogenomics and its challenges

Proteogenomics is a field that utilizes genomic and tran-
scriptomic data in conjunction with proteomic data to
draw correlations between genes and proteins. While
High-Throughput Sequencing (HTS) technologies have
commoditized the generation of genomic and transcrip-
tomic data, proteomics still lags behind in both scope
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and cost due to technological limitations. Assays such as
Reverse Phase Protein Arrays (RPPA) [1] have made it
possible to quantitate larger numbers of proteins at a
time, but they rely on antibody specificity and currently
do not exist on a whole-proteome level. Mass spectrom-
etry (MS)-based technologies have also gained prevalence
in proteomic research, although still facing limitations in
repeatability of identification and consistency of quantifi-
cation [2]. As protein expression levels are often of inter-
est for biological and biomedical researchers, there is
significant interest in developing approaches that would
allow a broader spectrum of proteins to be easily and
effectively quantified for both diagnostic and research pur-
poses. Therefore, there is an incentive to build models that
use mRNA gene expression from HTS assays to predict
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protein expression levels [3]. Ideally, such approaches
would be able to take in data from targeted HTS panels,
whole exome or whole genome sequencing, or whole-
transcriptome mRNA sequencing, and use the expression
levels of one or more genes to predict the corresponding
protein expression levels accurately. These models would
provide insights into how different levels of biological sig-
nals correlate with each other and what dynamic ranges
these signals fall into [4].

A limitation to the use of proteogenomics for protein
level prediction is the complexity of the human prote-
ome. A review by Kendrick et al. found that there is
often limited correlation between mRNA transcript and
protein expression levels [5]. Many factors likely contrib-
ute to the low correlation, including cell-specific expres-
sion patterns, post-translational modifications, and the
complex microenvironments of cells, in which many
mRNA-mRNA, mRNA-protein, and protein-protein in-
teractions regularly occur. However, the fact that weak
correlations do exist between associated transcripts and
proteins opens the possibility of purely data-driven
prediction of protein levels from transcript levels, which
we explore in this paper.

Case study: NCI-CPTAC DREAM proteomics challenge

The NCI-CPTAC DREAM challenge was organized to
collaboratively develop robust methodologies to use the
biological relationships between genes and proteins to
address challenges in the field of proteogenomic data
analysis. For this case study, genomic, transcriptomic,
proteomic, and phosphoproteomic data were provided
in tumor and adjacent normal tissue pairs of breast and
ovarian cancer patients to promote the development of
new strategies for proteogenomic data analysis. The
DREAM Challenge consisted of 3 related machine-learning
proteogenomic sub-challenges, of which we focused on the
second: using transcriptomic and DNA copy number infor-
mation to predict missing protein values in the same sam-
ple. The data used in our analysis was given as part of the
challenge and is available with a Synapse account.

The contestants of this sub-challenge applied a variety
of approaches, but documentation for each consists pri-
marily of method descriptions on the challenge’s wiki
page, found at https://www.synapse.org/#!Synapse:
syn11522015/wiki/496744. The winning approaches in-
cluded biologically-inspired ensemble methods (Li, H.,
unpublished), LASSO with relevant genes selected from
existing networks and databases (Kim, S. et al., unpub-
lished), random forests with input filtered by KEGG
and PPI pathway association (Yu, H. et al, unpub-
lished), and random forests on codon count, GC con-
tent, and folding energy with pathway analysis and
patient clustering (Park, S. et al., unpublished). Specific-
ally, the top team included transcript levels and
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excluded CNV as features. They combined single gene
- single protein predictors with random forest models
built on all transcripts. Other contestants also applied
other methods, such as additional random forest ap-
proaches (Chen, J. et al., unpublished), spline regression
(Narsapuram, V. et al.,, unpublished), network models
(Li, Y. et al., unpublished), genetic models (Belmadani,
M., unpublished), linear regression (Féthi, A. et al., un-
published), elastic net (Afyounian, E. et al, unpub-
lished) (Lau, E. and Lam,M., unpublished), and neural
networks (Kambara, Y. and Okuda,S., unpublished). We
note that some methods included additional data not
provided by the organizers of the challenge: protein-
protein interaction networks, biological pathways,
codon count, GC content, and folding energy. The top
team (Li, H., unpublished) attempted to filter tran-
scripts using GO terms, but they found that it de-
creased performance.

Choice of models

Rather than making use of the additional biological
knowledge as described above (PPI networks, shared
pathways, etc.), our work focuses on the comparison of
methods for data-driven analysis alone. Understanding
the utility of each method can assist researchers in
choosing an appropriate method for prediction on their
data set, especially with limited data. In addition, the
relationship between transcript and protein abundance
remains largely uncharacterized, and the performance of
each model can lead to a fuller understanding of the
underlying biological process driving the abundance of
each protein.

We critically analyzed and compared the performance
of purely data-driven methods in a unified, comparable
setting (e.g., same training/test sets, same performance
measurement). We compared the following methods for
addressing this sub-challenge: Bayesian Networks (BN),
random forests (RF), LASSO, and fuzzy logic predictors.
These methods were chosen because they represent dif-
ferent classes of models, all of which are used in applied
machine learning and make different assumptions about
the relationship between features and outcome (in our
case, transcript and protein abundance). Differences
between these methods are summarized in Table 1.
LASSO assumes that protein abundance is a sparse lin-
ear function of transcript abundance [6], which may or
may not be true. The fuzzy logic model does not assume
linearity but assumes that protein abundance is deter-
mined by fuzzy set operations, in our case, the intersec-
tion of possible abundances from each transcript. While
we are not aware of any other uses of fuzzy logic in this
exact manner, fuzzy logic has been used in other bio-
informatic applications. Barbosa et al. use a similar fuzzy
intersection technique to infer distribution of amphibian


https://www.synapse.org/#!Synapse:syn11522015/wiki/496744
https://www.synapse.org/#!Synapse:syn11522015/wiki/496744

Eicher et al. BMC Bioinformatics 2019, 20(Suppl 24):669 Page 3 of 16

Table 1 Contrasting Features of the Methods

Model Nonlinear interactions Computationally efficient Probabilistic model
LASSO X

Random Forests X X

Fuzzy Logic X X

Bayesian Networks X X

Contrasting features of the different algorithms used to predict protein levels from transcripts. “Nonlinear interactions” indicates that the algorithm does not assume that protein
levels are a linear function of transcript levels. “Computationally efficient” means that predictions were able to be made in less than 12 h on the Ohio Supercomputer Center
(OSQ) cluster using all transcripts in the data as input. “Probabilistic model” means that the predictions are given as probabilities, representing uncertainty in the data
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Fig. 1 Protein, CNV, and mRNA Covariances. Histograms of (a) correlations between BRCA CNV and mRNA (b) covariances between BRCA CNV
and mRNA (c) correlations between BRCA mRNA and proteins (d) covariances between BRCA mRNA and proteins (e) correlations between BRCA
CNV and proteins (f) covariances between BRCA CNV and proteins
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Fig. 2 Results of Bayesian Network Prediction. Histograms of (a) correlations between ground truth and predictions for combined data (b) NRMSE
(Normalized Root Mean Squared Error) of predictions for combined data (c) correlations between ground truth and predictions for BRCA (d)
NRMSE of predictions for BRCA (e) correlations between ground truth and predictions for OVA (f) NRMSE of predictions for OVA
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Table 2 Bayesian Network Correlation and NRMSE

Dataset Median Correlation Median NRMSE
Combined 0.237 0.274
Breast 0376 0.344
Ovarian 0.397 0.361

The NRMSE and correlation results for the Bayesian network model using the
optimal ARACNE structural inference algorithm

species [7]. In addition, fuzzy sets are used to model
gene product similarity between genes and secondary
protein structure in literature [8].

RF models make neither of the assumptions of the
aforementioned models and can be used to model de-
pendency chains and correlations between variables [9],
but interpreting feature importance using RFs is not
straightforward [10] and RFs can be prone to overfitting
[11]. BNs are designed to capture conditional relation-
ships, but can be heavily dependent on the choice of
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Table 3 Best-Predicted Proteins using Bayesian Networks

Combined BRCA OVA

Protein Name Count Protein Name Count Protein Name Count
CMBL 9 BCAN 9 CBX2 9
WFDC2 8 MAEL 9 GFOD2 9
SERPINB3 8 MAGEC1 9 GP1BA 9
NUCB2 8 TESC 9 SERPINB3 8
MAGEA9 8 WIPF3 9 SLC35B1 8
FDXR 8 CD1A 8 CRADD 7
SEX2 7 HLA-DQB2 8 CYP11A1 7
RABEP1 7 AKR1B15 7 MINDY2 7
MYH14 7 CST4 7 MMP10 7
ALCAM 7 CYP4F22 7 CALB1 6

The list of proteins whose predictions are most frequently found to have one
of the top 100 correlation values to ground truth across 10 cross-validations.
These predictions are generated using the Bayesian network model

prior distribution and may fail to resolve conflicting rela-
tionships in the data [12]. We benchmarked these ap-
proaches in a unified framework.

Characteristics of the data set

The data used for this study consists of two data sets,
one for breast cancer (BRCA) and one for ovarian cancer
(OVA). These data were derived from TCGA and
CPTAC consortia. Each data set is comprised of DNA-
based copy number data, transcript and protein expression
data. Microarray data is included for OVA, but we do not
use it in our analyses. This is because we wished to focus
on a pan-cancer approach and to ensure consistency be-
tween BRCA and OVA data, and microarray data was only
available for the OVA data set. Transcript data were gener-
ated with RNA-seq, and have been median-aggregated on a
per-sample level before RSEM Z-score transformation. This
results in normalized expression values that have a mean of
0 and a standard deviation of 1 per sample. Despite the
sample-level normalization, the gene-level expression was
also relatively normalized, with the majority of expression
centered around a value of 0 and with a relatively subdued
standard deviation (Additional file 1: Figure S1). Protein
expression data was generated using mass spectrometry-
based iTRAQ (isobaric tag for relative and absolute

Table 4 Fuzzy Logic Correlation and NRMSE

Page 5 of 16

quantitation) [13], which uses reporter molecules to return
a ratio of abundance of protein in paired samples. We used
the scale function in R to perform normalization both for
protein abundance and transcripts across the BRCA and
OVA, and combined data sets.

The OVA protein samples underwent quantification at
two different institutes (JHU and PNNL), resulting in
two data sets. We examined the correlation between
protein abundance levels in OVA from the JHU and
PNNL data sets to determine whether the two data sets
could be integrated in a straightforward manner in our
analyses. These plots (Additional file 1: Figure S2) illus-
trate that the data distributions are correlated but not
identical. We combined the data from both institutes by
retaining only proteins measured in the OVA datasets of
both institutes. Thus, our final OVA data set contained
the intersection of the OVA from both JHU and PNNL.

We also examined the distribution of correlations be-
tween CNV, transcripts, and proteome measurements to
assess the extent of global correlations between each
data type (Fig. 1). These distributions reflect findings
from other previous studies, which have suggested that
gene-protein correlation (Spearman’s correlation coeffi-
cient) tends to hover around 0.47, on average [14, 15].
An analysis of the covariances was even more stark, with
only mRNA-protein showing any notable covariances.
This lack of relationship between transcripts and copy
numbers presents a potential challenge when using CNV
or transcript abundance to predict protein abundance. It
is notable that, while both CNV and transcript abun-
dance exhibit correlation to protein abundance, tran-
script exhibits higher correlation on average. Given our
observations and the fact that transcriptomic levels have
been shown to associate more closely with protein levels
than DNA copy number in previous studies [16—18], we
focused on the use of transcript levels to predict protein
levels. We therefore only utilized the transcript data to
benchmark machine learning approaches to predicting
protein abundances. This is consistent with the approach
used by the DREAM challenge winning team (Li, H.,
personal communication). Of the data sets available, the
BRCA MS/MS iTRAQ proteomic data, BRCA RNA-seq
data, OVA JHU LC-MS/MS iTRAQ proteomic data, and

T a NRMSE (All) NRMSE (OVA) NRMSE (BRCA) Corr (All) Corr (OVA) Corr (BRCA)
0.5 0.1 0.2508628 0.2974011 0.3637616 03314102 0.3547708 0.1980717
0.5 0.3 0.2619791 0.3173626 04037628 03172434 0.3508759 0.2163652
1 0.1 0.2503973 0.295076 0.3494831 0.3376378 0.3528844 0.2132373
1 0.3 0.25587 0.305844 0.3667606 0.3261083 0.3386826 0.2281974
2 0.1 0.2576439 0.3026524 0.3432097 0.2640732 0.2909315 0.1978028
2 0.3 0.2602301 0.3078683 0.3484859 0.2540885 0.2700112 0.1973525

The NRMSE and correlation results for the fuzzy logic model with respect to tuning parameters T and a
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OVA transcripts were selected. Only proteomic/tran-
scriptomic data taken from the same samples were con-
sidered for the study.

Results

The goal of our study was to explore the feasibility of
using a purely data-driven approach to predict protein
abundance using mRNA levels and to compare data-
driven approaches used therein. All of our approaches
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were tested on the same data sets using the same bench-
marking setup for the purpose of direct comparison.

Bayesian networks

The results of the BN method are displayed in Fig. 2.
We tested 9 different algorithms included in the bulearn
package in R, and found that ARACNE provided the
fewest missing predictions with a comparable prediction
accuracy to other BN inference algorithms. On the
combined BRCA and OVA data, we obtained a median
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Table 5 Best-Predicted Proteins using Fuzzy Logic

Combined BRCA OVA

Protein Name Count Protein Name Count Protein Name Count
ARHGDIB 6 DLG5 6 CRKL 5
DTX3L 5 PHYHD1 6 FMNLT 5
LCP1 5 AR 5 ISG15 5
PARP14 5 EMC3 5 MX1 5
ACTR3 4 S100A14 5 NNMT 5
CARM1 4 SSH3 5 CNN3 4
COTLI 4 ADIRF 4 EIF4GT 4
DDX60 4 AGR3 4 IFIT1 4
DOCK2 4 CAPN2 4 MARCKS 4
IFIT5 4 cMC2 4 NSFL1C 4

The list of proteins whose predictions are most frequently found to have one
of the top 100 correlation values to ground truth across 10 cross-validations.
These predictions are generated using the fuzzy logic model

correlation of 0.237 across all ten cross-validations be-
tween predictions and ground truth and an NRMSE of
0.274, with no failed predictions. On BRCA data only,
we obtained a median correlation of 0.376 and an
NRMSE of 0.344, with no failed predictions. On OVA
data only, we obtained a median correlation of 0.397
and an NRMSE of 0.361, with 1 failed prediction. Re-
sults are summarized in Table 2. Table 3 lists the 10
proteins found in the highest number of top 100 lists,
along with the number of cross-validations for which
these proteins reached the top 100 list. This allows us
to evaluate the consistency of the predictions across
models built using each cross-validation; having the
same proteins represented in the top 100 list across
multiple cross-validations indicates that the method is
generating consistent models for these proteins across
cross-validations.

Fuzzy logic prediction

We predicted the abundance of each protein using fuzzy
logic predictors as described in the Methods section. We
found that the optimal tuning parameters differed
between the combined, BRCA, and OVA models. The
optimal parameters were T = 1 and a = 0.1 for the
combined model, T = 1 and a = 0.3 for the BRCA
model, and T = 0.5 and a = 0.1 for the OVA model
as shown in Table 4. On the combined data, we

Table 6 Random Forest Correlation and NRMSE
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obtained a median correlation of 0.338 across all ten
cross-validations between predictions and ground
truth and an NRMSE of 0.295. On BRCA data only,
we obtained a median correlation of 0.228 and an
NRMSE of 0.367. On OVA data only, we obtained a
median correlation of 0.355 and an NRMSE of 0.297.
When we examine the distribution of correlations for
each of these experiments as shown in Fig. 3, we ob-
serve similar patterns to those seen in the RF and BN
models. The BRCA data has heavier tails than the
OVA and combined plots, and the error is slightly
lower in the combined plots data. Robustly predicted
proteins are summarized in Table 5.

Random forest regression

We found that the optimal tuning parameter for mtry
was 5, as shown in Table 6. On the combined BRCA
and OVA set, we obtained a median correlation of 0.489
across all ten cross-validations between predictions and
ground truth and an NRMSE of 0.233. On BRCA data
only, we obtained a median correlation of 0.357 and an
NRMSE of 0.337. On OVA data only, we obtained a me-
dian correlation of 0.5561061 and an NRMSE of 0.266.

These correlations are clearly skewed right (Fig. 4), in-
dicating that the method is useful for prediction of many
proteins. As seen in our other analyses, the tails are
heavier for the BRCA data. NRMSE distribution is simi-
lar to that seen in the fuzzy logic models.

To analyze overfitting of the models, we extracted the
100 proteins with the highest correlation values within
each cross-validation and computed the overlap. The
following table lists the 10 proteins found in the highest
number of top 100 lists, along with the number of
cross-validations for which these proteins reached the
top 100 list. Table 7 lists the 10 proteins found in the
highest number of top 100 lists, along with the number
of cross-validations for which these proteins reached
the top 100 list. This table shows more consistency
across cross-validations than the fuzzy logic model, but
less than the BN.

LASSO regression

The results of the LASSO regression are displayed in Fig. 5.
The caret package automatically determines the optimal
tuning parameters for each LASSO model using a test grid
approach. On the combined BRCA and OVA set, we

mtry NRMSE (All) NRMSE (OVA) NRMSE (BRCA) Corr (All) Corr (OVA) Corr (BRCA)
5 0.2329111 0.2663645 0.3374966 04887368 0.5561061 0.3569502
10 0.2345528 0.2677073 0.3404584 04856333 0.5547034 0.3505388
25 0.2344793 0.2684557 0.3398591 04849816 0.5539119 0.3539051
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obtained a median correlation of 0.256 across all ten
cross-validations between predictions and ground truth
and an NRMSE of 0.159, with 4 failed predictions. On
BRCA data only, we obtained a median correlation of
0.262 and an NRMSE of 0.182, with 687 missing predic-
tions (6.86% of all proteins). On OVA data only, we ob-
tained a median correlation of 0.317 and an NRMSE of
0.197. These results are summarized in Table 8. The
LASSO model performed relatively poorly compared to
the other tested methods, perhaps reflective of the

complex nonlinear relationships between transcripts and
proteins. Table 9 highlights the best-predicted proteins by
the LASSO method, which indeed show a high degree of
overlap with robustly predicted proteins by other
methods, e.g, CMBL (RFs, BNs), WFDC2 (BNs), and
ASS1 (RFs). Further, the distribution of LASSO predic-
tions did not exhibit left skewness in their correlation dis-
tribution, unlike RF and BN. We therefore found that in
these data sets, more sophisticated methods than LASSO
were able to achieve significantly better prediction results.
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Table 7 Best-Predicted Proteins using Random Forest

Combined BRCA OVA

Protein Name Count Protein Name Count Protein Name Count
MAP 1B 6 ERAP2 ASRGL1

PSIP1 6 GRB7 6 LAP3 6
ACADSB 5 PACSIN2 5 GMPR 5
ANPEP 5 SSH3 5 ICAM1 5
ASRGL1 5 ERBB2 4 MAP 1B 5
CMBL 5 ESR1 4 MSN 5
DDX58 5 IFITS 4 VCP 5
FAM129A 5 NCAPH 4 WARS 5
HMGCL 5 PPFIA1 4 XPO5 5
OXCT 5 PRODH 4 ASS1 4

The list of proteins whose predictions are most frequently found to have one of the top 100 correlation values to ground truth across 10 cross-validations. These

predictions are generated using the random forests model

Ensemble

Our ensemble method combined the predictions of each
of the four methods using a weighted sum, where
weights for each model and cross-validation were deter-
mined by the training accuracies of each of the four
methods on that protein and cross-validation. For the
ensemble, we evaluated the correlation and NRMSE on
the combined BRCA and OVA samples for comparison
with our other methods’ results on combined BRCA and
OVA samples. We obtained a median correlation value
of 0.497 and a median NRMSE value of 0.257. Notably,
this correlation value is slightly higher than any of the
other models, although RF comes very close in perform-
ance. The median NRMSE value is close to that of RF as
well. The distribution of correlation values (Fig. 6) is
dense near 0.5, with few negative correlation values.
From Table 10, the ensemble model appears to be less
consistent across multiple cross-validations than the
BNs, but slightly more consistent than other models. It
is notable that the proteins reported here include pro-
teins reported as consistently well-predicted in other
models: NUCB2 and WFDC2 are among the best-
predicted proteins by the BN method, CRABP2,
LGALS3, and WFDC2 are among the best-predicted by
LASSO, and IFIT5 is among the best-predicted by the
fuzzy logic method. H2AFY2, while not among the best-
predicted list for any of the other models on the com-
bined data, is one of the best-predicted by LASSO when
using BRCA data alone.

Discussion

We applied four different algorithms to predict pro-
tein abundance from mRNA in breast (BRCA) and
ovarian (OVA) cancer data sets and a combined data
set. These methods were chosen to span a variety of
different features and drawbacks present in existing

methods that are capable of predicting protein levels
from transcript levels. Overall, our results indicate
that the RF classifier yields the best performance
across all proteins. This is primarily evidenced by the
median correlation values of 0.49 for BRCA, 0.36 for
combined, and 0.55 for OVA; NRMSE was lower in
LASSO than in the other three methods. These re-
sults can be used to infer possible biological relation-
ships between mRNA and protein abundance. We see
that levels of many proteins can be inferred using de-
cision trees built on mRNA values, as long as one
can learn the correct decision tree structure. There-
fore, we can say that many transcripts of protein
abundance are conditionally dependent on the values
of other transcripts. BNs also model the phenomenon
of conditional dependence and achieve competitive
correlation values with RFs. Notably, BNs appear to
be the most consistent across cross-validations, at
least in terms of the consistency of proteins with the
top 100 correlation values (Fig. 7). This offers a po-
tential explanation for the high performance of the
network models, as the complex regulation structures
between molecules are not likely to be linear. BNs
were also notable for their comparable accuracy to
other methods while using a truncated list of features
as input. The fuzzy logic predictors showed compar-
able performance, but the proteins for which fuzzy
logic performed best were distinct from those for
which RFs or BNs performed best. This exemplifies
that some proteins have a relationship with their
transcripts that is more similar to an AND model
than to a conditional dependence model.

Finally, we note that the list of proteins most fre-
quently found to have high correlation across cross-
validations differs both between phenotypes and be-
tween methods. This observation holds true whether
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the individual or combined BRCA and OVA datasets
were used as input. This interesting finding indicates
that, for some proteins, models of conditional de-
pendence are more effective in some phenotypes (i.e.,
BRCA vs. OVA) than in others. This observation thus
implies that a “one model fits all” approach may not
be as valuable as combining different types of models.
Our ensemble method achieves better results by com-
bining the output from multiple methods, also sup-
porting this conclusion. Further studies to evaluate
which specific proteins are modeled best by specific
methods are thus warranted.

Conclusions

We found that data-driven approaches to protein abun-
dance prediction from genes can be effective but also
present challenges. (1) One must pay attention to varia-
tions in the source of the data (by institute, in this case)
and the amount of data available. This is in terms of
sample size, missing values, and availability of a genomic
data set by patient phenotype (such as microarray data,
which was available only for OVA). (2) It is important to
choose an appropriate filtering technique due to the di-
mensionality of the data; prediction using all mRNA
would not have been reasonable due to the imbalance
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Table 8 LASSO Correlation and NRMSE

Dataset Median Correlation Median NRMSE
Combined 0.256 0.160
Breast 0.262 0.181
Ovarian 0317 0.197

The NRMSE and correlation results for the LASSO model using the optimal A
value detected by the caret package

between sample count and feature count; for BN, this
approach would have been computationally infeasible as
well. While we use correlation for feature selection,
other methods for identifying informative transcript/pro-
tein relationships could also be applied. (3) One must
consider nonlinearity in the choice of a model, and the
true model may follow different types of nonlinear func-
tions per protein and phenotype.

Methods

Method benchmarking

An overview of the benchmarking setup used to com-
pare the different methods in the study is provided in
Fig. 8. We compared performance within the BRCA and
OVA datasets as well as a “combined” dataset which was
a concatenation of samples of the two cohorts. For each
protein, we built separate models, either using all tran-
scripts for the “computationally efficient” models
(LASSO, RF), or a reduced number for the inefficient
models (BNs, fuzzy logic). For cross-validation, we ran-
domly split our BRCA, OVA, and combined data sets
into 10 partitions. For each cross-validation, we consid-
ered 9 of the 10 subsets as training data, and the last
subset as validation. As an exhaustive search for all pos-
sible configurations is computationally challenging for
the fuzzy logic and multivariate BN models, we used
correlation to reduce the search space of transcripts to
be considered for use in predicting individual protein

Table 9 Best-Predicted Proteins using LASSO
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levels. For each cross-validation, we only considered
transcripts that were relatively highly correlated or anti-
correlated with the protein of interest in the training
data. This heuristic preemptively reduced the number of
relationships considered and focused on transcripts that
exhibited high correlation with the protein whose levels
are being predicted. To this end, global Spearman’s
correlations were calculated between each protein and
transcript, and those transcripts with the top 8 correla-
tions were chosen for each protein. Preliminary testing
showed that for the BN model, reductions in accuracy
when removing transcripts outside of the top 8 de-
creased significantly.

Fuzzy logic prediction

Fuzzy logic is based on the idea of fuzzy sets [19]. Fuzzy
sets are sets in which degrees of membership, rather
than absolute membership, exist. Fuzzy logic methods
are methods of analysis that make use of fuzzy set opera-
tions. While fuzzy logic is often used in classification
models, it has also been used in regression by [20, 21].
We use it for the regression task of predicting protein
abundance given transcript.

In our approach, the base set of interest is a continu-
ous set of possible predictions of a protein according to
a transcript, and the degree of membership of any abun-
dance level in this set is the value of the distribution
function of abundance for all samples within a threshold
of the transcript value. Once we have obtained our fuzzy
sets for each transcript filtered using the preprocessing
method described above, we then intersect them. From
this, we obtain a final, narrowed degree of membership
for each possible abundance level that combines all tran-
scripts. To obtain the final prediction, we select the can-
didate abundance level (from a continuous distribution)
that has the highest membership probability. Intuitively,

Combined BRCA OVA

Protein Name PCC Protein Name PCC Protein Name PCC
CMBL 0.8490182 NUCB2 0.8796467 OXCM 0.9077667
WFDC2 0.8407794 CRAT 0.8784636 PLAA 0.9068848
ASST 0.8349155 PREX1 0.8697881 DDX58 0.9059744
INPP4B 0.8283892 HSPA2 0.8610863 C9orf64 0.899744
ALCAM 0.8207547 KANK1 0.858247 ABHD14B 0.8889331
TUBB3 0.8137392 SLC9A3R1 08511751 SLC34A2 0.8820199
CRAT 0.8101374 H2AFY2 0.8503076 OAS2 0.8815647
LGALS3 0.8087911 STK39 0.8479941 DHX29 0.8793457
CRABP2 0.8033509 FKBP5 0.8478364 NMNAT1 0.878037
CD109 0.7873721 PHGDH 0.8454966 GBP2 08727454

The list of proteins with the highest mean correlation between predicted value and actual value across 10-fold cross-validation. These predictions are generated

using the LASSO model. PCC: Pearson correlation coefficient
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we choose the abundance value most agreed upon by
multiple transcript distributions.

An overview of this method is provided in Fig. 9. To
generate our fuzzy logic models, we first computed a
density distribution for each protein with respect to each
transcript, using only the values of the transcript within
a threshold 1 of the current sample. We tested t = 0.5, 1,
and 2 standard deviations. For each transcript, we lim-
ited the prediction range to include only those protein
levels for which the density was above a threshold of a.
We tested a = 0.1 and 0.3. We also considered a cutoff
of 0.5, but many of the density distributions did not con-
tain any values with densities above 0.5, so we do not

Table 10 Best-Predicted Proteins using the Ensemble

Protein Name Count
H2AFY2
EML2
CRABP2
LGALS3
IFIT5
NUCB2
BLMH
WFDC2
CTPS2
CAMK2D

The list of proteins with the highest mean correlation between predicted value
and actual value across 10 cross-validations. These predictions are generated
using the ensemble model. PCC Pearson correlation coefficient

A A 00OV N

report this result here. We discarded those transcripts
with less than 10 samples above the threshold.

Finally, we combined the density distributions of all
transcripts. We considered the prediction range for the
protein to be the range shared by all transcripts. Then,
we split this range into intervals of 0.1 standard devia-
tions and computed the minimum density among all
transcripts at each interval. Our final prediction was the
0.1 standard deviation interval in which this minimum
density was maximized. Intuitively, this approach pre-
dicts the protein level that is most likely to be found in
the training data among all transcripts.

Multivariate Bayesian networks

BNs are commonly used to elucidate relationships be-
tween variables where precise domain knowledge is lack-
ing, with a wide-ranging list of applications in data
mining and machine learning [22, 23], psychology [24,
25], and biology [26—28], among others. BNs are advan-
tageous due to their ability to represent conditional
dependence between variables in a joint probability dis-
tribution, producing a data-driven approximation of re-
lationships between variables. Another advantage is that
BNs can perform regression tasks, predicting the most
likely value of a random variable of interest (in this case,
missing protein abundance) from its parent nodes (tran-
scripts that the protein has detected conditional depend-
ence upon). BNs have been shown to avoid overfitting
and work relatively well with low amounts of data com-
pared to other multivariate approaches if an appropriate
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prior is specified [29, 30], which is advantageous given
the small sample sizes of the data sets.

BN approaches require two major steps: a network re-
construction step, in which an algorithm is applied to
detect the network structure which maximizes the pos-
terior probability distribution of the data that represent
the most likely graphical structure of the underlying
joint probability distribution, and a fitting step, in which
the joint probability distribution of the network skeleton
is calculated, given the conditional dependencies
detected.

The bnlearn R package was used to construct these
BNs, using the ARACNE constraint-based structure
learning algorithm. Missing values for transcript or pro-
tein levels were imputed by constructing and fitting a
network with only complete training samples, and input-
ting complete observations of parent nodes into the cor-
responding local probability distribution of the node to
be imputed (done using the default “parent” method of
the impute() function).

Random forest regression

We created RF models using 100 trees for the BRCA,
OVA, and combined data sets respectively, using the
randomForest package in R. The parameter commonly
used to tune RFs is mtry, or the number of variables
sampled at each split of a tree in the forest. For our
models, we used the caret package to tune the
parameters.

LASSO regression

LASSO Regression is a form of linear regression that
uses regularization to shrink coefficients that contrib-
ute little to the fit of the model, resulting in a more
sparse, generalizable model. As LASSO calculations
are relatively fast, we were able to include all tran-
scripts without missing values that had nonzero vari-
ance as input to the models. We used the train()
function with the ‘lasso’ method from the caret pack-
age, with the default search space of A from 0.1 to
0.9. Each model took every mRNA transcript with no
missing values as features. Similar to other methods,
a 10-fold cross-validation with a 90/10 training split
was used to test model accuracy.

Ensemble

In addition to evaluating the methods described above
on an individual basis, we also combined these
models to obtain an ensemble model and used this
model to predict the combined BRCA and OVA data.
In the ensemble, the LASSO, RF, BN, and fuzzy logic
predictions for each protein were combined using a
weighted sum of their training accuracies for that
protein. The purpose for including the ensemble was
to examine the benefit of choosing an optimal model
class for each protein, and it is motivated by the ex-
pectation that not all proteins will be best modeled
by a single model class.
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