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ABSTRACT

The image fusion method is widely used in many different fields. The fusion
processes both need models to extract semantic information and contain details.
Traditional image processing techniques used for this issue have limited ability
to extract semantic features from images, and advanced deep learning techniques
often lose the details. In this work, we propose the Controlled Fusion Network
(CFN) that adopts a multi-step progressive generation method and injects control
elements at every step. We test the model in the emoji fusion task which accepts
various emojis and combines them. We find that the generated emojis sufficiently
retain and reasonably combine the semantic information of the input images, while
the result images also conform to human intuitive perception. Our source code is
released at: https://github.com/ChengAoShen/Emoji_fusion.

1 INTRODUCTION

The objective of image fusion is to generate a new image that merges the characteristics of the source
images in a required way. This issue arises in various fields including medical imaging (Azam
et al., 2022), multispectral analysis (L. J. Deng & Plaza, 2022), and artistic domains (Niu et al.,
2021). Traditional approaches employ feature engineering which can’t understand the semantic
information of images well (Mishra & Palkar, 2015). With the advent of Deep Learning, attempts
have been made to leverage neural networks for image fusion. However, the neural networks often
lose some detailed features, which means they can’t be used in some low-level tasks (Singh et al.,
2023). An image fusion model that can fully utilize semantic information while retaining specific
details urgently needs to be proposed.

In this work, we attempt to solve this problem from a different perspective. Our contributions
encompass: (1) Proposing an image fusion model named Controlled Fusion Network(CFN) with a
simple structure, easy training, and excellent performance in balancing semantic information and
details. (2) Testing the model on the task of image fusion, which requires both semantic information
and details.

2 MODEL

Diffusion models have novel performance in both text-to-image and image-to-image tasks (Rom-
bach et al., 2022), and some control methods, such as ControlNet (Zhang et al., 2023), were proposed
to control the generation. After investigating them, we found that the diffusion process (Ho et al.,
2020) has the ability to extract semantic information, while the ControlNet can retain the details of
the conditional images, such as edge or texture information. Inspired by this feature, we propose a
new image fusion method based on the diffusion process named Controlled Fusion Network(CFN).
The overall structure of our method is illustrated in Figure 1.

CFN treats image fusion as a generative process. Using the principle of the inverse diffusion process,
we generate images by denoising from Gaussian noise for T steps. In each step, the model will
pass through the denoising block. We design a simple denoising block that only contains a U-
net (Ronneberger et al., 2015) and a ControlNet to ensure that our model is easy to train and infer.
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Figure 1: Model structure and denoising process. In our experiment, the encoder consists of six
downsampling blocks including four ResDownBlocks and two AttnDownBlocks. In the decoder,
there are corresponding upsampling blocks that connect to these encoder blocks through residual
connections. These parts compose the U-Net in our basic model.

ControlNet is used to accept source images that are already concatenated and inject the control in-
formation during the denoising process. The inputs and outputs of the ControlNet will pass through
the zero convolution layer in which all parameters are initiated as zero before training, avoiding the
worse influence of the original U-Net.

3 EXPERIMENT

Emojis fusion in image processing is challenging due to the various content of emojis and the need to
maintain details in fused images for intuitive human understanding. To facilitate the training of our
model, we created a comprehensive dataset comprising a wide range of emojis including the source
emojis and the corresponding fused emojis, seeing Appendix A. The training of CFN comprises two
main processes: U-net training and ControlNet training. In the first process, we trained the U-net
using the standard diffusion process on the dataset without fused emojis to help the model learn the
basic semantic information of emojis. Second, given the semantic relationship between the fused
image and the source image, we copied the encoder from the trained U-net to build the ControlNet
with zero convolution layers and frozen the whole U-net. Then, we used the pair of source emojis
and fused emojis to train the ControlNet and zero convolution layer to enable model to learn the
details of source emojis.

All of the training processes were completed on an NVIDIA RTX 4090 GPU. It is worth noting
that we completed the ControlNet training in less than an hour. That is, the proposed model can
be well-trained with an acceptable time cost on a personal terminal. The samples of experiment
results are shown in Appendix B. The results demonstrate that our model achieves competitive per-
formance with the simple structure, further validating the effectiveness and applicability of our pro-
posed framework.

4 CONCLUSION

In this paper, we found other fusion models couldn’t achieve the balance between extracting seman-
tic information and containing details. To solve this, we present a novel image fusion model named
Controlled Fusion Network(CFN) inspired by ControlNet. Our model can achieve promising results
while having a simple structure and being easy to train. This model is tested in the emoji fusion
task, which needs the model to focus on both semantic information and details. Our model achieves
promising performance in this task. CFN sheds some light on using generative models for image
fusion tasks.
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A DATASET

According to the training process of the model, our dataset mainly consists of two parts: U-net
training data with a wide range of different styles of emojis, and ControlNet training dataset having
pairs of source emojis and fused emojis. The first part is sourced from multiple releases by various
companies, ensuring a diverse representation of emoji styles and designs. The second part consists
of various pairs of source emojis and the corresponding fused emoji collected from Google’s emoji
kitchen.

These emojis have a resolution of 64×64, allowing us to train and test on home computer, re-
ducing training difficulty and burden. Meanwhile, since emojis are used between text messages,
even at this resolution, the synthesized images can be effectively utilized. Moreover, low resolution
doesn’t mean insufficient content. Emojis have various classification, including people, animals,
flags, houses, etc., greatly ensuring the generalizability of the trained model. Also, their widespread
use in daily life makes people familiar with emojis, making it easy for humans to evaluate the gen-
erated results.
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Table 1: Emoji statistics from different companies or styles

Company Number Company Number Company Number
aukddi 633 emojipedia 657 mozilla 816

animation 197 emojitwo 1754 openmoji 3304
apple 3292 facebook 3295 sample 58

blobmoji 2118 google 3304 samsung 3273
bubble 223 htc 852 softbank 715
classic 212 huawei 1327 symbola 1211

docomo 692 lg 3012 telegram 544
emojidex 1996 microsoft 3043 twitter 3304
emojione 1137 MS teams 2928 whatsapp 3295

This comprehensive dataset allowed our model to learn and understand the intricate relationships
between different emoji combinations, enabling it to generate high-quality and visually appealing
fused emojis.

Figure 2: Partial emoji samples in the dataset.
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Figure 3: Partial emoji samples in the dataset.

B FUSION RESULTS

Our model can achieve promising results in the emoji fusion task. The results are shown following.
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Figure 4: Part of the sample results.
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