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Abstract

Paralogous proteins have a common ancestor but have diverged in functionality. Using known
machine learning algorithms, we present a data-driven method to identify the key amino
acid types that play a role in distinguishing a given pair of proteins that are paralogs. We
use an existing Shapley value based feature subset selection algorithm, SVEA, to identify the
key amino acid types adequate to distinguish pairs of paralogous proteins. We refer to these
as the amino acid feature subset (AFS). For a paralog pair, say proteins P and Q, its AFS
is partitioned based on protein-wise importance as AFSpP q and AFSpQq using a linear
classifier, SVM. To validate the significance of the AFS amino acids, we use multiple domain
knowledge based methods : (a) multiple sequence alignment, and/or (b) 3D structure analysis,
and/or (c) supporting evidence from biology literature. This method is computationally
cheap, requires less data and can be used as an initial data-driven step for further hypothesis-
driven experimental study of proteins. We demonstrate the results for 15 pairs of paralogous
proteins. Code available at https://anonymous.4open.science/r/AFS_AAC_SVM-F3D9.

1 Introduction

Proteins form the fundamental machinery in living systems, having several vital functions such as DNA
replication, catalysis, transport, environmental interaction, etc. Advancements in sequencing technologies have
resulted in exponential growth of protein sequence databases (The UniProt Consortium, 2020). However, the
number of experimentally verified annotations constitute a tiny fraction: only 0.57% of 250 million sequences
in UniProtKB (The UniProt Consortium, 2020) have manually reviewed annotations. Experimental methods
for determining biological process level functions (transcription, DNA repair, etc.) are high-throughput
whereas methods for molecular function (catalysis, ligand specificity, etc.) are low-throughput and hence are
not scalable. The relationship between sequence and function is subtle and has not been fully decoded yet.

Paralogs are proteins that have a common ancestor but have diverged functionally. The functional difference
in two paralogous proteins is considered to arise due to evolutionary changes in the sequences (Yang et al.,
2023). A typical experiment to investigate the role of an (or a group of) amino acid(s) in the function of a
protein is to perform a site-directed mutagenesis experiment: replace one or more amino acids and test the
effect of the sequence change (Kresge et al., 2006). In this work, we provide an algorithmic ML pipeline,
consisting both feature engineering and feature subset selection, as a quick and resource-cheap test to assess
the likely outcome from a site-directed mutagenesis experiment. Using this ML pipeline we investigate the
following two questions:
• Does the coarse-grained information of amino acid composition carry a strong enough signal for discrimi-

nating paralogs?
• If so, which of the 20 amino acids have a potential role in the functional difference of the paralogs?
We use a diverse dataset of 15 paralog pairs. Our datasets show a range of sequence and function diversity
(details in Appendix B). Longest common subsequence score (lcss) is a metric to quantify sequence diversity
and median within-class lcss is ď 0.5 in 12 of the 15 datasets, and the median inter-class lcss for the
corresponding classes is less than within-class lcss. Functional diversity, as discerned from biology literature,
also shows large diversity from subtle functional differences (e.g., trypsin/chymotrypsin) to drastic (e.g.,
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lysozyme c/α-lactalbumin). Function description is fine-grained (e.g., trypsin/chymotrypsin) as well as coarse
grained (e.g, GPCRs).

Our findings are that small subsets of amino acids can discern differences between pairs of paralogs. The subset
sizes are between 5 to 10, the median being 8. However, an established ground truth feature subset/rankings
is not available for the task that can be used for evaluating the method or comparing performances with
alternative methods. For this reason, we rely on evidence from experimental biology literature that highlights
the role of the AFS amino acids in the function/structure of the respective protein. We provide validations from
literature, MSA (a popular computational tool to assess evolutionary conservation) and logical consistencies;
for many pairs such validations are more than one.

Towards this, we view a protein as the composite of its constituent standard 20 amino acids. We use amino
acid composition (AAC) features, a Shapley value (Shapley, 1953) based feature subset selection algorithm
(Shapley Value based Error Apportioning, SVEA) (Tripathi et al., 2020; 2021), and a linear support vector
machine (SVM) classifier (Steinwart & Christmann, 2008) as tools to identify key amino acid types that can
distinguish a given a pair of proteins that are paralogs. It yields quick results based on which biologists can
conduct detailed experiments which are resource-intensive (time, cost, trained manpower, etc.).

The key results from our ML pipeline experiments are:

‚ Using known machine learning algorithms we demonstrate a data-driven method to identify key amino
acids that distinguish two paralogous proteins.
• The SVEA algorithm identifies a subset of amino acid types (referred to as AFS) adequate for distinguishing

two paralogous proteins. The size of AFS ranges from 5 to 10 amino acids out of 20. (Table 1)
• For a paralog pair, say protein families P and Q, the computed AFS is partitioned into AFSpP q and

AFSpQq using a linear SVM, to determine the family-wise importance of AFS. (Table 1)
‚ Domain knowledge based validation of AFS: The significance of the amino acids in AFS was validated for
14 datasets using various methods like (a) multiple sequence alignment (MSA) and/or (b) structural analysis
and/or (c) supporting evidence from literature that report structural/functional role of these amino acids.

‚ Logical consistencies in the pair-wise AFS of three paralogous proteins (globins, Section 3.1.7, and GPCRs,
Section 3.1.8). If families P vs Q and P vs R have AFS1 and AFS2, then,
• we find common amino acids in AFS1pP q and AFS2pP q, except for one pair.
• amino acids in AFS1 X AFS2 are either excluded from AFS3, which is from Q vs R, or have much lower

Shapley value in AFS1, AFS2, or AFS3.
‚ Validation of AFS using test data (Section 3.2): The composition of amino acids is sufficient to classify
several paralog pairs. A linear SVM classifies with high test scores (70-99%) using only the composition of
AFS amino acids as features. (Appendix Table 5)

‚ AFS are top ranked features with an alternate feature ranking measure, Marginal Contribution feature
importance (MCI) (Catav et al., 2021). (Appendix Table 6)

Shapley values based feature attribution methods are popular for explaining machine learning models
(Rozemberczki et al., 2022). One such method is SHAP (Lundberg & Lee, 2017), which assigns attribution
scores to input features based on a model’s output for a given instance input. Another method is SAGE
(Covert et al., 2020), which assigns feature attribution scores based on a model’s loss computed at the dataset
level. Unlike these methods, where feature attributions are based on a trained model, the SVEA algorithm
that we use for our task assigns scores to the features based on the distribution of the data points in the
feature space and their ground truth labels. The SVEA algorithm uses a function vpSq, which acts as a
measure of inter-class linear separation between the data points in the space of the feature subset S. The
scores assigned to the features are Shapley values computed using this function vp¨q. We also use an alternate
feature ranking method, i.e. the Marginal Contribution Feature Importance (MCI) (Catav et al., 2021). MCI
is an axiomatic approach that was proposed as an alternative to Shapley values to score and rank features.
We find close agreement between the AFS computed using SVEA and the top-ranked amino acids using MCI.

Use of deep learning methods trained on large datasets is becoming commonplace in Biology; for example,
prediction of molecular function via EC number or GO annotation (Bileschi et al., 2022; Sanderson et al., 2023),
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identifying input sequence regions relevant to model output (Zhou et al., 2016) and learning sequence-function
mapping from deep mutational scanning experiment data (Song et al., 2021). The use of large datasets for
training makes this approach highly resource-intensive. The approach we present herein needs much smaller
datasets and, consequently, (i) is computationally cheap and (ii) has far wider applicability since labelled
data validated by wet lab experiments is limited.

2 Methodology

We discuss the main components of our methodology.

2.1 AAC features

Consider a paralogous pair of proteins, families P and Q. We first curate a set of sequences, say DP and DQ,
from a standard protein sequence database, SwissProt (The UniProt Consortium, 2020), with nP and nQ

number of sequences each from families P and Q respectively. For a protein sequence ppjq “ pp
pjq

1 , p
pjq

2 , . . . , p
pjq

L q

of length L with p
pjq

k P t1, 2, ¨ ¨ ¨ , 20u corresponding to the standard 20 amino acids, the AAC feature
xAAC

j P r0, 1s20 for ppjq is computed as follows,
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So xAAC
j,i is the normalised count of the standard amino acid i, i P t1, 2, ¨ ¨ ¨ , 20u, in a protein ppjq.

2.2 Feature subset selection using SVEA

Given a set, N , of features from the protein sequences of P and Q, we try to find the features S Ď N
that contribute the most to the linear separation of P and Q sequences. With AAC features, we have
N “ t1, 2, . . . , 20u corresponding to each of the standard 20 amino acid types.

We utilise the Shapley value based feature ranking and subset selection algorithm, SVEA (Tripathi et al.,
2020; 2021), to identify the most important feature subset S Ď N . Shapley value is a well known solution
concept from cooperative game theory (Shapley, 1953; Narahari, 2014) for distributing the total worth of a
coalition of players fairly among each of them by quantifying each players effective marginal contribution.
The SVEA algorithm considers the binary classification task as a cooperative game among the features, with
a function vpSq as the worth of every feature subset S. vpSq acts as a measure of linear separation between
the classes in the feature space of S. Accounting for class-imbalance, we define vpSq using a class-balanced
hinge loss function tr_erpSq, which is defined as,

tr_erpSq “ min
w,ξj

1
2nP

nP
ÿ

j“1
ξj `

1
2nQ

nQ
ÿ

j“nP `1
ξj

s.t. yj

˜

ÿ

iPS

wix
AAC
j,i ` b

¸

ě 1 ´ ξj , @j P rnP ` nQs

ξj ě 0, @j P rnP ` nQs

and vpSq “ tr_erpHq ´ tr_erpSq. The minimizer in the above finds a linear hyperplane with the least
class-balanced hinge loss in the feature space of S. H is the empty set and tr_erpHq “ 1, therefore,
vpSq “ 1 ´ tr_erpSq. tr_erpSq “ 0 implies vpSq “ 1, i.e., the two classes are completely linearly separable
in the feature space of S. The maximum value of tr_erpSq possible is 1.

The Shapley value φpiq for a feature i P N is computed as,

φpiq “
ÿ

SĎNztiu

|S|!p|N | ´ |S| ´ 1q!
|N |! pvpS Y tiuq ´ vpSqq.
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Thus, φpiq is a weighted sum of the marginal contribution of feature i to all the possible feature subsets that
do not contain i. Shapley values are unique solution concepts satisfying the axioms - efficiency, symmetry
and marginality (Young, 1985). The higher the φpiq, the higher the contribution of feature i to the linear
separation between the classes and, consequentially, the higher the importance of feature i distinguishing the
classes.

Exact Shapley value computations are known to be exponential time. Hence, they are computed using a
linear time (in number of features) Monte Carlo approximation (Castro et al., 2009) in the SVEA algorithm.
As the number of features is small (20), good approximations can be computed fast via larger sampling.
Furthermore, we do not find significant variance in the Monte Carlo estimates across multiple runs. We also
find that the amino acids with top Shapley values are consistent across these runs (see Appendix E.4 for a
detailed variance analysis). More details of the SVEA algorithm are given in Appendix Section C.

Figure 1: Flowchart summarizing the steps in our ML pipeline to compute the key amino acid types, AFS,
that distinguish two paralogous proteins, using amino acid composition (AAC) features, Shapley value based
SVEA algorithm for feature subset selection and class-wise feature subsets using linear SVM. Lysozyme
C and α-Lactalbumin are used here as representative examples of paralog pairs. AFS identified for other
paralog pairs are given in Table 1.

Data-driven cutoff for selecting AFS: The efficiency axiom of Shapley value implies,
ř20

i“1 φpiq “ vpNq.
If all features have equal contribution in achieving vpNq, then φpiq “

vpNq

20 , @i P N . Consequentially, if a
feature i had lesser contribution than others then φpiq ă

vpNq

20 . Therefore, we set φcutoff “
vpNq

20 for selecting
the key distinguishing amino acid feature subset, AFS “ ti : φpiq ě φcutoff u. Each of the features in AFS
uniquely corresponds to d ď 20 amino acids from the standard 20.

2.3 Protein family-wise partition of AFS using SVM

We train a linear SVM, to classify P vs Q, using the composition of the amino acids in AFS as the features,
i.e. using xAF S

j P r0, 1sd, with xAF S
j,i1 “ xAAC

j,i and each i1 P t1, 2, ¨ ¨ ¨ , du uniquely maps to a i P AFS. We use
these linear SVM weights w P Rd to divide the set AFS into disjoint sets AFSpP q and AFSpQq based on
the sign of the weights. Since xAF S

j,i1 ě 0 @i1 P rds, the sign of the linear classifier weight wi1 indicates which
class is relatively prominent in the amino acid corresponding to i1. So if the `1 class is P , then we divide
AFS class-wise as AFSpP q “ ti1 P rds : wi1 ą 0u and similarly AFSpQq “ ti1 P rds : wi1 ă 0u. See Appendix
Section D for details on SVM training.

A flowchart summarizing the steps for computing AFSpP q and AFSpQq is shown in Figure 1.
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2.4 Validation of AFS

Literature evidence: For 14 different paralog protein pairs, we provide supporting evidence from protein
biology literature for the significance of amino acids in AFS in the functional specificity of the protein pair.

MSA analysis: We also compute multiple sequence alignment (MSA) of randomly selected sequences
from DP and DQ and analyze the conservation of AFSpP q and AFSpQq amino acids within and across the
respective families (Figure 2). MSA algorithms (Edgar & Batzoglou, 2006) aim to align multiple protein
sequences by inserting gaps in the sequences while optimizing an objective. The objective is usually to
minimize the number of gaps inserted while maximizing an overall score that promotes the alignment of
similar (based on physicochemical properties) amino acids at a given position. The alignments are often used
as a tool to determine homologous relationships between proteins and identify conserved or mutated regions
in them.

Structural analysis: For paralog pairs that together function as heteromers (protein complexes made up of
different types of proteins), we perform structural analysis to validate the role of AFS in the heteromeric
structure formed by the paralog pair (Sections 3.1.7, 3.1.3 and 3.1.4).

Using test data: We test the classifier trained in Section 2.3 on a test data. (Details on test data in Appendix
Section A.1). In general, we find an imbalance in the number of sequences for the two paralogous proteins. It
is known that accuracy is not a well-suited performance measure of the classifier in class imbalance settings.
Therefore, we use the arithmetic mean of sensitivity and specificity (AM) to measure the performance of the
classifier (Brodersen et al., 2010).

Using marginal contribution feature importance (MCI): We check agreement of AFS with another
feature ranking method, MCI (Catav et al., 2021). See Appendix Section E.3 for details on MCI computation.

3 Results and Discussions

3.1 Role of the amino acids identified in AFS

For 15 paralog pairs, we discuss the significance of the amino acids identified in the respective AFS (Table 1).

3.1.1 Lysozyme C and α-Lactalbumin

Literature evidence: Amino acids D and E of AFSpα-Lactalbuminq are found in the Ca2` and Zn2`

binding sites respectively of α-lactalbumin (Permyakov & Berliner, 2000; Permyakov, 2020). All α-lactalbumins
studied so far are known to bind Ca2` and Zn2` whereas several (but not all) lysozymes do not bind Ca2`.

MSA analysis: (Figure 2a) AFSpα-Lactalbuminq and AFSpLysozyme Cq amino acids (Table 1) are
significantly conserved in respective families.

3.1.2 Trypsin and Chymotrypsin

Literature evidence: Y and W get the highest Shapley value φp¨q in AFSpTrypsinq and
AFSpChymotrypsinq respectively (Table 1 and Figure 7b). In experiments to convert trypsin to chy-
motrypsin (Hedstrom et al., 1994; Hedstrom, 2002) it has been shown that Y to W conversion in loop-3 of
trypsin leads to significant increase in chymotrypsin activity. We do not find S, H and D in AFS, which are
important for the function of both families and are known as the catalytic triad (Dodson & Wlodawer, 1998).

3.1.3 Tubulin-α and Tubulin-β

MSA analysis: (Appendix Figure 10) AFSpTubulin-αq and AFSpTubulin-βq amino acids are significantly
conserved in respective families.

Structural analysis of AFS: Tubulins typically exist as heterodimers, consisting of two subunits: tubulin-α
and tubulin-β (Mühlethaler et al., 2021). We looked at the contact residues of a tubulin-α chain and tubulin-β
chain in the 3D structure of tubulin-α/β heterodimer (PDB IDs: 3JAR, 5N5N). We see that the contact points
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Table 1: AFS and its class-wise partition computed for 15 paralog pairs. The number of unique sequences
from the SwissProt (The UniProt Consortium, 2020) database used for computing AFS is given inside
parenthesis p¨q for each protein family. Data collection details are in Appendix Section A.1. AFS amino
acids are written in decreasing Shapley values from left to right for each paralog pair. Figures 3 and 7 show
the Shapley value of the amino acids for each paralog pair. For globins and GPCRs, common acids across
different AFS within a paralog triplet are colour-coded.

Paralog pair Amino acid feature subset, AF S Class-wise AF S parition
Lysozyme C (74) and
α-Lactalbumin (22) tI, A, D, N, G, R, E, F, L, W u

AF Spα-Lactalbuminq “ tI, D, E, F, Lu

AF SpLysozyme Cq “ tA, N, G, R, W u

Trypsin (66) and
Chymotrypsin (17) tY, W, T, A, V, K, P u

AF SpTrypsinq “ tY, Au

AF SpChymotrypsinq “ tW, T, V, K, P u

Tubulin-α (117) and
Tubulin-β (191) tM, Q, K, N, F, I, H, A, C, Y u

AF SpTubulin-αq “ tK, I, H, C, Y u

AF SpTubulin-βq “ tM, Q, N, F, Au

Histone H2A (180) and
Histone H2B (177) tL, G, S, M, K, N, T, Y, F u

AF SpHistone H2Aq “ tL, G, Nu

AF SpHistone H2Bq “ tS, M, K, T, Y, F u

Interleukin-1 α (16) and
Interleukin-1 β (25) tC, G, T, S, V, Q, A, N, P u

AF SpInterleukin-1 αq “ tT, S, A, Nu

AF SpInterleukin-1 βq “ tC, G, V, Q, P u

Cytochrome P450 CYP3
(32) and CYP51 (32) tH, F, G, K, A, P, Nu

AF SpCYP3q “ tF, K, P, Nu

AF SpCYP51q “ tH, G, Au

Globins
Myoglobin (107) and
Hemoglobin-α (303) AF S1 “ tE, S, Y, V, K, P, I, G, C, W u

AF S1pMyoglobinq “ tE, K, I, G, W u

AF S1pHemoglobin-αq “ tS, Y , V , P , Cu

Myoglobin (107) and
Hemoglobin-β (285)

AF S2 “

tK, V, C, E, W, N, F, M, Y, Iu

AF S2pMyoglobinq “ tK, E, M, Iu

AF S2pHemoglobin-βq “

tV , C, W , N, F, Y u

Hemoglobin-α (303) and
Hemoglobin-β (285) AF S3 “ tW, P, N, S, Gu

AF S3pHemoglobin-αq “ tP , Su

AF S3pHemoglobin-βq “ tW , N, Gu

GPCRs
Rhodopsin-like (181) and

Glutamate-like (89) AF S1 “ tD, Q, E, G, M, Lu
AF S1pRhodopsinq “ tM, Lu

AF S1pGlutamateq “ tD, Q, E, Gu

Secretin-like (90) and
Glutamate-like (89) AF S2 “ tW, H, Y, V, Du

AF S2pSecretinq “ tW , H, Y u

AF S2pGlutamateq “ tV , Du

Rhodopsin-like (181) and
Secretin-like (90) AF S3 “ tW, E, M, S, V, H, Q, Au

AF S3pRhodopsinq “ tM, S, V , Au

AF S3pSecretinq “ tW , E, H, Qu

Rhodopsin-like GPCRs

Aminergic receptors (186)
and Lipid receptors (113) AF S1 “ tL, P, E, W, F, M, Du

AF S1pAminergic receptorsq “

tP , E, W , Du

AF S1pLipid receptorsq “ tL, F , Mu

Aminergic receptors (186)
and Peptide receptors

(367)
AF S2 “ tL, F, E, M, K, D, V, Ru

AF S2pAminergic receptorsq “

tE, K, D, Ru

AF S2pPeptide receptorsq “ tL, F , M, V u

Lipid receptors (113) and
Peptide receptors (367) AF S3 “ tP, R, G, I, W, S, V u

AF S3pLipid receptorsq “ tR, G, Su

AF S3pPeptide receptorsq “ tP , I, W , V u

of the tubulin-α chain in the heterodimer have more AFSpTubulin-αq amino acids than AFSpTubulin-βq.
Similarly, AFSpTubulin-βq amino acids are more than AFSpTubulin-αq at the contact point of the tubulin-β
chain in the heterodimer. Thus, the amino acids identified in AFS can be considered to be significant towards
the quaternary structure of tubulin-α/β heterodimer. Appendix Section E.1 has more details.

3.1.4 Histone H2A and Histone H2B

MSA analysis: (Appendix Figure 11), AFSpHistone H2Aq and AFSpHistone H2Bq amino acids are signifi-
cantly conserved in respective families.
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Structural analysis of AFS: Histones have a heterooctameric structure comprising of two H2A/H2B dimers
and one H3/H4 tetramer (Dutta et al., 2001). We looked at the contact residues of an H2A chain and H2B
chain in the heteroocatmer structure of histone (PDB IDs: 3KWQ, 1AOI). We find that the contact points of
H2A chain in the heterooctamer have more AFSpHistone H2Aq amino acids than AFSpHistone H2Bq. This
is interesting since AFSpHistone H2Aq has only three amino acids, while AFSpHistone H2Bq has six amino
acids. Similarly, the contact points of H2B chain in the heterooctamer have more AFSpHistone H2Bq amino
acids than AFSpHistone H2Aq. Thus, the amino acids identified in AFS can be considered to be significant
towards the quaternary structure of the histone heterooctamer. See Appendix Section E.2 for more details.

3.1.5 Interleukin-1 α and Interleukin-1 β

Literature Evidence: C has the highest Shapley value and is in AFSpInterleukin-1 βq. Deleting C results
in loss of activity in Interleukin-1 β (Veerapandian et al., 1992). We do not find such studies for Interleukin-1
α.

MSA analysis: (Appendix Figure 12) AFSpInterleukin-1 αq and AFSpInterleukin-1 βq amino acids show
significant conservation in respective families.

3.1.6 Cytochrome P450 CYP3 and CYP51

Literature evidence: H, F and G, in the respective order, have the highest Shapley value φp¨q for this
paralogous pair (Table 1 and Figure 7f). H and G with the highest φp¨q in AFSpCYP51q have been reported
(Nitahara et al., 2001; Lepesheva & Waterman, 2004; 2007; Strushkevich et al., 2010) to be important in
the enzymatic activity of CYP51. Mutation of these amino acids at specific positions has been shown to
result in a decrease in the activity of the enzyme (Lepesheva & Waterman, 2007; 2004). Similarly, F with
the highest φp¨q in AFSpCYP3q is also known to be important in the enzymatic activity of CYP3 (Qiu
et al., 2008; Denisov et al., 2019; Zhang et al., 2024). A cluster of F residues in CYP3 is known to form a
substrate-binding pocket with an active site (Zhang et al., 2024).

3.1.7 Globins

MSA analysis: (Figures 2b,2c and Appendix Figure 9) For the three globin paralog pairs (Table 1), we
observe in the MSA, conservation of the class-wise partition of AFS in the respective families.

Structural analysis of AFS: Myoglobin is a monomer, while α and β chains together constitute hemoglobin,
a tetramer of composition α2β2 (Dill et al., 2017). We superimposed the 3D structures of myoglobin,
hemoglobin-α and hemoglobin-β (PDB IDs: 3RGK, 1HHO) and mapped the α, β contact residues (based on
(Shionyu et al., 2001)) of hemoglobin tetramer to that of myoglobin. We find that the amino acids K, E, I,
which are common in AFS1pMyoglobinq and AFS2pMyoglobinq, are less in number at the contact residues of
hemoglobin tetramer and more in number at the corresponding locations in myoglobin, which is a monomer
(see Figure 4).

Literature evidence: W with a significantly high Shapley value φpW q (Figure 3b), is present in
AFS3pHemoglobin-βq. It is highly conserved at position 40 in the MSA (Figure 2c) in hemoglobin-β
sequences as compared to hemoglobin-α sequences. This W at position 40 has been determined to be present
in hemoglobin-β at one of its contact positions to hemoglobin-α in the tetrameric structure (Shionyu et al.,
2001) and is, therefore, a structurally and functionally significant residue. C, present in AFS1pHemoglobin-αq

and AFS2pHemoglobin-βq, has been shown to play an important role in the tetrameric structure of hemoglobin
formed by α and β hemoglobins (Kan et al., 2013).

Logical consistencies in AFS (refer to Table 1 (Globins) for AFS1, AFS2, AFS3):

‚ AFS1 X AFS2 “ tE, Y, V, K, I, C, W u. Except for W with the least Shapley value in AFS1 (Figure 3a),
the remaining are excluded from AFS3.
• Explanation:V, Y, C in AFS1pHemoglobin-αq X AFS2pHemoglobin-βq can be expected not to be key in

AFS3 for distinguishing α vs β hemoglobin.
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? ?
(a) Lysozyme C vs α-Lactalbumin

? ?
(b) Hemoglobin-α vs Myoglobin

? ?
(c) Hemoglobin-β vs Hemoglobin-α

Figure 2: Multiple sequence alignment of sequences from the respective families in (a), (b) and (c). Within
each alignment, 15 sequences on the left are from one family, and those on the right are from the other family
in each of (a), (b) and (c). The sequences are randomly selected from the train set of the families. For each
aligned sequence in (a) AFSpα-Lactalbuminq amino acids are in green and AFSpLysozyme Cq are in red, in
(b) the amino acids in AFS1pMyoglobinq are in green and AFS1pHemoglobin-αq are in red, and in (c) the
amino acids in AFS2pHemoglobin-αq are in green and AFS2pHemoglobin-βq are in red. The intensity of the
color is proportional to the Shapley value φpiq of the amino acid i (Figures 3 and 7).
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(a) Myoglobin vs Hemoglobin-α (b) Hemoglobin-α vs Hemoglobin-β (c) Myoglobin vs Hemoglobin-β

(d) Secretin-like vs Glutamate-like (e) Rhodopsin-like vs Glutamate-like (f) Rhodopsin-like vs Secretin-like

Figure 3: Shapley value (φpiq) for AAC features computed using SVEA. See Appendix Figure 7 for remaining
paralogs.

‚ AFS2 X AFS3 “ tW, Nu. N is excluded from AFS1, while W gets the least Shapley value in AFS1
(Figure 3a).

‚ AFS3 X AFS1 “ tW, P, S, Gu. tP, S, Gu are excluded from AFS2, while W gets the least Shapley value in
AFS1.

The Shapley value for W is very close to the cut-off in AFS1 (Figure 3a). If it is dropped from AFS1, then
the exclusion principle illustrated above would be more prominent as in GPCRs (Section 3.1.8).

3.1.8 G-protein coupled receptors (GPCRs)

Literature evidence: W (with highest Shapley value φp¨q) and H common in AFS2pSecretinq and
AFS3pSecretinq (Table 1 and Figure 3), are well conserved at multiple positions with structural impor-
tance and functional importance in secretin-like GPCR sequences (Cary et al., 2022; Harmar, 2001). Mutating
certain conserved W leads to a loss in expression of this GPCR at the cell surface, where it functions (Cary
et al., 2022). H present in the intracellular loop region is also known to be important in the activation of
certain secretin-like GPCRs (Harmar, 2001).

M common in AFS1pRhodopsinq and AFS3pRhodopsinq has been found to be present at important binding
pockets and a position important for activation of the GPCR (Okada et al., 2001; Sakmar et al., 2002). S
from AFS3pRhodopsinq is found at multiple major phosphorylation sites (see Okada et al. 2001 for details)
in Rhodopsin.

Mutating D at two positions has been shown to affect glutamate binding of glutamate receptor GPCRs
(Jingami et al., 2003). D is common in AFS1pGlutamateq and AFS2pGlutamateq and has highest Shapley
value in AFS1.

E and D common in AFS1pAminergicq and AFS2pAminergicq are present at binding sites of important
ligands (like histamine/serotonin) of aminergic receptors (Vass et al., 2019).

Logical consistencies in AFS of GPCRs (refer to Table 1 (GPCRs) for AFS1, AFS2, AFS3):

9
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(a) alignment of myoglobin (brown) and hemoglobin-α (blue) sequences based on structure alignment (right)

(b) alignment of myoglobin (brown) and hemoglobin-β (silver) sequences based on structure alignment (right)

Figure 4: The hemologlobin-α/β tetramer contact points (as identified in Table 3 and Table 4 of Shionyu
et al. (2001)) are highlighted in the hemoglobin sequences. These have also been highlighted in green
in the structure alignments (right). The highlighted amino acids in the myoglobin chain correspond to
the positions that align with hemologlobin-α/β tetramer contact points. The amino acids K, E, I, which
are common in AFS1pMyoglobinq and AFS2pMyoglobinq, are in bold in the alignment. We find that
K, E, I are less in number at the contact residues of hemoglobin tetramer and more in number at the
corresponding locations in myoglobin, which is a monomer. Structure alignment is done using the online
tool available at https://www.rcsb.org/alignment, with the default parameter settings (|algorithm:
jFATCAT(rigid)||RMSD Cutoff: 3||AFP Distance Cutoff: 1600||Fragment Length: 8|).

‚ AFS1 X AFS2 “ tDu, is excluded from AFS3.

‚ AFS2 X AFS3 “ tW, H, V u, is excluded from AFS1.

‚ AFS3 X AFS1 “ tQ, E, Mu, is excluded from AFS2.

Logical consistencies in AFS of Rhodopsin-like GPCR subfamilies (refer to Table 1 (Rhodopsin-like
GPCRs) for AFS1, AFS2, AFS3):

‚ AFS1 X AFS2 “ tL, E, F, M, Du, is excluded from AFS3.

‚ AFS2 X AFS3 “ tR, V u, is excluded from AFS1.

‚ AFS3 X AFS1 “ tP, W u is excluded from AFS2.

The explanations for these consistencies are similar to that in globins (Section 3.1.7).

3.2 Validation of AFS using test data

The classification scores on test data for the classifiers trained using AAC and AFS features, respectively,
are reported in Appendix Table 5. Using AFS features, the test AM scores are at least 70%. For 13 of 15
paralog pairs, the scores are greater than 83%, and for 8 of 15 paralog pairs, it is greater than 90%. Details
of the test data are provided in Appendix Section A.1.

10
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3.2.1 Test scores on random feature subsets

For each paralog pair, we train classifiers using 100 random feature subsets of the same size as AFS. We
compute the mean test AM scores of these classifiers with the AFS-based classifier (See Appendix Table 7).
The mean test AM score drops for these random feature subsets in comparison to the AFS-based score for all
15 paralog pairs. The mean test AM further drops for 14 pairs, if the randomly selected amino acids contain
only non-AFS amino acids. Details in Appendix Section E.5.

3.3 Marginal contribution feature importance (MCI) of AFS

For an AFS of size d, the top-d amino acids ranked by MCI differ with AFS only in at the most two amino
acids. For 8 of 15 datasets, AFS and top-d MCI sets are the same, while only for two datasets do they differ
in two amino acids. For all 15 datasets, at least the top-3 MCI amino acids are in AFS. For 11 of these
datasets, at least the top-5 MCI amino acids are in AFS. (Appendix Table 6)

3.4 Relating AFS to diseases

We report some examples that link AFS amino acids to diseases. This is based on evidence from biology
literature that suggests the role of these amino acids in the function/structure of the respective families.
Thus, modification/mutation of these residues may be disease-causing as it could affect the structure and/or
function of the protein, leading to disruption of one or more physiological processes.

Example 1: W has the highest Shapley value in AFS2pSecretinq and AFS3pSecretinq (Table 1). Mutating
certain conserved W leads to a loss in cell-surface expression of calcitonin generelated peptide receptor
(CGRPR), a secretin-like GPCR (Cary et al., 2022). A study (Ringer et al., 2017) in mice reports that
disruption in CGRPR signalling accelerates Amyotrophic Lateral Sclerosis (ALS).

Example 2: (AFS of hemoglobin-β - from myoglobin vs hemoglobin-β and hemoglobin-α vs hemoglobin-β)
(Table 1)

(a) W with a significantly high Shapley value φpW q (Figure 3(b)), is present in AFS3pHemoglobin-βq.
It is also in AFS2pHemoglobin-βq (Table 1). W to S and W to R mutation at a certain position
in hemoglobin-β has been reported to result in abnormal hemoglobins - Hemoglobin Hirose (Sasaki
et al., 1978) and Hemoglobin Rothschild (Sharma et al., 1980), respectively. These have altered
oxygen affinities and dissociation of hemoglobin tetramer to dimers.

(b) N is common in AFS3pHemoglobin-βq and AFS2pHemoglobin-βq. Mutation/deletion of N has been
associated with β-thalassemia (Thein, 2013).

(c) V has the highest Shapley value in AFS2pHemoglobin-βq and mutations of this residue are related to
hemoglobin variants with altered structure and biochemical properties leading to varying physiological
effects (Thom et al., 2013). An example is Hemoglobin Olympia (Stamatoyannopoulos et al., 1973),
having V at a particular position mutated to M .

4 Conclusion

We demonstrated an ML pipeline to identify the key amino acid types, AFS, that distinguish a pair of
paralogous proteins. The role of AFS in functionally distinguishing the paralog pairs was validated using
various sources of domain knowledge. The robustness of this approach, as demonstrated by considering
a diverse set of paralogous protein pairs, illustrates its wider applicability. Identification of AFS can be
used as an initial data-driven step before doing more detailed experimental investigations, like site-directed
mutagenesis (Bachman, 2013) resolving sequence-function relationship. Our experiments suggest that amino
acids with high Shapley values are more likely to play a role in the functional difference between the paralogs
and, hence, can be targeted for site-directed mutagenesis experiments. As the size of AFS is small (5-10
amino acids of 20), significantly fewer mutations can be tried.

11
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As our pipeline works without using the sequence order information of the amino acids in the protein, it
posits an interesting question to biologists : how amino acid composition by itself is able to distinguish
paralogs given ample evidence that 3D structure and function are conserved despite sequence divergence
(Lau et al., 2015)! Notably, amino acids in the AFS typically occur more than once in the sequence, but
our method is silent on the specific positions where the amino acid has a functionally distinguishing role.
This may be addressed by engineering features that incorporate sequence order information from the protein.
However, these features can be very high-dimensional, for example, 20k-dimensional for k-mer features. The
Monte Carlo based approximation algorithm for Shapley values would require exponentially more sampling
(in number of features) for good approximations.

Impact Statement

This paper presents a computationally efficient data lean ML pipeline. It can be used by biologists to decide
whether they should invest valuable resources (skilled manpower, time, funds, etc.) for performing wet-lab
experiments to determine amino acid(s) that are critical for functional differentiation of paralogous proteins.
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A Data collection and code

We discuss the details of the data collection procedure for the datasets used in our computational experiments.

A.1 Datasets of 15 paralog pairs

We apply our method for identifying amino acid types that distinguish paralogous proteins using the datasets
described in Table 2. Only the train set is used for computing AFS, while the test set is used for computing
classification scores for the linear SVM trained using the train set.

Table 2: The number of sequences in the train and test sets of the protein families considered in computational
experiments.

Family Train (Swiss-Prot) Test (TrEMBL)

Lysozyme-like
α-Lactalbumin 22 53
Lysozyme C 74 14

Trypsin-like
Trypsin 66 3813
Chymotrypsin 17 281

Tubulin
α 117 190
β 191 347

Histone
H2A 180 16599
H2B 177 7599

Interleukin-1
α 16 12
β 25 194

Cytochrome P450
CYP3 32 818
CYP51 32 601

Globins
Myoglobin 107 479

Hemoglobin-α 303 525
Hemoglobin-β 285 261

(GPCR-PEnDB)
Train (80%) Test (20%)

GPCR families
Rhodopsin-like 181 45
ë Lipid receptors 113 28

Peptide receptors 367 92
Aminergic receptors 186 47

Glutamate-like 89 23
Secretin-like 90 23

All datasets are taken from publicly available databases (UniProt (The UniProt Consortium, 2020) and
GPCR-PEnDB (Begum et al., 2020)). Well-known pairs of paralogous proteins were curated from millions of
sequences from UniProt considering the number of sequences and manually reviewed labels available for them.
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For all datasets except GPCR, we use manually curated Swiss-Prot sequences for training and electronically
annotated TrEMBL sequences for testing. These proteins have very specific functions. In contrast, GPCRs
are a large and diverse group of transmembrane proteins that mediate cellular responses to extracellular
signals. We chose to use an already curated dataset in this case. For each of the GPCR families considered
(Table 2), the sequences are randomly split as 80%-train/20%-test. The use of GPCR-PEnDB data is to
illustrate the effectiveness of our method with random slicing, which is inevitable when additional curated
data are not available. If one or many UniProt entries in a dataset had identical sequences, then only one of
them was retained, and the remaining were deleted.

The following queries were used for collecting data from UniProt (The UniProt Consortium, 2020),
• lysozyme C: (protein_name:"lysozyme C") AND (fragment:false) NOT (existence:4) NOT

(existence:5) AND (length:[* TO 200]) AND (ec:3.2.1.17) AND (xref:cazy-GH22)

• α-lactalbumin: (protein_name:"alpha lactalbumin") AND (fragment:false) NOT
(existence:4) NOT (existence:5) AND (length:[* TO 200])

• myoglobin: (protein_name:"myoglobin") AND (xref:interpro-IPR002335) AND
(fragment:false) NOT (existence:5) NOT (existence:4)

• hemoglobin-α: (protein_name:"hemoglobin alpha") AND (xref:interpro-IPR002338) AND
(fragment:false) NOT (existence:5) NOT (existence:4)

• hemoglobin-β: (protein_name:"hemoglobin beta") AND (xref:interpro-IPR002337) AND
(fragment:false) NOT (existence:5) NOT (existence:4)

• trypsin: (protein_name:trypsin) AND (fragment:false) AND (ec:3.4.21.4) NOT
(existence:5)

• chymotrypsin: (protein_name:chymotrypsin) AND (fragment:false) AND (ec:3.4.21.1) NOT
(existence:5)

• tubulin-α: (protein_name:"tubulin alpha") AND (family:"tubulin family") AND
(length:[300 TO 600]) AND (fragment:false) NOT (annotation_score:1) NOT
(annotation_score:2)

• tubulin-β: (protein_name:"tubulin beta") AND (family:"tubulin family") AND
(length:[300 TO 600]) AND (fragment:false) NOT (annotation_score:1) NOT
(annotation_score:2)

• interleukin-1 α (protein_name:"interleukin-1 alpha") AND (family:il-1) AND
(fragment:false) NOT (existence:4) NOT (existence:5) AND (length:[200 TO 400]) NOT
(annotation_score:1)

• interleukin-1 β: (protein_name:"interleukin-1 beta") AND (family:il-1) AND
(fragment:false) NOT (existence:4) NOT (existence:5) AND (length:[200 TO 400]) NOT
(annotation_score:1)

• Histone H2A: (protein_name:"histone h2a") AND (family:histone) AND (fragment:false)
NOT (existence:4) NOT (existence:5) AND (length:[* TO 200])

• Histone H2B: (protein_name:"histone h2b") AND (family:histone) AND (fragment:false)
NOT (existence:4) NOT (existence:5) AND (length:[* TO 200])

• Cytochrome P450 CYP3: (family:"Cytochrome P450") AND ((gene:cyp3) OR
(gene:cyp3A*)) AND (fragment:false) NOT (existence:4) NOT (existence:5) NOT
(annotation_score:1)

• Cytochrome P450 CYP51: (family:"Cytochrome P450") AND ((gene:cyp51) OR
(gene:cyp51A*) OR (gene:cyp51B*) OR (gene:cyp51C*)) AND (fragment:false) NOT
(existence:4) NOT (existence:5) NOT (annotation_score:1)

The GPCR sequences were collected from the GPCR-PEn database (URL: https://gpcr.utep.edu/)
(Begum et al., 2020). Sequence redundancy of the rhodopsin-like family was reduced using CD-hit (Fu et al.,
2012) with 30% sequence similarity cutoff.
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A.2 Code

The code to reproduce the computational experiments is available at https://anonymous.4open.science/
r/AFS_AAC_SVM-F3D9. Protein sequences used in the computational experiments along with their UniProt
IDs, are provided in the datasets folder as .csv files for each family.

B Sequence and function diversity of protein classes within a dataset

Paralogous proteins have a common ancestor but have diverged in functionality. Protein functions are an
aggregate of descriptors describing protein’s activity and influence at various levels. They can be at the
molecular level, like binding with specific molecules and catalysing reactions, to the biological process level,
like energy metabolism. In B.1, we discuss the diversity of the functions of the proteins considered in our
datasets.

As paralogs have a common ancestor, high sequence similarity would suggest high evolutionary conservation in
the proteins. In B.2, we discuss the extent of sequence diversity in protein classes considered in our datasets.

We see that the dataset of proteins considered in our computational experiments are diverse in their function
and sequences.

B.1 Function diversity

We have considered paralogous proteins with varying functional differences. We find very subtle differences in
the functions of trypsin and chymotrypsin. On the other hand, the function difference is drastic in the case
of alpha-lactalbumin and lysozyme c.

Trypsin and chymotrypsin are a family of enzymes that break peptide bonds in proteins. The difference in
the function of these proteins is fine-grained; trypsins cleave only the peptide bond following a basic amino
acid (K and R), while chymotrypsins cleave the peptide bond following a hydrophobic amino acid (F , W ,
and Y ) (Dodson & Wlodawer, 1998).

GPCRs constitute a large and diverse class of cell surface receptor proteins. They trigger intra-cellular
pathways in response to external signals. These signals are in the form of small molecules, called ligands.
Depending upon the nature of ligands and other 3D structural similarities, GPCRs are grouped into distinct
classes. We consider three such classes viz., rhodopsin-like, secretin-like, and glutamate-like. Further, we
consider pairwise three subfamilies of rhodopsin-like GPCRs viz., aminergic receptors, lipid receptors, and
peptide receptors.

Lysozyme C and α-lactalbumin are sequence and structure homologs with mutually exclusive functions and
high fold conservation. Based on phylogenetic analysis, they are considered to have diverged from a common
ancestor millions of years ago (Qasba et al., 1997).

Globins are a superfamily of functionally divergent homologous protein families with a high level of fold
conservation. We consider three well-known globin families viz., myoglobin, hemoglobin-α and hemoglobin-β.
Myoglobin is a monomer that binds and releases oxygen as per physiological requirements. On the other
hand, α and β chains together constitute hemoglobin, a tetramer of composition α2β2 (Dill et al., 2017), that
transports oxygen in red blood cells.

Tubulin-α and tubulin-β are similar to the hemoglobin-α and hemoglobin-β pair in that they both share
sequence and 3D structural similarities but have subtle functional differences. One copy each of tubulin-α
and tubulin-β form a functional dimer. Notably, neither two copies of tubulin-α nor two copies of tubulin-β
can form a functional dimer. Tubulin-β has a catalytic activity (GTP hydrolysis) that is absent in tubulin-α.
This is one of the several subtle functional differences between tubulin-α and tubulin-β.

Interleukin-1 alpha and interleukin-1 beta are both proteins involved in the immune system. They differ from
each other in their occurrence within the body (on cell surface or in blood circulation), activation mechanisms,
and associated signalling pathways (Galozzi et al., 2021).
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Cytochrome P450 (abbreviated as CYP) is a family of proteins whose function is clearance of ’foreign’
molecules (drugs; also called as xenobiotics) as well as in certain biosynthesis pathways e.g., of steroid
hormones. CYP3 and CYP51 are two of the several classes of CYPs; CYP3 metabolizes lipophilic molecules
(McArthur et al., 2003) whereas CYP51 is involved in steroid biosynthesis (Hargrove et al., 2012).

Hemoglobin-α/hemoglobin-β, histone H2A / histone H2B and tubulin-α/tubulin-β are paralog pairs that
together function as heteromers (protein complexes made up of different protein subunits).

B.2 Sequence Diversity

The dataset of the 15 paralog pairs in our experiments comprises 21 protein families (Table 2). For these
families, we compute the within-class sequence similarities (for sequences within a protein family). We also
compute the inter-class sequence similarities (between sequences from two different protein families) for each
paralog pair. These are shown in Appendix Figure 5. We use a longest subsequence based similarity score,
lcss, that is defined in B.2.1. In B.2.2, we see that lcss significantly varies across the 21 protein families we
are considering as compared to its variation between the two protein sequences of any paralog pair.

B.2.1 Longest common subsequence based similarity score (lcss)

We compute the longest common subsequence (lcs) based similarity score (lcss) between a pair of protein
sequences. We define lcss between two sequences as the length of their longest common subsequence,
lcs, divided by the length of the longest sequence from the two. For a pair of protein sequences, ppiq “

pp
piq

1 , p
piq

2 , . . . , p
piq

L1
q of length L1 and ppjq “ pp

pjq

1 , p
pjq

2 , . . . , p
pjq

L2
q of length L2, their lcss is,

lcspppiq, ppjqq “ max
q

k

s.t. q “ pq1, q2, . . . , qkq

pq1 “ ppiq
x1

“ ppjq
y1

, q2 “ ppiq
x2

“ ppjq
y2

, . . . , qk “ ppiq
xk

“ ppjq
yk

q

x1 ă x2 ă . . . ă xk

y1 ă y2 ă . . . ă yk

lcs based similarity score, lcss, is defined as,

lcsspppiq, ppjqq “
lcspppiq, ppjqq

maxpL1, L2q
P r0, 1s

lcsspppiq, ppjqq “ 1 if and only if ppiq “ ppjq, i.e., sequences are identical. Whereas lcsspppiq, ppjqq “ 0 if and
only if p

piq
x ‰ p

pjq
y , @x, y, i.e., there are no amino acids common to both the sequences.

B.2.2 Within-class and inter-class lcss for the 15 paralog pairs

Within-class lcss: lcsspppiq, ppjqq are computed with ppiq, ppjq from the same protein family. These are
shown in blue and magenta in Figure 5 (with box-plots) for each of 21 protein families in the 15 paralog
pairs.
• 12 of 21 protein families have median within-class lcss greater than 0.5. This implies less sequence diversity

in this set of families from the remaining families. These are,
– Median lcss ě 0.6 for 11 of these 12 families and ě 0.8 for 3 families (high level of sequence

conservation).
– For 7 out of the 15 paralog pairs, the median within-class lcss ą 0.5 for both families of a paralogous

pair.
• For the remaining 9 protein families, the median within-class lcss is less than 0.5. This implies high

sequence diversity in this set of families from the remaining families. These are,
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Table 3: The median within-class lcss between sequences from the respective families. See boxplot in Figure 5.

Family α-lactalbumin lysozyme C myoglobin hemoglobin-α hemoglobin-β
Median lcss 0.6 0.59 0.81 0.63 0.67

Family tubulin-α tubulin-β cytochrome P450 CYP3
Median lcss 0.83 0.82 0.7

Family interleukin-1 α interleukin-1 β histone H2A histone H2B
Median lcss 0.72 0.66 0.65 0.68

Table 4: The median within-class lcss between sequences from the respective families. See boxplot in Figure 5.

Family cytochrome P450 CYP51 rhodopsin-like receptor aminergic receptor lipid receptor
Median lcss 0.47 0.34 0.39 0.37
Family peptide receptor glutamate-like receptor secretin-like receptor trypsin chymotrypsin

Median lcss 0.37 0.35 0.36 0.47 0.45

– For 7 out of the 15 paralog pairs, the median within-class lcss ă 0.5 for both families of a paralogous
pair.

• For the paralog pair Cytochrome P450 CYP3 vs CYP51, the median sequence similarity for CYP3 is
greater than 0.5, while for CYP51, it is less than 0.5.

Inter-class lcss: lcsspppiq, ppjqq are computed with ppiq, ppjq respectively from two protein families that are
paralog pairs. These are shown in cyan in Figure 5 (with box-plots) for each of the 15 paralog pairs.
• The median inter-class lcss is less than 0.5 for all paralog pairs. This implies sequences of the proteins

across the classes are not very similar.
Distinguishing paralog pairs based on within-class and inter-class lcss: If we analyse the box plots
in Figure 5 - two paralog pair proteins can be considered to be distinguishable based on sequence similarity if
the upper-whisker of inter-class lcss is lower than the lower-whiskers of the respective within-class lcss scores.
• Apart from paralog pairs, tubulin-α vs tubulin-β (Figure 5c) and interleukin-1 α vs interleukin-1 β

(Figure 5d), no other paralog pair is distinguishable based on sequence similarity.
• For Trypsin vs Chymotrypsin and the 6 GPCR pairs (Figures 5b and 5j to 5o), the median inter-class lcss

scores are close to the within-class lcss scores making them indistinguishable based on sequence similarity.
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(a) Lysozyme C vs α-Lactalbumin (b) Trypsin vs Chymotrypsin (c) Tubulin-α vs Tubulin-β

(d) Interleukin-1 α vs Interleukin-1
β

(e) Histone H2A vs Histone H2B (f) Cytochrome P450 CYP3 vs
CYP51

(g) Myoglobin vs Hemoglobin-α (h) Hemoglobin-α vs
Hemoglobin-β

(i) Myoglobin vs Hemoglobin-β

(j) Secretin-like vs Glutamate-like (k) Rhodopsin-like vs Glutamate-
like

(l) Rhodopsin-like vs Secretin-like

(m) Aminergic vs Lipid receptors (n) Aminergic vs Peptide receptors (o) Lipid vs Peptide receptors

Figure 5: lcss sequence similarity scores for the 15 paralog pair datasets. In the boxplots, the lower and upper
whiskers are at 1.5 IQR (inter-quantile range) values away from the first and third quartiles respectively.
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C The SVEA algorithm for AFS

Algorithm 1 φi Monte-carlo approximation algorithm as suggested in (Tripathi et al., 2020; 2021)
Input: Feature set N “ t1, 2, . . . , 20u, Number of sample permutations samPerm, Datasets pDP , DQq,
Set of coalitions Sam_co_set “ rpqs

Initialise: vppqq “ 0, φ̂i :“ 0@i P N
Append N to Sam_co_set.
for s “ 1, 2, . . . , samPerm do

Take π P PermSetpNq with probability 1
20! .

for i “ 1, 2, . . . , 20 do
Compute Predipπq “ tπp1q, πp2q, . . . πpk ´ 1q|i “ πpkqu

if Predipπq not in Sam_co_set then
Compute vpPredipπqq “ 1 ´ tr_erpPredipπqq.
Append Predipπq to Sam_co_set.

end if
if Predipπq Y i not in Sam_co_set then

Compute vpPredipπq Y tiuq “ 1 ´ tr_erpPredipπq Y tiuq.
Append Predipπq Y tiu to Sam_co_set.

end if
φ̂i “ φ̂i ` vpPredipπq Y tiuq ´ vpPredipπqqq

end for
end for
φ̂i “

φ̂i

samP erm , @i P N

D SVM training for AFS partition

We provide details for the linear SVM classifier discussed in Section 2.3. We use 5-fold cross-validation
to tune the SVM regularisation hyperparameter C from t0.1, 1, 10, 100, 1000u that gives the best average
classification score for the 5 folds. C is inversely proportional to the strength of regularisation. In general,
we find that there is an imbalance in the number of sequences that we find for the two paralogous proteins,
i.e. say nP ąą nQ. It is known that accuracy is not a well-suited performance measure of the classifier
in class imbalance settings. Therefore, we use the arithmetic mean of sensitivity and specificity (AM) to
measure the performance of the classifier (Brodersen et al., 2010). Further, we use a class-balanced version of
hinge loss for training the SVM as suggested in (Menon et al., 2013) for statistical consistency with the AM
score. Appendix Table 5 reports the train and test scores of the trained linear SVM with AAC and AFS
features, respectively, on the protein family datasets (See Appendix Table 2) considered in our computational
experiments.
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E More details for computational experiments

We present here details on some of the computational experiments that have been referenced in the main
paper.
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Figure 6: The sizes of the AFS for the 15 datasets.

(a) Lysozyme C vs α-Lactalbumin (b) Trypsin vs Chymotrypsin (c) Tubulin-α vs Tubulin-β

(d) Interleukin-1 α vs Interleukin-1 β (e) Histone H2A vs Histone H2B (f) Cytochrome P450 CYP3 vs CYP51

(g) Aminergic vs Lipid receptors (h) Aminergic vs Peptide receptors (i) Lipid vs Peptide receptors

Figure 7: (Continued from Figure 3) Shapley value (φpiq) for AAC features computed using SVEA.
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Table 5: Classification scores for different pairs of paralogous proteins using the train/test datasets described
in Table 2, using AAC and AFS features. The AFS amino acids computed for each pair are given in Table 1.
The train score is the mean (˘1 standard deviation) 5-fold cross-validation score. AM is the arithmetic
mean of specificity and sensitivity. Acc is the accuracy.

(a) Lysozyme C vs α-Lactalbumin
AAC AFS

Train AM 1.0 0.993 (˘0.013)
Test AM 0.896 0.898
Train Acc 1.0 0.99 (˘0.02)
Test Acc 0.836 0.881

(b) Trypsin vs chymotrypsin
AAC AFS

Train AM 0.992 (˘0.015) 0.977 (˘0.031)
Test AM 0.873 0.835
Train Acc 0.988 (˘0.024) 0.965 (˘0.047)
Test Acc 0.844 0.756

(c) Tubulin-α vs Tubulin-β
AAC AFS

Train AM 0.996 (˘0.009) 0.997 (˘0.006)
Test AM 0.992 0.992
Train Acc 0.997 (˘0.006) 0.994 (˘0.008)
Test Acc 0.991 0.994

(d) Histone H2A vs Histone H2B
AAC AFS

Train AM 0.983 (˘0.016) 0.983 (˘0.01)
Test AM 0.91 0.934
Train Acc 0.983 (˘0.016) 0.983 (˘0.01)
Test Acc 0.889 0.922

(e) Globins
Dataset AAC AFS

Myoglobin vs
Hemoglobin-α

Train AM 0.998 0.994
(˘0.003) (˘0.009)

Test AM 0.968 0.97
Train Acc 0.998 0.995

(˘0.005) (˘0.006)
Test Acc 0.969 0.971

Myoglobin vs
Hemoglobin-β

Train AM 1.0 1.0
(˘0.0) (˘0.0)

Test AM 0.957 0.936
Train Acc 1.0 1.0

(˘0.0) (˘0.0)
Test Acc 0.949 0.919

Hemoglobin-α
vs
Hemoglobin-β

Train AM 0.983 0.976
(˘0.008) (˘0.007)

Test AM 0.961 0.935
Train Acc 0.983 0.976

(˘0.008) (˘0.006)
Test Acc 0.966 0.947

(f) GPCRs
Dataset AAC AFS

Secretin-
like vs
Glutamate-
like

Train AM 0.933 0.95
(˘0.042) (˘0.032)

Test AM 0.888 0.845
Train Acc 0.933 0.95

(˘0.042) (˘0.032)
Test Acc 0.889 0.844

Rhodopsin-
like vs
Glutamate-
like

Train AM 0.884 0.85
(˘0.042) (˘0.045)

Test AM 0.967 0.934
Train Acc 0.867 0.837

(˘0.038) (˘0.032)
Test Acc 0.956 0.926

Rhodopsin-
like vs
Secretin-
like

Train AM 0.917 0.878
(˘0.051) (˘0.065)

Test AM 0.934 0.846
Train Acc 0.908 0.863

(˘0.06) (˘0.073)
Test Acc 0.941 0.853

Aminergic
vs Lipid
receptors

Train AM 0.949 0.943
(˘0.014) (˘0.005)

Test AM 0.922 0.843
Train Acc 0.943 0.94

(˘0.017) (˘0.008)
Test Acc 0.92 0.84

Aminergic
vs Peptide
receptors

Train AM 0.835 0.818
(˘0.06) (˘0.053)

Test AM 0.844 0.79
Train Acc 0.83 0.819

(˘0.06) (˘0.051)
Test Acc 0.827 0.784

Lipid vs
Peptide
receptors

Train AM 0.829 0.76
(˘0.022) (˘0.035)

Test AM 0.845 0.709
Train Acc 0.838 0.75

(˘0.018) (˘0.032)
Test Acc 0.858 0.725

(g) Interleukin-1 α vs Interleukin-1 β

AAC AFS
Train AM 0.98 (˘0.04) 0.98 (˘0.04)
Test AM 0.979 0.985
Train Acc 0.975 (˘0.05) 0.975 (˘0.05)
Test Acc 0.961 0.971

(h) Cytochrome P450 CYP3 vs Cytochrome P450 CYP51
AAC AFS

Train AM 0.967 (˘0.041) 0.933 (˘0.062)
Test AM 0.902 0.92
Train Acc 0.969 (˘0.038) 0.936 (˘0.062)
Test Acc 0.894 0.908
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E.1 Tubulin

The inter-chain contact residues from the tubulin-α/β heterodimer were identified using ChimeraX 1.4
(Pettersen et al., 2021). The Contacts tool available in Tools Ñ Structure Analysis was used with settings as
shown in Figure 8. For PDB ID:3JAR we count the residues of chain-A (tubulin-α) and chain-B (tubulin-β)
which are in contact with the residues of other tubulin chains. Similarly, for PDB ID:5N5N we count the
residues of chain-G (tubulin-α) and chain-B (tubulin-β) which are in contact with the residues of other
tubulin chains. The code for counting the AFS residues at the identified contact points of the respective
chains is available at https://anonymous.4open.science/r/AFS_AAC_SVM-F3D9.

E.2 Histone

The inter-chain contact residues of histone H2A and H2B were identified from its heterooctameric structure
comprising of two H2A/H2B dimers and one H3/H4 tetramer, using ChimeraX 1.4. The Contacts tool
available in Tools Ñ Structure Analysis was used with settings as shown in Figure 8. For PDB ID: 1AOI and
3KWQ, we count the residues of an H2A and an H2B chain, which are in contact with other histone chains
in the heterooctameric structure. The code for counting the AFS residues at the identified contact points of
the respective chains is available at https://anonymous.4open.science/r/AFS_AAC_SVM-F3D9.

Figure 8: ChimeraX 1.4 settings for identifying inter-chain contact points from the tubulin-α/β heterodimer
and from the histone heterooctamer
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Figure 9: Multiple sequence alignment of hemoglobin-β and myoglobin sequences. 15 sequences on the
left are from hemoglobin-β and on the right are from myoglobin. The sequences are randomly selected from
the train set of the protein families. AFSpMyoglobinq amino acids are in green and AFSpHemoglobin-βq in
red. The intensity of the color is proportional to the Shapley value φpiq of the amino acid i (See Figure 3c)
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Figure 10: Multiple sequence alignment of tubulin-α and tubulin-β sequences. 15 sequences on the left are
from tubulin-β and on the right are from tubulin-α. The sequences are randomly selected from the train set
of the protein families. AFSpTubulin-αq amino acids are in green and AFSpTubulin-βq in red. The intensity
of the color is proportional to the Shapley value φpiq of the amino acid i (See Figure 7c)
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Figure 11: Multiple sequence alignment of histone H2A and histone H2B sequences. 15 sequences on the
left are from histone H2B and on the right are from histone H2B. The sequences are randomly selected from
the train set of the protein families. AFSpHistone H2Aq amino acids are in green and AFSpHistone H2Bq in
red. The intensity of the color is proportional to the Shapley value φpiq of the amino acid i (See Figure 7e)
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Figure 12: Multiple sequence alignment of interleukin-1 α and interleukin-1 β sequences. 15 sequences
on the left are from interleukin-1 β and on the right are from interleukin-1 α. The sequences are randomly
selected from the train set of the protein families. AFSpInterleukin-1 αq amino acids are in green and
AFSpInterleukin-1 βq in red. The intensity of the color is proportional to the Shapley value φpiq of the amino
acid i (See Figure 7d)
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E.3 Marginal contribution feature importance (MCI) (Catav et al., 2021) for AFS

We validate the top-selected features, AFS, in our experiments using the MCI feature rankings (Catav et al.,
2021). The MCI method, by design, was aimed at addressing the issue of correlated features. Catav et al.
(2021), show that Shapley value-based feature rankings are altered when correlated features are introduced.
Therefore, they propose the MCI method using a different set of axioms to circumvent the issue of correlated
features. Thus, we validate the Shapley value-based feature rankings with those by MCI. We find strong
agreement in the two rankings (see Table 6), suggesting a lack of correlated features for the datasets considered
in our experiments. We use Shapley value instead of MCI in our main pipeline for computing AFS, as the
efficiency axiom of the Shapley value allows us to draw a fair cutoff line for selecting the important features.
Since MCI doesnt satisfy the efficiency axiom, the same cutoff line may not be applicable to it.

For a feature i, its MCI score is defined as,

MCIpiq “ max
SĎNztiu

vpS Y tiuq ´ vpSq,

Here, vp¨q is the same as that defined in Section 2.2. We compare the amino acids with the top-d (d “ size of
AFS) MCI scores to the AFS in Table 6. MCI is computed using the same approximation scheme as in
Appendix Section C Algorithm 1 with appropriate modifications.
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Table 6: AFS comparison with the amino acids having the top-d MCI (Catav et al., 2021) scores. Here,
d is the size of AFS for the respective dataset. The amino acids that differ in the two sets are in
bold and underlined, with their counts mentioned in the rightmost column. For 8 of 15 datasets, AFS
and top-d MCI sets are the same, while only for two datasets do they differ in two amino acids. For all 15
datasets, at least the top-3 MCI amino acids are in AFS. For 11 of these datasets, at least the top-5 MCI
amino acids are in AFS.

Paralog pair top-d MCI amino acids
(rank-1 Ñ rank-d) AF S

Difference
count

Lysozyme C (74) and
α-Lactalbumin (22) tI, A, D, G, R, F, N, E, W, Lu tI, A, D, N, G, R, E, F, L, W u 0

Trypsin (66) and
Chymotrypsin (17) tY, W, T, A, K, V, Iu tY, W, T, A, V, K, P u 1

Tubulin-α (117) and
Tubulin-β (191) tQ, M, K, H, F, I, N, A, Y, Cu

tM, Q, K, N, F, I, H, A, C, Y u
0

Histone H2A (180) and
Histone H2B (177) tL, G, K, S, M, T, N, F, Y u tL, G, S, M, K, N, T, Y, F u 0

Interleukin-1 α (16) and
Interleukin-1 β (25) tG, C, T, V, Q, S, A, I, P u tC, G, T, S, V, Q, A, N , P u 1

Cytochrome P450 CYP3
(32) and CYP51 (32) tH, F, G, K, A, P, Nu tH, F, G, K, A, P, Nu 0

Globins
Myoglobin (107) and
Hemoglobin-α (303) tV, Y, E, K, S, G, W, I, C, P u tE, S, Y, V, K, P, I, G, C, W u 0

Myoglobin (107) and
Hemoglobin-β (285) tV, K, E, C, W, N, F, Y, M, Iu tK, V, C, E, W, N, F, M, Y, Iu 0

Hemoglobin-α (303) and
Hemoglobin-β (285) tW, S, N, P, V u tW, P, N, S, Gu 1

GPCRs
Rhodopsin-like (181) and

Glutamate-like (89) tD, E, Q, G, L, Iu tD, Q, E, G, M , Lu 1

Secretin-like (90) and
Glutamate-like (89) tW, H, Y, V, Du tW, H, Y, V, Du 0

Rhodopsin-like (181) and
Secretin-like (90) tW, E, H, Q, S, M, V, Au tW, E, M, S, V, H, Q, Au 0

Rhodopsin-like GPCRs
Aminergic receptors (186)
and Lipid receptors (113) tL, E, P, K, F, D, Iu tL, P, E, W , F, M , Du 2

Aminergic receptors (186)
and Peptide receptors (367) tL, E, K, F, M, H, R, Du tL, F, E, M, K, D, V , Ru 1

Lipid receptors (113) and
Peptide receptors (367) tR, G, P, K, I, V, T u tP, R, G, I, W , S, V u 2

E.4 Variance in Shapley value estimates and AFS

We computed the Shapley value estimates across 10 Monte Carlo runs with different random seeds. We do
not find significant variation in these estmiates across the different runs as seen in Figure 13.

We also looked at the AFS identified using the Shapley value in each run. We do not find substantial
differences in the AFS. As a stronger check of consistency, for each paralog pair, we computed the intersection
of the AFSs across the 10 runs, see Table 7. We find that for each paralog pair, this intersection of AFSs
recovers at least 66.6% (two-thirds) of the amino acids from the (single-run) AFS reported in the paper. For
14 pairs, greater than 75% is recovered. For 4 pairs, 100% is recovered. Furthermore, the amino acids with
the top-3 Shapley values reported in the paper are present in the intersection of AFSs for all paralog pairs.
For 13 pairs, the top-5 amino acids are in the intersection.
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(a) Lysozyme C vs α-Lactalbumin (b) Trypsin vs Chymotrypsin (c) Tubulin-α vs Tubulin-β

(d) Interleukin-1 α vs Interleukin-1 β (e) Histone H2A vs Histone H2B (f) Cytochrome P450 CYP3 vs
CYP51

(g) Myoglobin vs Hemoglobin-α (h) Hemoglobin-α vs Hemoglobin-β (i) Myoglobin vs Hemoglobin-β

(j) Secretin-like vs Glutamate-like (k) Rhodopsin-like vs Glutamate-like (l) Rhodopsin-like vs Secretin-like

(m) Aminergic vs Lipid receptors (n) Aminergic vs Peptide receptors (o) Lipid vs Peptide receptors

Figure 13: Mean (˘ standard deviation) of Shapley value estimates across 10 Monte Carlo runs with different
random seeds. The cut-off φcutoff here is computed based on the mean Shapley values.
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Table 7: Comparison of AFS computed in 1 run with the intersection of AFS computed over 10 runs. The
amino acids that differ in the two sets are in bold and underlined. The percentage of overlap in the two
sets is given in the rightmost column.

Paralog pair AF S in 1 run Intersection of AF S over 10
runs

overlap
ratio (%)

Lysozyme C and
α-Lactalbumin tI, A, D, N, G, R, E, F, L, W u

tI, A, D, N, G, R, E, F u 80

Trypsin and
Chymotrypsin tY, W, T, A, V, K, P u tY, W, T, A, V, Ku 86

Tubulin-α and Tubulin-β
tM, Q, K, N , F, I, H, A, C, Y u

tM, Q, K, F, I, H, A, Cu 80

Histone H2A and Histone
H2B tL, G, S, M, K, N, T, Y , F u tL, G, S, M, K, N, T u 78

Interleukin-1 α and
Interleukin-1 β

tC, G, T, S, V, Q, A, N , P u tC, G, T, S, V, Q, Au 78

Cytochrome P450 CYP3
and CYP51 tH, F, G, K, A, P, Nu tH, F, G, K, A, P u 86

Globins
Myoglobin and
Hemoglobin-α tE, S, Y, V, K, P , I, G, C, W u tE, S, Y, V, K, I, G, Cu 80

Myoglobin and
Hemoglobin-β tK, V, C, E, W, N, F, M, Y, Iu tK, V, C, E, W, N, F, M, Y u 90

Hemoglobin-α and
Hemoglobin-β tW, P, N, S, Gu tW, P, N, S, Gu 100

GPCRs
Rhodopsin-like and

Glutamate-like tD, Q, E, G, M , Lu tD, Q, E, Gu 67

Secretin-like and
Glutamate-like tW, H, Y, V, Du tW, H, Y, V, Du 100

Rhodopsin-like and
Secretin-like tW, E, M, S, V, H, Q, Au tW, E, M, S, V, H, Q, Au 100

Rhodopsin-like GPCRs
Aminergic receptors and

Lipid receptors tL, P, E, W, F, M, Du tL, P, E, W, F, M, Du 100

Aminergic receptors and
Peptide receptors tL, F, E, M, K, D, V, Ru tL, F, E, M, K, V u 75

Lipid receptors and Peptide
receptors tP, R, G, I, W, S, V u tP, R, G, I, W, V u 86

E.5 AFS comparison with random feature subsets

We sample 100 random feature subsets of the same size as the AFS and train classifiers for each paralog pair.
We compute the mean test classification scores across these subsets, see Table 8. The mean test AM score
drops for these randomly selected amino acid subsets for all 15 paralog pairs. The mean test AM further
drops if randomly selected amino acids contain only non-AFS amino acids for 14 pairs.

Reason for increase in score for α-lactalbumin/lysozyme-C pair using non-AFS subset: There is a marginal
increase in test score (0.8%) with non-AFS random subset for α-lactalbumin/lysozyme-C. We suspect this to
be due to the noisy nature of the dataset as the test set consists of unreviewed TrEMBL UniProt entries.
For example: we find that one of the sequences in the test set (UniProt ID: T1PBP9) is identified as C-type
lysozyme/alpha-lactalbumin family in UniProt. Another sequence (UniProt ID: Q5M8G0) is identified in
UniProt as Novel protein similar to lysozyme C . Furthermore, the class imbalance in the test data is the
reverse of that in the train data.
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Table 8: The classification test AM scores using AFS and random amino acid subset features for each
paralog pair. The size of the random subsets here is the same size as the respective AFS. The ‘Random
Subset’ column shows the mean (˘ standard deviation) of the test scores for 100 randomly sampled feature
subsets. The ‘Non-AFS random subset’ is similar, but the random features are sampled from the respective
non-AFS amino acids.

Paralog Pairs AFS Random subset Non-AFS random subset
α-Lactalbumin / Lysozyme C 0.898 0.881 (˘0.044) 0.906 (˘0.0)
Myoglobin / Hemoglobin-α 0.970 0.927 (˘0.032) 0.824 (˘0.0)
Myoglobin / Hemoglobin-β 0.936 0.918 (˘0.022) 0.823 (˘0.0)
Hemoglobin-α / Hemoglobin-β 0.935 0.836 (˘0.075) 0.754 (˘0.058)
Trypsin / Chymotrypsin 0.835 0.773 (˘0.075) 0.724 (˘0.086)
Tubulin-α / Tubulin-β 0.992 0.973 (˘0.017) 0.869 (˘0.0)
Rhodopsin-like / Glutamate-like 0.934 0.834 (˘0.077) 0.743 (˘0.052)
Glutamate-like / Secretin-like 0.845 0.705 (˘0.083) 0.670 (˘0.065)
Rhodopsin-like / Secretin-like 0.846 0.797 (˘0.072) 0.689 (˘0.046)
Aminergic receptors / Lipid receptors 0.843 0.782 (˘0.076) 0.637 (˘0.038)
Aminergic receptors / Peptide receptors 0.790 0.764 (˘0.045) 0.660 (˘0.025)
Lipid receptors / Peptide receptors 0.709 0.653 (˘0.073) 0.566 (˘0.061)
Interleukin-1 α / Interleukin-1 β 0.985 0.954 (˘0.038) 0.818 (˘0.030)
Histone H2A / Histone H2B 0.934 0.899 (˘0.032) 0.791 (˘0.028)
Cytochrome P450 CYP3 / CYP51 0.920 0.865 (˘0.043) 0.723 (˘0.061)

Figure 14 shows how the train and test AM scores vary for different feature subset sizes for each paralog pair.
We see that feature subsets based on the top-k Shapley values have in general higher train/test AM scores in
comparison to random-k feature subsets.
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(a) Lysozyme C vs α-Lactalbumin (b) Trypsin vs Chymotrypsin

(c) Tubulin-α vs Tubulin-β (d) Interleukin-1 α vs Interleukin-1 β

(e) Histone H2A vs Histone H2B (f) Cytochrome P450 CYP3 vs CYP51

(g) Myoglobin vs Hemoglobin-α (h) Hemoglobin-α vs Hemoglobin-β

(i) Myoglobin vs Hemoglobin-β

Figure 14: Classification scores (train and test AM) for feature subsets of different sizes. The blue line
shows the score for top-k features based on the Shapley value. The red line shows the mean (˘ standard
deviation) of the scores for 100 randomly selected subsets of size k. The train AM score here is the mean
5-fold cross-validation score on the training dataset. Figure is continued on page 37.
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(j) Secretin-like vs Glutamate-like (k) Rhodopsin-like vs Glutamate-like

(l) Rhodopsin-like vs Secretin-like (m) Aminergic vs Lipid receptors

(n) Aminergic vs Peptide receptors (o) Lipid vs Peptide receptors

Figure 14: continued from page 36.
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