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ABSTRACT

Early-exit neural networks (EENNs) reduce inference cost by allowing inputs to
terminate at intermediate layers when classification confidence exceeds a thresh-
old. However, practical deployments must operate under stochastic arrivals, lim-
ited device resources, and finite buffers, where the backlog directly impacts perfor-
mance. This paper provides a systems-oriented study of buffer-aware EENNs and
introduces new learning algorithms for threshold selection. First, we report results
from real testbed experiments on heterogeneous devices, showing that incorporat-
ing buffer state into early-exit decisions substantially improves throughput and
accuracy under load. Second, we extend policy gradient methods by integrating
the Tsallis-softmax parameterization, which yields tunable exploration, robust-
ness to high-variance rewards, and connects recent advances in the δ-exponential
family for policy optimization to practical scheduling in EENNs. Third, we pro-
pose contextual bandit algorithms that exploit the natural monotonic relationship
between backlog and urgency via parametrized thresholds, reducing sample com-
plexity and enabling generalization across system loads. Together, these contribu-
tions highlight that early exits are not only a model-design mechanism but also a
systems scheduling problem, bridging theory and practice for robust and efficient
inference in resource-constrained environments.

1 INTRODUCTION

Deep Neural Networks (DNNs) have achieved remarkable advances in performance in computer vi-
sion tasks (Krizhevsky et al., 2012; He et al., 2016; Edozie et al., 2025). However, their substantial
computational demands hinder deployment on mobile devices for inference. A common workaround
leverages cloud infrastructures equipped with GPUs (Satyanarayanan, 2017). In a cloud-only set-
ting, mobile devices capture data and transmit it to the cloud, where the entire DNN inference is
executed. The limitations of a cloud-only approach have motivated edge-cloud collaborative DNN
inference. In this setup, edge devices process the initial layers of the model and send intermedi-
ate results to the cloud for further computation. This hybrid strategy reduces latency and improves
resource utilization, overcoming the drawbacks of performing inference solely at the edge or in
the cloud. By distributing the model across heterogeneous resources, the system benefits from the
strengths of both environments. Nonetheless, this approach demands offloading to the cloud, which
introduces communication and energy overheads, without ensuring higher accuracy. Early-exit neu-
ral networks (EENNs) provide a promising solution to mitigate these overheads while maintaining
flexible edge-cloud inference (Kang et al., 2017; Hu et al., 2019; Kag & Fedorov, 2023).

EENNs exploit the observation that the initial neural layers can produce confident predictions for
many inputs. To enable this, EENNs have exit branches (i.e., intermediary classifiers) inserted at
their intermediate neural layers. For each input, these exit branches can estimate their classification
confidence. If it exceeds a predefined threshold, the input can be classified early at the exit branch.
Otherwise, it continues through the remaining layers for further processing (Teerapittayanon et al.,
2016; Bajpai & Hanawal, 2025). Therefore, EENNs have emerged as a powerful approach to reduce
inference latency and energy consumption in deep models by allowing inputs to exit early once clas-
sification confidence surpasses a threshold (Liu et al., 2023; Mishra et al., 2025). While most prior
work has focused on algorithmic aspects of early exits (e.g., learning confidence thresholds (Pacheco
et al., 2024) or optimizing placement of side branches (Ju et al., 2021)), the integration of early
exits into real systems remains underexplored. In practice, inputs arrive according to stochastic
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processes, devices operate under heterogeneous hardware constraints, and buffering is unavoidable
when workloads exceed instantaneous processing capacity (Chen et al., 2025). These system-level
realities motivate a rethinking of how early exits should be managed in realistic deployments.

In this paper, we make three main contributions:

A systems perspective on buffer-aware early exits. We present results from real experiments
conducted on a heterogeneous testbed consisting of a Raspberry Pi and a MiniPC, where images
are generated at the edge and either classified locally via an early exit or forwarded to the powerful
device, acting as a cloud server, for deeper processing. Crucially, we account for the impact of
the buffer state, i.e., the number of pending jobs in the queue, on the early-exit decision. Our
experiments illustrate how buffer-aware scheduling improves both throughput and accuracy under
varying load, offering the first empirical evidence of how queue dynamics shape early-exit efficiency
in practice (Sections 2 and 4).

Policy gradient with Tsallis-softmax thresholds. We extend classical policy gradient algorithms
for threshold selection by incorporating the Tsallis-softmax parameterization (Zhu et al., 2025).
This design choice builds robustness into the system, as Tsallis-softmax policies yield tunable ex-
ploration, heavier-tailed action distributions, and improved stability under high-variance rewards.
We connect recent advances on the δ-exponential family for policy optimization with the concrete
problem of buffer-aware early exits, demonstrating how insights from reinforcement learning theory
can be translated into practical scheduling gains (Section 3.1).

Parametrized Upper Confidence Bound (UCB) with monotonic thresholds. We introduce a
parametrized, monotonic threshold function of the form α(q) = θ1q + θ2, where q is the backlog
size. This approach leverages domain knowledge by explicitly capturing the natural monotonic
relationship between backlog and urgency: as queues grow longer, early exits should become more
likely. Embedding this structure into the learning process reduces the memory footprint, improves
robustness to noise, and accelerates convergence. Importantly, it enhances the algorithm’s ability
to generalize across varying system loads with fewer samples, making it suitable for deployment
resource-constrained environments (Section 3.2).

These contributions establish a new perspective on early-exit neural networks: one that integrates
system dynamics, leverages robust reinforcement learning primitives, and introduces structured ban-
dit algorithms. By grounding our work in both real testbed experiments and theoretical extensions,
we demonstrate that early exits are not only a model-design choice, but also a systems scheduling
problem — and that addressing this perspective is key to unlocking their full potential in practice.

Outline. Section 2 introduces EENNs and the queue-aware objective and Section 3 presents the
two considered learning approaches (policy gradient and UCB). Section 4 details our heterogeneous
testbed and reports results. Section 5 reviews related work and Section 6 concludes. Appendices A
to G contain formal results, supplementary material and a link to our anonymized code repository.

2 EARLY-EXIT NEURAL NETWORKS

Early-exit Deep Neural Networks (EENNs) augment a backbone model (e.g., MobileNetV2 (Dong
et al., 2020)) by adding one or more exit branches, which enable inputs to exit the model early
once sufficient confidence is reached. This mechanism enables an edge-cloud collaborative DNN
inference. Moreover, it allows a flexible trade-off between inference latency and predictive accuracy,
making EENNs particularly suited for resource-constrained or time-sensitive applications.

An EENN processes an input x layer by layer, with intermediate branches that can output a predic-
tion before the final layer. At an intermediate exit, the model computes a probability vector pI(x)
and its confidence CI(x) = maxc[pI(x)]c. If CI(x) ≥ α, where α ∈ [0, 1] is a threshold, the
sample is classified locally with prediction ŷI(x). Otherwise, it is forwarded (with overhead o) to
the final layer, which produces probability vector pL(x), confidence CL(x), and prediction ŷL(x).
For clarity, we omit the explicit dependence on x when unambiguous. Further details on notation
and background for EENNs are provided in Appendices A and B, respectively.

Why a learned threshold? The optimal α depends on context. Even for a fixed model and data
distribution, the preferred trade-off between accuracy and latency shifts with load (e.g., backlog,
device heterogeneity, or network contention). A fixed threshold is inherently fragile. We instead
learn thresholds online using bandit algorithms, viewing each candidate threshold as an action.
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2.1 A BANDIT VIEW OF EARLY EXITS

In a multi-armed bandit (MAB) setup, each action is associated with an unknown instantaneous
reward distribution. In this paper, the reward rt is a function of the selected action (threshold) αt.
When an early exit is taken, no further improvement in confidence can be obtained, resulting in a
reward of zero. Otherwise, if the input proceeds through the final layers, the reward corresponds to
the confidence gain from the intermediate to the final layer, denoted as ∆C = max(CL − CI , 0),
discounted by the additional overhead of data offloading ot. Hence, the reward rt(αt) can be written
as

rt(αt) =

{
0, if CI ≥ αt (early exit),

∆C − ot, otherwise,
(1)

where ∆C is an accuracy-gain proxy: it is large when the final layer is confidently more accurate
than the side branch, and zero when the side branch was already as confident as the tail of the EENN
model (Bajpai & Hanawal, 2025; Casale & Roveri, 2023; Pacheco et al., 2024). The term ot is
the overhead incurred by processing up to the last layer. We assume that it ranges between [0, 1],
making ∆C and ot commensurable. The overhead may stem from communication latency when
offloading data to the cloud, from energy consumption due to additional processing, or from both
factors combined. In this work, we instantiate the overhead as a linear function of the backlog qt
ensuring that the penalty remains on the same scale as the confidence gains, i.e., ot(qt) is in the
unitary interval for the feasible backlog sizes.

Equivalently (up to the action-independent baseline CI ) the reward could take the more symmetric
form

r̃t(αt) =

{
CI , if the sample exits early,

CL − o(qt), otherwise,

so both rewards rt and r̃t induce the same optimal policy and regret. We emphasize that the backlog
is a genuine state variable that modulates the relative advantage of early exit versus full processing
through o(qt): when qt is small, o(qt) is small and full processing is favoured; as qt grows, o(qt)
increases and early exits become preferable.

Expected reward. At each round t, a context qt ∈ Q = {0, . . . , Qmax} is observed, an action
αt ∈ A is chosen, and a reward rt ∈ [0, 1] is observed. For each pair (q, α) ∈ Q × A, there is an
unknown distribution νq,α with mean µ(q, α) := Er∼νq,α

[r] = E[∆C − o | CI < α] · P [CI < α],
since r(α) = (∆C−o(q))1{CI<α}, where P [CI < α] represents the probability of processing up to
the last layer. The controller’s objective is to find an optimal threshold α∗(q) ∈ argmaxα∈A µ(q, α)
that maximizes the expected reward µ(q, α).

Policy and regret. A policy specifies how the controller chooses a threshold αt at round t, given the
reward history observed up to that point. To evaluate a given policy, we define the expected regret
RT :=

∑T
t=1

(
µ(qt, α

⋆(qt)) − µ(qt, αt)
)
, up to the horizon of T rounds, which quantifies the cu-

mulative expected cost of making suboptimal decisions. The expected regret grows over time as the
controller balances exploration (testing different thresholds) and exploitation (choosing the currently
best-performing threshold). A difficulty here is the fact that the backlog length qt is endogenous: it
evolves according to the queueing dynamics and is directly affected by the chosen exits (actions),
so that both the context process and the reward distributions become action-dependent and poten-
tially non-stationary. A full regret analysis in this stateful, queue-dependent setting would require a
more elaborate treatment (closer to Markovian bandits or simple MDPs with queueing dynamics),
which is beyond the scope of this paper. We present Theorem C.1 (Appendix) as an illustrative re-
gret result that clarifies how our UCB-based policy fits into the classical stochastic contextual bandit
framework under a discretized, exogenous-queue approximation.

Buffer-aware overhead. In realistic deployments, inputs may accumulate in a queue before being
processed by the EENN model at the edge device. Let qt = |Qt| denote the backlog at decision
time; a larger qt implies a longer queuing delay and a higher risk of drops when the buffer capacity
B is tight. We model the overhead as a queue-aware penalty,

ot ≡ o(qt) = ν qt − κ, (2)

with ν ≥ 0 and κ≥ 0. Plugging equation 2 into equation 1 yields a reward that balances accuracy
gain against latency pressure.Therefore, rewards are queue-aware: if the intermediate confidence CI
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exceeds the sampled threshold αt, the sample exits early with reward rt = 0. Otherwise, it proceeds
to the final layer, and the reward is

rt = max(CL − CI , 0)− (νq − κ), (3)

where the first term max(CL −CI , 0) measures the information gain from continuing deeper in the
network, while the second term (νq−κ) penalizes queue buildup, balancing accuracy improvements
against system congestion. In this way, the policy learns to adapt thresholds αt not only to prediction
confidence but also to the current backlog, ensuring accuracy and timeliness in dynamic workloads.
The affine choice o(qt) = νqt − κ is just a modelling simplification used in our experiments; the
algorithms only require a bounded reward, and can in principle handle more general monotone
penalties (steeper affine, convex, or SLA-style piecewise functions).

2.2 FROM VANILLA TO ROBUST, BUFFER-AWARE LEARNING

The bandit perspective supports two complementary families we study in Section 3.

Vanilla bandits. We begin with two standard algorithms that treat each threshold α ∈ A as an
independent arm. In the vanilla policy-gradient variant (Algorithm 1 with δ = 1), each backlog state
q maintains an independent softmax distribution over A, parameterized by {θq(α)}. In the vanilla
UCB variant, the controller keeps per-threshold estimates Q̂(α) and counts N(α), and selects

αt ∈ argmax
α∈A

Q̂(α) + β

√
ln t

N(α) + 1
, (4)

with on-policy updates from rt(αt) (Algorithm 2). Under the simplest setting, previous information
about the structure of the optimal policy, e.g., thresholds should decrease with backlog, is not taken
into account.

Robust bandits with structure. We next consider two enhancements that improve robustness
and sample efficiency. First, Tsallis exploration: replacing the softmax with the δ-softmax from
the generalized δ-exponential family (Algorithm 1, δ ̸= 1) yields heavier- or lighter-tailed action
distributions with a single knob δ, stabilizing learning under high-variance, queue-induced rewards.
Second, monotone, parametric thresholds: instead of learning a separate threshold for each backlog
state, we encode domain knowledge that urgency increases with backlog by restricting policies to
monotone mappings

α(q) = clip[0,1]
(
θ1q + θ2

)
, θ1 ≤ 0, (5)

and apply contextual UCB over θ = (θ1, θ2) (Algorithm 2) or policy-gradient over the induced dis-
creteA. This structural bias reduces memory, accelerates convergence, and promotes generalization
across backlog states.

Relation to Bandits with Knapsacks and constrained MDPs. As requested by a reviewer, we
clarify our positioning with respect to Bandits with Knapsacks (BwK) (Badanidiyuru et al., 2018)
and budgeted bandits (Madani et al., 2004; Cayci et al., 2019; Xia et al., 2015). Conceptually, our
controller also trades off accuracy against resource usage (computation and backlog), so there is
a clear connection. Formally, however, classical BwK/budgeted bandits operate with a monotone,
non-renewable budget that is consumed by arm pulls and the process stops when the budget is ex-
hausted. In our model, the backlog qt is a queueing state that evolves with arrivals and departures,
can both increase and decrease, and is bounded by a finite buffer; the “resource” is instantaneous
buffer capacity in a steady-state regime, not a depleting budget in a finite-horizon regime. More-
over, we do not perform primal–dual optimization over Lagrange multipliers: the penalty o(qt) is a
modelling choice (reward shaping) rather than a dual variable. The existing BwK algorithms do not
apply directly to our setting without substantial modification.

Putting it together. The combination of queue-aware rewards (see equation 1 and equation 2)
with (i) robust exploration via δ-softmax and (ii) monotone threshold parameterizations model the
trade-off between accuracy and latency. Under light load (small q), the learned policy tends to
defer to the final layer when the expected gain E[max(CL − CI , 0)] exceeds the small penalty
o(q). Under heavy load, the penalty dominates and the policy shifts toward earlier exits, stabilizing
throughput and reducing loss. Our experiments in Sec. 4 validate these behaviors on a heterogeneous
Raspberry Pi→MiniPC testbed across stationary and non-stationary workloads.
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Algorithm 1: Policy Gradient for Queue-Aware EENNs with δ-Softmax Thresholds
1 Input: learning rate η, max queue Qmax, Tsallis parameter δ
2 Init: θq(α)← 0 for all q ∈ {0, . . . , Qmax} and α ∈ A
3 for t = 1, 2, . . . , T do
4 Observe next event (arrival or service); update backlog q ← |Q| ; # Track queue size
5 Compute policy over A:

π
(q)
t (α) = expδ

(
θq(α)

)
/
∑
α′∈A

expδ

(
θq(α

′)
)

Sample threshold αt ∼ π
(q)
t ; # Select action (confidence threshold)

6 Obtain CI ;
7 if CI ≥ αt then
8 rt ← 0 ; # Early exit
9 else

10 Obtain CL

11 rt ← max(CL − CI , 0)− (µq − κ) ; # Accuracy gain minus queue penalty

12 Update baseline Bt;
13 foreach α ∈ A do
14 gt(α)←

(
1{α = αt} − π

(q)
t (α)

) / (
1 + (1− δ)θq(α)

)
; # Tsallis component

15 θq(α)← θq(α) + η (rt −Bt) gt(α) ; # Gradient ascent update

3 ROBUST BANDITS

We now turn to bandit-based methods for learning queue-aware thresholds in early-exit neural net-
works. We present two complementary approaches: policy-gradient methods (Section 3.1) and
UCB-based methods (Section 3.2). For each of these approaches, we distinguish between a vanilla
case and a robust case. In the vanilla setting, policies are learned using standard formulations (soft-
max for policy gradient, tabular thresholds for UCB). In the robust setting, we incorporate additional
structure or parameters: for policy gradient, the δ-softmax generalization (Tsallis-softmax) provides
tunable exploration and robustness to high-variance rewards; for UCB, a monotonic parameteriza-
tion α(q) = θ1q+θ2 captures the natural relationship between backlog and urgency, reducing sample
complexity and improving generalization. This extends the flexibility of vanilla methods to intro-
duce robustness and system-awareness into bandit-based threshold selection, whose experimental
evaluation in a testbed is reported in Section 4.

3.1 POLICY-GRADIENT WITH δ-SOFTMAX THRESHOLDS

We study a policy-gradient approach for learning queue-aware thresholds in EENNs. At each step,
the system observes the backlog q = |Q| and samples a threshold αt ∈ A according to a δ-softmax
policy. This policy is based on a deformation of the exponential function, introduced in Tsallis
(1988), defined as

expδ(x) =

{
exp(x), δ = 1,(
1 + (1− δ)x

) 1
1−δ , δ ̸= 1, (1−δ)x > −1.

The special case δ = 1 recovers the standard softmax, while δ ̸= 1 yields Tsallis-softmax with tun-
able exploration. From a statistical viewpoint, the inverse function logδ x := exp−1

δ (x) (Appendix
D), known as the Tsallis δ-logarithm, coincides with the classical Box–Cox power transform with
parameter λ = 1− δ, widely used for variance stabilization and heavy-tail mitigation in statistics.

Vanilla policy-gradient. In the vanilla case, the policy at each backlog state q is parameterized
by θq(α) for all α ∈ A, and action probabilities are computed using the standard softmax (δ = 1).
This setup is straightforward and widely used, but it lacks flexibility: the exploration–exploitation
trade-off is entirely determined by the scale of the parameters, and the resulting distributions often
assign non-negligible probability mass even to poor actions.

5
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Robust policy-gradient. In the robust case, we generalize to the δ-softmax family, which yields
Tsallis-softmax policies. The additional parameter δ provides explicit control over exploration:
for δ < 1, the policy explores more broadly, while for δ > 1 the distribution becomes sharper.
This tunability introduces several advantages: it improves robustness under high-variance rewards,
yields heavier-tailed action distributions that avoid premature convergence, and allows tailoring the
degree of exploration to system load. By bridging standard softmax with Tsallis-softmax, the robust
policy-gradient extends the design space for queue-aware early-exit scheduling. Appendix D gives
the general derivation of the gradient-ascent update used at line 14 of Algorithm 1. Despite the
growing interest in the δ-exponential family (e.g., (Zhu et al., 2025)), to the best of our knowledge
this specific gradient-ascent rule for δ-softmax (Tsallis-softmax) policies is novel to this work.

Generalized softmax family (δ-softmax). Our robust policy-gradient design builds on a gener-
alized exponential family that has appeared in several guises across the literature—including the
Box–Cox transform (Box & Cox, 1964), the δ-exponential/Tsallis family (Tsallis, 1988; Zhang &
Sabuncu, 2018), and α-fairness (Kelly, 1997). Though introduced in different domains, these for-
mulations share a common shape control that smoothly trades off exploration sharpness and tail
heaviness. Recent work has revisited this family for reinforcement learning, showing stability and
performance gains in policy optimization (Zhu et al., 2025). In this paper, we take advantage of
a Tsallis-softmax (δ-softmax) policy for threshold selection in buffer-aware early exits, yielding
tunable exploration, robustness to queue-induced variance, and an algorithm for buffer-aware early
exits, unifying stability and adaptability in dynamic edge workloads.

3.2 UCB

Algorithm 2 is written at a high level over a policy class H, where each policy h ∈ H maps the
current backlog q to a threshold α = h(q). This abstraction allows us to unify different design
choices. In our work, we focus on two concrete instantiations:

Vanilla UCB. Here,H contains one policy for each backlog value q ∈ {0, . . . , Qmax} and threshold
α ∈ A. That is, h(q) is constant in q and simply represents the choice of a fixed threshold for a
particular backlog state. This corresponds to learning an independent threshold for each backlog
size, without imposing any structure across queue states. While flexible, this approach requires
storing and exploring |A| ·Qmax arms and thus scales poorly as Qmax grows.

Robust UCB. To exploit domain knowledge, we can instead define a structured class

H = {hθ(q) = clip[0,1](θ1q + θ2) : θ = (θ1, θ2) ∈ Θ, θ1 ≤ 0}. (6)

Here, the threshold is a linear function of backlog size q, with slope θ1 and intercept θ2. The
constraint θ1 ≤ 0 enforces a natural monotonicity: as the backlog grows, the system becomes more
aggressive in taking early exits. This parametrization drastically reduces the number of candidate
policies, encourages generalization across queue states, and accelerates convergence. Note that (6)
is a particular choice – Algorithm 2 permits other forms of policy spaces.

Together, these two instantiations illustrate a spectrum between flexibility (tabular thresholds) and
structure (monotonic parametrization). Our experiments show that incorporating monotonicity
yields significant benefits in robustness and sample efficiency, particularly under high load.

Why Tsallis-PG in addition to UCB? Our goal was not to replace UCB but to complement it
in a regime where its exploration can become inefficient. In our setting, each threshold α induces
a distinct action, and a naive bandit discretisation leads to a large (potentially very large) number
of arms. While UCB enjoys strong regret guarantees in this finite-armed setting, its exploration
behaviour scales with the number of actions: when there are many candidate thresholds, UCB tends
to spend a long time exploring suboptimal arms before concentrating on the best one, which can hurt
its finite-sample efficiency in our high-resolution threshold regime.

In contrast, our Tsallis policy-gradient method operates over a parametric policy on a continuous (or
finely discretised) threshold space and updates the policy in a more greedy, directionally informed
way. Rather than treating each threshold as an independent arm, the gradient step shifts probability
mass towards regions of thresholds that currently appear promising, which can significantly reduce
the amount of uniform exploration required when the action space is large.
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Algorithm 2: Contextual-UCB for Queue-Aware EENNs with Threshold Policies
1 Input: policy classH, UCB parameter β > 0, max queue Qmax

2 Init: N(h)←0, Q̂(h)←0 for all h∈H
3 for t = 1, 2, . . . , T do
4 Observe next event and set context q ← |Q| ; # Backlog as context

# Select policy by UCB on its induced threshold at context q
5

ht ← argmax
h∈H

{
Q̂(h) + β

√
(ln t)/(N(h) + 1)

}
αt ← ht(q) ; # Threshold for current backlog

6 Obtain CI (and CL, if no early exit) and compute reward rt;
# Update policy statistics

7 N(ht)← N(ht) + 1;

8 Q̂(ht)← Q̂(ht) +
rt−Q̂(ht)
N(ht)

;

4 EVALUATION

Figure 1: The edge-cloud testbed

We evaluate buffer-aware EENNs under three settings: a
stationary workload, a mixed easy-hard workload, and a
mixed hard-easy workload. In stationary workload, im-
ages from the dataset are unaltered, with no image dis-
tortion, such as blur and noise. In the easy–hard work-
load, the arrival rate remains fixed, but while the first
half of the experiment uses original images, the second
half introduces images with gaussian blur. Finally, the
hard–easy workload reverses the order of the easy–hard
workload. For each case, we report both system-level
performance and per-machine breakdowns. The metrics
include accuracy, loss rate, loss ratio, score and goodput,

Score = Accuracy − LossRatio, Goodput = Accuracy ·ArrivalRate · (1− LossRatio),

where score and goodput combine accuracy and loss ratio to provide unified measures capturing the
trade-off between accuracy and loss. Table 1 presents the results for these metrics. For completeness,
Appendix E provides additional metrics, including arrival rate, throughput, and utilization.

Testbed. Our experimental setup combines a heterogeneous edge–cloud testbed with EENNs. The
testbed, as shown in Figure 1, consists of two devices: a Raspberry Pi 4B Rev 1.4 with a buffer of
size 10, and a MinisForum Z83-F equipped with an Intel Atom x5-Z8350 CPU and a buffer size of
50. The MinisForum is considered a MiniPC and serves as the cloud. The Raspberry Pi and MiniPC
are connected via WLAN with a bandwidth of 30 Mbps. Jobs first arrive at the Raspberry Pi; if
an input does not satisfy the early-exit condition at the intermediate branch, it is forwarded to the
MiniPC for deeper processing.

Model and dataset. The EENN used in the experiment is based on ResNet50, with an intermediate
exit branch placed at the 9th residual block (out of a total of 20). This design strikes a balance
between intermediate accuracy and computation savings. The EENN is trained on CIFAR-10 image
classification dataset (Krizhevsky et al., 2009) with 60,000 images across 10 classes. A subset of
5,000 images from the test set is used as the workload in our experiment.

Routing setup. Images are generated on the Raspberry Pi. If the intermediate confidence CI ex-
ceeds the threshold α, classification occurs locally and inference terminates. Otherwise, the sample
is transmitted via WLAN to the MiniPC, which processes it until the final layer and outputs the clas-
sification result. The model deployed on the MiniPC does not contain any early-exits mechanisms.

Scheduler settings. The threshold selection scheduler is deployed on the Raspberry Pi. For the
UCB, vanilla policy gradient (PG), and Tsallis policy gradient (TSA-PG) schedulers, the thresh-
old arm α is selected from {0.50, 0.51, . . . , 0.99}. For the monotonic-parameterized UCB (UCB-
Mono), the action is θ = (θ1, θ2) with θ1 ∈ {0.00, 0.01, . . . , 0.05} and θ2 ∈ {0.5, 0.51, . . . , 0.99}.
Samples that do not exit early on the Raspberry Pi are forwarded to the MiniPC, which always
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Table 1: System-level results across workloads.
Workload / Method Accuracy Loss rate Loss ratio Score Goodput

Stationary
Baseline 0.8852± 0.0011 0.7865± 0.0165 0.1981± 0.0031 0.6871± 0.0036 2.8394± 0.0115
UCB 0.8705± 0.0012 0.3583± 0.0139 0.0902± 0.0030 0.7803± 0.0031 3.1679± 0.0113
UCB-Mono 0.8817± 0.0011 0.2902± 0.0132 0.0730± 0.0030 0.8087± 0.0029 3.2693± 0.0113
PG 0.8743± 0.0013 0.2053± 0.0085 0.0517± 0.0020 0.8227± 0.0018 3.3164± 0.0086
TSA-PG(1.75) 0.8682± 0.0014 0.1488± 0.0093 0.0374± 0.0023 0.8308± 0.0021 3.3429± 0.0096

Easy–Hard
Baseline 0.7829± 0.0015 0.8955± 0.0169 0.2256± 0.0030 0.5573± 0.0035 2.4251± 0.0105
UCB 0.7739± 0.0019 0.5368± 0.0146 0.1351± 0.0030 0.6387± 0.0036 2.6774± 0.0114
UCB-Mono 0.7818± 0.0019 0.4391± 0.0147 0.1105± 0.0032 0.6713± 0.0035 2.7816± 0.0121
PG 0.7733± 0.0019 0.3257± 0.0114 0.0819± 0.0026 0.6914± 0.0025 2.8399± 0.0106
TSA-PG(1.75) 0.7682± 0.0020 0.2619± 0.0143 0.0659± 0.0034 0.7023± 0.0033 2.8703± 0.0128

Hard–Easy
Baseline 0.7829± 0.0023 0.9045± 0.0173 0.2278± 0.0031 0.5551± 0.0036 2.4182± 0.0120
UCB 0.7728± 0.0022 0.5074± 0.0171 0.1277± 0.0037 0.6450± 0.0037 2.6965± 0.0138
UCB-Mono 0.7825± 0.0023 0.4408± 0.0153 0.1109± 0.0033 0.6716± 0.0028 2.7829± 0.0132
PG 0.7736± 0.0021 0.3223± 0.0095 0.0811± 0.0021 0.6925± 0.0024 2.8434± 0.0101
TSA-PG(1.75) 0.7687± 0.0027 0.2672± 0.0164 0.0672± 0.0039 0.7015± 0.0032 2.8682± 0.0157

processes them to completion. We instantiate the queue-aware overhead using the affine form
o(q) = 0.1q − 0.05. For the considered backlog sizes (1 ≤ q ≤ 10), this choice ensures that
the overhead o(q) is commensurable with the confidence gains and lies in the interval [0, 1].

Arrival process and duration. The input images arrive at the Raspberry Pi according to a Poisson
process with rate 4 requests per second. This ensures that the system operates in a moderately loaded
regime: high enough to induce queueing effects, yet low enough to allow meaningful differentiation
between methods without saturating the MiniPC worker. Each experiment runs for one hour, pro-
viding sufficient samples to evaluate steady-state performance in terms of accuracy, throughput, and
queueing metrics.

Although our empirical setting is limited (single mid-network exit, CIFAR-10, Poisson arrivals)
we clarify that the modeling layer—the queue-aware reward and the buffer-aware bandit formula-
tion—is not tied to these choices. The same queue-dependent objective and learning rules can be
applied to multi-exit architectures (by parameterizing thresholds per exit) and to other datasets and
backbones, and Poisson arrivals can be replaced by more realistic arrival processes at the cost of
more complex queue dynamics. Our goal here is to establish and analyze the queue-aware bandit
formulation and to show that it can be implemented end-to-end on a real testbed.

4.1 GENERALIZED-EXPONENTIAL POLICY GRADIENT OFFERS FLEXIBLE SCHEDULING

First, we evaluate the methods under the stationary workload. Table 1 presents in its upper part the
system-level metrics under a stationary arrival process. Buffer-aware variants (UCB) significantly
reduce the loss ratio by 54.5% compared to the original baseline. The monotonic parameterization
of UCB further improves the score from 0.7814 to 0.7842. Policy-gradient-based methods offer
further improvements, resulting in significantly lower loss ratios. In particular, the policy gradient
method with Tsallis-softmax (δ = 1.75) achieves the lowest loss ratio (0.0371 ± 0.0013), which is
83.4% lower than the baseline, and the highest score (0.8312±0.0015), which is 26.1% higher than
the baseline, among all evaluated methods.

Next, we evaluate the methods under context drift workloads. In the easy-hard setting, the first 30
minutes consist of original CIFAR10 images, referred to as easy jobs. In the subsequent 30 minutes,
a Gaussian blur with a kernel size of 5 and a sigma of 3 is applied to the images, and these images
are hard jobs. Similarly, in the hard-easy setting, the workload begins with blurred images (hard
jobs) for the first 30 minutes, followed by original images (easy jobs) for the next 30 minutes.

Table 1 reports the results for the stationary, easy-hard and hard-easy workloads. In both dynamic
workloads, all methods experience a reduction in accuracy and an increase in loss ratio as jobs
become more challenging to classify, requiring deeper layers of processing to achieve higher confi-
dence scores. All proposed variants significantly outperform the baseline method by at least 14.5%
and 16.2% in easy-hard and hard-easy settings, respectively. Among them, the Tsallis-softmax pol-
icy gradient with δ = 1.75 consistently balances classification accuracy and loss ratio well, achiev-
ing the highest performance scores of 0.7023 ± 0.0033 and 0.7015 ± 0.0032 in the easy-hard and
hard-easy workloads, respectively.
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Figure 2: Monitored performance score over time
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Figure 3: Sensitivity analysis on various δ used in the Tsallis-softmax policy gradient

Figure 2 presents the monitored system performance score over time across three types of workloads.
Under the stationary workload, the performance score of PG and TSA-PG (1.75), which measures
the trade-off between accuracy and system loss ratio, presents an increasing trend. This indicates
that policy-gradient methods progressively learn to generate thresholds that improve system perfor-
mance score. In the easy–hard and hard–easy workloads (with the black vertical line indicating the
context change), the performance score experiences a sharp increase or decrease after the change
is introduced. The policy-gradient methods adapt to the new context, and the performance score
increases again over time. In contrast, this adaptive effect is less obvious for UCB-based methods.

4.2 SENSITIVITY ANALYSIS

A sensitivity analysis is conducted to examine the impact of δ ∈ [0.5, 2.5] in the Tsallis-softmax
policy gradient. As shown in Figure 3, the loss ratio decreases significantly as δ increases, reaching
its minimum at δ = 1.75. Meanwhile, accuracy experiences only a slight decline. The performance
score indicates that the Tsallis-softmax policy gradient achieves the best accuracy–loss trade-off
at δ = 1.75. However, when δ exceeds 1.75, the loss ratio increases and the performance score
decreases, indicating that the algorithm is over-exploiting and has become trapped in solutions that
have already been explored.

Across all settings, we observe three consistent trends: (i) buffer-awareness variant improves robust-
ness compared to the original baseline; (ii) policy gradient methods with Tsallis-softmax outperform
their vanilla counterparts by providing tunable exploration; and (iii) the δ = 1.75 configuration of-
fers the best trade-off between accuracy and queue stability.

Takeaway. In our setting, we discretize the parameter space into as many as 100 thresholds, which
goes beyond the small discrete spaces where UCB is typically most effective. While UCB-based
algorithms remain appealing due to their theoretical regret guarantees and robustness in noisy envi-
ronments, their efficiency decreases as the discretization grows. Policy gradient methods, by con-
trast, are not tied to such discretizations, which allows them to scale more naturally to large action
spaces. Moreover, our use of the generalized-exponential family (Section 3.1) can be understood as
a form of regularization, stabilizing learning dynamics and reducing variance, as seen in the sen-
sitivity analysis of Figure 3. As a result, policy gradient approaches provide both flexibility and
robustness, adapting effectively to workload variations in large-scale queue-aware scheduling.
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5 RELATED WORK

Our work is at the intersection of two lines of research: (i) robust policy optimization methods based
on generalized exponential families and (ii) systems approaches for efficient edge inference.

Traditional policy optimization methods often rely on Gaussian policies due to their tractability in
continuous action spaces. Recent work by Zhu et al. (2025) introduced the δ-exponential family
as a broader class of policies that generalizes beyond the Gaussian, allowing for both light-tailed
and heavy-tailed behaviors. Their results show that heavy-tailed policies, such as the δ-Gaussian or
Student’s t, can improve robustness and stability in reinforcement learning. Our use of δ-softmax
(Tsallis-softmax) in queue-aware threshold selection builds directly on these insights: we adapt the
same δ-exponential machinery to discrete thresholds, giving us a tunable way to balance exploration
and exploitation in stochastic queuing environments.

On the systems side, several works have explored how to optimize inference under resource con-
straints by selectively allocating computation across edge and cloud resources. Early frameworks
such as Neurosurgeon (Kang et al., 2017), Edge AI (Li et al., 2020), and distributed inference over
heterogeneous devices (Hu & Li, 2022) established the benefits of adaptive inference offloading.
More recent work has focused on hierarchical inference, including module selection at the edge (Be-
hera et al., 2023), algorithms for balancing accuracy and delay (Moothedath et al., 2024; Eytur et al.,
2024), regret bounds for online learning (Al-Atat et al., 2024), and offloading algorithms for accu-
racy maximization (Fresa & Champati, 2023). Other proposals emphasize application-specific sce-
narios such as live video analytics for drones (Wang et al., 2018) and mobile inference balancing
latency and accuracy (Ogden & Guo, 2020). Our work is complementary: instead of focusing on
which device should process an input, we study when to stop within an early-exit network, making
the exit decision queue-aware and adaptive to system congestion.

Closer to our setting, prior work on scheduling inputs in early-exit neural networks (Casale & Roveri,
2023) estimates exit policies under a simplifying assumption that the final-layer confidence CL is
independent of the threshold α. This assumption poses potential issues: in practice, CL depends on
α, since early exits filter out easy inputs and shift the distribution of samples reaching deeper lay-
ers. In contrast, our bandit-based formulation avoids this issue by directly using observed (CI , CL)
pairs to define rewards, thereby adapting online to how threshold decisions shape the inputs that
reach deeper layers. Similarly, CEED (Chen et al., 2025) requires training multiple neural predic-
tors, whereas our lightweight, decentralized controller can leverage recent advances in robust bandit
theory (Tsallis-softmax (Zhu et al., 2025)) to efficiently schedule early exits in real time.

In summary, prior work on the δ-exponential family provides the theoretical foundation for robust
exploration, and selective query frameworks show the systems value of adaptive inference. Our work
combines these two perspectives by integrating generalized policy optimization with buffer-aware
scheduling for early-exit neural networks, validated through real testbed experiments.

6 CONCLUSION

This paper reframed early exits as a systems scheduling problem and validated the approach on a
heterogeneous edge testbed. We showed that buffer-aware thresholds materially improve perfor-
mance, that δ-softmax (Tsallis-softmax) policies stabilize learning under stochastic loads, and that
monotone parametric thresholds exploit domain structure for efficient generalization. More broadly,
our findings underscore the power of the generalized exponential family: by shaping exploration
and robustness, it provides a principled foundation for designing adaptive policies that respond to
system dynamics.

This work opens up a number of avenues for further research, including extensions to multi-exit ar-
chitectures and adversarial workloads. More broadly, incorporating energy and fairness metrics into
this framework can position buffer-aware EENNs as a foundation for sustainable edge intelligence.
Notably, much of the recent work on hierarchical inference and the edge–cloud continuum can be
cast as variations of the same fundamental question we address here: when to early exit.
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A NOTATION AND METRICS

Table 2 summarizes the acronyms of the algorithms considered in this work, together with their
parameters.

Table 2: Experimental configurations: algorithms and parameters.
Algorithm Parameters / Description

Baseline Baseline Original scheduler, no buffer awareness
UCB UCB (Vanilla) Buffer-aware scheduler (fixed thresholds)
UCB-Mono UCB (Robust, Monotonic) Linear thresholds α(q) = θ1q + θ2, θ1 ≤ 0
PG Policy Gradient (Vanilla) Standard softmax (δ = 1)
TSA-PG(γ) Policy Gradient (Robust) Tsallis-softmax with δ = γ

Table 3 summarizes notation used throughout this work.

Table 3: Notation used throughout the paper. Vectors are bold; scalars are plain.
Symbol Description

x Input (image/example)
zI , zL Logits at intermediate side branch and final layer
pI =∆ softmax(zI), pL =∆ softmax(zL) Class probability vectors at intermediate/final layers
CI =∆ maxc[pI ]c, CL =∆ maxc[pL]c Confidence (max class prob.) at intermediate/final layers
ŷ Predicted class label (early or final)
α Confidence threshold for early exit
A Discrete action set of candidate thresholds
∆C =∆ max{CL − CI , 0} Confidence gain from continuing past the side branch
o, o(q) Overhead (fixed) or queue-aware overhead (e.g., o(q) = νq − κ)
µ, κ Overhead parameters in o(q)

B Buffer capacity
q= |Q| Backlog (current number of queued inputs)
rt(αt) Instantaneous reward at round t (equation 1)
t, T Round index and time horizon
Nt(α) Times threshold α was selected up to t

Qt(α), Q̂(·) Empirical mean reward estimate (tabular/UCB)
β UCB exploration parameter
H Policy class for contextual UCB (e.g., monotone linear)
hθ(q) Parametric threshold policy clip[0,1](θ1q + θ2)

θ, θq(α) Policy parameters (global or per-backlog, PG methods)
π(q)(α) Stochastic policy over thresholds given backlog q

η Learning rate (policy gradient)
Bt Baseline for variance reduction (policy gradient)
δ Tsallis / δ-exponential shape parameter (δ=1 is softmax)
expδ(·), logδ(·) Generalized (Tsallis) exponential / logarithm
Qmax Maximum queue size tracked by the learner

A.1 EVALUATION METRICS

This appendix formalizes the metrics reported in the work. Let Ntot denote the total number of ar-
rivals to the system, Nproc the number of processed samples, Ncorr the number of correctly classified
samples, and Nlost the number of lost samples. We let T denote the total experiment time.

Workload. Except otherwise noted, we assume that arrivals occur according to a Poisson process
with rate λ,

λ =
Ntot

T
.
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Worker. A worker represents the execution resource (e.g., edge or cloud). IfW = {edge, cloud},
then

Nproc = Nedge +Ncloud.

Loss rate and loss ratio. The instantaneous loss rate is

rloss(t) =
Nlost(t)

t
,

and the average loss rate over the whole simulation is

rloss =
Nlost

T
.

The loss ratio is the fraction of arrivals that were lost due to buffer overflow,

LossRatio =
Nlost

Ntot
.

Throughput. Throughput is the rate of processed samples per unit of time

Θ =
Nproc

T
.

Utilization. Utilization measures the fraction of time the server is busy

U =
B
T
,

where B is the total busy time.

Accuracy. The accuracy is given by

Accuracy =
Ncorr

Nproc
.

Score. The score combines accuracy and loss into a single metric.

Score = Accuracy− LossRatio.

We also define the goodput as

Goodput =
Ncorr

T
= Accuracy · (1− LossRatio) · λ = Accuracy · (λ− rloss).

Higher score and goodput values indicate policies that jointly maximize accuracy while minimizing
loss.
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B BACKGROUND

At the inference phase, the EENN model processes an input x layer by layer on the edge device
until it reaches an intermediate exit branch, which produces a logit vector zI(x). The exit branch
then generates a probability vector pI(x) =∆ softmax(zI(x)). Each component [pI(x)]c of pI(x)
represents the probability of x belonging to class c ∈ C, where C is the set of possible classes. The
classification confidence estimate is defined as CI(x) =∆ maxc[pI(x)]c. If CI(x) ≥ α, where α ∈
[0, 1] is the confidence threshold, the input x is classified locally as ŷI(x) = argmaxc∈C [pI(x)]c.
Otherwise, when CI(x) < α, the classification is deemed unreliable, and the edge device offloads
the data to the cloud, incurring an overhead o. The cloud processes the remaining layers until
the final layer is reached, producing the final probability vector pL(x), the confidence estimate,
CL(x) =∆ maxc[pL(x)]c, and the final prediction ŷL(x) = argmaxc∈C [pL(x)]c. Henceforth, we
drop the explicit dependence of CI(x), CL(x), and all variables derived from them on x whenever
the input is clear from context.

C REGRET ANALYSIS FOR CONTEXTUAL UCB WITH DISCRETIZED QUEUE

We provide a finite-time regret guaranty for a simplified variant of our UCB-based early-exit policy,
formulated as a stochastic contextual bandit with a finite context space. This setting corresponds to
a discretized queue length and stationary reward distributions and is used as a baseline theoretical
model; the full queuing dynamics considered in the main paper are more general and may induce
non-stationarity.

C.1 MODEL

We consider a stochastic contextual bandit problem with the following components:

• A finite set of contexts Q = {0, 1, . . . , Qmax}, representing a discretized queue length.

• A finite set of actions (thresholds) A = {1, . . . ,K}.
• At each round t = 1, . . . , T , a context qt ∈ Q is observed, an action αt ∈ A is chosen, and

a reward rt ∈ [0, 1] is observed.

• For each pair (q, α) ∈ Q×A, there is an unknown distribution νq,α with mean

µ(q, α) := Er∼νq,α [r],

and we assume that all rewards are σ-sub-Gaussian (which holds in our setting, since all
our rewards are limited in [0, 1]). Conditioned on given (qt, αt), the rewards are i.i.d. draws
from νqt,αt

.

We assume that the sequence of contexts (qt)Tt=1 is exogenous (independent of the learner’s actions)
and arbitrary; for example, it may be i.i.d. from an unknown distribution over Q. For each context
q, we define an optimal action

α⋆(q) ∈ argmax
α∈A

µ(q, α),

and gaps
∆(q, α) := µ(q, α⋆(q))− µ(q, α) ≥ 0, α ∈ A.

We assume ∆(q, α) > 0 for all suboptimal actions α ̸= α⋆(q) and all q.

The (pseudo-)regret after T rounds is defined as

RT :=

T∑
t=1

(
µ(qt, α

⋆(qt))− µ(qt, αt)
)
=

∑
q∈Q

∑
α∈A

∆(q, α)E
[
NT (q, α)

]
, (7)

where NT (q, α) is the number of times action α is selected under context q up to time T .
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C.2 CONTEXTUAL UCB ALGORITHM

We consider the following contextual UCB strategy, which applies a standard UCB rule indepen-
dently for each context q.

For each (q, α) ∈ Q×A and each round t, let

Nt(q, α) :=

t−1∑
s=1

1{qs = q, αs = α}

denote the number of times action α has been selected when the context was q up to time t− 1, and
let

µ̂t(q, α) :=


1

Nt(q, α)

∑t−1
s=1 rs1{qs = q, αs = α}, if Nt(q, α) > 0,

0, if Nt(q, α) = 0.

Given a time horizon T , we define the UCB index for context qt and action α as

Ut(qt, α) :=

µ̂t(qt, α) + β

√
log T

Nt(qt, α)
, if Nt(qt, α) > 0,

+∞, if Nt(qt, α) = 0.

At each round t, after observing qt, the algorithm selects

αt ∈ argmax
α∈A

Ut(qt, α).

This is exactly UCB (Auer et al., 2002), with β =
√
2, applied separately to each context q, using

the same confidence parameter
√

(2 log T )/N . In (4), the term in the denominator is Nt+1 instead
of Nt, which corresponds to pulling each arm once, as initialization.

C.3 REGRET BOUND

We now state the regret guarantee.

Theorem C.1 (Regret of contextual UCB with finite context space) Under the model and as-
sumptions above, the expected regret of the contextual UCB algorithm satisfies

RT ≤ C
∑
q∈Q

∑
α̸=α⋆(q)

log T

∆(q, α)
= Õ(QmaxK log T ) , (8)

for some universal constant C > 0. In particular, the regret grows at most logarithmically with the
horizon T and linearly with the number of contexts |Q| = Qmax + 1 and actions K.

Fix a context q ∈ Q and a suboptimal action α ̸= α⋆(q) with gap ∆(q, α) > 0. Let Tq denote the
(random) number of rounds up to time T in which the context qt equals q:

Tq :=

T∑
t=1

1{qt = q}.

Conditioned on the context sequence (qt), the rounds for which qt = q define a standard K-armed
stochastic bandit problem with horizon Tq , where arm α has mean reward µ(q, α) and the algorithm
applies exactly UCB on that subsequence (because the UCB indices and choices for context q depend
only on rewards observed when qt = q).

By the standard UCB analysis (Auer et al., 2002), for each fixed q and α ̸= α⋆(q) we have

E
[
NT (q, α)

∣∣ (qt)Tt=1

]
≤ 8 log T

∆(q, α)2
+ 1 +

π2

3
. (9)

The bound uses log T instead of log Tq; since Tq ≤ T , this only makes the bound looser and is thus
valid.
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Taking expectations with respect to the context sequence and using the tower property, we obtain

E
[
NT (q, α)

]
≤ 8 log T

∆(q, α)2
+ 1 +

π2

3
.

Substituting this into the regret decomposition equation 7, we get

RT =
∑
q∈Q

∑
α∈A

∆(q, α)E
[
NT (q, α)

]
=

∑
q∈Q

∑
α ̸=α⋆(q)

∆(q, α)E
[
NT (q, α)

]
≤

∑
q∈Q

∑
α ̸=α⋆(q)

∆(q, α)

(
8 log T

∆(q, α)2
+ 1 +

π2

3

)

≤ C
∑
q∈Q

∑
α̸=α⋆(q)

log T

∆(q, α)
,

for some universal constant C > 0 (e.g., C can absorb the additive constants and the factors
8/∆(q, α), using that ∆(q, α) ≤ 1 because rewards lie in [0, 1]). This proves equation 8 and the
claimed Õ(QmaxK log T ) scaling.

Theorem C.1 should be interpreted as an illustrative regret guarantee for a simplified version of
our problem, in which the queue length is discretized, and the context sequence (qt) is treated as
exogenous and independent of the learner’s actions. In this scenario, our monotone-UCB policy in
the main text restricts the policy class to monotone thresholds α(q), which reduces the number of
effective degrees of freedom. In this finite-context, stationary setting, contextual UCB reduces to
running standard UCB per context and thus enjoys the usual logarithmic regret guarantees. In our
actual early-exit problem, however, the queue length qt is endogenous: it evolves according to the
queueing dynamics and is directly affected by the chosen thresholds (actions), so that both the con-
text process and the reward distributions become action-dependent and potentially non-stationary.
A full regret analysis in this stateful, queue-dependent setting would require a more elaborate treat-
ment (closer to Markovian bandits or simple MDPs with queueing dynamics), which is beyond the
scope of this paper. We therefore present Theorem C.1 as a first, illustrative regret result that clari-
fies how our UCB-based policy fits into the classical stochastic contextual bandit framework under
a discretized, exogenous-queue approximation.

D Q-EXPONENTIAL CALCULUS AND THE δ-SOFTMAX POLICY GRADIENT

This appendix contains the definitions and identities underlying the δ-softmax policy in the main
text, and derives the policy-gradient update used in Algorithm 1.

Despite the growing interest in the δ-exponential family (e.g., (Zhu et al., 2025)), to the best of our
knowledge the gradient-ascent rule for δ-softmax (Tsallis-softmax) policies is novel to this work.

D.1 GENERALIZED LOGARITHM AND EXPONENTIAL

For δ ∈ R, define the generalized (Tsallis) logarithm and exponential:

logδ(u) =


u1−δ − 1

1− δ
, δ ̸= 1,

log u, δ = 1,
expδ(u) =


(
1 + (1− δ)u

) 1
1−δ , δ ̸= 1,

exp(u), δ = 1,

with inverse relations logδ(expδ u) = u and expδ(logδ v) = v when u and v are in range. Two
useful identities are:

logδ(uv) = logδ u+ logδ v + (1− δ) logδ u logδ v, (10)
∂

∂u
logδ(u) = u−δ. (11)
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D.2 THE δ-SOFTMAX POLICY OVER DISCRETE ACTIONS

Let A be the finite set of thresholds. For parameters θ(α) ∈ R, define

π(α) =
expδ

(
θ(α)

)∑
b∈A

expδ
(
θ(b)

) .
When δ = 1 this reduces to the standard softmax. When δ ̸= 1, the family produces heavier- or
lighter-tailed discrete distributions depending on δ, enabling tunable exploration.

D.3 EXPECTED REWARD AND BASELINE

Let µ(α) = E[r | α] denote the per-action value and B any baseline independent of the sampled
action. The expected reward is

J(θ) = Eα∼π[µ(α) ] =
∑
α∈A

µ(α)π(α).

Subtracting B does not change the gradient because
∑

α π(α) = 1.

D.4 GRADIENT OF J(θ) UNDER δ-SOFTMAX

Write S =
∑

b expδ(θ(b)) and fa = expδ(θ(a)) for brevity, so π(a) = fa/S. Differentiating π(b)
with respect to θ(a) gives

∂π(b)

∂θ(a)
=

1

S

∂fb
∂θ(a)

− fb
S2

∂S

∂θ(a)
.

Using
∂

∂u
expδ(u) = expδ(u)

δ (the inverse of equation 11), we obtain

∂fb
∂θ(a)

= δab f
δ
b ,

∂S

∂θ(a)
= fδ

a ,

where δab is Kronecker’s delta. Hence

∂π(b)

∂θ(a)
=

δab f
δ
b

S
− fb

S

fδ
a

S
= δab

fδ
b

S
− π(b)

fδ
a

S
.

Noting that fδ
x =

(
expδ(θ(x))

)δ
and the algebraic identity

fδ
x

S
=

π(x)

1 + (1− δ)θ(x)
,

(which follows by differentiating logδ S via equation 10 and equation 11), we can write

∂π(b)

∂θ(a)
= δab

π(b)

1 + (1− δ)θ(b)
− π(b)

π(a)

1 + (1− δ)θ(a)
.

Therefore,

∂J

∂θ(a)
=

∑
b

µ(b)
∂π(b)

∂θ(a)

= Eb∼π

[(
µ(b)−B

)( 1{b = a}
1 + (1− δ)θ(b)

− π(a)

1 + (1− δ)θ(a)

)]
, (12)

where the baseline term B vanishes upon summation. In the limit δ → 1,

1

1 + (1− δ)θ(·)
→ 1 ⇒ ∂J

∂θ(a)
= Eb∼π

[
(µ(b)−B)

(
1{b = a} − π(a)

)]
,

recovering the standard softmax policy-gradient.
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D.5 MAPPING TO ALGORITHM 1

In the main text, parameters are indexed by backlog q: θq(α), the baseline is Bt, and the per-round
reward is

rt =

{
0, CI ≥ αt,

max(CL − CI , 0)− (µq − κ), otherwise.

Stochastic gradient ascent with step size η applies equation 12 to the sampled (q, αt), yielding the
update (for every α ∈ A)

θq(α) ← θq(α) + η (rt −Bt)×


1{α = αt} − π(q)(α), δ = 1,

1{α = αt} − π(q)(α)

1 + (1− δ)θq(α)
, δ ̸= 1,

which is exactly the rule implemented in Algorithm 1.

Our Tsallis policy gradient can be interpreted as applying a Box–Cox-type transform (Box &
Cox, 1964) to policy probabilities/advantages, compressing extreme values and empirically sta-
bilizing gradients. From the RL side, our update fits into the Tsallis-entropy-regularized RL lit-
erature and sparse policies, where Tsallis regularization yields sparse, more stable policies than
Shannon-entropy softmax. We now emphasize that there exists a rich body of work establishing
non-asymptotic convergence rates for classical policy gradient under structural assumptions (e.g.,
LQR and tabular/linear MDPs (Fazel et al., 2018; Agarwal et al., 2021; Wang et al., 2020)), but our
queue-dependent early-exit setting, with endogenous non-stationary contexts, falls outside the scope
of these analyses. We therefore present our Tsallis / δ-softmax PG as a principled, Box–Cox/Tsallis-
inspired design with empirical robustness, and explicitly leave a full convergence-rate theory in this
setting to future work.

D.6 IMPLEMENTATION NOTES

• Domain guard. Ensure 1 + (1 − δ)θq(α) > 0 for all (q, α) to keep expδ real-valued. A
practical choice is to reparameterize θq(α) =

zq(α)
1−δ − ϵ with zq(α) > 0, or to clip to a

small positive margin.
• Baselines. Any Bt independent of the sampled action is unbiased (e.g., running mean of

recent rewards or a value-function estimate) and reduces variance.
• Softmax branch. Handle δ = 1 explicitly for numerical stability; do not attempt to ap-

proximate it via limits in code.
• Temperature. An optional temperature τ > 0 can be introduced by replacing θ 7→ θ/τ ,

orthogonal to δ; τ scales logits, while δ shapes tails.

The implementation of our δ-softmax policy gradient follows the above design notes. We highlight
how each element is realized in practice:

• Domain guard. In code, the domain restriction 1 + (1 − δ)θq(α) > 0 is enforced
by clipping. Specifically, the δ-exponential is implemented as np.maximum(1 + (1
- delta) * u, 1e-8) ** (1 / (1 - delta)), ensuring the base remains
strictly positive and thus keeping expδ real-valued.

• Baselines. To reduce variance, we maintain an exponential moving average baseline:
baseline = beta * baseline + (1 - beta) * reward. The adjusted re-
ward reward - baseline is then used in the update step, which is unbiased since the
baseline is independent of the sampled action.

• Softmax branch. For the special case δ = 1, the implementation switches explicitly
to the standard exponential: if delta == 1: return np.exp(u). This avoids
numerical instability and removes the need to approximate the δ → 1 limit.

• Temperature. While the design allows for an optional temperature parameter τ > 0 (ap-
plied via θ 7→ θ/τ ), our current implementation does not include τ . This extension is
straightforward and orthogonal to δ, scaling logits without changing the tail behavior.
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E PER-MACHINE METRICS

This appendix reports detailed per-machine performance metrics, broken down by worker type
(Raspberry Pi and MiniPC) and workload scenario. While the main text emphasizes aggregate
system-level behavior, these tables highlight how individual hardware units contribute to overall
performance. They provide additional insight into resource utilization and the trade-offs achieved
by different policies.

Several general patterns emerge:

• Arrival rates. The effective arrival rate observed at each worker reflects both exogenous
traffic and the impact of early exits. The Raspberry Pi often operates near its capacity.

• Loss behavior. The Raspberry Pi experiences significant loss under baseline policies,
whereas advanced methods (UCB, UCB-Mono, TSA-PG) reduce the loss rate and loss ratio
markedly. The MiniPC rarely drops samples, underscoring its role as a stable back-end.

• Throughput and utilization. Despite its limited capacity, the Raspberry Pi achieves high
utilization (> 95%) under most methods, showing that the system effectively exploits edge
resources. The MiniPC, by contrast, operates at low utilization.

• Policy effects. UCB-based and TSA-PG policies consistently improve throughput on the
Raspberry Pi while lowering losses, suggesting that intelligent threshold adaptation is es-
sential to balance early exits and full processing.

Comparing across scenarios, we observe systematic differences:

• In the Stationary scenario, performance is stable and policies mainly affect loss reduction,
with TSA-PG achieving the best trade-off.

• In the Easy→Hard scenario, losses on the Raspberry Pi increase due to progressively more
difficult inputs, but adaptive methods sustain throughput by shifting part of the load to the
MiniPC.

• In the Hard→Easy scenario, initial congestion is more severe than in Easy→Hard, since
early difficult samples saturate the Raspberry Pi; however, policies that adapt quickly still
recover performance as the workload eases.

Overall, these per-machine measurements confirm that the performance gains reported in the main
text stem not only from aggregate improvements but also from better balancing of heterogeneous
resources.
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E.1 STATIONARY SCENARIO

Table 4: Per-machine metrics (stationary scenario).
Method Worker Arrival rate Loss rate Loss ratio Throughput Utilization

Baseline Raspberry Pi 3.9697± 0.0238 0.7865± 0.0165 0.1981± 0.0031 3.1831± 0.0064 0.9976± 0.0007
MiniPC 2.1537± 0.0050 0.0000± 0.0000 0.0000± 0.0000 2.1537± 0.0050 0.0822± 0.0002

UCB Raspberry Pi 3.9720± 0.0222 0.3583± 0.0139 0.0902± 0.0030 3.6138± 0.0110 0.9844± 0.0015
MiniPC 2.1489± 0.0042 0.0000± 0.0000 0.0000± 0.0000 1.8307± 0.0059 0.0655± 0.0003

UCB-Mono Raspberry Pi 3.9741± 0.0198 0.2902± 0.0132 0.0730± 0.0030 3.6840± 0.0110 0.9567± 0.0025
MiniPC 2.1667± 0.0136 0.0000± 0.0000 0.0000± 0.0000 2.1667± 0.0136 0.0714± 0.0004

TSA-PG(0.50) Raspberry Pi 3.987± 0.0165 0.2143± 0.0092 0.0539± 0.0021 3.7598± 0.0129 0.9646± 0.0021
MiniPC 2.0776± 0.0081 0.0000± 0.0000 0.0000± 0.0000 2.0776± 0.0081 0.0685± 0.0003

TSA-PG(0.75) Raspberry Pi 3.9774± 0.0198 0.2140± 0.0095 0.0539± 0.0022 3.7601± 0.0130 0.9645± 0.0019
MiniPC 2.0767± 0.0062 0.0000± 0.0000 0.0000± 0.0000 2.0767± 0.0062 0.0685± 0.0003

TSA-PG(1.00) Raspberry Pi 3.9826± 0.0124 0.2053± 0.0085 0.0517± 0.0020 3.7688± 0.0147 0.9645± 0.0018
MiniPC 2.0622± 0.0098 0.0000± 0.0000 0.0000± 0.0000 2.0622± 0.0098 0.0680± 0.0004

TSA-PG(1.25) Raspberry Pi 3.9457± 0.0204 0.1748± 0.0078 0.0440± 0.0018 3.7993± 0.0160 0.9643± 0.0016
MiniPC 2.0087± 0.0147 0.0000± 0.0000 0.0000± 0.0000 2.0087± 0.0147 0.0662± 0.0005

TSA-PG(1.50) Raspberry Pi 3.9812± 0.0145 0.1596± 0.0084 0.0401± 0.0020 3.8146± 0.0158 0.9652± 0.0024
MiniPC 1.9905± 0.0195 0.0000± 0.0000 0.0000± 0.0000 1.9905± 0.0195 0.0656± 0.0006

TSA-PG(1.75) Raspberry Pi 3.9741± 0.0136 0.1488± 0.0093 0.0374± 0.0023 3.8253± 0.0171 0.9658± 0.0022
MiniPC 1.9769± 0.0244 0.0000± 0.0000 0.0000± 0.0000 1.9769± 0.0244 0.0652± 0.0008

TSA-PG(2.00) Raspberry Pi 3.9874± 0.0191 0.1535± 0.0105 0.0386± 0.0026 3.8207± 0.0193 0.9655± 0.0025
MiniPC 1.9818± 0.0285 0.0000± 0.0000 0.0000± 0.0000 1.9818± 0.0285 0.0653± 0.0010

TSA-PG(2.50) Raspberry Pi 3.9901± 0.0200 0.1806± 0.0124 0.0443± 0.0030 3.8925± 0.0222 0.9717± 0.0023
MiniPC 1.9505± 0.0298 0.0000± 0.0000 0.0000± 0.0000 1.9505± 0.0298 0.0641± 0.0010
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E.2 EASY→HARD SCENARIO

Table 5: Per-machine metrics (easy→hard scenario).
Method Worker Arrival rate Loss rate Loss ratio Throughput Utilization

UCB Raspberry Pi 3.9731± 0.0182 0.5368± 0.0146 0.1351± 0.0030 3.4352± 0.0105 0.9913± 0.0009
MiniPC 2.1889± 0.0058 0.0000± 0.0000 0.0000± 0.0000 2.1889± 0.0058 0.0782± 0.0002

Baseline Raspberry Pi 3.9767± 0.0282 0.8955± 0.0169 0.2256± 0.0030 3.0741± 0.0063 0.9983± 0.0004
MiniPC 2.3447± 0.0055 0.0000± 0.0000 0.0000± 0.0000 2.3447± 0.0055 0.0895± 0.0002

UCB-Mono Raspberry Pi 3.9851± 0.0291 0.4391± 0.0147 0.1105± 0.0032 3.5350± 0.0088 0.9738± 0.0018
MiniPC 2.5673± 0.0094 0.0000± 0.0000 0.0000± 0.0000 2.5673± 0.0094 0.0846± 0.0003

TSA-PG(0.50) Raspberry Pi 3.9898± 0.0228 0.3484± 0.0118 0.0877± 0.0026 3.6258± 0.0110 0.9781± 0.0016
MiniPC 2.4224± 0.0061 0.0000± 0.0000 0.0000± 0.0000 2.4224± 0.0061 0.0799± 0.0002

TSA-PG(0.75) Raspberry Pi 3.9699± 0.0188 0.3458± 0.0116 0.0870± 0.0025 3.6283± 0.0106 0.9779± 0.0015
MiniPC 2.4166± 0.0056 0.0000± 0.0000 0.0000± 0.0000 2.4166± 0.0056 0.0797± 0.0002

TSA-PG(1.00) Raspberry Pi 3.9732± 0.0146 0.3257± 0.0114 0.0819± 0.0026 3.6485± 0.0139 0.9778± 0.0014
MiniPC 2.3817± 0.0124 0.0000± 0.0000 0.0000± 0.0000 2.3817± 0.0124 0.0785± 0.0004

TSA-PG(1.25) Raspberry Pi 3.9866± 0.0153 0.2890± 0.0118 0.0727± 0.0027 3.6852± 0.0141 0.9770± 0.0015
MiniPC 2.3124± 0.0149 0.0000± 0.0000 0.0000± 0.0000 2.3124± 0.0149 0.0763± 0.0005

TSA-PG(1.50) Raspberry Pi 3.9952± 0.0184 0.2719± 0.0132 0.0684± 0.0031 3.7022± 0.0138 0.9766± 0.0016
MiniPC 2.2800± 0.0177 0.0000± 0.0000 0.0000± 0.0000 2.2800± 0.0177 0.0752± 0.0006

TSA-PG(1.75) Raspberry Pi 3.9825± 0.0252 0.2619± 0.0143 0.0659± 0.0034 3.7122± 0.0147 0.9765± 0.0015
MiniPC 2.2621± 0.0223 0.0000± 0.0000 0.0000± 0.0000 2.2621± 0.0223 0.0746± 0.0007

TSA-PG(2.00) Raspberry Pi 3.9774± 0.0163 0.2797± 0.0170 0.0704± 0.0041 3.6944± 0.0163 0.9772± 0.0016
MiniPC 2.2981± 0.0234 0.0000± 0.0000 0.0000± 0.0000 2.2981± 0.0234 0.0758± 0.0008

TSA-PG(2.50) Raspberry Pi 3.8085± 0.0210 0.3289± 0.0202 0.0807± 0.0048 3.7442± 0.0234 0.9818± 0.0014
MiniPC 2.2892± 0.0369 0.0000± 0.0000 0.0000± 0.0000 2.2892± 0.0369 0.0752± 0.0013

E.3 HARD→EASY SCENARIO

Table 6: Per-machine metrics (hard→easy scenario).
Method Worker Arrival rate Loss rate Loss ratio Throughput Utilization

UCB Raspberry Pi 3.9702± 0.0225 0.5074± 0.0171 0.1277± 0.0037 3.4646± 0.0129 0.9900± 0.0012
MiniPC 2.1280± 0.0181 0.0000± 0.0000 0.0000± 0.0000 2.1280± 0.0181 0.0761± 0.0007

Baseline Raspberry Pi 3.9597± 0.0207 0.9045± 0.0173 0.2278± 0.0031 3.0652± 0.0056 0.9985± 0.0006
MiniPC 2.3609± 0.0069 0.0000± 0.0000 0.0000± 0.0000 2.3609± 0.0069 0.0901± 0.0003

UCB-Mono Raspberry Pi 3.9702± 0.0188 0.4408± 0.0153 0.1109± 0.0033 3.5333± 0.0083 0.9740± 0.0022
MiniPC 2.5725± 0.0117 0.0000± 0.0000 0.0000± 0.0000 2.5725± 0.0117 0.0848± 0.0004

TSA-PG(0.50) Raspberry Pi 3.9812± 0.0169 0.3503± 0.0106 0.0881± 0.0023 3.6238± 0.0118 0.9771± 0.0018
MiniPC 2.4160± 0.0071 0.0000± 0.0000 0.0000± 0.0000 2.4160± 0.0071 0.0797± 0.0003

TSA-PG(0.75) Raspberry Pi 3.9689± 0.0198 0.3470± 0.0112 0.0873± 0.0024 3.6271± 0.0117 0.9769± 0.0017
MiniPC 2.4092± 0.0073 0.0000± 0.0000 0.0000± 0.0000 2.4092± 0.0073 0.0794± 0.0003

TSA-PG(1.00) Raspberry Pi 3.9813± 0.0159 0.3223± 0.0095 0.0811± 0.0021 3.6518± 0.0139 0.9763± 0.0017
MiniPC 2.3625± 0.0131 0.0000± 0.0000 0.0000± 0.0000 2.3625± 0.0131 0.0779± 0.0005

TSA-PG(1.25) Raspberry Pi 3.9763± 0.0258 0.2914± 0.0126 0.0733± 0.0029 3.6828± 0.0145 0.9748± 0.0016
MiniPC 2.2965± 0.0162 0.0000± 0.0000 0.0000± 0.0000 2.2965± 0.0162 0.0758± 0.0006

TSA-PG(1.50) Raspberry Pi 3.9718± 0.0175 0.2780± 0.0151 0.0699± 0.0035 3.6961± 0.0109 0.9742± 0.0017
MiniPC 2.2701± 0.0137 0.0000± 0.0000 0.0000± 0.0000 2.2701± 0.0137 0.0748± 0.0005

TSA-PG(1.75) Raspberry Pi 3.9752± 0.0169 0.2672± 0.0164 0.0672± 0.0039 3.7069± 0.0136 0.9747± 0.0022
MiniPC 2.2565± 0.0260 0.0000± 0.0000 0.0000± 0.0000 2.2565± 0.0260 0.0744± 0.0009

TSA-PG(2.00) Raspberry Pi 3.9782± 0.0185 0.2820± 0.0134 0.0709± 0.0031 3.6921± 0.0139 0.9752± 0.0017
MiniPC 2.2846± 0.0194 0.0000± 0.0000 0.0000± 0.0000 2.2846± 0.0194 0.0754± 0.0006

TSA-PG(2.50) Raspberry Pi 3.9731± 0.0205 0.3312± 0.0196 0.0813± 0.0048 3.7420± 0.0269 0.9802± 0.0017
MiniPC 2.2794± 0.0382 0.0000± 0.0000 0.0000± 0.0000 2.2794± 0.0382 0.0749± 0.0013

F USE OF LLM

We used LLMs to polish writing. In addition, the tables produced by our experiments, in CSV, were
exported to Latex using ChatGPT. The correctness of the result was manually verified.
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G SOURCE CODE

An anonymized version of our source code repository is publicly available at: https://
anonymous.4open.science/r/Buffer_based_threshold-C531/README.md
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