

# 000 001 002 003 004 005 A REALITY CHECK ON ROBUST BANDIT ALGO- 006 RITHMS FOR BUFFER-AWARE EARLY EXITS 007 008 009

010 **Anonymous authors**  
011 Paper under double-blind review  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027

## ABSTRACT

028 Early-exit neural networks (EENN) reduce inference cost by allowing inputs to  
029 terminate at intermediate layers when classification confidence exceeds a thresh-  
030 old. However, practical deployments must operate under stochastic arrivals, lim-  
031 ited device resources, and finite buffers, where the backlog directly impacts perfor-  
032 mance. This paper provides a systems-oriented study of buffer-aware EENN and  
033 introduces new learning algorithms for threshold selection. First, we report results  
034 from real testbed experiments on heterogeneous devices, showing that incorporat-  
035 ing buffer state into early-exit decisions substantially improves throughput and  
036 accuracy under load. Second, we extend policy gradient methods by integrating  
037 the Tsallis-softmax parameterization, which yields tunable exploration, robust-  
038 ness to high-variance rewards, and connects recent advances in the  $\delta$ -exponential  
039 family for policy optimization to practical scheduling in EENN. Third, we pro-  
040 pose contextual bandit algorithms that exploit the natural monotonic relationship  
041 between backlog and urgency via parametrized thresholds, reducing sample com-  
042 plexity and enabling generalization across system loads. Together, these contribu-  
043 tions highlight that early exits are not only a model-design mechanism but also a  
044 systems scheduling problem, bridging theory and practice for robust and efficient  
045 inference in resource-constrained environments.  
046

## 1 INTRODUCTION

047 Deep Neural Networks (DNNs) have achieved remarkable advances in performance in computer vi-  
048 sion tasks (Krizhevsky et al., 2012; He et al., 2016; Edozie et al., 2025). However, their substantial  
049 computational demands hinder deployment on mobile devices for inference. A common workaround  
050 leverages cloud infrastructures equipped with GPUs (Satyanarayanan, 2017). In a cloud-only set-  
051 ting, mobile devices capture data and transmit it to the cloud, where the entire DNN inference is  
052 executed. The limitations of a cloud-only approach have motivated edge-cloud collaborative DNN  
053 inference. In this setup, edge devices process the initial layers of the model and send interme-  
054 diate results to the cloud for further computation. This hybrid strategy reduces latency and improves  
055 resource utilization, overcoming the drawbacks of performing inference solely at the edge or in  
056 the cloud. By distributing the model across heterogeneous resources, the system benefits from the  
057 strengths of both environments. Nonetheless, this approach demands offloading to the cloud, which  
058 introduces communication and energy overheads, without ensuring higher accuracy. Early-exit neu-  
059 ral networks (EENN) provide a promising solution to mitigate these overheads while maintaining  
060 flexible edge-cloud inference (Kang et al., 2017; Hu et al., 2019; Kag & Fedorov, 2023).  
061

062 EENN exploit the observation that the initial neural layers can produce confident predictions for  
063 many inputs. To enable this, EENN have exit branches (i.e., intermediary classifiers) inserted at  
064 their intermediate neural layers. For each input, these exit branches can estimate their classification  
065 confidence. If it exceeds a predefined threshold, the input can be classified early at the exit branch.  
066 Otherwise, it continues through the remaining layers for further processing (Teerapittayanon et al.,  
067 2016; Bajpai & Hanawal, 2025). Therefore, EENN have emerged as a powerful approach to reduce  
068 inference latency and energy consumption in deep models by allowing inputs to exit early once clas-  
069 sification confidence surpasses a threshold (Liu et al., 2023; Mishra et al., 2025). While most prior  
070 work has focused on algorithmic aspects of early exits (e.g., learning confidence thresholds (Pacheco  
071 et al., 2024) or optimizing placement of side branches (Ju et al., 2021)), the integration of early  
072 exits into *real systems* remains underexplored. In practice, inputs arrive according to stochastic  
073

054 processes, devices operate under heterogeneous hardware constraints, and buffering is unavoidable  
 055 when workloads exceed instantaneous processing capacity (Chen et al., 2025). These system-level  
 056 realities motivate a rethinking of how early exits should be managed in realistic deployments.  
 057

058 In this paper, we make three main contributions:

059 **A systems perspective on buffer-aware early exits.** We present results from real experiments  
 060 conducted on a heterogeneous testbed consisting of a Raspberry Pi and a MiniPC, where images  
 061 are generated at the edge and either classified locally via an early exit or forwarded to the powerful  
 062 device, acting as a cloud server, for deeper processing. Crucially, we account for the impact of  
 063 the *buffer state*, i.e., the number of pending jobs in the queue, on the early-exit decision. Our  
 064 experiments illustrate how buffer-aware scheduling improves both throughput and accuracy under  
 065 varying load, offering the first empirical evidence of how queue dynamics shape early-exit efficiency  
 066 in practice (Sections 2 and 4).

067 **Policy gradient with Tsallis-softmax thresholds.** We extend classical policy gradient algorithms  
 068 for threshold selection by incorporating the *Tsallis-softmax parameterization* (Zhu et al., 2025).  
 069 This design choice builds robustness into the system, as Tsallis-softmax policies yield tunable ex-  
 070 ploration, heavier-tailed action distributions, and improved stability under high-variance rewards.  
 071 We connect recent advances on the  *$\delta$ -exponential family for policy optimization* with the concrete  
 072 problem of buffer-aware early exits, demonstrating how insights from reinforcement learning theory  
 073 can be translated into practical scheduling gains (Section 3.1).

074 **Parametrized Upper Confidence Bound (UCB) with monotonic thresholds.** We introduce a  
 075 parametrized, monotonic threshold function of the form  $\alpha(q) = \theta_1 q + \theta_2$ , where  $q$  is the backlog  
 076 size. This approach leverages domain knowledge by explicitly capturing the natural *monotonic*  
 077 *relationship between backlog and urgency*: as queues grow longer, early exits should become more  
 078 likely. Embedding this structure into the learning process reduces the memory footprint, improves  
 079 robustness to noise, and accelerates convergence. Importantly, it enhances the algorithm’s ability  
 080 to generalize across varying system loads with fewer samples, making it suitable for deployment  
 081 in resource-constrained environments (Section 3.2).

082 These contributions establish a new perspective on early-exit neural networks: one that integrates  
 083 system dynamics, leverages robust reinforcement learning primitives, and introduces structured band-  
 084 it algorithms. By grounding our work in both *real testbed experiments* and *theoretical extensions*,  
 085 we demonstrate that early exits are not only a model-design choice, but also a *systems scheduling*  
 086 *problem* — and that addressing this perspective is key to unlocking their full potential in practice.

087 **Outline.** Section 2 introduces EENN and the queue-aware objective and Section 3 presents the  
 088 two considered learning approaches (policy gradient and UCB). Section 4 details our heterogeneous  
 089 testbed and reports results. Section 5 reviews related work and Section 6 concludes. Appendices A  
 090 to G contain formal results, supplementary material and a link to our anonymized code repository.

## 091 2 EARLY-EXIT NEURAL NETWORKS

093 Early-exit Deep Neural Networks (EENN) augment a backbone model (e.g., MobileNetV2 (Dong  
 094 et al., 2020)) by adding one or more *exit branches*, which enable inputs to exit the model early  
 095 once sufficient confidence is reached. This mechanism enables an edge-cloud collaborative DNN  
 096 inference. Moreover, it allows a flexible trade-off between inference latency and predictive accuracy,  
 097 making EENN particularly suited for resource-constrained or time-sensitive applications.

098 An EENN processes an input  $\mathbf{x}$  layer by layer, with intermediate branches that can output a predic-  
 099 tion before the final layer. At an intermediate exit, the model computes a probability vector  $\mathbf{p}_I(\mathbf{x})$   
 100 and its confidence  $C_I(\mathbf{x}) = \max_c [\mathbf{p}_I(\mathbf{x})]_c$ . If  $C_I(\mathbf{x}) \geq \alpha$ , where  $\alpha \in [0, 1]$  is a threshold, the  
 101 sample is classified locally with prediction  $\hat{y}_I(\mathbf{x})$ . Otherwise, it is forwarded (with overhead  $o$ ) to  
 102 the final layer, which produces probability vector  $\mathbf{p}_L(\mathbf{x})$ , confidence  $C_L(\mathbf{x})$ , and prediction  $\hat{y}_L(\mathbf{x})$ .  
 103 For clarity, we omit the explicit dependence on  $\mathbf{x}$  when unambiguous. Further details on notation  
 104 and background for EENN are provided in Appendices A and B, respectively.

105 **Why a learned threshold?** The optimal  $\alpha$  depends on *context*. Even for a fixed model and data  
 106 distribution, the preferred trade-off between accuracy and latency shifts with load (e.g., backlog,  
 107 device heterogeneity, or network contention). A fixed threshold is inherently fragile. We instead  
 108 learn thresholds online using bandit algorithms, viewing each candidate threshold as an action.

108 2.1 A BANDIT VIEW OF EARLY EXITS  
109

110 In a multi-armed bandit (MAB) setup, each action is associated with an unknown instantaneous  
111 reward distribution. In this paper, the reward  $r_t$  is a function of the selected action (threshold)  $\alpha_t$ .  
112 When an early exit is taken, no further improvement in confidence can be obtained, resulting in a  
113 reward of zero. Otherwise, if the input proceeds through the final layers, the reward corresponds to  
114 the confidence gain from the intermediate to the final layer, denoted as  $\Delta C = \max(C_L - C_I, 0)$ ,  
115 discounted by the additional overhead of data offloading  $o_t$ . Hence, the reward  $r_t(\alpha_t)$  can be written  
116 as

$$117 \quad r_t(\alpha_t) = \begin{cases} 0, & \text{if } C_I \geq \alpha_t \quad (\text{early exit}), \\ 118 \quad \Delta C - o_t, & \text{otherwise,} \end{cases} \quad (1)$$

119 where  $\Delta C$  is an *accuracy-gain proxy*: it is large when the final layer is confidently more accurate  
120 than the side branch, and zero when the side branch was already as confident as the tail of the EENN  
121 model (Bajpai & Hanawal, 2025; Casale & Roveri, 2023; Pacheco et al., 2024). The term  $o_t$  is  
122 the overhead incurred by processing up to the last layer. We assume that it ranges between  $[0, 1]$ ,  
123 making  $\Delta C$  and  $o_t$  commensurable. The overhead may stem from communication latency when  
124 offloading data to the cloud, from energy consumption due to additional processing, or from both  
125 factors combined. In this work, we instantiate the overhead as a linear function of the backlog  $q_t$   
126 ensuring that the penalty remains on the same scale as the confidence gains, i.e.,  $o_t(q_t)$  is in the  
127 unitary interval for the feasible backlog sizes.

128 Equivalently (up to the action-independent baseline  $C_I$ ) the reward could take the more symmetric  
129 form

$$130 \quad \tilde{r}_t(\alpha_t) = \begin{cases} C_I, & \text{if the sample exits early,} \\ 131 \quad C_L - o(q_t), & \text{otherwise,} \end{cases}$$

132 so both rewards  $r_t$  and  $\tilde{r}_t$  induce the same optimal policy and regret. We emphasize that the backlog  
133 is a genuine state variable that modulates the relative advantage of early exit versus full processing  
134 through  $o(q_t)$ : when  $q_t$  is small,  $o(q_t)$  is small and full processing is favoured; as  $q_t$  grows,  $o(q_t)$   
135 increases and early exits become preferable.

136 **Expected reward.** At each round  $t$ , a context  $q_t \in \mathcal{Q} = \{0, \dots, Q_{\max}\}$  is observed, an action  
137  $\alpha_t \in \mathcal{A}$  is chosen, and a reward  $r_t \in [0, 1]$  is observed. For each pair  $(q, \alpha) \in \mathcal{Q} \times \mathcal{A}$ , there is an  
138 unknown distribution  $\nu_{q, \alpha}$  with mean  $\mu(q, \alpha) := \mathbb{E}_{r \sim \nu_{q, \alpha}}[r] = \mathbb{E}[\Delta C - o | C_I < \alpha] \cdot P[C_I < \alpha]$ ,  
139 since  $r(\alpha) = (\Delta C - o(q)) \mathbf{1}_{\{C_I < \alpha\}}$ , where  $P[C_I < \alpha]$  represents the probability of processing up to  
140 the last layer. The controller's objective is to find an optimal threshold  $\alpha^*(q) \in \arg \max_{\alpha \in \mathcal{A}} \mu(q, \alpha)$   
141 that maximizes the expected reward  $\mu(q, \alpha)$ .

142 **Policy and regret.** A policy specifies how the controller chooses a threshold  $\alpha_t$  at round  $t$ , given the  
143 reward history observed up to that point. To evaluate a given policy, we define the expected regret  
144  $R_T := \sum_{t=1}^T (\mu(q_t, \alpha^*(q_t)) - \mu(q_t, \alpha_t))$ , up to the horizon of  $T$  rounds, which quantifies the  
145 cumulative expected cost of making suboptimal decisions. The expected regret grows over time as the  
146 controller balances exploration (testing different thresholds) and exploitation (choosing the currently  
147 best-performing threshold). A difficulty here is the fact that the backlog length  $q_t$  is *endogenous*: it  
148 evolves according to the queueing dynamics and is directly affected by the chosen exits (actions),  
149 so that both the context process and the reward distributions become action-dependent and potentially  
150 non-stationary. A full regret analysis in this stateful, queue-dependent setting would require a  
151 more elaborate treatment (closer to Markovian bandits or simple MDPs with queueing dynamics),  
152 which is beyond the scope of this paper. We present Theorem C.1 (Appendix) as an illustrative re-  
153 gret result that clarifies how our UCB-based policy fits into the classical stochastic contextual bandit  
154 framework under a discretized, exogenous-queue approximation.

155 **Buffer-aware overhead.** In realistic deployments, inputs may accumulate in a queue before being  
156 processed by the EENN model at the edge device. Let  $q_t = |Q_t|$  denote the *backlog* at decision  
157 time; a larger  $q_t$  implies a longer queuing delay and a higher risk of drops when the buffer capacity  
158  $B$  is tight. We model the overhead as a queue-aware penalty,

$$159 \quad o_t \equiv o(q_t) = \nu q_t - \kappa, \quad (2)$$

160 with  $\nu \geq 0$  and  $\kappa \geq 0$ . Plugging equation 2 into equation 1 yields a reward that balances *accuracy*  
161 *gain* against *latency pressure*. Therefore, rewards are queue-aware: if the intermediate confidence  $C_I$

162 exceeds the sampled threshold  $\alpha_t$ , the sample exits early with reward  $r_t = 0$ . Otherwise, it proceeds  
 163 to the final layer, and the reward is

$$164 \quad r_t = \max(C_L - C_I, 0) - (\nu q - \kappa), \quad (3)$$

166 where the first term  $\max(C_L - C_I, 0)$  measures the *information gain* from continuing deeper in the  
 167 network, while the second term  $(\nu q - \kappa)$  penalizes queue buildup, balancing accuracy improvements  
 168 against system congestion. In this way, the policy learns to adapt thresholds  $\alpha_t$  not only to prediction  
 169 confidence but also to the current backlog, ensuring accuracy and timeliness in dynamic workloads.  
 170 The affine choice  $o(q_t) = \nu q_t - \kappa$  is just a modelling simplification used in our experiments; the  
 171 algorithms only require a bounded reward, and can in principle handle more general monotone  
 172 penalties (steeper affine, convex, or SLA-style piecewise functions).

## 173 2.2 FROM VANILLA TO ROBUST, BUFFER-AWARE LEARNING

175 The bandit perspective supports two complementary families we study in Section 3.

177 **Vanilla bandits.** We begin with two standard algorithms that treat each threshold  $\alpha \in \mathcal{A}$  as an  
 178 independent arm. In the *vanilla policy-gradient* variant (Algorithm 1 with  $\delta = 1$ ), each backlog state  
 179  $q$  maintains an independent softmax distribution over  $\mathcal{A}$ , parameterized by  $\{\theta_q(\alpha)\}$ . In the *vanilla*  
 180 *UCB* variant, the controller keeps per-threshold estimates  $\widehat{Q}(\alpha)$  and counts  $N(\alpha)$ , and selects

$$181 \quad \alpha_t \in \arg \max_{\alpha \in \mathcal{A}} \widehat{Q}(\alpha) + \beta \sqrt{\frac{\ln t}{N(\alpha) + 1}}, \quad (4)$$

184 with on-policy updates from  $r_t(\alpha_t)$  (Algorithm 2). Under the simplest setting, previous information  
 185 about the structure of the optimal policy, e.g., thresholds should decrease with backlog, is not taken  
 186 into account.

187 **Robust bandits with structure.** We next consider two enhancements that improve robustness  
 188 and sample efficiency. First, *Tsallis exploration*: replacing the softmax with the  $\delta$ -softmax from  
 189 the generalized  $\delta$ -exponential family (Algorithm 1,  $\delta \neq 1$ ) yields heavier- or lighter-tailed action  
 190 distributions with a single knob  $\delta$ , stabilizing learning under high-variance, queue-induced rewards.  
 191 Second, *monotone, parametric thresholds*: instead of learning a separate threshold for each backlog  
 192 state, we encode domain knowledge that *urgency increases with backlog* by restricting policies to  
 193 monotone mappings

$$194 \quad \alpha(q) = \text{clip}_{[0,1]}(\theta_1 q + \theta_2), \quad \theta_1 \leq 0, \quad (5)$$

195 and apply contextual UCB over  $\theta = (\theta_1, \theta_2)$  (Algorithm 2) or policy-gradient over the induced  
 196 discrete  $\mathcal{A}$ . This structural bias reduces memory, accelerates convergence, and promotes generalization  
 197 across backlog states.

199 **Relation to Bandits with Knapsacks and constrained MDPs.** As requested by a reviewer, we  
 200 clarify our positioning with respect to Bandits with Knapsacks (BwK) (Badanidiyuru et al., 2018)  
 201 and budgeted bandits (Madani et al., 2004; Cayci et al., 2019; Xia et al., 2015). Conceptually, our  
 202 controller also trades off accuracy against resource usage (computation and backlog), so there is  
 203 a clear connection. Formally, however, classical BwK/budgeted bandits operate with a monotone,  
 204 non-renewable budget that is consumed by arm pulls and the process stops when the budget is ex-  
 205 hausted. In our model, the backlog  $q_t$  is a queueing state that evolves with arrivals and departures,  
 206 can both increase and decrease, and is bounded by a finite buffer; the “resource” is instantaneous  
 207 buffer capacity in a steady-state regime, not a depleting budget in a finite-horizon regime. More-  
 208 over, we do not perform primal–dual optimization over Lagrange multipliers: the penalty  $o(q_t)$  is a  
 209 modelling choice (reward shaping) rather than a dual variable. The existing BwK algorithms do not  
 210 apply directly to our setting without substantial modification.

210 **Putting it together.** The combination of queue-aware rewards (see equation 1 and equation 2)  
 211 with (i) robust exploration via  $\delta$ -softmax and (ii) monotone threshold parameterizations model the  
 212 trade-off between accuracy and latency. Under light load (small  $q$ ), the learned policy tends to  
 213 defer to the final layer when the expected gain  $\mathbb{E}[\max(C_L - C_I, 0)]$  exceeds the small penalty  
 214  $o(q)$ . Under heavy load, the penalty dominates and the policy shifts toward earlier exits, stabilizing  
 215 throughput and reducing loss. Our experiments in Sec. 4 validate these behaviors on a heterogeneous  
 Raspberry Pi → MiniPC testbed across stationary and non-stationary workloads.

216  
217**Algorithm 1:** Policy Gradient for Queue-Aware EENNs with  $\delta$ -Softmax Thresholds

---

```

218 1 Input: learning rate  $\eta$ , max queue  $Q_{\max}$ , Tsallis parameter  $\delta$ 
219 2 Init:  $\theta_q(\alpha) \leftarrow 0$  for all  $q \in \{0, \dots, Q_{\max}\}$  and  $\alpha \in \mathcal{A}$ 
220 3 for  $t = 1, 2, \dots, T$  do
221 4   Observe next event (arrival or service); update backlog  $q \leftarrow |Q|$ ;           # Track queue size
222 5   Compute policy over  $\mathcal{A}$ :
223 6     
$$\pi_t^{(q)}(\alpha) = \exp_{\delta}(\theta_q(\alpha)) / \sum_{\alpha' \in \mathcal{A}} \exp_{\delta}(\theta_q(\alpha'))$$

224 7     Sample threshold  $\alpha_t \sim \pi_t^{(q)}$ ;           # Select action (confidence threshold)
225 8     Obtain  $C_I$ ;
226 9     if  $C_I \geq \alpha_t$  then
227 10     $r_t \leftarrow 0$ ;           # Early exit
228 11  else
229 12    Obtain  $C_L$ 
230 13     $r_t \leftarrow \max(C_L - C_I, 0) - (\mu q - \kappa)$ ;           # Accuracy gain minus queue penalty
231 14  Update baseline  $B_t$ ;
232 15  foreach  $\alpha \in \mathcal{A}$  do
233 16    
$$g_t(\alpha) \leftarrow (\mathbb{1}\{\alpha = \alpha_t\} - \pi_t^{(q)}(\alpha)) / (1 + (1 - \delta)\theta_q(\alpha))$$
;           # Tsallis component
234 17    
$$\theta_q(\alpha) \leftarrow \theta_q(\alpha) + \eta(r_t - B_t)g_t(\alpha)$$
;           # Gradient ascent update
235
236
237
```

---

## 3 ROBUST BANDITS

We now turn to bandit-based methods for learning queue-aware thresholds in early-exit neural networks. We present two complementary approaches: *policy-gradient* methods (Section 3.1) and *UCB-based* methods (Section 3.2). For each of these approaches, we distinguish between a *vanilla* case and a *robust* case. In the vanilla setting, policies are learned using standard formulations (softmax for policy gradient, tabular thresholds for UCB). In the robust setting, we incorporate additional structure or parameters: for policy gradient, the  $\delta$ -softmax generalization (Tsallis-softmax) provides tunable exploration and robustness to high-variance rewards; for UCB, a monotonic parameterization  $\alpha(q) = \theta_1 q + \theta_2$  captures the natural relationship between backlog and urgency, reducing sample complexity and improving generalization. This extends the flexibility of vanilla methods to introduce robustness and system-awareness into bandit-based threshold selection, whose experimental evaluation in a testbed is reported in Section 4.

3.1 POLICY-GRADIENT WITH  $\delta$ -SOFTMAX THRESHOLDS

We study a policy-gradient approach for learning queue-aware thresholds in EENNs. At each step, the system observes the backlog  $q = |Q|$  and samples a threshold  $\alpha_t \in \mathcal{A}$  according to a  $\delta$ -softmax policy. This policy is based on a deformation of the exponential function, introduced in Tsallis (1988), defined as

$$\exp_{\delta}(x) = \begin{cases} \exp(x), & \delta = 1, \\ (1 + (1 - \delta)x)^{\frac{1}{1-\delta}}, & \delta \neq 1, (1-\delta)x > -1. \end{cases}$$

The special case  $\delta = 1$  recovers the standard softmax, while  $\delta \neq 1$  yields Tsallis-softmax with tunable exploration. From a statistical viewpoint, the inverse function  $\log_{\delta} x := \exp_{\delta}^{-1}(x)$  (Appendix D), known as the Tsallis  $\delta$ -logarithm, coincides with the classical Box–Cox power transform with parameter  $\lambda = 1 - \delta$ , widely used for variance stabilization and heavy-tail mitigation in statistics.

**Vanilla policy-gradient.** In the vanilla case, the policy at each backlog state  $q$  is parameterized by  $\theta_q(\alpha)$  for all  $\alpha \in \mathcal{A}$ , and action probabilities are computed using the standard softmax ( $\delta = 1$ ). This setup is straightforward and widely used, but it lacks flexibility: the exploration–exploitation trade-off is entirely determined by the scale of the parameters, and the resulting distributions often assign non-negligible probability mass even to poor actions.

270 **Robust policy-gradient.** In the robust case, we generalize to the  $\delta$ -softmax family, which yields  
 271 Tsallis-softmax policies. The additional parameter  $\delta$  provides explicit control over exploration:  
 272 for  $\delta < 1$ , the policy explores more broadly, while for  $\delta > 1$  the distribution becomes sharper.  
 273 This tunability introduces several advantages: it improves robustness under high-variance rewards,  
 274 yields heavier-tailed action distributions that avoid premature convergence, and allows tailoring the  
 275 degree of exploration to system load. By bridging standard softmax with Tsallis-softmax, the robust  
 276 policy-gradient extends the design space for queue-aware early-exit scheduling. Appendix D gives  
 277 the general derivation of the gradient-ascent update used at line 14 of Algorithm 1. Despite the  
 278 growing interest in the  $\delta$ -exponential family (e.g., (Zhu et al., 2025)), to the best of our knowledge  
 279 this specific gradient-ascent rule for  $\delta$ -softmax (Tsallis-softmax) policies is novel to this work.

280 **Generalized softmax family ( $\delta$ -softmax).** Our robust policy-gradient design builds on a general-  
 281 ized exponential family that has appeared in several guises across the literature—including the  
 282 Box–Cox transform (Box & Cox, 1964), the  $\delta$ -exponential/Tsallis family (Tsallis, 1988; Zhang &  
 283 Sabuncu, 2018), and  $\alpha$ -fairness (Kelly, 1997). Though introduced in different domains, these for-  
 284 mulations share a common shape control that smoothly trades off exploration sharpness and tail  
 285 heaviness. Recent work has revisited this family for reinforcement learning, showing stability and  
 286 performance gains in policy optimization (Zhu et al., 2025). In this paper, we take advantage of  
 287 a Tsallis-softmax ( $\delta$ -softmax) policy for threshold selection in buffer-aware early exits, yielding  
 288 tunable exploration, robustness to queue-induced variance, and an algorithm for buffer-aware early  
 289 exits, unifying stability and adaptability in dynamic edge workloads.

### 290 3.2 UCB 291

292 Algorithm 2 is written at a high level over a *policy class*  $\mathcal{H}$ , where each policy  $h \in \mathcal{H}$  maps the  
 293 current backlog  $q$  to a threshold  $\alpha = h(q)$ . This abstraction allows us to unify different design  
 294 choices. In our work, we focus on two concrete instantiations:

295 **Vanilla UCB.** Here,  $\mathcal{H}$  contains one policy for each backlog value  $q \in \{0, \dots, Q_{\max}\}$  and threshold  
 296  $\alpha \in \mathcal{A}$ . That is,  $h(q)$  is constant in  $q$  and simply represents the choice of a fixed threshold for a  
 297 particular backlog state. This corresponds to learning an independent threshold for each backlog  
 298 size, without imposing any structure across queue states. While flexible, this approach requires  
 299 storing and exploring  $|\mathcal{A}| \cdot Q_{\max}$  arms and thus scales poorly as  $Q_{\max}$  grows.

300 **Robust UCB.** To exploit domain knowledge, we can instead define a structured class  
 301

$$302 \mathcal{H} = \{h_{\theta}(q) = \text{clip}_{[0,1]}(\theta_1 q + \theta_2) : \theta = (\theta_1, \theta_2) \in \Theta, \theta_1 \leq 0\}. \quad (6)$$

304 Here, the threshold is a linear function of backlog size  $q$ , with slope  $\theta_1$  and intercept  $\theta_2$ . The  
 305 constraint  $\theta_1 \leq 0$  enforces a natural monotonicity: as the backlog grows, the system becomes more  
 306 aggressive in taking early exits. This parametrization drastically reduces the number of candidate  
 307 policies, encourages generalization across queue states, and accelerates convergence. Note that (6)  
 308 is a particular choice – Algorithm 2 permits other forms of policy spaces.

309 Together, these two instantiations illustrate a spectrum between *flexibility* (tabular thresholds) and  
 310 *structure* (monotonic parametrization). Our experiments show that incorporating monotonicity  
 311 yields significant benefits in robustness and sample efficiency, particularly under high load.

313 **Why Tsallis-PG in addition to UCB?** Our goal was not to replace UCB but to complement it  
 314 in a regime where its exploration can become inefficient. In our setting, each threshold  $\alpha$  induces  
 315 a distinct action, and a naive bandit discretisation leads to a large (potentially very large) number  
 316 of arms. While UCB enjoys strong regret guarantees in this finite-armed setting, its exploration  
 317 behaviour scales with the number of actions: when there are many candidate thresholds, UCB tends  
 318 to spend a long time exploring suboptimal arms before concentrating on the best one, which can hurt  
 319 its finite-sample efficiency in our high-resolution threshold regime.

320 In contrast, our Tsallis policy-gradient method operates over a parametric policy on a continuous (or  
 321 finely discretised) threshold space and updates the policy in a more greedy, directionally informed  
 322 way. Rather than treating each threshold as an independent arm, the gradient step shifts probability  
 323 mass towards regions of thresholds that currently appear promising, which can significantly reduce  
 the amount of uniform exploration required when the action space is large.

324

**Algorithm 2:** Contextual-UCB for Queue-Aware EENNs with Threshold Policies

---

```

325
326 1 Input: policy class  $\mathcal{H}$ , UCB parameter  $\beta > 0$ , max queue  $Q_{\max}$ 
327 2 Init:  $N(h) \leftarrow 0$ ,  $\hat{Q}(h) \leftarrow 0$  for all  $h \in \mathcal{H}$ 
328 3 for  $t = 1, 2, \dots, T$  do
329 4   Observe next event and set context  $q \leftarrow |Q|$ ; # Backlog as context
330 5     # Select policy by UCB on its induced threshold at context  $q$ 
331 6      $h_t \leftarrow \arg \max_{h \in \mathcal{H}} \left\{ \hat{Q}(h) + \beta \sqrt{(\ln t) / (N(h) + 1)} \right\}$ 
332 7      $\alpha_t \leftarrow h_t(q)$ ; # Threshold for current backlog
333 8     Obtain  $C_I$  (and  $C_L$ , if no early exit) and compute reward  $r_t$ ;
334 9     # Update policy statistics
335 10     $N(h_t) \leftarrow N(h_t) + 1$ ;
336 11     $\hat{Q}(h_t) \leftarrow \hat{Q}(h_t) + \frac{r_t - \hat{Q}(h_t)}{N(h_t)}$ ;
337

```

---

338

339

**4 EVALUATION**

341

We evaluate buffer-aware EENNs under three settings: a stationary workload, a mixed *easy-hard* workload, and a mixed *hard-easy* workload. In *stationary workload*, images from the dataset are unaltered, with no image distortion, such as blur and noise. In the *easy-hard workload*, the arrival rate remains fixed, but while the first half of the experiment uses original images, the second half introduces images with gaussian blur. Finally, the *hard-easy workload* reverses the order of the *easy-hard workload*. For each case, we report both system-level performance and per-machine breakdowns. The metrics include accuracy, loss rate, loss ratio, score and goodput,

353

$$Score = Accuracy - LossRatio, \quad Goodput = Accuracy \cdot ArrivalRate \cdot (1 - LossRatio),$$

354

where score and goodput combine accuracy and loss ratio to provide unified measures capturing the trade-off between accuracy and loss. Table 1 presents the results for these metrics. For completeness, Appendix E provides additional metrics, including arrival rate, throughput, and utilization.

355

**Testbed.** Our experimental setup combines a heterogeneous edge–cloud testbed with EENNs. The testbed, as shown in Figure 1, consists of two devices: a Raspberry Pi 4B Rev 1.4 with a buffer of size 10, and a MinisForum Z83-F equipped with an Intel Atom x5-Z8350 CPU and a buffer size of 50. The MinisForum is considered a MiniPC and serves as the cloud. The Raspberry Pi and MiniPC are connected via WLAN with a bandwidth of 30 Mbps. Jobs first arrive at the Raspberry Pi; if an input does not satisfy the early-exit condition at the intermediate branch, it is forwarded to the MiniPC for deeper processing.

360

**Model and dataset.** The EENN used in the experiment is based on *ResNet50*, with an intermediate exit branch placed at the 9th residual block (out of a total of 20). This design strikes a balance between intermediate accuracy and computation savings. The EENN is trained on *CIFAR-10* image classification dataset (Krizhevsky et al., 2009) with 60,000 images across 10 classes. A subset of 5,000 images from the test set is used as the workload in our experiment.

365

**Routing setup.** Images are generated on the Raspberry Pi. If the intermediate confidence  $C_I$  exceeds the threshold  $\alpha$ , classification occurs locally and inference terminates. Otherwise, the sample is transmitted via WLAN to the MiniPC, which processes it until the final layer and outputs the classification result. The model deployed on the MiniPC does not contain any early-exits mechanisms.

370

**Scheduler settings.** The threshold selection scheduler is deployed on the Raspberry Pi. For the UCB, vanilla policy gradient (PG), and Tsallis policy gradient (TSA-PG) schedulers, the threshold arm  $\alpha$  is selected from  $\{0.50, 0.51, \dots, 0.99\}$ . For the monotonic-parameterized UCB (UCB-Mono), the action is  $\theta = (\theta_1, \theta_2)$  with  $\theta_1 \in \{0.00, 0.01, \dots, 0.05\}$  and  $\theta_2 \in \{0.5, 0.51, \dots, 0.99\}$ . Samples that do not exit early on the Raspberry Pi are forwarded to the MiniPC, which always



Figure 1: The edge-cloud testbed

378

379

Table 1: System-level results across workloads.

380

| Workload / Method | Accuracy                              | Loss rate                             | Loss ratio                            | Score                                 | Goodput                               |
|-------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| <b>Stationary</b> |                                       |                                       |                                       |                                       |                                       |
| Baseline          | $0.8852 \pm 0.0011$                   | $0.7865 \pm 0.0165$                   | $0.1981 \pm 0.0031$                   | $0.6871 \pm 0.0036$                   | $2.8394 \pm 0.0115$                   |
| UCB               | $0.8705 \pm 0.0012$                   | $0.3583 \pm 0.0139$                   | $0.0902 \pm 0.0030$                   | $0.7803 \pm 0.0031$                   | $3.1679 \pm 0.0113$                   |
| UCB-Mono          | $0.8817 \pm 0.0011$                   | $0.2902 \pm 0.0132$                   | $0.0730 \pm 0.0030$                   | $0.8087 \pm 0.0029$                   | $3.2693 \pm 0.0113$                   |
| PG                | $0.8743 \pm 0.0013$                   | $0.2053 \pm 0.0085$                   | $0.0517 \pm 0.0020$                   | $0.8227 \pm 0.0018$                   | $3.3164 \pm 0.0086$                   |
| TSA-PG(1.75)      | <b><math>0.8682 \pm 0.0014</math></b> | <b><math>0.1488 \pm 0.0093</math></b> | <b><math>0.0374 \pm 0.0023</math></b> | <b><math>0.8308 \pm 0.0021</math></b> | <b><math>3.3429 \pm 0.0096</math></b> |
| <b>Easy-Hard</b>  |                                       |                                       |                                       |                                       |                                       |
| Baseline          | $0.7829 \pm 0.0015$                   | $0.8955 \pm 0.0169$                   | $0.2256 \pm 0.0030$                   | $0.5573 \pm 0.0035$                   | $2.4251 \pm 0.0105$                   |
| UCB               | $0.7739 \pm 0.0019$                   | $0.5368 \pm 0.0146$                   | $0.1351 \pm 0.0030$                   | $0.6387 \pm 0.0036$                   | $2.6774 \pm 0.0114$                   |
| UCB-Mono          | $0.7818 \pm 0.0019$                   | $0.4391 \pm 0.0147$                   | $0.1105 \pm 0.0032$                   | $0.6713 \pm 0.0035$                   | $2.7816 \pm 0.0121$                   |
| PG                | $0.7733 \pm 0.0019$                   | $0.3257 \pm 0.0114$                   | $0.0819 \pm 0.0026$                   | $0.6914 \pm 0.0025$                   | $2.8399 \pm 0.0106$                   |
| TSA-PG(1.75)      | <b><math>0.7682 \pm 0.0020</math></b> | <b><math>0.2619 \pm 0.0143</math></b> | <b><math>0.0659 \pm 0.0034</math></b> | <b><math>0.7023 \pm 0.0033</math></b> | <b><math>2.8703 \pm 0.0128</math></b> |
| <b>Hard-Easy</b>  |                                       |                                       |                                       |                                       |                                       |
| Baseline          | $0.7829 \pm 0.0023$                   | $0.9045 \pm 0.0173$                   | $0.2278 \pm 0.0031$                   | $0.5551 \pm 0.0036$                   | $2.4182 \pm 0.0120$                   |
| UCB               | $0.7728 \pm 0.0022$                   | $0.5074 \pm 0.0171$                   | $0.1277 \pm 0.0037$                   | $0.6450 \pm 0.0037$                   | $2.6965 \pm 0.0138$                   |
| UCB-Mono          | $0.7825 \pm 0.0023$                   | $0.4408 \pm 0.0153$                   | $0.1109 \pm 0.0033$                   | $0.6716 \pm 0.0028$                   | $2.7829 \pm 0.0132$                   |
| PG                | $0.7736 \pm 0.0021$                   | $0.3223 \pm 0.0095$                   | $0.0811 \pm 0.0021$                   | $0.6925 \pm 0.0024$                   | $2.8434 \pm 0.0101$                   |
| TSA-PG(1.75)      | <b><math>0.7687 \pm 0.0027</math></b> | <b><math>0.2672 \pm 0.0164</math></b> | <b><math>0.0672 \pm 0.0039</math></b> | <b><math>0.7015 \pm 0.0032</math></b> | <b><math>2.8682 \pm 0.0157</math></b> |

394

processes them to completion. We instantiate the queue-aware overhead using the affine form  $o(q) = 0.1q - 0.05$ . For the considered backlog sizes ( $1 \leq q \leq 10$ ), this choice ensures that the overhead  $o(q)$  is commensurable with the confidence gains and lies in the interval  $[0, 1]$ .

**Arrival process and duration.** The input images arrive at the Raspberry Pi according to a Poisson process with rate 4 requests per second. This ensures that the system operates in a moderately loaded regime: high enough to induce queueing effects, yet low enough to allow meaningful differentiation between methods without saturating the MiniPC worker. Each experiment runs for one hour, providing sufficient samples to evaluate steady-state performance in terms of accuracy, throughput, and queueing metrics.

Although our empirical setting is limited (single mid-network exit, CIFAR-10, Poisson arrivals) we clarify that the *modeling layer*—the queue-aware reward and the buffer-aware bandit formulation—is not tied to these choices. The same queue-dependent objective and learning rules can be applied to multi-exit architectures (by parameterizing thresholds per exit) and to other datasets and backbones, and Poisson arrivals can be replaced by more realistic arrival processes at the cost of more complex queue dynamics. Our goal here is to establish and analyze the queue-aware bandit formulation and to show that it can be implemented end-to-end on a real testbed.

#### 4.1 GENERALIZED-EXPONENTIAL POLICY GRADIENT OFFERS FLEXIBLE SCHEDULING

First, we evaluate the methods under the stationary workload. Table 1 presents in its upper part the system-level metrics under a stationary arrival process. Buffer-aware variants (UCB) significantly reduce the loss ratio by 54.5% compared to the original baseline. The monotonic parameterization of UCB further improves the score from 0.7814 to 0.7842. Policy-gradient-based methods offer further improvements, resulting in significantly lower loss ratios. In particular, the policy gradient method with Tsallis-softmax ( $\delta = 1.75$ ) achieves the lowest loss ratio ( $0.0371 \pm 0.0013$ ), which is 83.4% lower than the baseline, and the highest score ( $0.8312 \pm 0.0015$ ), which is 26.1% higher than the baseline, among all evaluated methods.

Next, we evaluate the methods under context drift workloads. In the easy-hard setting, the first 30 minutes consist of original CIFAR10 images, referred to as easy jobs. In the subsequent 30 minutes, a Gaussian blur with a kernel size of 5 and a sigma of 3 is applied to the images, and these images are hard jobs. Similarly, in the hard-easy setting, the workload begins with blurred images (hard jobs) for the first 30 minutes, followed by original images (easy jobs) for the next 30 minutes.

Table 1 reports the results for the stationary, easy-hard and hard-easy workloads. In both dynamic workloads, all methods experience a reduction in accuracy and an increase in loss ratio as jobs become more challenging to classify, requiring deeper layers of processing to achieve higher confidence scores. All proposed variants significantly outperform the baseline method by at least 14.5% and 16.2% in easy-hard and hard-easy settings, respectively. Among them, the Tsallis-softmax policy gradient with  $\delta = 1.75$  consistently balances classification accuracy and loss ratio well, achieving the highest performance scores of  $0.7023 \pm 0.0033$  and  $0.7015 \pm 0.0032$  in the easy-hard and hard-easy workloads, respectively.

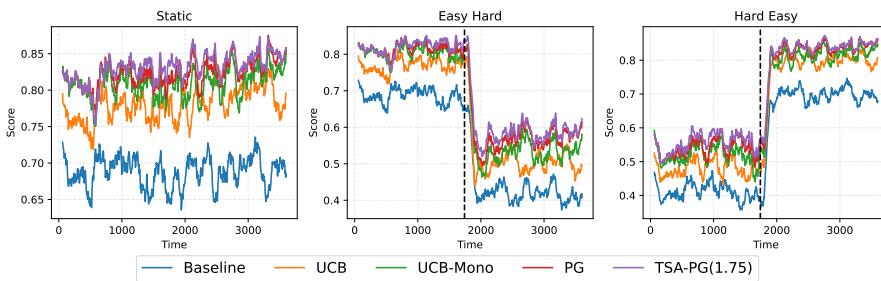


Figure 2: Monitored performance score over time

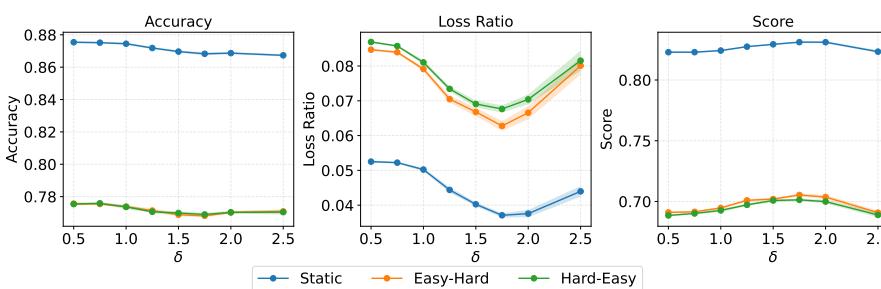


Figure 3: Sensitivity analysis on various  $\delta$  used in the Tsallis-softmax policy gradient

Figure 2 presents the monitored system performance score over time across three types of workloads. Under the stationary workload, the performance score of PG and TSA-PG (1.75), which measures the trade-off between accuracy and system loss ratio, presents an increasing trend. This indicates that policy-gradient methods progressively learn to generate thresholds that improve system performance score. In the easy-hard and hard-easy workloads (with the black vertical line indicating the context change), the performance score experiences a sharp increase or decrease after the change is introduced. The policy-gradient methods adapt to the new context, and the performance score increases again over time. In contrast, this adaptive effect is less obvious for UCB-based methods.

## 4.2 SENSITIVITY ANALYSIS

A sensitivity analysis is conducted to examine the impact of  $\delta \in [0.5, 2.5]$  in the Tsallis-softmax policy gradient. As shown in Figure 3, the loss ratio decreases significantly as  $\delta$  increases, reaching its minimum at  $\delta = 1.75$ . Meanwhile, accuracy experiences only a slight decline. The performance score indicates that the Tsallis-softmax policy gradient achieves the best accuracy-loss trade-off at  $\delta = 1.75$ . However, when  $\delta$  exceeds 1.75, the loss ratio increases and the performance score decreases, indicating that the algorithm is over-exploiting and has become trapped in solutions that have already been explored.

Across all settings, we observe three consistent trends: (i) buffer-awareness variant improves robustness compared to the original baseline; (ii) policy gradient methods with Tsallis-softmax outperform their vanilla counterparts by providing tunable exploration; and (iii) the  $\delta = 1.75$  configuration offers the best trade-off between accuracy and queue stability.

**Takeaway.** In our setting, we discretize the parameter space into as many as 100 thresholds, which goes beyond the small discrete spaces where UCB is typically most effective. While UCB-based algorithms remain appealing due to their theoretical regret guarantees and robustness in noisy environments, their efficiency decreases as the discretization grows. Policy gradient methods, by contrast, are not tied to such discretizations, which allows them to scale more naturally to large action spaces. Moreover, our use of the generalized-exponential family (Section 3.1) can be understood as a form of *regularization*, stabilizing learning dynamics and reducing variance, as seen in the sensitivity analysis of Figure 3. As a result, policy gradient approaches provide both flexibility and robustness, adapting effectively to workload variations in large-scale queue-aware scheduling.

486 **5 RELATED WORK**

488 Our work is at the intersection of two lines of research: (i) robust policy optimization methods based  
 489 on generalized exponential families and (ii) systems approaches for efficient edge inference.

490 Traditional policy optimization methods often rely on Gaussian policies due to their tractability in  
 491 continuous action spaces. Recent work by Zhu et al. (2025) introduced the  $\delta$ -exponential family  
 492 as a broader class of policies that generalizes beyond the Gaussian, allowing for both light-tailed  
 493 and heavy-tailed behaviors. Their results show that heavy-tailed policies, such as the  $\delta$ -Gaussian or  
 494 Student's  $t$ , can improve robustness and stability in reinforcement learning. Our use of  $\delta$ -softmax  
 495 (Tsallis-softmax) in queue-aware threshold selection builds directly on these insights: we adapt the  
 496 same  $\delta$ -exponential machinery to discrete thresholds, giving us a tunable way to balance exploration  
 497 and exploitation in stochastic queuing environments.

498 On the systems side, several works have explored how to optimize inference under resource  
 499 constraints by selectively allocating computation across edge and cloud resources. Early frameworks  
 500 such as Neurosurgeon (Kang et al., 2017), Edge AI (Li et al., 2020), and distributed inference over  
 501 heterogeneous devices (Hu & Li, 2022) established the benefits of adaptive inference offloading.  
 502 More recent work has focused on hierarchical inference, including module selection at the edge (Be-  
 503 hera et al., 2023), algorithms for balancing accuracy and delay (Moothedath et al., 2024; Eytur et al.,  
 504 2024), regret bounds for online learning (Al-Atat et al., 2024), and offloading algorithms for accu-  
 505 racy maximization (Fresa & Champati, 2023). Other proposals emphasize application-specific sce-  
 506 narios such as live video analytics for drones (Wang et al., 2018) and mobile inference balancing  
 507 latency and accuracy (Ogden & Guo, 2020). Our work is complementary: instead of focusing on  
 508 which device should process an input, we study *when to stop* within an early-exit network, making  
 509 the exit decision queue-aware and adaptive to system congestion.

510 Closer to our setting, prior work on scheduling inputs in early-exit neural networks (Casale & Roveri,  
 511 2023) estimates exit policies under a simplifying assumption that the final-layer confidence  $C_L$  is  
 512 independent of the threshold  $\alpha$ . This assumption poses potential issues: in practice,  $C_L$  depends on  
 513  $\alpha$ , since early exits filter out easy inputs and shift the distribution of samples reaching deeper lay-  
 514 ers. In contrast, our bandit-based formulation avoids this issue by directly using observed  $(C_I, C_L)$   
 515 pairs to define rewards, thereby adapting online to how threshold decisions shape the inputs that  
 516 reach deeper layers. Similarly, CEED (Chen et al., 2025) requires training multiple neural predic-  
 517 tors, whereas our lightweight, decentralized controller can leverage recent advances in robust bandit  
 518 theory (Tsallis-softmax (Zhu et al., 2025)) to efficiently schedule early exits in real time.

519 In summary, prior work on the  $\delta$ -exponential family provides the theoretical foundation for robust  
 520 exploration, and selective query frameworks show the systems value of adaptive inference. Our work  
 521 combines these two perspectives by integrating generalized policy optimization with buffer-aware  
 522 scheduling for early-exit neural networks, validated through real testbed experiments.

523 **6 CONCLUSION**

526 This paper reframed early exits as a *systems scheduling* problem and validated the approach on a  
 527 heterogeneous edge testbed. We showed that buffer-aware thresholds materially improve perfor-  
 528 mance, that  $\delta$ -softmax (Tsallis-softmax) policies stabilize learning under stochastic loads, and that  
 529 monotone parametric thresholds exploit domain structure for efficient generalization. More broadly,  
 530 our findings underscore the power of the generalized exponential family: by shaping exploration  
 531 and robustness, it provides a principled foundation for designing adaptive policies that respond to  
 532 system dynamics.

533 This work opens up a number of avenues for further research, including extensions to multi-exit ar-  
 534 chitectures and adversarial workloads. More broadly, incorporating energy and fairness metrics into  
 535 this framework can position buffer-aware EENN as a foundation for sustainable edge intelligence.  
 536 Notably, much of the recent work on hierarchical inference and the edge–cloud continuum can be  
 537 cast as variations of the same fundamental question we address here: *when to early exit*.

540 REFERENCES  
541

542 Alekh Agarwal, Sham M. Kakade, Jason D. Lee, and Gaurav Mahajan. On the theory of policy  
543 gradient methods: Optimality, approximation, and distribution shift. *Journal of Machine Learning  
544 Research*, 22(98):1–76, 2021. URL <https://jmlr.org/papers/v22/19-736.html>.

545 G. Al-Atat, P. Datta, S. Moharir, and J. P. Champati. Regret bounds for online learning for hi-  
546 erarchical inference. In *Proceedings of the ACM International Symposium on Mobile Ad Hoc  
547 Networking and Computing (MobiHoc)*, pp. 281–290, New York, NY, USA, 2024.

548 Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit  
549 problem. *Machine Learning*, 47(2–3):235–256, 2002. doi: 10.1023/A:1013689704352.

550 Ashwinkumar Badanidiyuru, Robert Kleinberg, and Aleksandrs Slivkins. Bandits with knapsacks.  
551 *Journal of the ACM*, 65(3):13:1–13:55, 2018. doi: 10.1145/3164539.

552 Divya Jyoti Bajpai and Manjesh Kumar Hanawal. BEEM: Boosting performance of early exit DNNs  
553 using multi-exit classifiers as experts. In *The Thirteenth International Conference on Learning  
554 Representations*, 2025. URL <https://openreview.net/forum?id=EzrZX9bd4G>.

555 A. P. Behera, R. Morabito, J. Widmer, and J. P. Champati. Improved decision module selection for  
556 hierarchical inference in resource-constrained edge devices. In *Proceedings of the ACM Interna-  
557 tional Conference on Mobile Computing and Networking (MobiCom)*, pp. 1–3, 2023.

558 George E. P. Box and David R. Cox. An analysis of transformations. *Journal of the Royal Statistical  
559 Society: Series B (Methodological)*, 26(2):211–252, 1964.

560 Giuliano Casale and Manuel Roveri. Scheduling inputs in early exit neural networks. *IEEE Trans-  
561 actions on Computers*, 73(2):451–465, 2023.

562 Semih Cayci, Atilla Eryilmaz, and Rayadurgam Srikant. Learning to control renewal processes with  
563 bandit feedback. *Proceedings of the ACM on Measurement and Analysis of Computing Systems*,  
564 3(2):1–32, 2019. doi: 10.1145/3341616.

565 Yichong Chen, Zifeng Niu, Manuel Roveri, and Giuliano Casale. CEED: Collaborative Early Exit  
566 Neural Network Inference at the Edge. In *IEEE Conference on Computer Communications (IN-  
567 FOCOM)*, pp. 1–10, 2025.

568 Ke Dong, Chengjie Zhou, Yihan Ruan, and Yuzhi Li. Mobilenetv2 model for image classification.  
569 In *IEEE International Conference on Information Technology and Computer Application (ITCA)*,  
570 pp. 476–480, 2020.

571 Enerst Edozie, Aliyu Nuhu Shuaibu, Ukaigwu Kelechi John, and Bashir Olaniyi Sadiq. Compre-  
572 hensive review of recent developments in visual object detection based on deep learning. *Artificial  
573 Intelligence Review*, 58(9):277, 2025.

574 A. Eytur, G. A. Aydin, G. de Veciana, and H. Vikalo. Optimization of offloading policies for  
575 accuracy-delay tradeoffs in hierarchical inference. In *Proceedings of the IEEE International Con-  
576 ference on Computer Communications (INFOCOM)*, pp. 1989–1998, 2024.

577 Maryam Fazel, Rong Ge, Sham Kakade, and Mehran Mesbahi. Global convergence of policy gradi-  
578 ent methods for the linear quadratic regulator. In *Proceedings of the 35th International Conference  
579 on Machine Learning*, volume 80 of *Proceedings of Machine Learning Research*, pp. 1467–1476.  
580 PMLR, 2018. URL <https://proceedings.mlr.press/v80/fazel18a.html>.

581 A. Fresa and J. P. Champati. Offloading algorithms for maximizing inference accuracy on edge  
582 device in an edge intelligence system. *IEEE Transactions on Parallel and Distributed Systems*,  
583 34(7):2025–2039, 2023.

584 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-  
585 nition. In *IEEE Conference on Computer Vision and Pattern Recognition*, pp. 770–778, 2016.

586 C. Hu and B. Li. Distributed inference with deep learning models across heterogeneous edge de-  
587 vices. In *Proceedings of the IEEE International Conference on Computer Communications (IN-  
588 FOCOM)*, pp. 330–339, 2022.

594 Chuang Hu, Wei Bao, Dan Wang, and Fengming Liu. Dynamic adaptive DNN surgery for inference  
 595 acceleration on the edge. In *IEEE Conference on Computer Communications (INFOCOM)*, pp.  
 596 1423–1431, 2019.

597 Weiyu Ju, Wei Bao, Liming Ge, and Dong Yuan. Dynamic early exit scheduling for deep neural net-  
 598 work inference through contextual bandits. In *30th ACM International Conference on Information*  
 599 & *Knowledge Management*, pp. 823–832, 2021.

600 Anil Kag and Igor Fedorov. Efficient edge inference by selective query. In *International Conference*  
 601 *on Learning Representations (ICLR)*, 2023.

602 Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and L. Tang. Neurosurgeon: Collab-  
 603 orative intelligence between the cloud and mobile edge. *ACM SIGARCH Computer Architecture*  
 604 *News*, 45(1):615–629, 2017.

605 Frank Kelly. Charging and rate control for elastic traffic. *European transactions on Telecommuni-  
 606 cations*, 8(1):33–37, 1997.

607 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.  
 608 2009.

609 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-  
 610 lutional neural networks. *Advances in neural information processing systems*, 25, 2012.

611 E. Li, L. Zeng, Z. Zhou, and X. Chen. Edge ai: On-demand accelerating deep neural network  
 612 inference via edge computing. *IEEE Transactions on Wireless Communications*, 19(1):447–457,  
 613 2020.

614 Dongyang Liu, Meina Kan, Shiguang Shan, and Xilin Chen. A simple romance between multi-exit  
 615 vision transformer and token reduction. In *The Twelfth International Conference on Learning*  
 616 *Representations (ICLR)*, 2023.

617 Omid Madani, Daniel J. Lizotte, and Russell Greiner. The budgeted multi-armed bandit problem. In  
 618 *Learning Theory (COLT 2004)*, volume 3120 of *Lecture Notes in Computer Science*, pp. 643–645.  
 619 Springer, 2004. doi: 10.1007/978-3-540-27819-1\_46.

620 Cyan Subhra Mishra, Deeksha Chaudhary, Jack Sampson, Mahmut Kandemir, and Chita R Das.  
 621 NExUME: Adaptive Training and Inference for DNNs under Intermittent Power Environments.  
 622 In *International Conference on Learning Representations (ICLR)*, 2025.

623 V. N. Moothedath, J. P. Champati, and J. Gross. Getting the best out of both worlds: Algorithms for  
 624 hierarchical inference at the edge. *IEEE Transactions on Machine Learning in Communications*  
 625 and *Networking*, 2:280–297, 2024.

626 S. S. Ogden and T. Guo. Mdinference: Balancing inference accuracy and latency for mobile applica-  
 627 tions. In *Proceedings of the IEEE International Conference on Cloud Engineering (IC2E)*, pp.  
 628 28–39, 2020.

629 Roberto G Pacheco, Divya J Bajpai, Mark Shifrin, Rodrigo S Couto, Daniel S Menasché, Manjesh K  
 630 Hanawal, and Miguel Elias M Campista. Ucbee: A multi armed bandit approach for early-exit in  
 631 neural networks. *IEEE Transactions on Network and Service Management*, 2024.

632 Mahadev Satyanarayanan. The emergence of edge computing. *Computer*, 50(1):30–39, 2017.

633 Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet: Fast inference via  
 634 early exiting from deep neural networks. In *IEEE International Conference on Pattern Recog-  
 635 nition (ICPR)*, pp. 2464–2469, 2016.

636 C. Tsallis. Possible generalization of Boltzmann-Gibbs statistics. *Journal of statistical physics*, 52  
 637 (1):479–487, 1988.

638 Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural policy gradient methods: Global  
 639 optimality and rates of convergence. In *International Conference on Learning Representations*,  
 640 2020.

648 Z. Wang, Z. Feng, S. Chen, M. George, P. Bala, S. Pillai, S.-W. Yang, and M. Satyanarayanan.  
649 Bandwidth-efficient live video analytics for drones via edge computing. In *Proceedings of the*  
650 *IEEE/ACM Symposium on Edge Computing (SEC)*, pp. 159–173, 2018.

651 Yingce Xia, Haifang Li, Tao Qin, Nenghai Yu, and Tie-Yan Liu. Thompson sampling for budgeted  
652 multi-armed bandits. In *Proceedings of the 24th International Joint Conference on Artificial*  
653 *Intelligence (IJCAI)*, pp. 3960–3966, 2015.

654 Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep neural networks  
655 with noisy labels. *Advances in Neural Information Processing Systems (NeurIPS)*, 31, 2018.

656 Lingwei Zhu, Haseeb Shah, Han Wang, Yukie Nagai, and Martha White. q-Exponential Family  
657 for Policy Optimization. In *International Conference on Learning Representations (ICLR)*, 2025.  
658 URL <https://github.com/lingweizhu/qexp>.

661  
662  
663  
664  
665  
666  
667  
668  
669  
670  
671  
672  
673  
674  
675  
676  
677  
678  
679  
680  
681  
682  
683  
684  
685  
686  
687  
688  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
700  
701

702 **A NOTATION AND METRICS**  
703704 Table 2 summarizes the acronyms of the algorithms considered in this work, together with their  
705 parameters.  
706708 **Table 2: Experimental configurations: algorithms and parameters.**

| 709 | Algorithm          | Parameters / Description                                                  |
|-----|--------------------|---------------------------------------------------------------------------|
| 710 | Baseline           | Original scheduler, no buffer awareness                                   |
| 711 | UCB                | Buffer-aware scheduler (fixed thresholds)                                 |
| 712 | UCB-Mono           | Linear thresholds $\alpha(q) = \theta_1 q + \theta_2$ , $\theta_1 \leq 0$ |
| 713 | PG                 | Standard softmax ( $\delta = 1$ )                                         |
| 714 | TSA-PG( $\gamma$ ) | Tsallis-softmax with $\delta = \gamma$                                    |

715 Table 3 summarizes notation used throughout this work.  
716717 **Table 3: Notation used throughout the paper. Vectors are bold; scalars are plain.**

| 718 <b>Symbol</b>                                                                                                | <b>Description</b>                                                        |
|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| 719 $\mathbf{x}$                                                                                                 | Input (image/example)                                                     |
| 720 $\mathbf{z}_I, \mathbf{z}_L$                                                                                 | Logits at intermediate side branch and final layer                        |
| 721 $\mathbf{p}_I \triangleq \text{softmax}(\mathbf{z}_I), \mathbf{p}_L \triangleq \text{softmax}(\mathbf{z}_L)$ | Class probability vectors at intermediate/final layers                    |
| 722 $C_I \triangleq \max_c [\mathbf{p}_I]_c, C_L \triangleq \max_c [\mathbf{p}_L]_c$                             | Confidence (max class prob.) at intermediate/final layers                 |
| 723 $\hat{y}$                                                                                                    | Predicted class label (early or final)                                    |
| 724 $\alpha$                                                                                                     | Confidence threshold for early exit                                       |
| 725 $\mathcal{A}$                                                                                                | Discrete action set of candidate thresholds                               |
| 726 $\Delta C \triangleq \max\{C_L - C_I, 0\}$                                                                   | Confidence gain from continuing past the side branch                      |
| 727 $o, o(q)$                                                                                                    | Overhead (fixed) or queue-aware overhead (e.g., $o(q) = \nu q - \kappa$ ) |
| 728 $\mu, \kappa$                                                                                                | Overhead parameters in $o(q)$                                             |
| 729 $B$                                                                                                          | Buffer capacity                                                           |
| 730 $q =  Q $                                                                                                    | Backlog (current number of queued inputs)                                 |
| 731 $r_t(\alpha_t)$                                                                                              | Instantaneous reward at round $t$ (equation 1)                            |
| 732 $t, T$                                                                                                       | Round index and time horizon                                              |
| 733 $N_t(\alpha)$                                                                                                | Times threshold $\alpha$ was selected up to $t$                           |
| 734 $Q_t(\alpha), \hat{Q}(\cdot)$                                                                                | Empirical mean reward estimate (tabular/UCB)                              |
| 735 $\beta$                                                                                                      | UCB exploration parameter                                                 |
| 736 $\mathcal{H}$                                                                                                | Policy class for contextual UCB (e.g., monotone linear)                   |
| 737 $h_\theta(q)$                                                                                                | Parametric threshold policy $\text{clip}_{[0,1]}(\theta_1 q + \theta_2)$  |
| 738 $\theta, \theta_q(\alpha)$                                                                                   | Policy parameters (global or per-backlog, PG methods)                     |
| 739 $\pi^{(q)}(\alpha)$                                                                                          | Stochastic policy over thresholds given backlog $q$                       |
| 740 $\eta$                                                                                                       | Learning rate (policy gradient)                                           |
| 741 $B_t$                                                                                                        | Baseline for variance reduction (policy gradient)                         |
| 742 $\delta$                                                                                                     | Tsallis / $\delta$ -exponential shape parameter ( $\delta=1$ is softmax)  |
| 743 $\exp_\delta(\cdot), \log_\delta(\cdot)$                                                                     | Generalized (Tsallis) exponential / logarithm                             |
| 744 $Q_{\max}$                                                                                                   | Maximum queue size tracked by the learner                                 |

746 **A.1 EVALUATION METRICS**  
747749 This appendix formalizes the metrics reported in the work. Let  $N_{\text{tot}}$  denote the total number of ar-  
750 rivals to the system,  $N_{\text{proc}}$  the number of processed samples,  $N_{\text{corr}}$  the number of correctly classified  
751 samples, and  $N_{\text{lost}}$  the number of lost samples. We let  $T$  denote the total experiment time.  
752753 **Workload.** Except otherwise noted, we assume that arrivals occur according to a Poisson process  
754 with rate  $\lambda$ ,  
755

$$\lambda = \frac{N_{\text{tot}}}{T}.$$

756   **Worker.** A worker represents the execution resource (e.g., edge or cloud). If  $\mathcal{W} = \{\text{edge, cloud}\}$ ,  
 757   then

$$758 \quad N_{\text{proc}} = N_{\text{edge}} + N_{\text{cloud}}.$$

760   **Loss rate and loss ratio.** The instantaneous loss rate is

$$762 \quad r_{\text{loss}}(t) = \frac{N_{\text{lost}}(t)}{t},$$

764   and the average loss rate over the whole simulation is

$$766 \quad r_{\text{loss}} = \frac{N_{\text{lost}}}{T}.$$

768   The loss ratio is the fraction of arrivals that were lost due to buffer overflow,

$$770 \quad \text{LossRatio} = \frac{N_{\text{lost}}}{N_{\text{tot}}}.$$

772   **Throughput.** Throughput is the rate of processed samples per unit of time

$$774 \quad \Theta = \frac{N_{\text{proc}}}{T}.$$

776   **Utilization.** Utilization measures the fraction of time the server is busy

$$778 \quad U = \frac{\mathcal{B}}{T},$$

780   where  $\mathcal{B}$  is the total busy time.

782   **Accuracy.** The accuracy is given by

$$784 \quad \text{Accuracy} = \frac{N_{\text{corr}}}{N_{\text{proc}}}.$$

787   **Score.** The score combines accuracy and loss into a single metric.

$$788 \quad \text{Score} = \text{Accuracy} - \text{LossRatio}.$$

790   We also define the goodput as

$$792 \quad \text{Goodput} = \frac{N_{\text{corr}}}{T} = \text{Accuracy} \cdot (1 - \text{LossRatio}) \cdot \lambda = \text{Accuracy} \cdot (\lambda - r_{\text{loss}}).$$

794   Higher score and goodput values indicate policies that jointly maximize accuracy while minimizing  
 795   loss.

796  
 797  
 798  
 799  
 800  
 801  
 802  
 803  
 804  
 805  
 806  
 807  
 808  
 809

810 **B BACKGROUND**  
 811

812 At the inference phase, the EENN model processes an input  $\mathbf{x}$  layer by layer on the edge device  
 813 until it reaches an intermediate exit branch, which produces a logit vector  $\mathbf{z}_I(\mathbf{x})$ . The exit branch  
 814 then generates a probability vector  $\mathbf{p}_I(\mathbf{x}) \triangleq \text{softmax}(\mathbf{z}_I(\mathbf{x}))$ . Each component  $[p_I(\mathbf{x})]_c$  of  $\mathbf{p}_I(\mathbf{x})$   
 815 represents the probability of  $\mathbf{x}$  belonging to class  $c \in C$ , where  $C$  is the set of possible classes. The  
 816 classification confidence estimate is defined as  $C_I(\mathbf{x}) \triangleq \max_c [\mathbf{p}_I(\mathbf{x})]_c$ . If  $C_I(\mathbf{x}) \geq \alpha$ , where  $\alpha \in$   
 817  $[0, 1]$  is the confidence threshold, the input  $\mathbf{x}$  is classified locally as  $\hat{y}_I(\mathbf{x}) = \arg \max_{c \in C} [\mathbf{p}_I(\mathbf{x})]_c$ .  
 818 Otherwise, when  $C_I(\mathbf{x}) < \alpha$ , the classification is deemed unreliable, and the edge device offloads  
 819 the data to the cloud, incurring an overhead  $o$ . The cloud processes the remaining layers until  
 820 the final layer is reached, producing the final probability vector  $\mathbf{p}_L(\mathbf{x})$ , the confidence estimate,  
 821  $C_L(\mathbf{x}) \triangleq \max_c [\mathbf{p}_L(\mathbf{x})]_c$ , and the final prediction  $\hat{y}_L(\mathbf{x}) = \arg \max_{c \in C} [\mathbf{p}_L(\mathbf{x})]_c$ . Henceforth, we  
 822 drop the explicit dependence of  $C_I(\mathbf{x})$ ,  $C_L(\mathbf{x})$ , and all variables derived from them on  $\mathbf{x}$  whenever  
 823 the input is clear from context.

824  
 825 **C REGRET ANALYSIS FOR CONTEXTUAL UCB WITH DISCRETIZED QUEUE**  
 826

827 We provide a finite-time regret guaranty for a simplified variant of our UCB-based early-exit policy,  
 828 formulated as a stochastic contextual bandit with a finite context space. This setting corresponds to  
 829 a discretized queue length and stationary reward distributions and is used as a baseline theoretical  
 830 model; the full queuing dynamics considered in the main paper are more general and may induce  
 831 non-stationarity.

832  
 833 **C.1 MODEL**  
 834

835 We consider a stochastic contextual bandit problem with the following components:

836

- 837 • A finite set of contexts  $\mathcal{Q} = \{0, 1, \dots, Q_{\max}\}$ , representing a discretized queue length.
- 838 • A finite set of actions (thresholds)  $\mathcal{A} = \{1, \dots, K\}$ .
- 839 • At each round  $t = 1, \dots, T$ , a context  $q_t \in \mathcal{Q}$  is observed, an action  $\alpha_t \in \mathcal{A}$  is chosen, and  
 840 a reward  $r_t \in [0, 1]$  is observed.
- 841 • For each pair  $(q, \alpha) \in \mathcal{Q} \times \mathcal{A}$ , there is an unknown distribution  $\nu_{q, \alpha}$  with mean  
 842

843

$$\mu(q, \alpha) := \mathbb{E}_{r \sim \nu_{q, \alpha}} [r],$$

844 and we assume that all rewards are  $\sigma$ -sub-Gaussian (which holds in our setting, since all  
 845 our rewards are limited in  $[0, 1]$ ). Conditioned on given  $(q_t, \alpha_t)$ , the rewards are i.i.d. draws  
 846 from  $\nu_{q_t, \alpha_t}$ .

847 We assume that the sequence of contexts  $(q_t)_{t=1}^T$  is exogenous (independent of the learner's actions)  
 848 and arbitrary; for example, it may be i.i.d. from an unknown distribution over  $\mathcal{Q}$ . For each context  
 849  $q$ , we define an optimal action

850

$$\alpha^*(q) \in \arg \max_{\alpha \in \mathcal{A}} \mu(q, \alpha),$$

851 and gaps

852

$$\Delta(q, \alpha) := \mu(q, \alpha^*(q)) - \mu(q, \alpha) \geq 0, \quad \alpha \in \mathcal{A}.$$

853 We assume  $\Delta(q, \alpha) > 0$  for all suboptimal actions  $\alpha \neq \alpha^*(q)$  and all  $q$ .

854 The (pseudo-)regret after  $T$  rounds is defined as

855

$$R_T := \sum_{t=1}^T \left( \mu(q_t, \alpha^*(q_t)) - \mu(q_t, \alpha_t) \right) = \sum_{q \in \mathcal{Q}} \sum_{\alpha \in \mathcal{A}} \Delta(q, \alpha) \mathbb{E}[N_T(q, \alpha)], \quad (7)$$

856 where  $N_T(q, \alpha)$  is the number of times action  $\alpha$  is selected under context  $q$  up to time  $T$ .

864 C.2 CONTEXTUAL UCB ALGORITHM  
865866 We consider the following contextual UCB strategy, which applies a standard UCB rule indepen-  
867 dently for each context  $q$ .868 For each  $(q, \alpha) \in \mathcal{Q} \times \mathcal{A}$  and each round  $t$ , let  
869

870 
$$N_t(q, \alpha) := \sum_{s=1}^{t-1} \mathbf{1}\{q_s = q, \alpha_s = \alpha\}$$
  
871  
872

873 denote the number of times action  $\alpha$  has been selected when the context was  $q$  up to time  $t - 1$ , and  
874 let

875 
$$\hat{\mu}_t(q, \alpha) := \begin{cases} \frac{1}{N_t(q, \alpha)} \sum_{s=1}^{t-1} r_s \mathbf{1}\{q_s = q, \alpha_s = \alpha\}, & \text{if } N_t(q, \alpha) > 0, \\ 0, & \text{if } N_t(q, \alpha) = 0. \end{cases}$$
  
876  
877

878 Given a time horizon  $T$ , we define the UCB index for context  $q_t$  and action  $\alpha$  as  
879

880 
$$U_t(q_t, \alpha) := \begin{cases} \hat{\mu}_t(q_t, \alpha) + \beta \sqrt{\frac{\log T}{N_t(q_t, \alpha)}}, & \text{if } N_t(q_t, \alpha) > 0, \\ +\infty, & \text{if } N_t(q_t, \alpha) = 0. \end{cases}$$
  
881  
882

883 At each round  $t$ , after observing  $q_t$ , the algorithm selects  
884

885 
$$\alpha_t \in \arg \max_{\alpha \in \mathcal{A}} U_t(q_t, \alpha).$$
  
886  
887

888 This is exactly UCB (Auer et al., 2002), with  $\beta = \sqrt{2}$ , applied separately to each context  $q$ , using  
889 the same confidence parameter  $\sqrt{(2 \log T)/N}$ . In (4), the term in the denominator is  $N_t + 1$  instead  
890 of  $N_t$ , which corresponds to pulling each arm once, as initialization.891 C.3 REGRET BOUND  
892893 We now state the regret guarantee.  
894895 **Theorem C.1 (Regret of contextual UCB with finite context space)** *Under the model and as-  
896 sumptions above, the expected regret of the contextual UCB algorithm satisfies*

897 
$$R_T \leq C \sum_{q \in \mathcal{Q}} \sum_{\alpha \neq \alpha^*(q)} \frac{\log T}{\Delta(q, \alpha)} = \tilde{O}(Q_{\max} K \log T), \quad (8)$$
  
898  
899

900 for some universal constant  $C > 0$ . In particular, the regret grows at most logarithmically with the  
901 horizon  $T$  and linearly with the number of contexts  $|\mathcal{Q}| = Q_{\max} + 1$  and actions  $K$ .  
902903 Fix a context  $q \in \mathcal{Q}$  and a suboptimal action  $\alpha \neq \alpha^*(q)$  with gap  $\Delta(q, \alpha) > 0$ . Let  $T_q$  denote the  
904 (random) number of rounds up to time  $T$  in which the context  $q_t$  equals  $q$ :  
905

906 
$$T_q := \sum_{t=1}^T \mathbf{1}\{q_t = q\}.$$
  
907  
908

909 Conditioned on the context sequence  $(q_t)$ , the rounds for which  $q_t = q$  define a standard  $K$ -armed  
910 stochastic bandit problem with horizon  $T_q$ , where arm  $\alpha$  has mean reward  $\mu(q, \alpha)$  and the algorithm  
911 applies exactly UCB on that subsequence (because the UCB indices and choices for context  $q$  depend  
912 only on rewards observed when  $q_t = q$ ).  
913By the standard UCB analysis (Auer et al., 2002), for each fixed  $q$  and  $\alpha \neq \alpha^*(q)$  we have  
914

915 
$$\mathbb{E}[N_T(q, \alpha) \mid (q_t)_{t=1}^T] \leq \frac{8 \log T}{\Delta(q, \alpha)^2} + 1 + \frac{\pi^2}{3}. \quad (9)$$
  
916

917 The bound uses  $\log T$  instead of  $\log T_q$ ; since  $T_q \leq T$ , this only makes the bound looser and is thus  
918 valid.  
919

918 Taking expectations with respect to the context sequence and using the tower property, we obtain  
 919

$$920 \quad \mathbb{E}[N_T(q, \alpha)] \leq \frac{8 \log T}{\Delta(q, \alpha)^2} + 1 + \frac{\pi^2}{3}. \\ 921$$

922 Substituting this into the regret decomposition equation 7, we get  
 923

$$924 \quad R_T = \sum_{q \in \mathcal{Q}} \sum_{\alpha \in \mathcal{A}} \Delta(q, \alpha) \mathbb{E}[N_T(q, \alpha)] \\ 925 \\ 926 \\ 927 \\ 928 \\ 929 \\ 930 \\ 931 \\ 932 \\ 933 \\ 934$$

$$= \sum_{q \in \mathcal{Q}} \sum_{\alpha \neq \alpha^*(q)} \Delta(q, \alpha) \mathbb{E}[N_T(q, \alpha)] \\ \leq \sum_{q \in \mathcal{Q}} \sum_{\alpha \neq \alpha^*(q)} \Delta(q, \alpha) \left( \frac{8 \log T}{\Delta(q, \alpha)^2} + 1 + \frac{\pi^2}{3} \right) \\ \leq C \sum_{q \in \mathcal{Q}} \sum_{\alpha \neq \alpha^*(q)} \frac{\log T}{\Delta(q, \alpha)},$$

935 for some universal constant  $C > 0$  (e.g.,  $C$  can absorb the additive constants and the factors  
 936  $8/\Delta(q, \alpha)$ , using that  $\Delta(q, \alpha) \leq 1$  because rewards lie in  $[0, 1]$ ). This proves equation 8 and the  
 937 claimed  $\tilde{O}(Q_{\max} K \log T)$  scaling.  
 938

939 Theorem C.1 should be interpreted as an illustrative regret guarantee for a *simplified* version of  
 940 our problem, in which the queue length is discretized, and the context sequence  $(q_t)$  is treated as  
 941 exogenous and independent of the learner's actions. In this scenario, our monotone-UCB policy in  
 942 the main text restricts the policy class to monotone thresholds  $\alpha(q)$ , which reduces the number of  
 943 effective degrees of freedom. In this finite-context, stationary setting, contextual UCB reduces to  
 944 running standard UCB per context and thus enjoys the usual logarithmic regret guarantees. In our  
 945 actual early-exit problem, however, the queue length  $q_t$  is *endogenous*: it evolves according to the  
 946 queueing dynamics and is directly affected by the chosen thresholds (actions), so that both the con-  
 947 text process and the reward distributions become action-dependent and potentially non-stationary.  
 948 A full regret analysis in this stateful, queue-dependent setting would require a more elaborate treat-  
 949 ment (closer to Markovian bandits or simple MDPs with queueing dynamics), which is beyond the  
 950 scope of this paper. We therefore present Theorem C.1 as a first, illustrative regret result that clarifies  
 951 how our UCB-based policy fits into the classical stochastic contextual bandit framework under  
 952 a discretized, exogenous-queue approximation.  
 953

## 953 D Q-EXPONENTIAL CALCULUS AND THE $\delta$ -SOFTMAX POLICY GRADIENT

955 This appendix contains the definitions and identities underlying the  $\delta$ -softmax policy in the main  
 956 text, and derives the policy-gradient update used in Algorithm 1.  
 957

958 Despite the growing interest in the  $\delta$ -exponential family (e.g., (Zhu et al., 2025)), to the best of our  
 959 knowledge the gradient-ascent rule for  $\delta$ -softmax (Tsallis-softmax) policies is novel to this work.  
 960

### 961 D.1 GENERALIZED LOGARITHM AND EXPONENTIAL

962 For  $\delta \in \mathbb{R}$ , define the generalized (Tsallis) logarithm and exponential:  
 963

$$964 \quad \log_\delta(u) = \begin{cases} \frac{u^{1-\delta} - 1}{1 - \delta}, & \delta \neq 1, \\ \log u, & \delta = 1, \end{cases} \quad \exp_\delta(u) = \begin{cases} (1 + (1 - \delta)u)^{\frac{1}{1-\delta}}, & \delta \neq 1, \\ \exp(u), & \delta = 1, \end{cases}$$

965 with inverse relations  $\log_\delta(\exp_\delta u) = u$  and  $\exp_\delta(\log_\delta v) = v$  when  $u$  and  $v$  are in range. Two  
 966 useful identities are:  
 967

$$968 \quad \log_\delta(uv) = \log_\delta u + \log_\delta v + (1 - \delta) \log_\delta u \log_\delta v, \quad (10)$$

$$969 \quad \frac{\partial}{\partial u} \log_\delta(u) = u^{-\delta}. \quad (11)$$

972 D.2 THE  $\delta$ -SOFTMAX POLICY OVER DISCRETE ACTIONS  
973974 Let  $\mathcal{A}$  be the finite set of thresholds. For parameters  $\theta(\alpha) \in \mathbb{R}$ , define  
975

976 
$$\pi(\alpha) = \frac{\exp_\delta(\theta(\alpha))}{\sum_{b \in \mathcal{A}} \exp_\delta(\theta(b))}.$$
  
977  
978

979 When  $\delta = 1$  this reduces to the standard softmax. When  $\delta \neq 1$ , the family produces heavier- or  
980 lighter-tailed discrete distributions depending on  $\delta$ , enabling tunable exploration.  
981982 D.3 EXPECTED REWARD AND BASELINE  
983984 Let  $\mu(\alpha) = \mathbb{E}[r \mid \alpha]$  denote the per-action value and  $B$  any baseline independent of the sampled  
985 action. The expected reward is  
986

987 
$$J(\theta) = \mathbb{E}_{\alpha \sim \pi}[\mu(\alpha)] = \sum_{\alpha \in \mathcal{A}} \mu(\alpha) \pi(\alpha).$$
  
988

989 Subtracting  $B$  does not change the gradient because  $\sum_{\alpha} \pi(\alpha) = 1$ .  
990991 D.4 GRADIENT OF  $J(\theta)$  UNDER  $\delta$ -SOFTMAX  
992993 Write  $S = \sum_b \exp_\delta(\theta(b))$  and  $f_a = \exp_\delta(\theta(a))$  for brevity, so  $\pi(a) = f_a/S$ . Differentiating  $\pi(b)$   
994 with respect to  $\theta(a)$  gives  
995

996 
$$\frac{\partial \pi(b)}{\partial \theta(a)} = \frac{1}{S} \frac{\partial f_b}{\partial \theta(a)} - \frac{f_b}{S^2} \frac{\partial S}{\partial \theta(a)}.$$
  
997

998 Using  $\frac{\partial}{\partial u} \exp_\delta(u) = \exp_\delta(u)^\delta$  (the inverse of equation 11), we obtain  
999

1000 
$$\frac{\partial f_b}{\partial \theta(a)} = \delta_{ab} f_b^\delta, \quad \frac{\partial S}{\partial \theta(a)} = f_a^\delta,$$
  
1001

1002 where  $\delta_{ab}$  is Kronecker's delta. Hence  
1003

1004 
$$\frac{\partial \pi(b)}{\partial \theta(a)} = \frac{\delta_{ab} f_b^\delta}{S} - \frac{f_b}{S} \frac{f_a^\delta}{S} = \delta_{ab} \frac{f_b^\delta}{S} - \pi(b) \frac{f_a^\delta}{S}.$$
  
1005

1006 Noting that  $f_x^\delta = (\exp_\delta(\theta(x)))^\delta$  and the algebraic identity  
1007

1008 
$$\frac{f_x^\delta}{S} = \frac{\pi(x)}{1 + (1 - \delta)\theta(x)},$$
  
1009

1010 (which follows by differentiating  $\log_\delta S$  via equation 10 and equation 11), we can write  
1011

1012 
$$\frac{\partial \pi(b)}{\partial \theta(a)} = \delta_{ab} \frac{\pi(b)}{1 + (1 - \delta)\theta(b)} - \pi(b) \frac{\pi(a)}{1 + (1 - \delta)\theta(a)}.$$
  
1013

1014 Therefore,  
1015

1016 
$$\begin{aligned} \frac{\partial J}{\partial \theta(a)} &= \sum_b \mu(b) \frac{\partial \pi(b)}{\partial \theta(a)} \\ 1017 &= \mathbb{E}_{b \sim \pi} \left[ (\mu(b) - B) \left( \frac{\mathbb{1}\{b = a\}}{1 + (1 - \delta)\theta(b)} - \frac{\pi(a)}{1 + (1 - \delta)\theta(a)} \right) \right], \end{aligned} \tag{12}$$
  
1018

1019 where the baseline term  $B$  vanishes upon summation. In the limit  $\delta \rightarrow 1$ ,  
1020

1021 
$$\frac{1}{1 + (1 - \delta)\theta(\cdot)} \rightarrow 1 \Rightarrow \frac{\partial J}{\partial \theta(a)} = \mathbb{E}_{b \sim \pi} [(\mu(b) - B)(\mathbb{1}\{b = a\} - \pi(a))],$$
  
1022

1023 recovering the standard softmax policy-gradient.  
1024

1026 D.5 MAPPING TO ALGORITHM 1  
10271028 In the main text, parameters are indexed by backlog  $q$ :  $\theta_q(\alpha)$ , the baseline is  $B_t$ , and the per-round  
1029 reward is

1030 
$$r_t = \begin{cases} 0, & C_I \geq \alpha_t, \\ \max(C_L - C_I, 0) - (\mu q - \kappa), & \text{otherwise.} \end{cases}$$
  
1031

1032 Stochastic gradient ascent with step size  $\eta$  applies equation 12 to the sampled  $(q, \alpha_t)$ , yielding the  
1033 update (for every  $\alpha \in \mathcal{A}$ )  
1034

1035 
$$\theta_q(\alpha) \leftarrow \theta_q(\alpha) + \eta (r_t - B_t) \times \begin{cases} \mathbb{1}\{\alpha = \alpha_t\} - \pi^{(q)}(\alpha), & \delta = 1, \\ \frac{\mathbb{1}\{\alpha = \alpha_t\} - \pi^{(q)}(\alpha)}{1 + (1 - \delta)\theta_q(\alpha)}, & \delta \neq 1, \end{cases}$$
  
1036  
1037  
1038

1039 which is exactly the rule implemented in Algorithm 1.  
10401041 Our Tsallis policy gradient can be interpreted as applying a Box–Cox-type transform (Box &  
1042 Cox, 1964) to policy probabilities/advantages, compressing extreme values and empirically sta-  
1043 bilizing gradients. From the RL side, our update fits into the Tsallis-entropy-regularized RL lit-  
1044 erature and sparse policies, where Tsallis regularization yields sparse, more stable policies than  
1045 Shannon-entropy softmax. We now emphasize that there exists a rich body of work establishing  
1046 non-asymptotic convergence rates for *classical* policy gradient under structural assumptions (e.g.,  
1047 LQR and tabular/linear MDPs (Fazel et al., 2018; Agarwal et al., 2021; Wang et al., 2020)), but our  
1048 queue-dependent early-exit setting, with endogenous non-stationary contexts, falls outside the scope  
1049 of these analyses. We therefore present our Tsallis /  $\delta$ -softmax PG as a principled, Box–Cox/Tsallis-  
1050 inspired design with empirical robustness, and explicitly leave a full convergence-rate theory in this  
setting to future work.  
10511052 D.6 IMPLEMENTATION NOTES  
10531054 

- **Domain guard.** Ensure  $1 + (1 - \delta)\theta_q(\alpha) > 0$  for all  $(q, \alpha)$  to keep  $\exp_\delta$  real-valued. A  
1055 practical choice is to reparameterize  $\theta_q(\alpha) = \frac{z_q(\alpha)}{1 - \delta} - \epsilon$  with  $z_q(\alpha) > 0$ , or to clip to a  
1056 small positive margin.
- **Baselines.** Any  $B_t$  independent of the sampled action is unbiased (e.g., running mean of  
1057 recent rewards or a value-function estimate) and reduces variance.
- **Softmax branch.** Handle  $\delta = 1$  explicitly for numerical stability; do not attempt to ap-  
1058 proximate it via limits in code.
- **Temperature.** An optional temperature  $\tau > 0$  can be introduced by replacing  $\theta \mapsto \theta/\tau$ ,  
1059 orthogonal to  $\delta$ ;  $\tau$  scales logits, while  $\delta$  shapes tails.

  
10601061 The implementation of our  $\delta$ -softmax policy gradient follows the above design notes. We highlight  
1062 how each element is realized in practice:  
10631064 

- **Domain guard.** In code, the domain restriction  $1 + (1 - \delta)\theta_q(\alpha) > 0$  is enforced  
1065 by clipping. Specifically, the  $\delta$ -exponential is implemented as `np.maximum(1 + (1 - delta) * u, 1e-8) ** (1 / (1 - delta))`, ensuring the base remains  
1066 strictly positive and thus keeping  $\exp_\delta$  real-valued.
- **Baselines.** To reduce variance, we maintain an exponential moving average baseline:  
1067 `baseline = beta * baseline + (1 - beta) * reward`. The adjusted re-  
1068 ward `reward - baseline` is then used in the update step, which is unbiased since the  
1069 baseline is independent of the sampled action.
- **Softmax branch.** For the special case  $\delta = 1$ , the implementation switches explicitly  
1070 to the standard exponential: `if delta == 1: return np.exp(u)`. This avoids  
1071 numerical instability and removes the need to approximate the  $\delta \rightarrow 1$  limit.
- **Temperature.** While the design allows for an optional temperature parameter  $\tau > 0$  (ap-  
1072 plied via  $\theta \mapsto \theta/\tau$ ), our current implementation does not include  $\tau$ . This extension is  
1073 straightforward and orthogonal to  $\delta$ , scaling logits without changing the tail behavior.

  
1074

1080 E PER-MACHINE METRICS  
10811082 This appendix reports detailed *per-machine* performance metrics, broken down by worker type  
1083 (Raspberry Pi and MiniPC) and workload scenario. While the main text emphasizes aggregate  
1084 system-level behavior, these tables highlight how individual hardware units contribute to overall  
1085 performance. They provide additional insight into resource utilization and the trade-offs achieved  
1086 by different policies.1087 Several general patterns emerge:  
10881089 

- **Arrival rates.** The effective arrival rate observed at each worker reflects both exogenous  
1090 traffic and the impact of early exits. The Raspberry Pi often operates near its capacity.
- **Loss behavior.** The Raspberry Pi experiences significant loss under baseline policies,  
1091 whereas advanced methods (UCB, UCB-Mono, TSA-PG) reduce the loss rate and loss ratio  
1092 markedly. The MiniPC rarely drops samples, underscoring its role as a stable back-end.
- **Throughput and utilization.** Despite its limited capacity, the Raspberry Pi achieves high  
1093 utilization ( $> 95\%$ ) under most methods, showing that the system effectively exploits edge  
1094 resources. The MiniPC, by contrast, operates at low utilization.
- **Policy effects.** UCB-based and TSA-PG policies consistently improve throughput on the  
1095 Raspberry Pi while lowering losses, suggesting that intelligent threshold adaptation is es-  
1096 sential to balance early exits and full processing.

  
10971098 Comparing across scenarios, we observe systematic differences:  
10991100 

- In the **Stationary** scenario, performance is stable and policies mainly affect loss reduction,  
1101 with TSA-PG achieving the best trade-off.
- In the **Easy → Hard** scenario, losses on the Raspberry Pi increase due to progressively more  
1102 difficult inputs, but adaptive methods sustain throughput by shifting part of the load to the  
1103 MiniPC.
- In the **Hard → Easy** scenario, initial congestion is more severe than in Easy → Hard, since  
1104 early difficult samples saturate the Raspberry Pi; however, policies that adapt quickly still  
1105 recover performance as the workload eases.

  
11061107 Overall, these per-machine measurements confirm that the performance gains reported in the main  
1108 text stem not only from aggregate improvements but also from better balancing of heterogeneous  
1109 resources.  
11101111  
1112  
1113  
1114  
1115  
1116  
1117  
1118  
1119  
1120  
1121  
1122  
1123  
1124  
1125  
1126  
1127  
1128  
1129  
1130  
1131  
1132  
1133

1134

## E.1 STATIONARY SCENARIO

1135

1136

1137

Table 4: Per-machine metrics (stationary scenario).

| Method       | Worker       | Arrival rate        | Loss rate           | Loss ratio          | Throughput          | Utilization         |
|--------------|--------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Baseline     | Raspberry Pi | 3.9697 $\pm$ 0.0238 | 0.7865 $\pm$ 0.0165 | 0.1981 $\pm$ 0.0031 | 3.1831 $\pm$ 0.0064 | 0.9976 $\pm$ 0.0007 |
|              | MiniPC       | 2.1537 $\pm$ 0.0050 | 0.0000 $\pm$ 0.0000 | 0.0000 $\pm$ 0.0000 | 2.1537 $\pm$ 0.0050 | 0.0822 $\pm$ 0.0002 |
| UCB          | Raspberry Pi | 3.9720 $\pm$ 0.0222 | 0.3583 $\pm$ 0.0139 | 0.0902 $\pm$ 0.0030 | 3.6138 $\pm$ 0.0110 | 0.9844 $\pm$ 0.0015 |
|              | MiniPC       | 2.1489 $\pm$ 0.0042 | 0.0000 $\pm$ 0.0000 | 0.0000 $\pm$ 0.0000 | 1.8307 $\pm$ 0.0059 | 0.0655 $\pm$ 0.0003 |
| UCB-Mono     | Raspberry Pi | 3.9741 $\pm$ 0.0198 | 0.2902 $\pm$ 0.0132 | 0.0730 $\pm$ 0.0030 | 3.6840 $\pm$ 0.0110 | 0.9567 $\pm$ 0.0025 |
|              | MiniPC       | 2.1667 $\pm$ 0.0136 | 0.0000 $\pm$ 0.0000 | 0.0000 $\pm$ 0.0000 | 2.1667 $\pm$ 0.0136 | 0.0714 $\pm$ 0.0004 |
| TSA-PG(0.50) | Raspberry Pi | 3.987 $\pm$ 0.0165  | 0.2143 $\pm$ 0.0092 | 0.0539 $\pm$ 0.0021 | 3.7598 $\pm$ 0.0129 | 0.9646 $\pm$ 0.0021 |
|              | MiniPC       | 2.0776 $\pm$ 0.0081 | 0.0000 $\pm$ 0.0000 | 0.0000 $\pm$ 0.0000 | 2.0776 $\pm$ 0.0081 | 0.0685 $\pm$ 0.0003 |
| TSA-PG(0.75) | Raspberry Pi | 3.9774 $\pm$ 0.0198 | 0.2140 $\pm$ 0.0095 | 0.0539 $\pm$ 0.0022 | 3.7601 $\pm$ 0.0130 | 0.9645 $\pm$ 0.0019 |
|              | MiniPC       | 2.0767 $\pm$ 0.0062 | 0.0000 $\pm$ 0.0000 | 0.0000 $\pm$ 0.0000 | 2.0767 $\pm$ 0.0062 | 0.0685 $\pm$ 0.0003 |
| TSA-PG(1.00) | Raspberry Pi | 3.9826 $\pm$ 0.0124 | 0.2053 $\pm$ 0.0085 | 0.0517 $\pm$ 0.0020 | 3.7688 $\pm$ 0.0147 | 0.9645 $\pm$ 0.0018 |
|              | MiniPC       | 2.0622 $\pm$ 0.0098 | 0.0000 $\pm$ 0.0000 | 0.0000 $\pm$ 0.0000 | 2.0622 $\pm$ 0.0098 | 0.0680 $\pm$ 0.0004 |
| TSA-PG(1.25) | Raspberry Pi | 3.9457 $\pm$ 0.0204 | 0.1748 $\pm$ 0.0078 | 0.0440 $\pm$ 0.0018 | 3.7993 $\pm$ 0.0160 | 0.9643 $\pm$ 0.0016 |
|              | MiniPC       | 2.0087 $\pm$ 0.0147 | 0.0000 $\pm$ 0.0000 | 0.0000 $\pm$ 0.0000 | 2.0087 $\pm$ 0.0147 | 0.0662 $\pm$ 0.0005 |
| TSA-PG(1.50) | Raspberry Pi | 3.9812 $\pm$ 0.0145 | 0.1596 $\pm$ 0.0084 | 0.0401 $\pm$ 0.0020 | 3.8146 $\pm$ 0.0158 | 0.9652 $\pm$ 0.0024 |
|              | MiniPC       | 1.9905 $\pm$ 0.0195 | 0.0000 $\pm$ 0.0000 | 0.0000 $\pm$ 0.0000 | 1.9905 $\pm$ 0.0195 | 0.0656 $\pm$ 0.0006 |
| TSA-PG(1.75) | Raspberry Pi | 3.9741 $\pm$ 0.0136 | 0.1488 $\pm$ 0.0093 | 0.0374 $\pm$ 0.0023 | 3.8253 $\pm$ 0.0171 | 0.9658 $\pm$ 0.0022 |
|              | MiniPC       | 1.9769 $\pm$ 0.0244 | 0.0000 $\pm$ 0.0000 | 0.0000 $\pm$ 0.0000 | 1.9769 $\pm$ 0.0244 | 0.0652 $\pm$ 0.0008 |
| TSA-PG(2.00) | Raspberry Pi | 3.9874 $\pm$ 0.0191 | 0.1535 $\pm$ 0.0105 | 0.0386 $\pm$ 0.0026 | 3.8207 $\pm$ 0.0193 | 0.9655 $\pm$ 0.0025 |
|              | MiniPC       | 1.9818 $\pm$ 0.0285 | 0.0000 $\pm$ 0.0000 | 0.0000 $\pm$ 0.0000 | 1.9818 $\pm$ 0.0285 | 0.0653 $\pm$ 0.0010 |
| TSA-PG(2.50) | Raspberry Pi | 3.9901 $\pm$ 0.0200 | 0.1806 $\pm$ 0.0124 | 0.0443 $\pm$ 0.0030 | 3.8925 $\pm$ 0.0222 | 0.9717 $\pm$ 0.0023 |
|              | MiniPC       | 1.9505 $\pm$ 0.0298 | 0.0000 $\pm$ 0.0000 | 0.0000 $\pm$ 0.0000 | 1.9505 $\pm$ 0.0298 | 0.0641 $\pm$ 0.0010 |

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188  
1189  
1190

## E.2 EASY→HARD SCENARIO

1191  
1192  
1193  
1194  
1195  
1196  
1197  
1198  
1199  
1200  
1201  
1202  
1203  
1204  
1205  
1206  
1207  
1208  
1209  
1210  
1211

Table 5: Per-machine metrics (easy→hard scenario).

| Method       | Worker       | Arrival rate    | Loss rate       | Loss ratio      | Throughput      | Utilization     |
|--------------|--------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| UCB          | Raspberry Pi | 3.9731 ± 0.0182 | 0.5368 ± 0.0146 | 0.1351 ± 0.0030 | 3.4352 ± 0.0105 | 0.9913 ± 0.0009 |
|              | MiniPC       | 2.1889 ± 0.0058 | 0.0000 ± 0.0000 | 0.0000 ± 0.0000 | 2.1889 ± 0.0058 | 0.0782 ± 0.0002 |
| Baseline     | Raspberry Pi | 3.9767 ± 0.0282 | 0.8955 ± 0.0169 | 0.2256 ± 0.0030 | 3.0741 ± 0.0063 | 0.9983 ± 0.0004 |
|              | MiniPC       | 2.3447 ± 0.0055 | 0.0000 ± 0.0000 | 0.0000 ± 0.0000 | 2.3447 ± 0.0055 | 0.0895 ± 0.0002 |
| UCB-Mono     | Raspberry Pi | 3.9851 ± 0.0291 | 0.4391 ± 0.0147 | 0.1105 ± 0.0032 | 3.5350 ± 0.0088 | 0.9738 ± 0.0018 |
|              | MiniPC       | 2.5673 ± 0.0094 | 0.0000 ± 0.0000 | 0.0000 ± 0.0000 | 2.5673 ± 0.0094 | 0.0846 ± 0.0003 |
| TSA-PG(0.50) | Raspberry Pi | 3.9898 ± 0.0228 | 0.3484 ± 0.0118 | 0.0877 ± 0.0026 | 3.6258 ± 0.0110 | 0.9781 ± 0.0016 |
|              | MiniPC       | 2.4224 ± 0.0061 | 0.0000 ± 0.0000 | 0.0000 ± 0.0000 | 2.4224 ± 0.0061 | 0.0799 ± 0.0002 |
| TSA-PG(0.75) | Raspberry Pi | 3.9699 ± 0.0188 | 0.3458 ± 0.0116 | 0.0870 ± 0.0025 | 3.6283 ± 0.0106 | 0.9779 ± 0.0015 |
|              | MiniPC       | 2.4166 ± 0.0056 | 0.0000 ± 0.0000 | 0.0000 ± 0.0000 | 2.4166 ± 0.0056 | 0.0797 ± 0.0002 |
| TSA-PG(1.00) | Raspberry Pi | 3.9732 ± 0.0146 | 0.3257 ± 0.0114 | 0.0819 ± 0.0026 | 3.6485 ± 0.0139 | 0.9778 ± 0.0014 |
|              | MiniPC       | 2.3817 ± 0.0124 | 0.0000 ± 0.0000 | 0.0000 ± 0.0000 | 2.3817 ± 0.0124 | 0.0785 ± 0.0004 |
| TSA-PG(1.25) | Raspberry Pi | 3.9866 ± 0.0153 | 0.2890 ± 0.0118 | 0.0727 ± 0.0027 | 3.6852 ± 0.0141 | 0.9770 ± 0.0015 |
|              | MiniPC       | 2.3124 ± 0.0149 | 0.0000 ± 0.0000 | 0.0000 ± 0.0000 | 2.3124 ± 0.0149 | 0.0763 ± 0.0005 |
| TSA-PG(1.50) | Raspberry Pi | 3.9952 ± 0.0184 | 0.2719 ± 0.0132 | 0.0684 ± 0.0031 | 3.7022 ± 0.0138 | 0.9766 ± 0.0016 |
|              | MiniPC       | 2.2800 ± 0.0177 | 0.0000 ± 0.0000 | 0.0000 ± 0.0000 | 2.2800 ± 0.0177 | 0.0752 ± 0.0006 |
| TSA-PG(1.75) | Raspberry Pi | 3.9825 ± 0.0252 | 0.2619 ± 0.0143 | 0.0659 ± 0.0034 | 3.7122 ± 0.0147 | 0.9765 ± 0.0015 |
|              | MiniPC       | 2.2621 ± 0.0223 | 0.0000 ± 0.0000 | 0.0000 ± 0.0000 | 2.2621 ± 0.0223 | 0.0746 ± 0.0007 |
| TSA-PG(2.00) | Raspberry Pi | 3.9774 ± 0.0163 | 0.2797 ± 0.0170 | 0.0704 ± 0.0041 | 3.6944 ± 0.0163 | 0.9772 ± 0.0016 |
|              | MiniPC       | 2.2981 ± 0.0234 | 0.0000 ± 0.0000 | 0.0000 ± 0.0000 | 2.2981 ± 0.0234 | 0.0758 ± 0.0008 |
| TSA-PG(2.50) | Raspberry Pi | 3.8085 ± 0.0210 | 0.3289 ± 0.0202 | 0.0807 ± 0.0048 | 3.7442 ± 0.0234 | 0.9818 ± 0.0014 |
|              | MiniPC       | 2.2892 ± 0.0369 | 0.0000 ± 0.0000 | 0.0000 ± 0.0000 | 2.2892 ± 0.0369 | 0.0752 ± 0.0013 |

1212  
1213  
1214

## E.3 HARD→EASY SCENARIO

1215  
1216

Table 6: Per-machine metrics (hard→easy scenario).

| Method       | Worker       | Arrival rate    | Loss rate       | Loss ratio      | Throughput      | Utilization     |
|--------------|--------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| UCB          | Raspberry Pi | 3.9702 ± 0.0225 | 0.5074 ± 0.0171 | 0.1277 ± 0.0037 | 3.4646 ± 0.0129 | 0.9900 ± 0.0012 |
|              | MiniPC       | 2.1280 ± 0.0181 | 0.0000 ± 0.0000 | 0.0000 ± 0.0000 | 2.1280 ± 0.0181 | 0.0761 ± 0.0007 |
| Baseline     | Raspberry Pi | 3.9597 ± 0.0207 | 0.9045 ± 0.0173 | 0.2278 ± 0.0031 | 3.0652 ± 0.0056 | 0.9985 ± 0.0006 |
|              | MiniPC       | 2.3609 ± 0.0069 | 0.0000 ± 0.0000 | 0.0000 ± 0.0000 | 2.3609 ± 0.0069 | 0.0901 ± 0.0003 |
| UCB-Mono     | Raspberry Pi | 3.9702 ± 0.0188 | 0.4408 ± 0.0153 | 0.1109 ± 0.0033 | 3.5333 ± 0.0083 | 0.9740 ± 0.0022 |
|              | MiniPC       | 2.5725 ± 0.0117 | 0.0000 ± 0.0000 | 0.0000 ± 0.0000 | 2.5725 ± 0.0117 | 0.0848 ± 0.0004 |
| TSA-PG(0.50) | Raspberry Pi | 3.9812 ± 0.0169 | 0.3503 ± 0.0106 | 0.0881 ± 0.0023 | 3.6238 ± 0.0118 | 0.9771 ± 0.0018 |
|              | MiniPC       | 2.4160 ± 0.0071 | 0.0000 ± 0.0000 | 0.0000 ± 0.0000 | 2.4160 ± 0.0071 | 0.0797 ± 0.0003 |
| TSA-PG(0.75) | Raspberry Pi | 3.9689 ± 0.0198 | 0.3470 ± 0.0112 | 0.0873 ± 0.0024 | 3.6271 ± 0.0117 | 0.9769 ± 0.0017 |
|              | MiniPC       | 2.4092 ± 0.0073 | 0.0000 ± 0.0000 | 0.0000 ± 0.0000 | 2.4092 ± 0.0073 | 0.0794 ± 0.0003 |
| TSA-PG(1.00) | Raspberry Pi | 3.9813 ± 0.0159 | 0.3223 ± 0.0095 | 0.0811 ± 0.0021 | 3.6518 ± 0.0139 | 0.9763 ± 0.0017 |
|              | MiniPC       | 2.3625 ± 0.0131 | 0.0000 ± 0.0000 | 0.0000 ± 0.0000 | 2.3625 ± 0.0131 | 0.0779 ± 0.0005 |
| TSA-PG(1.25) | Raspberry Pi | 3.9763 ± 0.0258 | 0.2914 ± 0.0126 | 0.0733 ± 0.0029 | 3.6828 ± 0.0145 | 0.9748 ± 0.0016 |
|              | MiniPC       | 2.2965 ± 0.0162 | 0.0000 ± 0.0000 | 0.0000 ± 0.0000 | 2.2965 ± 0.0162 | 0.0758 ± 0.0006 |
| TSA-PG(1.50) | Raspberry Pi | 3.9718 ± 0.0175 | 0.2780 ± 0.0151 | 0.0699 ± 0.0035 | 3.6961 ± 0.0109 | 0.9742 ± 0.0017 |
|              | MiniPC       | 2.2701 ± 0.0137 | 0.0000 ± 0.0000 | 0.0000 ± 0.0000 | 2.2701 ± 0.0137 | 0.0748 ± 0.0005 |
| TSA-PG(1.75) | Raspberry Pi | 3.9752 ± 0.0169 | 0.2672 ± 0.0164 | 0.0672 ± 0.0039 | 3.7069 ± 0.0136 | 0.9747 ± 0.0022 |
|              | MiniPC       | 2.2565 ± 0.0260 | 0.0000 ± 0.0000 | 0.0000 ± 0.0000 | 2.2565 ± 0.0260 | 0.0744 ± 0.0009 |
| TSA-PG(2.00) | Raspberry Pi | 3.9782 ± 0.0185 | 0.2820 ± 0.0134 | 0.0709 ± 0.0031 | 3.6921 ± 0.0139 | 0.9752 ± 0.0017 |
|              | MiniPC       | 2.2846 ± 0.0194 | 0.0000 ± 0.0000 | 0.0000 ± 0.0000 | 2.2846 ± 0.0194 | 0.0754 ± 0.0006 |
| TSA-PG(2.50) | Raspberry Pi | 3.9731 ± 0.0205 | 0.3312 ± 0.0196 | 0.0813 ± 0.0048 | 3.7420 ± 0.0269 | 0.9802 ± 0.0017 |
|              | MiniPC       | 2.2794 ± 0.0382 | 0.0000 ± 0.0000 | 0.0000 ± 0.0000 | 2.2794 ± 0.0382 | 0.0749 ± 0.0013 |

1237  
1238  
1239

## F USE OF LLM

1240  
1241

We used LLMs to polish writing. In addition, the tables produced by our experiments, in CSV, were exported to Latex using ChatGPT. The correctness of the result was manually verified.

1242 **G SOURCE CODE**  
12431244 An anonymized version of our source code repository is publicly available at: [https://  
1245 anonymous.4open.science/r/Buffer\\_based\\_threshold-C531/README.md](https://anonymous.4open.science/r/Buffer_based_threshold-C531/README.md)  
1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295