
Under review as submission to TMLR

Symmetric Rank-One Quasi-Newton Methods for Deep
Learning Using Cubic Regularization

Anonymous authors
Paper under double-blind review

Abstract

Stochastic gradient descent and other first-order variants, such as Adam and AdaGrad,
are commonly used in the field of deep learning due to their computational efficiency and
low-storage memory requirements. However, these methods do not exploit curvature infor-
mation. Consequently, iterates can converge to saddle points or poor local minima. On
the other hand, Quasi-Newton methods compute Hessian approximations which exploit this
information with a comparable computational budget. Quasi-Newton methods re-use previ-
ously computed iterates and gradients to compute a low-rank structured update. The most
widely used quasi-Newton update is the L-BFGS, which guarantees a positive semi-definite
Hessian approximation, making it suitable in a line search setting. However, the loss func-
tions in DNNs are non-convex, where the Hessian is potentially non-positive definite. In
this paper, we propose using a limited-memory symmetric rank-one quasi-Newton approach
which allows for indefinite Hessian approximations, enabling directions of negative curva-
ture to be exploited. Furthermore, we use a modified adaptive regularized cubics approach,
which generates a sequence of cubic subproblems that have closed-form solutions with suit-
able regularization choices. We investigate the performance of our proposed method on
autoencoders and feed-forward neural network models and compare our approach to state-
of-the-art first-order adaptive stochastic methods as well as other quasi-Newton methods.

1 Introduction

Deep learning problems often involve training deep neural networks (DNN) by minimizing an empirical risk
of estimation, given by

minimize
Θ∈Rn

f(Θ) = 1
N

N∑
i=1

fi(xi, yi; Θ) (1)

where Θ is the vector of weights and each fi is a scalar-valued loss function that depends on a vector of data
inputs, xi ∈ Rn1 , and outputs, yi ∈ Rn2 . Here, N corresponds to the cardinality of the data set D = {xi, yi}.
In this paper, we assume that f is continuously differentiable.

Gradient and adaptive gradient methods are the most widely used methods for solving (1). In particular,
stochastic gradient descent (SGD), despite its simplicity, performs well over a wide range of applications.
However, in a sparse training data setting, SGD performs poorly due to limited training speed Luo et al.
(2019). To address this problem, adaptive methods such as AdaGrad Duchi et al. (2011), AdaDelta Zeiler
(2012), RMSProp Hinton et al. (2012) and Adam Kingma & Ba (2014) have been proposed. These methods
take the root mean square of the past gradients to influence the current step.

In contrast, Newton’s method has the potential to exploit curvature information from the second-order
derivative (Hessian) matrix (see e.g., Gould et al. (2000)). Generally, the iterates are defined by Θk+1 =
Θk−αk∇2f(Θk)−1∇f(Θk), where αk > 0 is a steplength defined by a linesearch criterion (Nocedal & Wright
(2006)). In a DNN setting, the number of parameters (n) can be of the order of millions. Thus, full Hessians
are rarely ever computed. Instead, Hessian-vector products and Hessian-free methods are used (see e.g.,
Martens et al. (2010), Ranganath et al. (2021)) which reduce the cost of storing the Hessian and inverting
it.

1

Under review as submission to TMLR

Quasi-Newton methods compute Hessian approximations, Bk ≈ ∇2f(Θk), that satisfy the secant condition
given by yk−1 = Bksk−1, where

sk−1 = Θk −Θk−1 and yk−1 = ∇f(Θk)−∇f(Θk−1).

The most commonly used quasi-Newton method, including in the realm of deep learning, is the limited-
memory BFGS update, or L-BFGS (see e.g., Liu & Nocedal (1989)), where the Hessian approximation is
given by

Bk = Bk−1 +
yk−1y⊤

k−1
y⊤

k−1sk−1
−

Bk−1sk−1sk−1B⊤
k−1

s⊤
k−1Bk−1sk−1

. (2)

One advantage of using an L-BFGS update is that the Hessian approximation can be guaranteed to be
positive definite. This is highly suitable in line-search settings because the update sk is guaranteed to be
a descent direction. This means there is some step length along this direction that results in a decrease
in the objective function (see Nocedal & Wright (2006), Algorithm 6.1). Because the L-BFGS update is
positive definite, it does not readily detect directions of negative curvature for avoiding saddle points. In
contrast, the Symmetric Rank-One (SR1) quasi-Newton update is not guarateed to be positive definite and
can result in ascent directions for line-search methods. However, in trust-region settings where indefinite
Hessian approximations are an advantage because they can capture directions of negative curvature, the
limited-memory SR1 (L-SR1) has been shown to outperform L-BFGS in DNNs for classification (see Erway
et al. (2020)). We discuss this in more detail in Section 2 but in the context of adaptive regularization using
cubics (see e.g., Nesterov & Polyak (2006)).

Contributions. The main contributions of this paper are as follows: (1) The use of the L-SR1 update to
model potentially indefinite Hessians of the non-convex loss function; (2) The use of adaptive regularization
using cubics (ARCs) approach as an alternative to line-search and trust-region optimization methods; (3)
The use of a shape-changing norm to define the cubic regularization term, which allows us to compute the
closed form solution to the cubic subproblem in the ARCs approach; (4) Convergence proof of the proposed
ARCs approach with L-SR1 Hessian approximations. To the knowledge of the authors, this is the first
time a quasi-Newton approach has been used in an adaptive regularized cubics setting.

2 Proposed approach

In this section, we describe our proposed approach by first discussing the L-SR1 update.

Limited-memory symmetric rank-one updates. Unlike the BFGS update (2), which is a rank-two
update, the SR1 update is a rank-one update, which is given by

Bk+1 = Bk + (yk −Bksk)(yk −Bksk)⊤

s⊤
k (yk −Bksk)

(3)

(see Khalfan et al. (1993)). As previously mentioned, Bk+1 in (3) is not guaranteed to be definite. However,
it can be shown that the SR1 matrices can converge to the true Hessian (see Conn et al. (1991) for details).
We note that the pair (sk, yk) is accepted only when

|s⊤
k (yk −Bksk)| > ε∥sk∥2∥yk −Bksk∥2, (4)

for some constant ε > 0 (see Nocedal & Wright (2006), Sec. 6.2, for details). The SR1 update can be defined
recursively as

Bk+1 = B0 +
k∑

j=0

(yj −Bjsj)(yj −Bjsj)⊤

s⊤
j (yj −Bjsj)

. (5)

In limited-memory settings, only the last m≪ n pairs of (sj , yj) are stored and used. For ease of presentation,
here we choose k < m. We define

Sk = [s0 s1 · · · sk−1] and Yk = [y0 y1 · · · yk−1].

2

Under review as submission to TMLR

Then Bk admits a compact representation of the form

Bk = B0 +

Ψk

[
Mk

] [
Ψ⊤

k

]
, (6)

where Ψk = Yk −B0Sk and
Mk = (Dk +Lk +L⊤

k −S⊤
kB0Sk)−1,

where Lk is the strictly lower triangular part, Vk is the strictly upper triangular part, and Dk is the diagonal
part of S⊤

k Yk = Lk + Dk + Vk (see Byrd et al. (1994) for further details).

Because of the compact representation of Bk, its partial eigendecomposition can be computed (see Erway &
Marcia (2015)). In particular, if we compute the QR decomposition of Ψk = QR and the eigendecomposition
RMR⊤ = PΛ̂kP⊤, then we can write

Bk = B0 + U∥Λ̂kU⊤
∥ ,

where U∥ = QP ∈ Rn×k has orthonormal columns and Λ̂k ∈ Rk×k is a diagonal matrix. If B0 = δkI (see
e.g., Lemma 2.4 in Erway et al. (2020)), where 0 < δk < δmax is some scalar and I is the identity matrix,
then we obtain the eigendecomposition

Bk = UkΛkU⊤
k =

[
U∥ U⊥

] [
Λ̂k + δkI 0

0 δkI

] [
U⊤

∥

U⊤
⊥

]
(7)

where Uk = [U∥ U⊥] is an orthogonal matrix and U⊥ ∈ Rn×(n−k) is a matrix whose columns form an
orthonormal basis orthogonal to the range space of U∥. Here,

(Λk)i =
{

δk + λ̂i if i ≤ k

δk if i > k
. (8)

Adaptive regularization using cubics. Since the SR1 Hessian approximation can be indefinite, some
safeguard must be implemented to ensure that the resulting search direction sk is a descent direction. One
such safeguard is to use a “regularization" term. The Adaptive Regularization using Cubics (ARCs) method
(see Griewank (1981); Nesterov & Polyak (2006); Cartis et al. (2011)) can be viewed as an alternative to
line-search and trust-region methods. At each iteration, an approximate global minimizer of a local (cubic)
model,

min
s∈Rn

mk(s) ≡ g⊤
k s + 1

2s⊤Bks + µk

3 (Φk(s))3, (9)

is determined, where gk = ∇f(Θk), µk > 0 is a regularization parameter, and Φk is a function (norm) that
regularizes s. Typically, the Euclidean norm is used. In this work, we use an alternative “shape-changing"
norm that allows us to solve each subproblem (9) exactly. Proposed in Burdakov et al. (2017), this shape-
changing norm is based on the partial eigendecomposition of Bk. Specifically, if Bk = UkΛkU⊤

k is the
eigendecomposition of Bk, then we can define the norm

∥s∥Uk

def= ∥U⊤
k s∥3.

It can be shown using Hölder’s Inequality that

1
6
√

n
∥s∥2 ≤ ∥s∥Uk

≤ ∥s∥2.

As per the authors’ literature review, this is the first time the adaptive regularized cubics has been used
in conjunction with a shape changing norm in a deep learning setting. The main motivation of using this
adaptive regularized cubics comes from better convergence properties when compared with a trust-region
approach (see Cartis et al. (2011)). Using the shape-changing norm allows us to solve the subproblem exactly.

3

Under review as submission to TMLR

Closed-form solution. Applying a change of basis with s̄ = U⊤
k s and ḡk = U⊤

k gk, we can redefine the
cubic subproblem as

min
s̄∈Rn

m̄k(s̄) = ḡ⊤
k s̄ + 1

2 s̄⊤Λks̄ + µk

3 ∥s̄∥
3
3. (10)

With this change of basis, we can easily find a closed-form solution of (10), which is generally not the case
for other choices of norms. Note that m̄k(s̄) is a separable function, meaning we can write m̄k(s̄) as

m̄k(s̄) =
n∑

i=1

{
(ḡk)i(s̄)i + 1

2(Λk)i(s̄)2
i + µk

3 |(s̄)i|3
}

.

Consequently, we can solve (10) by solving one-dimensional problems of the form

min
s̄∈R

m̄(s̄) = ḡs̄ + 1
2λs̄2 + µk

3 |s̄|
3, (11)

where ḡ ∈ R corresponds to entries in ḡk and λ ∈ R corresponds to diagonal entries in Λk. To find the
minimizer of (11), we first write m̄(s̄) as follows:

m̄(s̄) =
{

m̄+(s) = ḡs̄ + 1
2 λs̄2 + µk

3 s̄3 if s̄ ≥ 0,

m̄−(s̄) = ḡs̄ + 1
2 λs̄2 − µk

3 s̄3 if s̄ ≤ 0.

The minimizer s̄∗ of m̄(s̄) is obtained by setting m̄′(s̄) to zero and will depend on the sign of ḡ because ḡ
is the slope of m̄(s̄) at s̄ = 0, i.e., m̄′(0) = ḡ. In particular, if ḡ > 0, then s̄∗ is the minimizer of m̄−(s̄),
namely s̄∗ = (−λ +

√
λ2 + 4ḡµ)/(−2µ). If ḡ < 0, then s̄∗ is the minimizer of m̄+(s̄), which is given by

s̄∗ = (−λ+
√

λ2 − 4ḡµ)/(2µ). Note that these two expressions for s̄∗ are equivalent to the following formula:

s̄∗ = −2ḡ

λ +
√

λ2 + 4|ḡ|µ
,

In the original space, s∗ = Uks̄∗ and gk = Ukḡk. Letting

Ck = diag(c̄1, . . . , c̄n), where c̄i = 2
λi +

√
λ2

i + 4|ḡi|µ
, (12)

then the solution s∗ in the original space is given by

s∗ = Uks̄∗ = −UkCkU⊤
k gk. (13)

Practical implementation. While computing U∥ ∈ Rn×k in the matrix Uk = [U∥ U⊥] is feasible since
k ≪ n, computing U⊥ explicitly is not. Thus, we must be able to compute s∗ without needing U⊥. First,
we define the following quantities

s̄∥ = U⊤
∥ s and s̄⊥ = U⊤

⊥s,

ḡ∥ = U⊤
∥ gk and ḡ⊥ = U⊤

⊥gk.

Then the cubic subproblem (10) becomes

minimize
s̄∈Rn

m̄k(s̄) = minimize
s̄∥∈Rk

m̄∥(s̄∥) + minimize
s̄⊥∈Rn−k

m̄⊥(s̄⊥), (14)

where

m̄∥(s̄∥) = ḡ⊤
∥ s̄∥ + 1

2 s̄⊤
∥ Λ̂ks̄∥ + µk

3 ∥s̄∥∥3
3, (15)

m̄⊥(s̄⊥) = ḡ⊤
⊥s̄⊥ + δk

2 ∥s̄⊥∥2
2 + µk

3 ∥s̄⊥∥3
3. (16)

4

Under review as submission to TMLR

We minimize m̄∥(s̄∥) in (15) similar to how we solved (11). In particular, if we let

C∥ = diag(c1, . . . , cn), where ci = 2

λi +
√

λ2
i + 4|(ḡ∥)i|µ

, (17)

then the solution is given by
s∗

∥ = −C∥ḡ∥. (18)

Minimizing m̄⊥(s̄⊥) in (16) is more challenging. The only restriction on the matrix U⊥ is that its columns
must form an orthonormal basis for the orthogonal complement of the range space of U∥. We are thus free
to choose the columns of U⊥ as long as they satisfy this restriction. In particular, we can choose the first
column of U⊥ to be the normalized orthogonal projection of gk onto the orthogonal complement of the range
space of U∥, i.e.,

(U⊥)1 = (I−U∥U⊤
∥)gk/∥(I−U∥U⊤

∥)gk∥2.

If gk ∈ Range(U∥), then ḡ⊥ = U⊤
⊥gk = 0 and the minimizer of (16) is s̄∗

⊥ = 0 (since δk > 0 and µk > 0). If
gk /∈ Range(U∥), then (U⊥)1 ̸= 0 and we can choose vectors (U⊥)i ∈ Range(U∥)⊥ such that (U⊥)⊤

i (U⊥)1 =
0 for all 2 ≤ i ≤ n− k. Consequently, U⊤

⊥(U⊥)1 = κe1, where κ is some constant and e1 is the first column
of the identity matrix. Specifically,

κe1 = U⊤
⊥(U⊥)1 = U⊤

⊥
(
U⊥U⊤

⊥gk

)
= U⊤

⊥gk = ḡ⊥,

which implies κ = ∥ḡ⊥∥2. Thus ḡ⊥ has only one non-zero component (the first component) and therefore,
the minimizer s̄∗

⊥ of m̄⊥(s̄⊥) in (16) also has only one non-zero compoent (the first component as well). In
particular,

(s̄∗
⊥)i =

{
−α∗∥ḡ⊥∥2 if i = 1
0 otherwise

,

where
α = 2

δk +
√

δ2
k + 4µ∥ḡ⊥∥2

. (19)

Equivalently, s̄∗
⊥ = −α∗ḡ⊥. Note that the quantity ∥ḡ⊥∥2 can be computed without computing ḡ⊥ from the

fact that ∥g∥2
2 = ∥ḡ∥∥2

2 + ∥ḡ⊥∥2
2.

Combining the expressions for s̄∗
∥ in (18) and for s̄∗

⊥, the solution in the original space is given by

s∗ = U∥s∗
∥ + U⊥s∗

⊥

= −U∥C∥U⊤
∥ g− α∗(In −U∥U⊤

∥)g

= −α∗g + U∥(α∗I−C∥)U⊤
∥ g.

Note that computing s∗ neither involves forming U⊥ nor computing ḡ⊥ explicitly.

Termination criteria. With each cubic subproblem solved, the iterations are terminated when the change
in iterates, sk, is sufficiently small, i.e.,

∥sk∥2 < ϵ̃∥yk −Bksk∥2, (20)

for some ϵ̃, or when the maximum number of allowable iterations is achieved. The proposed Adaptive
Regularization using Cubics with L-SR1 (ARCs-LSR1) algorithm is given in Algorithm 1.

Convergence. Here, we prove convergence properties of the proposed method (ARCs-LSR1 in Algorithm
1). The following theoretical guarantees follow the ideas from Benson & Shanno (2018); Cartis et al. (2011).
First, we make the following mild assumptions:

5

Under review as submission to TMLR

Algorithm 1 Adaptive Regularization using Cubics with Limited-Memory SR1 (ARCs-LSR1)
1: Given: Θ0, γ2 ≥ γ1, 1 > η2 ≥ η1 > 0, σ0 > 0, ϵ̃ > 0, k = 0, and kmax > 0
2: while k < kmax and ∥sk∥2 ≥ ϵ̃∥yk −Bksk∥2 do
3: Obtain Sk = [s0 · · · sk] and Yk = [y0 · · · yk]
4: Solve the generalized eigenvalue problem S⊤

k Yku = λ̂S⊤
k Sku and let δk = min{λ̂i}

5: Compute Ψk = Yk − δkSk

6: Perform QR decomposition of Ψk = QR
7: Compute eigendecomposition RMR⊤ = PΛP⊤

8: Assign U∥ = QP and U⊤
∥ = P⊤Q⊤

9: Define C∥ = diag(c1, . . . , ck), where ci = 2
λi+
√

λ2
i
+4µ|(ḡ∥)i|

and ḡ∥ = U⊤
∥ g

10: Compute α∗ in equation 19
11: Compute step s∗ = −α∗g + U∥(α∗I−C∥)U⊤

∥ g
12: Compute mk(s∗) and ρk=(f(Θk)−f(Θk+1))/mk(s∗)
13: Set

Θk+1 =
{

Θk + s∗ if ρk ≥ η1

Θk, otherwise
, and

µk+1 =


1
2 µk if ρk > η2,
1
2 µk(1 + γ1) if η1 ≤ ρk ≤ η2,
1
2 µk(γ1 + γ2) otherwise

14: k ← k + 1
15: end while

A1. The loss function f(Θ) is continuously differentiable, i.e., f ∈ C1(Rn).

A2. The loss function f(Θ) is bounded below.

Next, we prove that the matrix Bk in (5) is bounded.

Lemma 2.1 The SR1 matrix Bk+1 in (5) satsifies

∥Bk+1∥F ≤ κB for all k ≥ 1

for some κB > 0.

Proof: Using the limited-memory SR1 update with memory parameter m in (5), we have

∥Bk+1∥F ≤ ∥B0∥F +
k∑

j=k−m+1

∥(yj −Bjsj)(yj −Bjsj)⊤∥F

|s⊤
j (yj −Bjsj)|

.

Because B0 = δkI with δk < δmax for some δmax > 0, we have that ∥B0∥F =
√

nδmax. Using a property
of the Frobenius norm, namely, for real matrices A, ∥A∥2

F = trace(AA⊤), we have that ∥(yj −Bjsj)(yj −
Bjsj)⊤∥F = ∥yj−Bjsj∥2

2. Since the pair (sj , yj) is accepted only when |s⊤
j (yj−Bjsj)| > ε∥sj∥2∥yj−Bjsj∥2,

for some constant ε > 0, and since ∥sk∥2 ≥ ϵ̃∥yk −Bksk∥2, we have

∥Bk+1∥F ≤
√

nδmax + m

εϵ̃
≡ κB ,

which completes the proof. □

Given the bound on ∥Bk+1∥F , we obtain the following result, which is similar to Theorem 2.5 in Cartis et al.
(2011).

6

Under review as submission to TMLR

Theorem 2.2 Under Assumptions A1 and A2, if Lemma 2.1 holds, then

lim inf
k→∞

∥gk∥ = 0.

Finally, we consider the following assumption, which can be satisfied when the gradient, g(Θ), is Lipschitz
continuous on Θ.

A3. If {Θti} and {Θli} are subsequences of {Θk}, then ∥gti−gli∥ → 0 whenever ∥Θti−Θli∥ → 0 as i→∞.

If we further make Assumption A3, we have the following stronger result (which is based on Corollary 2.6
in Cartis et al. (2011)):

Corollary 2.3 Under Assumptions A1, A2, and A3, if Lemma 2.1 holds, then

lim
k→∞

∥gk∥ = 0.

By Corollary 2.3, the proposed ARCs-LSR1 method converges to first-order critical points.

Stochastic implementation. Because full gradient computation is very expensive to perform, we impe-
ment a stochastic version of the proposed ARCs-LSR1 method. In particular, we use the batch gradient
approximation

g̃k ≡
1
|Bk|

∑
i∈Bk

∇fi(Θk).

In defining the SR1 matrix, we use the quasi-Newton pairs (sk, ỹk), where ỹk = g̃k+1 − g̃k (see e.g., Erway
et al. (2020)). We make the following additional assumption (similar to Assumption 4 in Erway et al. (2020))
to guarantee that the loss function f(Θ) decreases over time:

A4. The loss function f(Θ) is fully evaluated at every J > 1 iterations (for example, at iterates
ΘJ0 , ΘJ1 , ΘJ2 , . . . , where 0 ≤ J0 < J and J = J1 − J0 = J2 − J1 = · · ·) and nowhere else in the algo-
rithm. The batch size d is increased monotonically if f(ΘJℓ

) > f(ΘJℓ−1)− τ for some τ > 0.

With this added assumption, we can show that the stochastic version of the proposed ARCs-LSR1 method
converges.

Theorem 2.4 The stochastic version of ARCs-LSR1 converges with

lim
k→∞

∥gk∥ = 0.

Proof: Let Θ̂i = ΘJi
. By Assumption 4, f(Θ) must decrease monotonically over the subsequence {Θ̂i}

or d → |D|, where |D| is the size of the dataset. If the objective function is decreased ιk times over the
subsequence {Θ̂i}k

i=0, then

f(Θ̂k) = f(Θ̂0) +
ιk∑

i=1

{
f(Θ̂i)− f(Θ̂i−1)

}
≤ f(Θ̂0)− ιkτ.

If d→ |D|, then ιk →∞ as k →∞. By Assumption A2, f(Θ) is bounded below, which implies ιk is finite.
Thus, d→ |D|, and the algorithm reduces to the full ARCs-LSR1 method, whose convergence is guaranteed
by Corollary 2.3. □

We note that the proof to Theorem 2.4 follows very closely the proof of Theorem 2.2 in Erway et al. (2020).

Complexity analysis. SGD methods and the related adaptive methods require O(n) memory storage
to store the gradient and O(n) computational complexity to update each iterate. Such low memory and

7

Under review as submission to TMLR

computational requirements make these methods easily implementable. Quasi-Newton methods store the
previous m gradients and use them to compute the update at each iteration. Consequently, L-BFGS methods
require O(mn) memory storage to store the gradients and O(mn) computational complexity to update each
iterate (see Burdakov et al. (2017) for details). Our proposed ARCs-LSR1 approach also uses O(mn)
memory storage to store the gradients, but the computational complexity to update each iterate requires an
additional eigendecomposition of the m×m matrix RMR⊤, so that the overall computational complexity
at each iteration is O(m3 + mn). However, since m≪ n, this additional factorization does not significantly
increase the computational time.

3 Results

Optimization approaches. We list the various optimization approaches to which we compared our pro-
posed method. For the numerical experiments, we empirically fine-tuned the hyperparameters and selected
the best for each update scheme.

1. Stochastic Gradient Descent (SGD) with Momentum (see e.g., Qian (1999)). For the exper-
iments, we used a momentum parameter of 0.9 and a learning rate of 1.0× 10−1.

2. Adaptive Gradient Algorithm (Adagrad) (see Duchi et al. (2011)). In our experiments, the
initial accumulator value is set to 0, the perturbation ϵ is set to 1.0 × 10−10, and the learning rate
is set to 1.0× 10−2.

3. Root Mean Square Propagation (RMSProp) (see Hinton et al. (2012)). For our experiments,
the perturbation ϵ is set to 1.0× 10−8. We set α = 0.99, and used a learning rate of 1.0× 10−2.

4. Adam (see Kingma & Ba (2014)). For our experiments, we apply an ϵ perturbation of 1.0× 10−6.
The momentum parameters β0 and β1 are chosen to be 0.9 and 0.999, respectively. The learning
rate is set to 1.0× 10−3.

5. Limited-memory BFGS (L-BFGS): We set the default learning rate to 1.0. The tolerance on
function value/parameter change is set to 1.0 × 10−9 and the first-order optimality condition for
termination is defined as 1.0× 10−9

6. ARCs-LSR1 (Proposed method): For the experiments, we choose the same parameters as those
used in L-BFGS.

Dataset. We measure the performance of each optimization method on the following five commonly-
used datasets for training and testing in machine learning: (1) MNIST LeCun et al. (2010), (2) CIFAR10
Krizhevsky et al. (2010), (3) Fashion-MNIST Xiao et al. (2017) and (4) IRIS Fisher (1936); Anderson (1935)
and (5) Penn Tree Bank Marcus et al. (1993).

To empirically compare the efficiency of the proposed method with widely-used optimization methods, we
focus on three broad deep learning problems: image classification, image reconstruction and language mod-
eling. All experiments were conducted using open-source software PyTorch Paszke et al. (2019), SciPy
Virtanen et al. (2020), and NumPy Harris et al. (2020). We use an Intel Core i7-8700 CPU with a clock rate
of 3.20 GHz and an NVIDIA RTX 2080 Ti graphics card.

3.1 Experiment I: Image classification

We present the classification results for IRIS, MNIST, and CIFAR.

Experiment I.A: IRIS. This dataset is relatively small; consequently, we only consider a shallow network
with three fully connected layers and 2953 parameters. We set the history size and maximum iterations
for the proposed approach and L-BFGS to 10. Figure 1(a) shows the comparative performance of all the
methods. Note that our proposed method (ARCs-LSR1) achieves the highest classification accuracy in the
fewest number of epochs.

8

Under review as submission to TMLR

Experiment I.B: MNIST. The MNIST classifier is a shallow network with 3 fully connected layers and
397510 parameters. We train the network for 20 epochs with a batch size of 256 images, keeping the history
size and maximum iterations same for the proposed approach and L-BFGS. Figure 2(a) shows that the
proposed ARCs-LSR1 outperforms the other methods.

Figure 1: The classification accuracy results for Experiment I.A: IRIS. The percentage of testing samples
correctly predicted in the testing dataset for each method is presented. Note that the proposed method
(ARCs-LSR1) achieves the highest classification accuracy within the fewest number of epochs.

Experiment I.C: CIFAR10. Because the CIFAR10 dataset contains color images (unlike the MNIST
grayscale images), the network used has more layers compared to the previous experiments. The network
has 6 convolutional layers and 3 fully connected layers with 62006 parameters. For ARCs-LSR1 and L-BFGS,
we have a history size of 100 with a maximum number of iterations of 100 and a batch size of 1024. Figure
2(b) represents the testing accuracy, i.e., the number of samples correctly predicted in the testing set.

(a) MNIST dataset (b) CIFAR dataset

Figure 2: The classification accuracy results for Experiment I.B and I.C. The percentage of testing
samples correctly predicted in the testing dataset for each method is presented. Note that the proposed
method (ARCs-LSR1) achieves the highest classification accuracy within the fewest number of epochs.

Experiment I: Additional MNIST results. We select the best history, max-iterations and batch-size
hyperparameters by conducting a thorough parameter search described below.

History. The ARCs-LSR1 method requires some history from the past to form the Limited-memory SR1
approximation. The history stores a set of steps ‘s’ and their corresponding change in gradients ‘y’. This
is the most important parameter for the proposed approach - as the number of history pairs increase, the
approximation begins converging to the true Hessian. However, we cannot have a full-rank approximation,
so the number of history pairs are limited. In addition, in the context of deep learning, a high memory
parameter might not be ideal owing to its large storage complexity.

9

Under review as submission to TMLR

To empirically show this, we ran a set of experiments by varying the batch-size and the the number of
iterations for each batch and present results on the MNIST classification task. We selected a history-size of
5, 10, 15, 20, 50 and 100.

(a) (b)

Figure 3: MNIST classification. We fix the maximum iterations to 1 and batch-size of 128. (a) presents
the epochs [1-5] and (b) presents epochs [15-20].

(a) (b)

Figure 4: MNIST classification. We fix the maximum iterations to 1 and batch-size of 256. (a) presents
the epochs [1-5] and (b) presents epochs [15-20].

Different max-iterations. The max-iterations determines how many times the proposed approach is
applied to each individual batch for an optimization step and its corresponding history update (s, y). For
the most ideal condition, we consider the trade-off between computational complexity and improvement of
accuracy. This means the accuracy of prediction does not increase significantly with the increase in the
upper bound of iterations. We fix the batch-size to 128 and switch the max-iterations between 10, 15 and
20.

The results are presented in Figure(s) 7, 8, and 9. From these results, it was certain that a maximum
iteration of 10 was ideal.

Different batch-sizes. For this experiment, we chose from batch-sizes of 128, 256, 512 and 1024. We fixed
the maximum-iterations to 1. The results are presented in Figure(s) 3,4, 5, and 6.

10

Under review as submission to TMLR

(a) (b)

Figure 5: MNIST classification. We fix the maximum iterations to 1 and batch-size of 512. (a) presents
the epochs [1-5] and (b) presents epochs [15-20].

3.2 Experiment II: Image reconstruction

The image reconstruction problem involves feeding a feedforward convolutional autoencoder model a batch
of the dataset. The loss function is defined between the reconstructed image and the original image. We
use the Mean-Squared Error (MSE) loss between the reconstructed image and the original image. For this
experiment, we use the MNIST and FMNIST dataset.

Experiment II.A: MNIST. The network is shallow, with 53415 parameters, which are initialized randomly.
We considered a batch size of 256 images and trained over 50 epochs. Each experiment has been conducted
5 times. The results for the image reconstruction can be seen in Figure 11, where the initial descent of the
proposed approach yields a significant decrease in the training loss. We provide the training loss results for
the early (Figure 11(a)) and late epochs (Figure 11(b)). In Figure 11(b), all the methods eventually converge
to the same training loss value (except for L-BFGS). We see a similar trend during the early and late epochs
for the testing loss (see Figure 12).

Experiment II: FMNIST. Figure(s) 10(a) and 10(b) show the testing response for the early and late
epochs, respectively. The early iterates generated by the proposed approach significantly decreases the

(a) (b)

Figure 6: MNIST classification. We fix the maximum iterations to 1 and batch-size of 1024. (a) presents
the epochs [1-5] and (b) presents epochs [15-20].

11

Under review as submission to TMLR

(a) (b)

Figure 7: MNIST classification: The figure shows the classification response for a upper bound max-
iterations of 10. The batch-size is fixed to 128 images. (a) presents the early epochs [1− 5] while the second
column (b) presents the late epochs [15− 20].

(a) (b)

Figure 8: MNIST classification: The figure shows the classification response for a upper bound max-
iterations of 15. The batch-size is fixed to 128 images. (a) presents the early epochs [1− 5] while the second
column (b) presents the late epochs [15− 20].

objective function. The proposed approach has maintained this trend in the later epochs as well (see Figure
10(b)). This shows that the network is capable of generalizing on a testing dataset as well in comparison to
all other adaptive and quasi-Newton methods.

3.3 Experiment III: Natural language modeling

We conducted word-level predictions on the Penn Tree Bank (PTB) dataset Marcus et al. (1993). We used a
state-of-the-art Long-Short Term Memory (LSTM) network which has 650 units per layer and its parameters
are uniformly regularized in the range [-0.05, 0.05]. For more details on implementation, please refer Zaremba
et al. (2014). For the ARCs-LSR1 method and the L-BFGS, we used a history size of 5 over 4 iterations.
The prediction loss results are shown in Figure 13. In contrast to the previous experiments, here, both
quasi-Newton methods (L-BFGS and ARCs-LSR1) outperform the adaptive methods, with the proposed
method (ARCs-LSR1) achieving the lowest cross-entropy prediction loss.

12

Under review as submission to TMLR

(a) (b)

Figure 9: MNIST classification: The figure shows the classification response for a upper bound max-
iterations of 20. The batch-size is fixed to 128 images. (a) presents the early epochs [1− 5] while the second
column (b) presents the late epochs [15− 20].

(a) FMNIST testing loss for early epochs (b) FMNIST testing loss for late epochs

Figure 10: The image reconstruction results for Experiment II. (a) Initial testing loss of the network. The
y-axis represents the MSE loss in the first 6 epochs. (b) The final MSE loss of the testing samples from
epoch 41 to 50. The proposed method (ARCs-LSR1) achieves the lowest testing loss.

(a) MNIST testing loss for early epochs (b) MNIST testing loss for late epochs

Figure 11: The image reconstruction results for Experiment II.A: MNIST. (a) Initial training loss. The
y-axis represents the Mean-Squared Error (MSE) loss from the first four epochs. (b) Final training loss from
epochs 43 to 50. Note that the proposed method (ARCs-LSR1) achieves the lowest training loss.

13

Under review as submission to TMLR

(a) MNIST training loss for early epochs (b) MNIST training loss for late epochs

Figure 12: The image reconstruction results for Experiment II.A: MNIST. (a) Initial testing loss. The
y-axis represents the Mean-Squared Error (MSE) loss from the first four epochs. (b) Final testing loss from
epochs 43 to 50. Note that the proposed method (ARCs-LSR1) achieves the lowest testing loss.

Figure 13: The prediction loss for Experiment III: Penn Tree Bank. The y-axis represents the cross-
entropy loss, and the x-axis represents the number of epochs. Note that the proposed method (ARCs-LSR1)
achieves the lowest loss.

3.4 Experiment IV: Comparison with Stochastically Damped L-BFGS

In the previous experiments on image classification and reconstruction (Experiments I and II), the L-BFGS
approach performs poorly, which can be attributed to noisy gradient estimates and non-convexity of the
problems. To tackle this, a stochastically damped L-BFGS (SdLBFGS) approach was proposed (see Wang
et al. (2017)) which adaptively generates a variance reduced, positive-definite approximation of the Hessian.
We compare the proposed approach to L-BFGS and SdLBFGS on the MNIST classification problem. From
Figure 14(a), the proposed approach achieves a comparable performance to the stochastic version and is able
to achieve the best accuracy in later epochs (see Figure 14(b)).

3.5 Experiment V: Timing results

We take the CIFAR10 experiment into consideration as its the most computationally expensive experiment
for classification with a parameter count of 62k and a memory parameter of 100, with a total of ≈ 6M
memory allocations. Figure 15 shows the time-budget for each of the adaptive techniques and the proposed
approach. We observe that the proposed approach is able to achieve the highest accuracy the quickest, even
with a higher computational budget.

14

Under review as submission to TMLR

(a) Epochs 0-5 (b) Epochs 16-20

Figure 14: The prediction loss for Experiment IV: Comparison with stochastically damped L-BFGS. The
x-axis represents the number of epochs and the y-axis represents the accuracy of prediction. (a) Accuracy
for epochs 0-5. (b) Accuracy for epochs 16-20.

Figure 15: Experiment V: CIFAR-10 classification time complexity. The figure shows the time complexity
of all the methods and the proposed approach. Even though the proposed approach takes ≈ 500 seconds
longer, the best accuracy is achieved the fastest in comparison to all the other state-of-the-art approaches.

4 Conclusion

In this paper, we proposed a novel quasi-Newton approach in an adaptive regularized cubics (ARCs) setting
using the less frequently used limited-memory Symmetric Rank-1 (L-SR1) update and a shape-changing
norm to define the regularizer. This shape-changing norm allowed us to solve for the minimizer exactly.
We provided convergence guarantees for the proposed ARCs-LSR1 method and analyzed its computational
complexity. Using a set of experiments in classification, image reconstruction, and language modeling, we
demonstrated that ARCs-LSR1 achieves the highest accuracy in fewer epochs than a variety of existing
state-of-the-art optimization methods. Striking a comfortable balance between the computational and space

15

Under review as submission to TMLR

complexity, the competitive nature of the ARCs-LSR1 performance makes it a superior alternative to existing
gradient and quasi-Newton based approaches.

References
Edgar Anderson. The irises of the gaspe peninsula. Bulletin of American Iris Society, 59:2–5, 1935.

Hande Y. Benson and David F. Shanno. Cubic regularization in symmetric rank-1 quasi-newton meth-
ods. Mathematical Programming Computation, 10(4):457–486, Dec 2018. ISSN 1867-2957. doi:
10.1007/s12532-018-0136-7. URL https://doi.org/10.1007/s12532-018-0136-7.

Oleg Burdakov, Lujin Gong, Spartak Zikrin, and Ya-xiang Yuan. On efficiently combining limited-memory
and trust-region techniques. Mathematical Programming Computation, 9(1):101–134, 2017.

Richard. H. Byrd, Jorge. Nocedal, and Robert. B. Schnabel. Representations of quasi-Newton matrices and
their use in limited-memory methods. Math. Program., 63:129–156, 1994.

Coralia Cartis, Nicholas IM Gould, and Philippe L Toint. Adaptive cubic regularisation methods for uncon-
strained optimization. part i: motivation, convergence and numerical results. Mathematical Programming,
127(2):245–295, 2011.

Andrew R. Conn, Nicholas. I. M. Gould, and Philippe. L. Toint. Convergence of quasi-newton matrices
generated by the symmetric rank one update. Mathematical Programming, 50(1):177–195, Mar 1991.
ISSN 1436-4646. doi: 10.1007/BF01594934. URL https://doi.org/10.1007/BF01594934.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12(7), 2011.

Jennifer B. Erway and Roummel F. Marcia. On efficiently computing the eigenvalues of limited-memory
quasi-newton matrices. SIAM Journal on Matrix Analysis and Applications, 36(3):1338–1359, 2015. doi:
10.1137/140997737.

Jennifer B. Erway, Joshua D. Griffin, Roummel F. Marcia, and Riadh Omheni. Trust-region algorithms
for training responses: machine learning methods using indefinite hessian approximations. Optimization
Methods and Software, 35:460 – 487, 2020.

Ronald A Fisher. The use of multiple measurements in taxonomic problems. Annals of eugenics, 7(2):
179–188, 1936.

Nicholas I. M. Gould, Stefano Lucidi, Massimo Roma, and Philippe L. Toint. Exploiting negative curvature
directions in linesearch methods for unconstrained optimization. Optimization Methods and Software, 14
(1-2):75–98, 2000. doi: 10.1080/10556780008805794.

Andreas Griewank. The modification of Newton?s method for unconstrained optimization by bounding cubic
terms. Technical report, Technical report NA/12, 1981.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Pi-
cus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del
Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming with
NumPy. Nature, 585(7825):357–362, September 2020. doi: 10.1038/s41586-020-2649-2. URL https:
//doi.org/10.1038/s41586-020-2649-2.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning lecture 6a
overview of mini-batch gradient descent. Cited on, 14(8):2, 2012.

H Fayez Khalfan, Richard H Byrd, and Robert B Schnabel. A theoretical and experimental study of the
symmetric rank-one update. SIAM Journal on Optimization, 3(1):1–24, 1993.

16

https://doi.org/10.1007/s12532-018-0136-7
https://doi.org/10.1007/BF01594934
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

Under review as submission to TMLR

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced research).
University of Toronto, 2010. URL http://www.cs.toronto.edu/~kriz/cifar.html.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. AT&T Labs [Online].
Available: http://yann. lecun. com/exdb/mnist, 2:18, 2010.

Dong C. Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization. Math-
ematical Programming, 45(1):503–528, Aug 1989. ISSN 1436-4646. doi: 10.1007/BF01589116. URL
https://doi.org/10.1007/BF01589116.

Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic bound of
learning rate, 2019.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated corpus of
English: The Penn treebank. Computational Linguistics, 19(2):313–330, June 1993.

James Martens et al. Deep learning via hessian-free optimization. In ICML, volume 27, pp. 735–742, 2010.

Yurii Nesterov and Boris T Polyak. Cubic regularization of newton method and its global performance.
Mathematical Programming, 108(1):177–205, 2006.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, New York, NY, USA, second
edition, 2006.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., 2019.

Ning Qian. On the momentum term in gradient descent learning algorithms. Neural networks, 12(1):145–151,
1999.

Aditya Ranganath, Omar DeGuchy, Mukesh Singhal, and Roummel F Marcia. Second-order trust-region
optimization for data-limited inference. In 2021 29th European Signal Processing Conference (EUSIPCO),
pp. 2059–2063. IEEE, 2021.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Ev-
geni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert
Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald,
Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020. doi:
10.1038/s41592-019-0686-2.

Xiao Wang, Shiqian Ma, Donald Goldfarb, and Wei Liu. Stochastic quasi-newton methods for nonconvex
stochastic optimization. SIAM Journal on Optimization, 27(2):927–956, 2017.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv, 2017.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization, 2014.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012.

17

http://www.cs.toronto.edu/~kriz/cifar.html
https://doi.org/10.1007/BF01589116

	Introduction
	Proposed approach
	Results
	Experiment I: Image classification
	Experiment II: Image reconstruction
	Experiment III: Natural language modeling
	Experiment IV: Comparison with Stochastically Damped L-BFGS
	Experiment V: Timing results

	Conclusion

