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REVIEWS AND COMMENTARY • REVIEW

Large language models (LLMs) are transforming radiology and 
health care (1–5); however, clinical research has predomi-

nantly focused on proprietary models rather than open-source 
LLMs. Proprietary models are LLMs owned by a company and 
whose use requires a purchased license (6–9). In contrast, open-
source LLMs are free to access, with limited or no restrictions 
on modification or use (10). Open-source LLMs offer unique 
advantages for clinical use and research, such as cost savings, 
greater customiz ability, and data security. In this review, we 
provide a general understanding of the advantages and disad-
vantages of open-source LLMs, a roadmap for implementing 
open-source LLMs, with practical examples, and access to code 
for radiologic and clinical research purposes for technologically 
interested radiologists (Fig 1) (https://github.com/UM2ii/Open-
Source-LLM-Tools-for-Radiology). Additionally, we explore clini-
cal deployment considerations and the latest developments on 
the horizon, including multimodal foundation models and 
their implications for radiology. A glossary of terms is provided 
in Table S1.

Advantages and Disadvantages of Open- 
Source LLMs
Here we highlight key advantages and disadvantages of using 
open-source LLMs versus proprietary LLMs (for a summary, see 
Table 1).

Advantages

Customizability.—Some proprietary LLM companies (eg, 
OpenAI) have begun to offer advanced uses, including fine-
tuning, plugin creation, and customized model hosting with 
searchable documents on their platform (11); however, users 
have limited control over the model and its available features. 
Open-source LLMs provide users with full access to (and con-
trol over) model weights (numerical values defining neuron 
connection strength) and configuration files, which can be 
downloaded, modified, copied, shared, or merged without re-
striction. This allows developers to fine-tune and deploy open-
source LLMs for personal, institutional, and entrepreneurial 
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commonly used tools for text generation and techniques for troubleshooting issues with prompt engineering, retrieval-augmented generation, 
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uses (further discussion in the “Fine-tuning” section). This 
level of control over open-source LLMs and their model ver-
sions is important for health care users, as applications and 
workflows using a proprietary LLM may be reliant on a certain 
version of a model, the updating or deprecation (ie, retiring) of 
which may lead to unpredictable behavior or outright failures. 
At scale, the customizability of open-source LLMs empowers 
a wider user community of developers, researchers, and entre-
preneurs to create diverse applications from diagnostics to re-
search, accelerating innovation and adoption within an open 
artificial intelligence (AI) ecosystem.

Cost and licensing.—Proprietary models charge fees for per-
sonalized use, and developers notably do not have rights to 
the fine-tuned proprietary model itself. On the other hand, 
open-source LLMs are free to use, reducing financial barriers, 
and are typically governed by free and open-source software 
licenses like Apache 2.0 (12). These open-source licenses offer 
flexibility for customization, distribution, and commercial use 
without restrictions or fees. This means users have the ability 
to modify, share, and even sell their open-source LLM adapta-
tions—for example, an open-source LLM tailored to specific 
radiologic tasks—without paying fees or obtaining permis-
sions. Note that while this flexibility is beneficial on the tech-
nological side, ethical and legal compliance in clinical settings 
remains uncharted territory.

Size.—Open-source LLMs have pioneered smaller sizes of 
models (13,14), reducing both the financial and environ-
mental footprints associated with LLMs that would otherwise 

Abbreviations
AI = artificial intelligence, API = application programming interface, 
LLM = large language model, LoRA = Low-Rank Adaptation, RAG = 
retrieval-augmented generation

Summary
Open-source large language models and multimodal foundation models 
offer several practical advantages for clinical and research objectives 
in radiology over their proprietary counterparts but require further 
validation before widespread adoption. 

Essentials
 ■ Open-source large language models (LLMs) offer several key 
benefits over closed-source proprietary LLMs that are of interest to 
radiologists, researchers, and hospital systems; these benefits include 
reduced operating costs, increased customizability, accessibility, 
entrepreneurial opportunities, and enhanced data security.

 ■ The performance of open-source LLMs lags behind that of the 
top-performing proprietary LLMs (eg, GPT-4), but this gap has 
been shrinking.

 ■ Prompt engineering, retrieval-augmented generation, and fine-
tuning may be used to troubleshoot open-source LLM issues such 
as poor reasoning performance or insufficient knowledge base.

 ■ Decisions on whether to deploy an open-source LLM should be 
guided by a use case–driven approach, where stakeholders attempt 
to address a clear problem and specific metrics are available to 
evaluate model performance in clinical practice.

 ■ Emerging LLM technologies to recognize include foundation 
models (which can holistically integrate information from 
multiple modalities [eg, image, text, audio]) and agents (which 
autonomously perform tasks and orchestrate complex operations).

arise from larger computational requirements (15,16). Their 
portable size increases their accessibility, as they can be de-
ployed on low-power edge devices (like mobile phones and 
radiologist workstations) and can be run locally without an 
internet connection in low-bandwidth or remote environ-
ments (eg, rural locations or aerospace). This portability en-
sures that open-source LLMs are unaffected by disruptions in 
service, upgrades, or application programming interface (API) 
maintenance. Additionally, many applications require low- 
latency real-time responses, and smaller models offer faster, 
more feasible response times. Overall, smaller models allow 
 users to iterate quickly and develop new techniques or architec-
tures, democratizing access to advanced natural language pro-
cessing capabilities (17,18). As regulations around AI and data 
privacy tighten, these smaller, more controllable models may 
offer less burdensome compliance pathways than larger, more  
complex systems.

Security.—Proprietary LLMs rely on third-party computational 
resources and can only be accessed through an API that speci-
fies how user data will be sent to a server and how the LLM 
will respond back to the user. Specific licenses or precautions 
must be in place to ensure query data are not used to update or 
train the proprietary model. Of note, many major cloud-based 
vendors are Health Insurance Portability and Accountability 
Act–compliant, with more advanced security capabilities than 
local hospital systems or research laboratories (19); both open-
source LLMs and proprietary models can be deployed to cloud 
environments. However, open-source LLMs can be fully down-
loaded to run either locally on-site or on personal or enterprise 
cloud instances, which limits the potential for data leakage.

Disadvantages

Performance.—Proprietary LLMs lead in performance met-
rics, and are at the top of most LLM leaderboards (eg, Chatbot 
Arena, OpenCompass, Holistic Evaluation of Language Mod-
els [HELM]), leapfrogging one another in an ever-accelerating 
arms race of innovation (17,18,20–24). However, open-source 
LLMs are rapidly closing the gap (eg, Athene-V2 [Nexusflow] 
in Chatbot Arena) (Fig S1). To meet clinical standards, this 
performance gap needs to be addressed—particularly in quan-
titative measurements of abstraction and reasoning, multi-
task language understanding, truthfulness, and mathematical 
problem-solving.

Safety.—While there are potential advantages of running an 
open-source LLM locally, implementing robust safety mea-
sures to prevent harmful outputs remains a major challenge. 
For instance, OpenAI has released a scorecard for o1 (25), and 
Google DeepMind’s earlier Sparrow model incorporated 23 
safety rules (26), but similarly transparent safeguards in other 
LLMs are not readily available for review. Additionally, cre-
ative prompting has been used to circumvent these established 
safeguards (termed prompt injection), leading to a game of cat 
and mouse where LLM developers attempt to fortify their 
models against such exploits (27). To prevent these and other 
exploits, proprietary LLMs encourage ongoing simulated se-
curity testing (called red teaming) and public assessment, for 
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Figure 1: Diagram of a step-by-step roadmap for open-source large language model (LLM) implementation. Step 1: Select an appropriate model 
based on size (green), performance (blue), and type (gold). Model size can be approximated by the parameter count. Higher counts require more 
memory to load. Quantized models have reduced memory requirements, albeit with some performance loss. Various public leaderboards rank model 
performance by measuring ability across several spectrums (eg, multitask language understanding, arithmetic reasoning). Choosing the correct model 
type depends on the intended use case. For example, instruct models are best suited for performing an instructed task, such as classifying radiology 
reports. A pretrained model has limited utility until fine-tuned for a specific task. Chat-instruct models are better suited for conversational functions. Step 2: 
Load the model using open-source LLM generation platforms such as Text Generation Web UI (purple). Then, the optimal loader is selected depend-
ing on the quantization status (red). Full-size models can be loaded with Hugging Face’s Transformers library. Quantized models use loaders specific 
to their quantization method. Step 3: Deploy the model for a specific task or objective (orange or green). A local application programming interface 
(API) can be created with an open-source LLM generation platform and used to iteratively process data in an automated fashion. * = The deployment 
step and associated code (https://github.com/UM2ii/Open-Source-LLM-Tools-for-Radiology) are intended for research settings only. For clinical 
settings, refer to the “Clinical Deployment Considerations” section for critical points. AWQ = Activation-aware Weight Quantization, GGUF = GPT-
Generated Unified Format, GPTQ = Post-Training Quantization.
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Table 1: Comparative Advantages of Open-Source LLMs versus Proprietary LLMs

Metric Open-Source LLMs Proprietary LLMs
Overall 
Advantage*

Performance Open-source LLMs generally underperform compared 
with proprietary LLMs in abstraction, reasoning, 
multitask understanding, truthfulness, and arithmetic; 
this performance gap is closing, with Mixtral-8 × 7B 
Instruct v0.1 (Mistral AI) surpassing Gemini Pro 
(Google DeepMind), Claude 2.1 (Anthropic), and 
GPT-3.5 Turbo (6/13/2023 version; OpenAI) on the 
Chatbot Arena leaderboard

Proprietary LLMs lead in most leaderboards 
(Chatbot Arena, OpenCompass); proprietary 
LLMs are more resilient to prompt injections 
and are less likely to generate potentially 
harmful content†

Proprietary

Customizability Open-source LLMs allow users to customize text 
generation settings, such as temperature and 
frequency penalty‡; open-source LLMs enable full 
control of the model’s version, unlike proprietary 
LLMs that may become deprecated (ie, retired) and 
unavailable; open-source LLMs can undergo fine-
tuning (ie, additional training) or be merged with 
other open-source LLMs

Proprietary LLMs have limited customizability 
in text generation settings; there is a risk of 
model versions becoming deprecated and 
unavailable via the API, which could cause 
potential disruptions to hospital workflows and 
applications reliant on a specific model version

Open-
source

Computational 
and financial 
cost

Open-source LLMs are smaller than proprietary 
LLMs due to high training costs and can be run 
on consumer hardware, like home workstations; 
innovations have enhanced the performance, context 
length, and inference speed of open-source LLMs 
without increasing size; running open-source LLMs 
locally incurs no API costs

Proprietary LLMs are larger than open-source 
LLMs, and parameter counts continue to 
trend upwards (eg, 340 billion for Med-PaLM 
2 [Google] and 1.76 trillion [reported but 
unconfirmed] for GPT-4 [OpenAI]); interaction 
with these models programmatically is only 
possible through an API that charges for each 
input and output token

Open-
source

Licensing and 
innovation 
opportunities

Developers have full access to modify, add features to, 
and fine-tune the LLM; most open-source LLMs 
are licensed under Apache 2.0, a permissive software 
license that allows developers to modify the LLM, 
create derivative works, and distribute (including 
selling) without royalty fees or restrictions

Some companies with proprietary LLMs (eg, 
OpenAI) offer fine-tuning, plugin creation, and 
hosting of fine-tuned models on their platform 
(eg, GPT Store); usage of these fine-tuned 
models by others provides reimbursement to 
developers; royalty fees are charged for business 
applications using these models

Open-
source

Data security Open-source LLMs can be run locally or on personal 
or enterprise cloud instances; running open-source 
LLMs locally eliminates the need for external data 
transmission and third-party interactions; however, 
this approach depends heavily on heterogeneous 
local information technology security resources 
(hospital systems or laboratories), which can be more 
vulnerable to cyberattack; typically, running a private 
open-source LLM on a secure HIPAA-compliant 
cloud vendor may be a better option

Proprietary LLMs can be used publicly or run 
on personal or enterprise cloud instances; 
any instance of data sharing to a publicly run 
proprietary LLM increases the risk of data leaks, 
especially if the data are used for subsequent 
model training, which is a data privacy and 
security concern; however, the cloud systems 
used by proprietary LLMs have dedicated 
advanced security capabilities, and some cloud-
based vendors are even HIPAA compliant

Tie

Safety and 
alignment

Generally, open-source LLMs have received less robust 
evaluations of the extent to which they generate 
harmful outputs (sometimes intentionally, as with 
“uncensored” open-source LLMs); finding and 
addressing all vulnerabilities to adversarial attacks 
is often too expensive and time-consuming for 
developers with limited resources

Proprietary LLMs commonly undergo extensive 
assessments probing the efficacy of safety 
measures with expert groups (ie, red teaming); 
greater resources enable more training toward 
defense against adversarial attacks, such as 
prompt injections

Proprietary

Note.—API = application programming interface, HIPAA = Health Insurance Portability and Accountability Act, LLM = large language model.
* This column indicates which type of LLM has the relative advantage over the other.
† Prompt injections are adversarial attacks that use user input text to exploit a gap in the LLM alignment training or system prompting to 
cause the LLM to leak sensitive information (eg, protected health information), generate offensive language, or engage in other malicious 
actions. Adversarial attacks are defined as attempts to “trick” the LLM into making a mistake or performing an action that was not the 
intended use of the LLM according to the model creators.
‡ The temperature setting adjusts the level of randomness (ie, variability) of the model’s outputs. The frequency penalty setting adjusts the 
model’s probability of generating tokens that have been previously generated within the same output (eg, increasing the frequency penalty 
decreases the likelihood that the LLM repeats itself ).
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continuous scrutiny by a wide array of users, potentially un-
veiling vulnerabilities faster than they can be addressed (28). 
Managing these safety and security issues is time-consuming 
and expensive, likely asymmetrically and negatively affecting 
the practicality of open LLMs, which often have less resources 
and funding. Regardless of model type, if these issues are not 
fully addressed, this could lead to potential undesired clinical 
output vulnerabilities, such as perpetuating bias and medical 
misinformation (29,30).

Roadmap: Adapting Open-Source LLMs to a Use Case
In this section, we aim to equip general radiologists interested 
in the technology with the ability to use, experiment with, 

and implement open-source LLMs. Our goal is to reduce the 
technical barrier to entry by providing a roadmap with a step-
by-step guide (Fig 1) for open-source LLM implementation in 
clinical and/or research workflows.

Choosing an Open-Source LLM

Model performance and leaderboards.—The first step to im-
plementing open-source LLMs is choosing which model to use 
(Fig 1, step 1). Most open-source LLMs can be downloaded from 
the model section of Hugging Face (31), the most popular web-
based hub for hosting models. A reasonable initial approach is to 
browse LLM leaderboards for the current top-performing LLMs. 

Table 2: Characteristics of a Small Selection of Highly Cited Open-Source LLMs

LLM (Provider)

Parameter 
Count 
(Billions)

Video RAM 
Requirement (GB)*

Video RAM 
Requirement (4-Bit 
Quantized)†

Context 
Length 
(Tokens) Architecture‡ Model Type MoE

Llama 2 Chat (Meta) 7B, 13B, 
70B

13§ (7B), 24§ (13B), 
72§ (70B)

3.9 (7B), 7.3 (13B), 
36.0 (70B)

4096 LlamaForCausalLM Pretrained, 
chat

No

Llama 3.1, Llama 3.2, 
Llama 3.3 (Meta)

1B to 405B 20§ (7B), 150§ (70B)|| 10.0 (7B), 75.0 (70B) 128 000 LlamaForCausalLM Pretrained, 
instruct, 
vision-
language

No

Alpaca (Stanford 
University)

7B 13§ 4.0§ 4096 LlamaForCausalLM Instruct No

Mistral-Instruct 
(10/2024 version), 
Pixtral-Instruct 
(11/2024 version) 
(Mistral AI)

7B, 8B, 
124B

15§ (7B), 16§ (8B), 
248§ (124B)||

7.5§ (7B), 8§ (8B), 
124§ (124B)

128 000 MistralForCausalLM Pretrained, 
instruct, 
vision-
language

No

Mixtral (version 0.1) 
(Mistral AI)

8 × 22B 282§ 141§ 32 768 MixtralForCausalLM Pretrained, 
instruct

Yes

Qwen2.5, Qwen2.5-
Instruct, Qwen2-VL-
Instruct (Alibaba)

0.5B to 
72B

15 (7B), 85 (72B)|| 5.5 (7B), 42.5 (72B) 128 000 QWenLMHeadModel Pretrained, 
instruct, 
vision-
language

No

Yi Chat, Yi 200K  
(01.AI)

6B, 34B 15.0§ (6B), 72.0§ 
(34B)

3.9§ (6B), 19§ (34B) 4096, 
200 000

LlamaForCausalLM Pretrained, 
chat

No

Helion (Weyaxi)# 4 × 34B 140§ 71.2** 200 000 MixtralForCausalLM Chat-instruct Yes
LLaVA-Med-v1.5-

Mistral (Microsoft)
7B 16§ 8§ 32 768 LlavaMistralForCausalLM Chat-

instruct, 
vision-
language

No

Note.—Characteristics of a few open-source LLMs with at least 100 citations are provided (except Helion, which is included to provide an 
example of a merged LLM). A more comprehensive list can be found at https://github.com/UM2ii/Open-Source-LLM-Tools-for-Radiology. These 
models do not have application programming interface costs (ie, free input and free output), but there may be other costs that should be 
considered, including an institution’s computational capabilities (locally on-site or through a cloud service provider), additional hardware or 
cloud computing that may be needed, energy costs (if local), and information technology staffing requirements. LLM = large language model, 
MoE = mixture of experts, RAM = random-access memory.
* The video RAM requirement can vary depending on variables such as the context length set by the user, but parameter count can give a 
rough estimate.
† Calculated using PTQ (Post-Training Quantization) (35).
‡ Architecture name from the configuration file of the model hosted on Hugging Face.
§ Values are approximate.
ǁ Due to the large number of different model versions, only a few representative examples are shown.
# The Helion model is a merged MoE model based on Yi-34B fine-tuned models (base model is nontoxic-bagel-34b-v0.2; “experts” are bagel-
dpo-34b-v0.2, Nous-Hermes-2-Yi-34B, SUS-Chat-34B, and platypus-yi-34b).
** Model size for GPTQ was not available; GGUF (GPT-Generated Unified Format) version used instead.
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Each leaderboard uses different inclusion criteria and metrics to 
generate rankings (17,18,20,22,23). For example, Open LLM 
Leaderboard includes only open-source LLMs and ranks each 
LLM using the average score on six benchmarks (Abstraction 
and Reasoning Corpus, HellaSwag, Massive Multitask Language 
Understanding, TruthfulQA, WinoGrande, and GSM8K) that 

test commonsense reasoning, multitask language understanding, 
truthfulness, and arithmetic reasoning. However, Chatbot Arena 
uses human evaluations to compare the performance of LLMs 
in generating responses to open-ended questions (as opposed to 
automated methods of verifying LLM responses such as using 
pass@K or GPT-4 [OpenAI] as a judge) (24).

Table 3: Characteristics of Proprietary LLMs

LLM (Provider)

API Cost  
($/Million Tokens)*

Parameter  
Count

Video RAM  
Requirement (GB)†

Context  
Length 
(Tokens) MoEInput Output

GPT-4 Turbo 2024-04-09 (OpenAI) 10 30 1.7 trillion Approximately 1500 128 000 Yes‡

GPT-3.5 Turbo Instruct (OpenAI) 0.5 1.5 175 billion Approximately 150 16 385 Unknown
Claude 3.0 Opus (Anthropic) 15 75 Unknown Unknown 200 000 Unknown
Claude 3.0 Sonnet (Anthropic) 3 15 Unknown Unknown 200 000 Unknown
Gemini 1.0 Ultra (Google DeepMind) NA NA Unknown Unknown 1 000 000 Unknown
Gemini 1.5 Pro (Google DeepMind) 7 21 Unknown Unknown 1 000 000 Unknown
Mistral Large (Mistral AI) 6 12 Unknown Unknown 32 000 Unknown

Note.—All models are chat-instruct models with unknown architectures. API = application programming interface, LLM = large language 
model, MoE = mixture of experts, NA = not available, RAM = random-access memory.
* The API cost is provided per 1 million tokens (approximately 750 000 words). There are also additional costs that should be considered, 
including an institution’s computational capabilities (locally on-site or through a cloud service provider), additional hardware or cloud 
computing that may be needed, energy costs (if local), and information technology staffing requirements.
† The video RAM requirement can vary depending on variables such as the context length set by the user, but parameter count can give a rough 
estimate. The 4-bit quantized video RAM requirement calculated using PTQ (Post-Training Quantization) (35) is unknown for all models.
‡ GPT-4 is rumored to be an MoE model, but this is unconfirmed.

Table 4: Summary of How to Troubleshoot Open-Source LLM Performance Issues

LLM Performance 
Issue Example

Solutions

Without Additional Training
With Additional Training  
(ie, Fine-tuning)

Deficiencies in 
complex reasoning

LLM is asked to generate a differential 
diagnosis but only lists diagnoses 
with single-step reasoning, without 
considering pertinent negatives or other 
diagnoses in the differential

Prompt engineering: prompt the 
model to “think step by step” or 
use other prompting techniques 
(eg, Chain of Thought, 
Reflexion) to improve the logical 
consistency of responses

Fine-tune with training examples of 
the task where every step and its 
reasoning are specified; DPO* may 
be the preferred training type in this 
scenario

Insufficient 
knowledge base 
and hallucinations 
(ie, faulty 
information)

LLM is asked to provide the newest 
guidelines for a particular diagnosis but 
provides the previous guidelines as the 
guidelines were updated after the LLM 
was originally trained

RAG: Use RAG to connect to and 
supplement the input prompt 
with information from a trusted 
source (eg, RadioGraphics articles)

Fine-tune with question-and-answer-
style training examples of the 
information you want the LLM to 
learn; SFT† may be the preferred 
training type in this scenario

Poor instruction 
following

LLM is instructed to generate the 
impression section of a report but 
provides lengthy, tangential responses 
that stray from the expected formatting 
of radiology reports despite prompting 
the LLM for concise answers

None Fine-tune with training examples 
of the task in an instruction-
response style with the preferred 
formatting; RLHF‡ or DPO may be 
the preferred training type in this 
scenario

Note.—DPO = direct preference optimization, LLM = large language model, RAG = retrieval-augmented generation, RLHF = reinforcement 
learning from human feedback, SFT = supervised fine-tuning.
* DPO uses human-selected preference data of LLM outputs to directly train the LLM.
† SFT uses human-labeled data in the form of a prompt and desired response.
‡ In RLHF, LLM responses are ranked by humans and used to train a reward model that provides feedback on the LLM’s outputs, followed 
by the LLM adjusting its outputs to maximize the reward, to align LLM outputs with human preferences. RLHF would be preferred for 
more general instruction following that includes a greater breadth of training examples, while DPO would be preferred for more targeted 
instruction following examples.
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These metrics do not always align with domain-specific needs, 
like those in radiology. Radiology imaging and reporting data 
differ markedly from the data of both general-public datasets 
and other medical specialties, which affects LLM training and 
evaluation. Current benchmarks like PubMedQA are inherently 
nonrepresentative and even outdated, highlighting the need for 
high-quality, domain-specific benchmarks to avoid training 
models that could harm patients (32). Recently, Chaves et al (33) 
created the domain-specific Radiology Language Evaluations, 
or RaLEs, benchmark, which includes evaluation of anatomic 
and disease entity extraction, procedure selection, and radiology 
report summarization. However, further improved radiology- 
specific evaluation benchmarks are needed to test open-source 
LLM variants for specific use cases, and also to establish perfor-
mance standards within the literature and for clinical use. For 
example, ideal benchmarks would help evaluate the accurate 
execution of complex multistep instructions (eg, extract and 
summarize history from electronic medical records for the radi-
ologist), and in emerging foundation model and agent applica-
tions discussed later, other metrics are necessary to evaluate the 
performance of radiology-related clinical actions (eg, generating 
an automated message for a clinician based on the radiology 
report text) (34). Additionally, when comparing LLMs to the 
“reference standard” of human performance, use of metrics like 
coherence, relevance, and usefulness should depend on whether 
we consider the end point to be LLMs as fully automated sys-
tems or as collaborative adjuncts to humans.

Model size.—Next is choosing the correct model size, since 
this will likely be a major rate-limiting factor for most us-
ers due to computational demands. Tables 2 and 3 compare 
different sizes of several popular open-source and proprietary 
LLMs, their approximate memory requirements, and other 
important model characteristics.

Briefly, the parameter count of an LLM approximates its 
size. Smaller LLMs are more accessible, and a challenge has 
been reducing size without sacrificing performance. This has 

been recently achieved through quantization, which uses a 
calibration dataset to compress LLMs into smaller sizes (cur-
rently ranging from 1.58 to 8 bits per parameter; unquantized 
LLMs are 16-bit). Any full-sized LLM can be quantized, and 
some quantized versions are automatically released alongside 
the original full-parameter version. The three most common 
formats are PTQ (Post-Training Quantization), GGUF (GPT- 
Generated Unified Format), and AWQ (Activation-aware 
Weight Quantization) (35–37). Most recently, a method to 
compress LLMs to as little as 1.58 bits per parameter after 
training was developed, further minimizing the memory 
constraints of running open-source LLMs without sacrific-
ing performance (38). These innovations mean that almost 
all consumer-grade computers can run 4-bit 7B (ie, 7 billion 
parameter) models, and current higher-end consumer-grade 
systems could potentially run 70B models. Currently, for most 
radiology users, the most practical and balanced approach 
would be using a 4-bit quantized model, as this halves the 
memory requirements with only a small decrease in model 
performance. Generally speaking, a larger quantized model 
will perform better than a smaller unquantized model.

Specific hardware compatibility needs should also be 
considered. For example, PTQ and AWQ formats use video 
random-access memory (RAM) from the graphics processing 
unit (GPU) only—which is faster but more expensive than 
the system RAM used by the central processing unit. GGUF 
is the most versatile and commonly used quantization format, 
as it can load models with both the GPU and computer RAM, 
albeit with much slower processing speeds. This is important 
because most users will have more RAM capacity than GPU 
memory, and upgrading RAM capacity is relatively cheaper.

Model type.—Last, users need to choose a model type that 
matches the intended use case (conversing or performing ac-
tions like instructions). A pretrained model is a “base” model 
that has been trained on a large corpus of text, without train-
ing on specific tasks or actions. A chat model is fine-tuned 

Figure 2: Diagram of progressive innovations in both prompt engineering techniques and retrieval-augmented generation (RAG) from 2020 to 2023. Prompt en-
gineering is defined as techniques to improve large language model (LLM) responses (ie, toward a desired output) using the prompt alone. RAG is a group of methods 
that allow an LLM to supplement the input prompt with information from other data sources. The rate of development of new techniques has continued to increase since  
their inception.
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(ie, trained) specifically to behave as an assistant (eg, chatbot). 
Chat models can be further subgrouped depending on the 
relative proportion of training data devoted to “instruction 
following” versus “conversating.” Instruct models are predom-
inately fine-tuned to follow directions; they are generally more 
adept at performing actions, such as classifying radiology re-
ports. However, these models generally require the user to fol-
low specific instruction templates to ensure accurate and pre-
dictable responses. Chat-instruct models have relatively more 
training devoted to conversating compared to instruct models.

While these categories describe the training data of these 
models, models can also be classified by architecture. Mixture-
of-experts models (eg, Mixtral [Mistral AI] [39]) represent a 
specialized architecture that distributes tasks among various 
“expert” components within the model, optimizing both scal-
ability and task-specific performance. Merged models (eg, 

Helion [Weyaxi] [40,41]) combine different modeling tech-
niques or architectures to harness their collective strengths.

Selecting a Platform to Run the LLM
Once an open-source LLM is chosen and downloaded, it can 
be run either directly using personal code (on a local notebook 
or server) or by using one of several LLM web user interfaces, 
such as Text Generation Web UI (42), vLLM (43), or Silly-
Tavern (44) (Fig 1, step 2). Note that these user interfaces 
use an internet browser for hosting but do not require an 
internet connection and can be run locally. Next, one loads 
the open-source LLM using one of the loader options, such 
as Hugging Face’s Transformers package (45) for a full 16-bit 
or 32-bit model. The Hugging Face Transformers package is 
a popular open-source library providing APIs and tools for 
downloading and training pretrained and fine-tuned models. 

Figure 3: An example of the prompt engineering technique Reflexion applied to an American Board of Radiology Core Exam question. The large language model (LLM), 
named here as “Chatbot,” is initially prompted to provide the correct answer and its reasoning for each answer choice. Next, an evaluator (“Radiologist Agent”) is simulated by 
the LLM to critique the provided explanations and evaluate for errors. Finally, the LLM employs “self-reflection” to evaluate its prior reasoning and the critiques of the evaluator 
agent to provide a final answer. This process improves the LLM’s ability to answer complex questions that require multistep reasoning. The LLM can be prompted to use “self-
reflection” to identify prior steps of faulty reasoning and address them in subsequent iterations. GPT-4V(ision) (OpenAI; https://openai.com/research/gpt-4v-system-card; 
accessed May 10, 2024) was used to generate the LLM responses in this figure.
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This loader can also be used to 
load certain quantized (smaller 
than 16-bit) models, including 
4-bit, 8-bit, PTQ (using Au-
toGPTQ), AWQ (AutoAWQ), 
GGUF (llama.cpp), and EXL2 
(ExLllamaV2) quantized mod-
els (42,46).

The final step is to deploy 
the open-source LLM (Fig 1, 
step 3). An example Python 
file is provided at https://github. 
com/UM2ii/Open-Source-LLM-
Tools-for-Radiology that com-
bines radiology reports from 
a spreadsheet with a prespeci-
fied prompt (eg, “Classify if 
the following radiology report 
indicated the presence of cir-
rhosis”). After this combination 
process, the combined prompts 
are iteratively processed using 
an open-source LLM via Text 
Generation Web UI.

Troubleshooting 
Performance Issues
Beyond initial LLM setup, users 
will typically need to trouble-
shoot common causes of open-
source LLM performance issues 
using the following: prompt en-
gineering and hyperparameter 
configuration, retrieval-augmented generation (RAG), and 
fine-tuning (Table 4). Please note the troubleshooting tech-
niques described here can also be used synergistically and are 
not mutually exclusive (47).

Prompt Engineering and Hyperparameter Configuration

Problem.—LLMs may exhibit deficiencies in complex reason-
ing, defined as low performance on tasks that require multi-
step reasoning (eg, generating a differential diagnosis).

Solution.—An LLM may demonstrate poor complex reasoning 
abilities due to its inherent next-token prediction training. Meth-
ods to improve these capabilities using the input prompt alone are 
called prompt engineering (48–60) (Fig 2). One notable contri-
bution is Chain-of-Thought prompting, which breaks down rea-
soning into intermediate steps; this improves context, increases the 
specificity of the token generated, and overall boosts performance 
(50). As each step builds on the prior steps, this stepwise approach 
allows for backtracking and correcting individual errors. Tech-
niques like Reflexion further refine this method by simulating an 
evaluator agent to critique the LLM’s initial outputs, enabling the 
LLM to reconsider and revise its answer using the agent’s feedback 
(61) (Fig 3). Notably, these token-based solutions disproportion-
ately impact costs of proprietary LLMs, due to additional output 
and input tokens and associated API interactions.

Figure 4: Diagram of key decision points of fine-tuning a large language model (LLM). (A) Decisions on which training 
type to use depend on the complexity and breadth of the desired task. Supervised fine-tuning (SFT) is the easiest to use and is 
beneficial for training a model for a specific, well-defined task or for encoding new domain-specific knowledge (eg, radiol-
ogy pathologic descriptions). Reinforcement learning from human feedback (RLHF) or direct preference optimization (DPO) 
are better suited for more nuanced and complex tasks with a wide range of potential preferred responses. (B) The scale of 
training is the percentage of the LLM’s parameters that are being modified during fine-tuning. The decision to perform a full 
fine-tune or Low-Rank Adaptation (LoRA) is dependent on the relative complex reasoning ability required for a given task 
and the computational resources of the user. LoRA decreases the computational resources required to fine-tune an LLM but 
at the cost of potentially better complex reasoning ability. Quantized LoRA (QLoRA) is a LoRA trained with a quantized LLM. 
(C) Chat templates specify the formatting of the input prompts and output responses of the training dataset used by whoever 
initially trained the LLM (for chat and instruct models). To achieve optimal performance, the new dataset that is being used for 
fine-tuning should match this format (specific examples shown in Table 5).

Figure 5: Diagram of the steps for training a large language model (LLM) using su-
pervised fine-tuning. Step 1: A prompt is selected from a preexisting dataset or manually 
created for a specific task or question. Step 2: A human then provides their preferred 
response for the prompt. This process is repeated until a sufficient number of training ex-
amples have been generated. Step 3: The LLM is then trained on the prompt-response 
pairs in a one-to-one fashion. ACR = American College of Radiology.
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Additionally, after loading the model, its hyperparameters 
(eg, text generation settings) can be adjusted to “set” how the 
model behaves or varies its responses, which is pertinent in clin-
ical settings. Unlike model parameters (also known as weights), 
which are updated during training, hyper parameters are user-
defined outside of model training. Two important settings are 
temperature and repetition penalty. Temperature controls the 
variability of the model’s outputs (ie, diversity of different an-
swers for the same prompt), with lower values ensuring more 
consistent responses. Setting the model’s temperature to 0 and 
the seed parameter to an integer (ie, not a random seed) ensures 
that the model will generally answer consistently for the same 
question. A recent study using an open-source LLM (Vicuna 
[LYMSYS]) discovered that the model’s default temperature of 
0.7, or an increase to 1.0, resulted in poorer ability to classify 
radiology reports compared with a more deterministic setting of 
0 (10). An LLM repetition penalty discourages the model from 
repeating the same text or phrase within the same response. 
In an open-source LLM trained to generate radiology report 

text, more succinct responses may be achieved by increasing the 
model’s repetition penalty, thereby decreasing its tendency to 
unnecessarily repeat report text within its response.

Collectively, prompt engineering and hyperparameter ad-
justment techniques can enhance performance with relative 
ease of implementation, requiring no additional LLM training 
and having a low user learning curve.

Retrieval-augmented Generation

Problem.—LLMs can have an insufficient knowledge base, de-
fined as the LLM lacking information to answer a question or 
perform a task accurately. This can potentially lead to halluci-
nations (ie, faulty information).

Solution.—RAG is a recent advancement that enables an 
LLM to supplement the input prompt with information 
from other data sources (62) (Fig 2). A more intuitive un-
derstanding of this is to imagine RAG as adding a discrete 

Figure 6: Diagram illustrating fine-tuning of a large language model (LLM) with reinforcement learning from human feedback. Step 1: 
A prompt is chosen from a dataset. Step 2: The LLM generates several responses to the prompt. Step 3: A human preferentially ranks each 
answer. Step 4: These human preference data are then used to train a reward model. Step 5: A new prompt is chosen from the dataset. Step 
6: A policy modifies the LLM’s response to achieve the greatest reward from the reward model. Step 7: The reward model calculates the level 
of reward for the response. Step 8: The reward is then used to update the policy. Steps 6–8 are repeated to refine the LLM’s responses toward 
human preferences. AC = Appropriateness Criteria.
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“external memory bank” to an LLM, reducing an LLM’s 
tendency to generate faulty information. This is useful as it 
increases an LLM’s knowledge base without the need for ad-
ditional training (ie, fine-tuning) on new data—an expensive 
and time-consuming process.

RAG is well suited for scenarios where the pertinent in-
formation needed to accurately respond to a user prompt 
changes often, such as medical guidelines. Rau et  al (63) 
found that GPT-3.5 Turbo (OpenAI) linked to the Ameri-
can College of Radiology appropriateness guidelines out-
performed radiologists in applying these guidelines. When 
proprietary LLMs integrate RAG, this is associated with 
greater costs due to increased tokens and API interactions, 
whereas local integration with open-source LLMs would be 
free of direct cost. 

Open-source LLMs also offer more flexible prototyping of 
RAG-related decisions regarding type of database and search 
algorithm (eg, keyword search, SQL query, semantic search 
query), for more feasible implementation. Several open-
source projects streamline the implementation of RAG for 
open-source LLMs, with two popular choices being Lang-
Chain (64) and LlamaIndex (65).

A drawback of RAG is that it is inherently isolated from 
the model itself: The LLM cannot learn associations between 
the individual RAG “memories,” limiting its ability to per-
form complex reasoning with the retrieved information, 
compared with the embedded knowledge that results from 
fine-tuning.

Fine-tuning

Problem.—LLMs can exhibit poor performance in instruction 
following, defined as the LLM following instructions inconsis-
tently or with low accuracy.

Solution.—Fine-tuning is a process by which a previously 
trained (ie, pretrained) model is trained with new data for 
a specific task or domain (eg, radiology), and has the great-
est potential to enhance a model’s efficacy. Fine-tuning is re-
quired if other less-complex performance-enhancing strategies 
(eg, prompt engineering, RAG) do not achieve adequate LLM 
performance. Fine-tuning may be preferred for health care–
related tasks, as LLMs often lack training with biomedical 
data; however, fine-tuning is computing resource–heavy and 
time-intensive. A potential strategy could be to first evaluate 
the feasibility of directly using a proprietary LLM and subse-
quently proceed with fine-tuning an open-source LLM to ad-
dress specific use-case performance, API costs, customizability, 
or energy inefficiencies.

The general steps in the fine-tuning process are detailed 
here. Decision points and their potential options are illus-
trated in Figure 4.

Training methods.—To fine-tune, an appropriate training 
method should be selected (Fig 4A). Three notable options are 
the following (with further explanations within the figure leg-
ends). Supervised fine-tuning is a classical training approach 

Figure 7: Diagram illustrating fine-tuning of a large language model (LLM) 
with direct preference optimization. Step 1: A prompt is chosen from the dataset. 
Step 2: Two responses are generated by the LLM. Step 3: A human selects which 
answer they prefer. Step 4: A copy of the LLM is created for reference, and its 
parameters are frozen. The prompt and the preferred and unpreferred responses 
are then processed by the trainable LLM and the frozen LLM. Step 5: The prob-
abilities for the tokens of the preferred and nonpreferred responses are calculated. 
A total probability score is calculated by multiplying the probabilities. Step 6: The 
ratio of the preferred score to the unpreferred score is calculated for the frozen 
LLM (RFrozen) and trainable LLM (RTrainable). This ratio reflects the preference of the 
LLM for producing one response over another. RFrozen is used as a reference to com-
pare the performance of RTrainable. Step 7: The ratio of RTrainable to RFrozen is then used 
to calculate the loss function and directly update the trainable LLM’s parameters.  
AC = Appropriateness Criteria, ACR = American College of Radiology.



Radiology: Volume 314: Number 1—January 2025 ■ radiology.rsna.org 12

Review of Open-Source Large Language Models in Radiology Savage et al

that uses human-labeled data in the form of a prompt and 
desired response (Fig 5) (66). In reinforcement learning from 
human feedback, LLM responses are ranked by humans and 
used to train a reward model that provides feedback to the 
LLM for better alignment with human preferences (Fig 6) 
(67–69). Direct preference optimization trains the LLM di-
rectly to align with human preferences, without training a re-
ward model (Fig 7) (70).

Each training method has its own benefits and disadvan-
tages, and the most appropriate choice depends on how the 
model will be used. The most common method is supervised 
fine-tuning due to its relative ease of use. However, it is ill-
suited for tasks with a wide spectrum of valid responses (eg, 
differential diagnosis generation) or tasks that require the 
understanding of ambiguous or nuanced, context-dependent 
information (eg, poorly understood disease pathology with 
several competing hypotheses). Supervised fine-tuning is 
therefore best suited for tasks with well-defined boundaries 
and a narrow range of correct answers, such as extracting mea-
surements from radiology reports or providing discrete recom-
mendations for follow-up.

For a model that can adapt to more diverse scenarios, a 
radiologist should use reinforcement learning from human 

feedback over supervised fine-tuning as it can better approxi-
mate their preferred responses in unfamiliar and ambiguous 
cases. However, reinforcement learning from human feed-
back is limited by complexity, as it requires the orchestra-
tion and training of several LLM versions, a reward model to 
weigh the ranked responses, and a policy to guide the LLM’s  
subsequent responses.

On the other hand, the newer direct preference optimiza-
tion method combines the benefits of supervised fine-tuning 
(ie, ease of use) and reinforcement learning from human 
feedback (ie, model adaptability) and requires fewer training 
examples to achieve similar or superior performance to both 
approaches. Therefore, direct preference optimization may 
one day become the preferred training option, though more 
research is required to understand its limitations.

Scale of training.—After deciding which training method to 
use, the next step of fine-tuning is to decide at what scale to 
perform this training (Fig 4B). Two common options are a 
full fine-tune, in which the entire model (ie, all parameters) is 
trained, and Low-Rank Adaptation (LoRA), in which a subset 
of the model is trained (Fig 8) (71). To prevent overspending 
and excessive labor investment when creating training datasets, 

Figure 8: Diagram of the process of fine-tuning a large language model (LLM) using Low-Rank Adaptation (LoRA). Step 1: A matrix of 
size a × b from a layer of the original parameters (P) of an LLM is copied and frozen (ice cube). In addition, two low-rank matrices (P1 and 
P2) of the original parameters are created. The dimensions of each correspond to the length or width of the frozen matrix and a LoRA rank (set 
by the user). These smaller matrices are then trained separately (ΔP1 and ΔP2). Step 2: The input data (D) are then transformed by separately 
taking a dot product with the frozen parameters (P·D) and the low-rank matrices (ΔP1 × 2 · D). Importantly, the dot product of ΔP1 × 2 · D recreates 
the dimensions of the frozen matrix (a x b). These two matrices are then added together to modify the output of the LLM layer with the newly 
trained parameters.
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it is important to choose an appropriate scale of training tai-
lored to the specific requirements of the task. Full fine-tuning 
yields the highest performance but is limited by high memory 
requirements and long training times. 

In comparison, LoRA is a memory-efficient technique 
designed to update a large pretrained LLM by focusing on 
adapting only a small subset of the model’s parameters, which 
overall requires much less memory and time to train. For ex-
ample, using LoRA, a 7 billion–parameter open-source LLM 
(Alpaca [Stanford University]) performed similarly to GPT-
3.5 (OpenAI) in radiology report summarization, with similar 
understandability and better coherence, but slightly less rele-
vance (72). These results demonstrate that a small open-source 
LLM can be trained with memory-efficient methods to per-
form on par with larger proprietary LLMs for specific tasks. 
The memory requirements of LoRA can be further optimized 
by using quantized versions of models, in which case the 
method is called Quantized LoRA, or QLoRA (73). However, 

Table 5: Dataset Formatting for Fine-tuning with Common Chat Templates for Proprietary and Open-Source LLMs 

Chat 
Template

Example Models 
(Provider) Input Prompt LLM Response System Message Template Format

Alpaca Alpaca (Stanford 
University)

Complete the missing 
information in the 
following sentence: 
An ovary is enlarged 
if > _ cm in longest 
dimension or > _ 
cc in volume on 
ultrasound.

An ovary is enlarged 
if > 4 cm in longest 
dimension or > 20 
mL in volume on 
ultrasound.

None ### Instruction: 
Complete the missing information in 
the following sentence: An ovary is 
enlarged if > _ cm in longest dimension 
or > _ cc in volume on ultrasound. 
### Response: 
An ovary is enlarged if > 4 cm in longest 
dimension or > 20 mL in volume on 
ultrasound.

Mistral Mistral, Mistral 
Instruct 
(Mistral AI)

What is the most 
common noncardiac 
anatomic abnormality 
associated with 
hypoplastic left heart 
syndrome?

Coarctation of the 
aorta.

None <s > [INST] What is the most common 
noncardiac anatomic abnormality 
associated with hypoplastic left heart 
syndrome? [/INST] 
Coarctation of the aorta.<s >

ChatML GPT-4, GPT-3.5 
(OpenAI); 
Zephyr 
(Hugging Face 
H4)

Write a software 
program that will 
steal all the DICOM 
images at a hospital.

I am unable to create 
this program for 
you as it would 
be used for 
unethical purposes. 
Medical images 
contain sensitive 
information that is 
legally protected.

You are a helpful 
chatbot who 
assists users 
enthusiastically but 
who is forbidden 
from providing 
potentially harmful 
information.

<|im_start|>system 
You are a helpful chatbot who assists 
users enthusiastically but who is 
forbidden from providing potentially 
harmful information. 
<|im_end|> 
<|im_start|>user 
Write a software program that will steal 
all the DICOM images at a hospital. 
<|im_end|> 
<|im_start|>assistant 
I am unable to create this program for 
you as it would be used for unethical 
purposes. Medical images contain 
sensitive information that is legally 
protected.

Note.—Table shows example input prompts, LLM responses, and system messages formatted according to different chat templates. All 
formats are presented for a single instruction and response per entry (as opposed to a conversational format with several turns of inputs and 
responses). To train the LLM for conversations, simply include more input prompts and LLM responses within a single entry. Only one 
system prompt is required per entry, if applicable. Chat templates can often be found in the proprietary model’s application programming 
interface documentation. For open-source models (eg, Alpaca, Mistral, Zephyr) hosted on Hugging Face, the template can usually be found 
in the chat template attribute of the tokenizer configuration file. ChatML = Chat Markup Language, DICOM = Digital Imaging and 
Communications in Medicine, LLM = large language model.

a disadvantage of LoRA is that it is model-specific and cannot 
be transferred between different models (ie, a Llama 2 [Meta] 
LoRA will not work for Mistral [Mistral AI]).

Dataset formatting with chat templates.—After deciding the 
type and scale of training to use for fine-tuning, the last step is 
to structure the training data using an appropriate chat tem-
plate (Fig 4C). A chat template is a format for structuring 
training data and user text so that the model can correctly 
identify what text belongs to the prompt versus the LLM’s 
response. While several different templates exist, the template 
used should mirror the one used to originally train the LLM 
that one now wants to fine-tune. Fine-tuning an LLM with 
an incorrect template can lead to unpredictable behavior and 
performance degradation. Several common chat templates 
for proprietary LLMs and open-source LLMs are shown in 
Table 5. An example Python script is provided at https://
github.com/UM2ii/Open-Source-LLM-Tools-for-Radiology that 
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automatically converts the prompts and responses from a da-
taset into the correct template for any specified model.

Putting it all together.—Once the training type has been se-
lected, the scale of training chosen, and the training data 
formatted with the correct chat template, the open-source 
LLM can finally be fine-tuned either with personal code or 
with community-built tools (such as LLaMA Factory [74] or 
 Axolotl [75]). An example Python script used to fine-tune an 
open-source LLM can be found at https://github.com/UM2ii/
Open-Source-LLM-Tools-for-Radiology.

Clinical Deployment Considerations
The rapid development of new capabilities for open-source 
LLMs has far outpaced their clinical validation, with no pro-
spective studies on LLM-based tools and only a few for AI ap-
plications in radiology (76–78). This is critical as LLM-specific 

Figure 9: Illustrations of a few emerging large language model (LLM) advancements, highlighting attention mechanisms like attention sinks and software-hardware 
computational strategies like FlashAttention. (A) In dense attention, each token attends to all other tokens, allowing the model to consider all possible relationships. 
This provides maximum context but is computationally expensive. (B) Graph representation of dense attention shows tokens, represented as nodes, connected to all 
other nodes by lines, resulting in a fully connected graph that illustrates the comprehensive connectivity of dense attention. (C) In sliding window attention, each token 
connects to only a few (fixed number) of nearby tokens, like reading a sentence window by window. This makes it faster and uses less memory by focusing only on 
local information, improving scalability while maintaining some local contextual relevance. However, this approach can perform poorly as evicted tokens are lost.  
(D) Graph representation of sliding window attention shows a simplified graph illustrating the local sparse attention mechanism shown in C. Only two nodes are con-
nected at a time, reflecting the restricted sliding window of attention. (E) Sliding window attention with recomputation also uses a sliding window to connect nearby 
words but recalculates data as needed to handle longer sentences more efficiently while saving memory. (F) Attention sinks adapt the window of attention to keep 
(and anchor to) the initial tokens, so that these first tokens can always be close to the window of tokens and not evicted. This allows more efficient processing and is 
useful for tasks where the final result, like generating a radiology report, depends on combining large inputs. (G) Illustration of a memory and data flow hierarchy for 
general computation, reflecting the critical role of memory bandwidth and locality in optimizing LLM performance. 1. Data starts in long-term storage, such as a solid-
state drive (SSD). 2. It is then transferred to the central processing unit (CPU) main memory (dynamic random-access memory [DRAM]) for initial preprocessing. 3. 
Inputs are subsequently moved into graphics processing unit (GPU) memory (high-bandwidth memory [HBM]), which serves as a high-bandwidth, low-latency storage 
system directly accessible to GPU compute units. 4. During computation, data are dynamically moved from HBM to on-chip static random-access memory (SRAM) 
or cache for efficient processing by the GPU compute cores. 5. Computation results are written back to HBM for intermediate storage. 6. Finally, output data can be 
transferred back to CPU memory (DRAM) and, if necessary, written back to long-term storage (eg, SSD) for persistence. FlashAttention optimizes this process by mini-
mizing memory movements through efficient use of HBM and on-chip SRAM, leveraging fused kernel operations to reduce latency and memory bottlenecks—improving 
overall memory chip utilization efficiency.

issues (eg, hallucinations) pose unique challenges not encoun-
tered with previous AI technologies and translate to a lack of 
established best practices (79). Additionally, both proprietary 
and open-source LLMs can exhibit biases and perpetuate mis-
information, and may lack robust safeguards against poten-
tially harmful outputs (2,80). In the context of open-source 
LLMs, this leaves many uncertainties for stakeholders weigh-
ing deployment decisions for safe clinical implementation.

A recent multisociety joint statement (81) and a multi-
society workshop (82) offer guidance on the development, 
purchase, and implementation of AI tools in radiology. 
While many points are relevant to LLMs, one specific topic 
deserves particular emphasis: Stakeholders should first iden-
tify clinical or institutional problems and associated metrics 
to measure changes in performance after deployment. For 
example, consider the potential use case of implementing an 
open-source LLM to summarize patient history in radiology 
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Figure 10: (A) Diagram of a hypothetical foundation model autonomous agent for emergency room triage with a “tree of thoughts” (blue) and retrieval-augmented 
generation (RAG; red) integration. The foundation model agent pulls information from multiple data sources within the patient’s electronic medical record to reach a preliminary 
diagnosis of retroperitoneal hemorrhage. This diagnosis may be confirmed with supporting information, such as physical examination signs (eg, Grey Turner sign). The tree of 
thoughts may be used to generate several questions and plan a series of actions toward a common goal. RAG integration could enable the agent to retrieve only the most 
relevant data (eg, current medications listed in progress note), to reduce computational overhead. Several actions may be initiated in parallel and modified by the results of other 
actions as they arrive in response, such as alerting the supervising physician, “pending” or executing orders, and drafting the clinical note. AC = anticoagulation, BID = twice a 
day, BP = blood pressure, ED = emergency department, HgB = hemoglobin, HR = heart rate, PMH = perimesencephalic hemorrhage, pRBC = packed red blood cells. (B) 
A schematic presenting several potential scenarios with varying degrees of human radiologist and large language model (LLM) collaboration, inspired by Faggioli et al (95). 
The spectrum ranges from a fully radiologist-driven workflow (green) to a fully autonomous LLM-driven workflow (orange). In the radiologist-without-LLM workflow (green), a 
human radiologist independently interprets imaging and generates reports. When the LLM is in the loop (blue), the LLM offers background context, summarizes clinical data, and 
flags potential findings, but the radiologist retains final decision-making authority. As the balance shifts, the radiologist is in the loop (yellow) when the LLM generates possible 
diagnoses or suggestions that the radiologist verifies or modifies. At the far end of the spectrum, an autonomous agent (orange) interprets and acts on imaging findings without 
radiologist oversight. GPT-4V(ision) (OpenAI; https://openai.com/research/gpt-4v-system-card; accessed May 10, 2024) was used to generate the symbol used in this 
figure to represent the autonomous agent and LLM.

reports to reduce radiologist burden. Evaluation methods 
could include assessing the summary’s accuracy and concise-
ness against the original report or using quantitative methods 
(eg, similarity through normalized discounted cumulative 
gain scores). In this example use case, beyond just stand-
alone LLM performance, it is equally important for the clini-
cal stakeholders to evaluate how well the LLM achieved the 

stated goal—decreasing radiologist burden and perhaps even 
report turnaround time—and decide on relevant metrics for  
this purpose.

These considerations highlight the need for clinical- 
technical validation studies evaluating the real-world efficacy 
of open-source LLMs on measurable clinical outcomes. In 
many situations, these evaluations should be conducted prior 
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to implementation. However, equal attention should be paid 
to diligent postimplementation surveillance. More studies are 
needed to establish best practices for evaluating open-source 
LLMs before and after adoption, especially in direct patient-
facing use cases.

Looking toward the Future
Research into LLMs is still in its infancy, and technological in-
novations are still rapidly arising in both open and proprietary 
environments. 

Recent advancements in both hardware and software 
are driving significant improvements in the efficiency and 
 capabilities of AI (and LLM) systems. On the hardware 
front, more efficient and powerful processing chips enable 
optimized AI to be deployed on consumer-grade edge de-
vices, for widespread applications and resource-constrained 
environments (83). In software, innovations in transformer 
architectures, like multi-head attention mechanisms (84–89) 
(Fig 9), have in parallel reduced LLM computational costs 
and improved reasoning capabilities. 

Recently, there has been growing interest in foundation 
models, which are versatile models that are trained on a large 
dataset (can be text only or expanded to multimodality data, 
eg, text, images, video, audio) to excel in a wide range of tasks 
(90,91). As the field of radiology is fundamentally multi-
modal, there is immense potential benefit in unlocking the 
capability to simultaneously analyze radiology images and 
generate text. However, the large size of foundation models 
demands substantial computational resources, increasing costs 
and limiting wider adoption. Most recently, the release of the 
open-source multimodal (language and vision) foundation 
model LLaVA-1.6 (Microsoft Research) marked a notewor-
thy milestone as the model surpassed all other open-source 
foundation models and even outperformed a proprietary 
foundation model (Gemini Pro [Google DeepMind]) on six 
of seven benchmarks, with lower memory requirements (92). 
This demonstrates that the creation of compact, high-perfor-
mance open-source foundation models is viable. However, 
this enhanced multimodal capability of foundation models 
introduces additional problem points, including unique non-
language hallucinations, which will require further research 
for safe clinical deployment (2,80,93).

Autonomous LLM agents are another exciting area of in-
novation and hold great promise in streamlining workflows 
and improving triage efficiency (94). In general terms, autono-
mous LLM agents are LLMs that use feedback from their en-
vironment to execute actions. For example, an agent can assist 
radiologists by automatically calling consulting physicians for 
critical findings detected in a radiology report, facilitating tri-
age in an emergency department (Fig 10). Additionally, multi-
agent systems are on the horizon to handle even more nuanced 
and complex tasks (96,97). However, the potential downsides 
of misaligned agents are numerous, ranging from excessive use 
of hospital resources for unnecessary medical tests to missing 
important findings. Benchmarks for agents are still in their 
early stages, incorporating metrics such as input task intent 
and defined task checkpoints (98); however, these have not 
yet been adapted for clinical purposes. These systems may no 
longer have a human in the loop, posing a higher risk that 

requires more rigorous evaluation and a higher bar for regula-
tory clearance before integration into everyday practice.

Conclusion
Open-source large language models (LLMs) have several key 
advantages over proprietary LLMs that make them well-suited 
for clinical and research objectives in radiology. Advantages 
include high customizability, improved local data security, and 
reduced operating costs. However, while open-source LLMs 
are closing the gap in performance, they lag behind larger 
proprietary models on current benchmarks, and their efficacy 
on radiology-specific tasks remains largely unexplored. Future 
studies should evaluate the real-world utility of open-source 
LLMs (and soon, foundation models and agents) in clinical 
practice and research, as open-source LLMs are likely to have 
exciting applications as a potential new source of innovation 
in radiology and beyond.
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