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Abstract

Understanding multimodal molecular knowl-
edge is crucial for advancing biomedicine,
chemistry, and materials science. Molecule
language models (MoLMs) have become pow-
erful tools in these domains, integrating struc-
tural representations (e.g., SMILES strings,
2D graphs) with contextual descriptions (e.g.,
physicochemical properties, biomedical appli-
cations). However, MoLMs can encode and
propagate inaccuracies due to low-quality train-
ing data or malicious manipulation. While
model editing has been explored for general-
domain Al, its application to MoLMs remains
uncharted, presenting unique challenges due
to the multifaceted and interdependent nature
of molecular knowledge. In this paper, we
take the first step toward MoLM editing for
two critical tasks: molecule-to-caption gener-
ation and caption-to-molecule generation. To
address molecule-specific challenges, we pro-
pose MolEdit, a novel framework that enables
targeted modifications while preserving unre-
lated molecular knowledge. To systematically
evaluate editing performance, we introduce
MEBench, a comprehensive benchmark assess-
ing multiple dimensions, including reliability,
locality, and generality. Extensive experiments
on MEBench highlight the distinct challenges
of MoLM editing and demonstrate MolEdit’s
superiority over existing methods.

1 Introduction

Understanding molecular knowledge is cru-
cial across various scientific fields, such as
biomedicine (Zhang et al., 2024b; Pei et al., 2024a),
chemistry (Liao et al., 2024; Xiao et al., 2024), and
materials science (Lei et al., 2024). Pre-trained and
fine-tuned on diverse multimodal data, molecule
language models (MoLMs) encode multimodal
molecular knowledge, encompassing structural rep-
resentations (e.g., SMILES strings, 2D graphs)
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Figure 1: An illustration of MoLM editing for two tasks:
correcting inaccurate captions in molecule-to-caption
generation and fixing mismatched or invalid molecules
in caption-to-molecule generation.

and contextual descriptions (e.g., physicochemi-
cal properties, biomedical applications) (Su et al.,
2022; Pei et al., 2024b; Cao et al., 2023). With
rich knowledge integrated, MoLM encoders pro-
cess input representations, while decoders gener-
ate outputs across modalities, enabling key ap-
plications such as molecule-to-caption generation
and caption-to-molecule design (Luo et al., 2023).
However, during knowledge integration, inaccurate
or misleading information can be introduced, ei-
ther from low-quality training data (Deng et al.,
2024b) or because of malicious knowledge manip-
ulation (Chen et al., 2024), posing risks in down-
stream applications. For instance, a compromised
MoLM might incorrectly describe Naphthalene—a
highly carcinogenic organic molecule—as “a be-
nign human metabolite", potentially leading to criti-
cal errors in drug discovery pipelines. Hence, there
is a pressing need to refine MoLMs to correct inac-
curate or misleading knowledge, as shown in Fig-
ure 1. Recently, model editing has emerged as an
efficient approach to modifying specific knowledge
while preserving other information (Wang et al.,
2024b; Zhang et al., 2024a; Mazzia et al., 2024). It
has been widely applied to general-domain large



language models (De Cao et al., 2021; Meng et al.,
2022b) and multimodal language models (Huang
et al., 2024b; Cheng et al., 2023).

However, no existing work has explored how
model editing can be adapted to MoLMs, which
presents two inherent molecule-specific challenges.
First, molecular knowledge is inherently multi-
faceted (Cao et al., 2023)—a molecule consists
of multiple functional groups, while its caption
comprises distinct descriptive components. Each
of these elements represents a specific aspect of
molecular properties and may exhibit varying sen-
sitivities to editing. Consequently, modifying mul-
tifaceted molecular knowledge poses the risk of
over-editing certain aspects while under-editing
others (Javadi, 2024; Zheng et al., 2023). Second,
shared functional groups and contextual descrip-
tions create interdependencies among molecules,
so editing one molecule’s knowledge can uninten-
tionally affect others with similar features. This
makes it difficult to ensure edits remain localized,
violating the principle of locality—where modifi-
cations should only impact the intended target.

To address these challenges, we propose
MolEdit, the first framework for editing multi-
modal MoLMs' in caption generation and molecule
design tasks. Our approach enables precise, tar-
geted updates to compositional molecular knowl-
edge while preserving unrelated information. To
address the first challenge, we design a Multi-
Expert Knowledge Adapter (MEKA) that directs
different facets of molecular knowledge to special-
ized editing experts, enabling fine-grained control
over multifaceted updates. For the second chal-
lenge, we introduce an Expertise-Aware Editing
Switcher (EAES), which maintains a memory bank
of edited molecular knowledge and activates the
knowledge adapter only when the input closely
matches the stored edits across all expertise areas,
minimizing interference with unrelated knowledge.
Furthermore, since incorrect outputs can arise from
interactions between different modalities, our ap-
proach edits both MoLM encoders and decoders to
ensure comprehensive refinement.

To enable systematic evaluation, we introduce
MEBench, the first benchmark for editing MoLMs,
which rigorously assesses reliability (editing ac-
curacy), locality (preservation of unrelated knowl-
edge), and generality (consistency across varied

'We focus on multimodal MoLMs because they are more
challenging and requires edits across both structural and tex-
tual representations of molecules.

textual descriptions of the same concept). Compre-
hensive experiments on MEBench demonstrate that
MolEdit outperforms existing knowledge editing
methods for multimodal MoLMs. Overall, our key
contributions are as follows:

* Problem Formulation: We conduct the
first systematic study on model editing
for MoLMs, identifying and formalizing
molecule-specific challenges.

Benchmark Construction: We introduce
MEBench, a comprehensive evaluation bench-
mark that rigorously assesses three key dimen-
sions: reliability, locality, and generality.

* Framework Design: We propose MolEdit,
a novel editing framework incorporating a
Multi-Expert Knowledge Adapter and an
Expertise-Aware Editing Switcher to address
molecule-specific challenges.

* Experimental Evaluation: Extensive experi-
ments on MEBench demonstrate that MolEdit
outperforms existing knowledge editing meth-
ods across all three evaluation dimensions.

2 Related Work

Molecule Language Model. Inspired by general-
domain language models, molecule language mod-
els (MoLMs) learn rich molecular representations
for various tasks (Liu et al., 2024b; Pei et al.,
2024a). Given the multimodal nature of molec-
ular knowledge, existing MoLMs align heteroge-
neous inputs during pretraining (Liu et al., 2023a;
Pei et al., 2023). While some frameworks adopt
a unified generative approach (Fang et al., 2023;
Zeng et al., 2022; Christofidellis et al., 2023; Zhao
et al., 2023), we focus on contrastive methods (Su
et al., 2022; Luo et al., 2023; Liu et al., 2023b; Li
et al., 2024b; Liu et al., 2024a; Luo et al., 2024),
which employ separate encoders for each modal-
ity, enabling greater flexibility in handling diverse
data sources. These models are then fine-tuned for
specialized tasks such as molecule-to-caption and
caption-to-molecule generation (Su et al., 2022; Li
et al., 2024a; Gong et al., 2024; Liu et al., 2024c).
However, both pretraining and fine-tuning can in-
troduce inaccurate or misleading knowledge (Dong
et al., 2022; Huang et al., 2024a), highlighting the
need for model editing.

Model Editing. Model editing seeks to effi-
ciently and precisely modify specific factual knowl-
edge within Al systems (Mazzia et al., 2024).



Gradient-based approaches (Sinitsin et al., 2020;
Ni et al., 2023), including meta-learning (Cheng
et al., 2024; Mitchell et al., 2021) and locate-then-
edit methods (Meng et al., 2022a,b), directly up-
date model parameters but risk unintended alter-
ations to unrelated knowledge. In contrast, exter-
nal memorization-based techniques mitigate this
issue by isolating new and existing knowledge,
employing methods such as counterfactual mod-
els (Mitchell et al., 2022), adapters (Hartvigsen
etal., 2024; Huang et al., 2023; Wang and Li, 2024),
and textual context-based edits (Zheng et al., 2023;
Madaan et al., 2022). However, these approaches
struggle to handle the multifaceted and interdepen-
dent nature of molecular knowledge. To address
this, MolEdit introduces a multi-expert knowledge
adapter to capture diverse molecular expertise and
an expertise-aware editing switcher to ensure edits
apply only to highly relevant inputs.

3 Preliminary

Notations. Let G = (V, &) represent a molec-
ular graph, where V denotes the set of atoms
(nodes) and & represents covalent bonds (edges).
Each molecular graph consists of N, subgraphs

gif-v:gl, each corresponding to a functional group.
The molecular structure can also be expressed
as a SMILES string, denoted as S. Addition-
ally, each molecule is associated with a caption
T =t',...,t"Nt containing N; textual descriptions.

Molecule Language Model. Given molecular
representations G, S, and captions 7, molecule lan-
guage models (MoLMs) learn aligned cross-modal
representations by utilizing a structure and a text
encoder during pretraining. A task-specific decoder
is then appended for downstream generation tasks.

Caption Generation. In the caption generation
task, a pretrained text decoder is appended to the
structure encoder and fine-tuned to generate cap-
tions 7 given a molecular representation G, S. We
denote the fine-tuned MoLMs for this task as feqp.

Molecule Generation. Similarly, in the molecule
generation task, a pretrained molecule generation
decoder is appended to the text encoder and fine-
tuned to generate SMILES representations S given
a caption 7 2. We denote the fine-tuned MoLMs
for this task as fgen.

>We follow the definition of existing MoLMs (Luo et al.,
2023, 2024; Edwards et al., 2022)

4 Editing Molecule Language Model

In this section, we first introduce the task of editing
MoLMs for molecule and caption generation (§4.1).
We then present MEBench, the first benchmark
for evaluating MoLLM editing (§4.2), followed by
MolEdit, a novel framework designed to address
molecule-specific challenges (§4.3).

4.1 Task Definition

Editing Caption Generation. MoLMs may pro-
duce inaccurate captions that require correction. To
assess editing effectiveness, we evaluate caption
generation along two dimensions. First, Reliabil-
ity measures how well the edited captions align
with expert-curated ground truth. Given a dataset
D7 edit containing molecules with initially incor-
rect captions, we compute the semantic similar-
ity between the captions generated by the edited
MoLMs, fcap, and the target captions 7:

MZ;Z = E(Q,S,T)ND;;[(SIMT(fcap<g7 8)7 7-))7
e
where SIM 7 is the metric to measure text similarity.
Secondly, Locality preserves existing knowledge
by minimizing deviations in unedited captions. For
a dataset D/  with knowledge unrelated to D7,

loc edit’
we compare outputs before and after editing:

M. =BG s)p7 (SIM1(feap(G,S), feap(G,5)))-
)

Editing Molecule Generation. MoLMs can also
generate invalid molecule SMILES that necessi-
tate correction. Similar to editing caption genera-
tion, we evaluate the Reliability and Locality with
edited MoLMs for molecule generation fyey,:

Mfel = E(S,T)N’Dfdu(SIMG(fgen(T)a5))7 (3)

Mfoc = E(T)NDﬁc (SIMc (fgen (T ), foen(T))),

“
where Dgﬁt contain molecules requiring knowledge
editing and Df)c ought to remain unchanged during
editing. SIM¢; is the metric to measure molecule
similarity. Additionally, descriptions with the same
semantic meaning, despite differences in phrasing,
should generate the same molecule. To evaluate
this, we assess the model’s output consistency for
equivalent inputs (e.g., rephrased descriptions) us-
ing a generality dataset, as shown below:

= E(7)on (1) (SIMc(fgen(T7), S)), (5)
(S, T)~DS
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Figure 2: A sample illustration of MEBench. It includes
three evaluation dimensions for two tasks: Reliability
(molecules requiring editing), Locality (similar but un-
targeted molecules), and Generality (rephrased captions
of the Reliability inputs).

where the A/ (-) denotes the generalization set of
each description.

4.2 Benchmark Construction

This subsection provides a brief overview of the
MEBench construction process. An illustration of
MEBench samples is also provided in Figure 2.

4.2.1 Editing Caption Generation

Reliability. To assess the effectiveness of knowl-
edge editing, we construct a caption reliability
dataset, Derit. We first identify suboptimal entries
shared across multiple MoLMs within the widely
used CheBI-20 dataset for caption generation, us-
ing its ground truth captions as the editing targets.
Additionally, to enable a more fine-grained evalu-
ation of editing capabilities (as discussed in Sec-
tion 5.4), the targets are decomposed into distinct
descriptions, each capturing a specific aspect of
molecular knowledge.

Locality. To assess the ability of MoLMs to pre-
serve existing knowledge, we construct a caption
locality dataset, Dlz:c. Specifically, we extract high-
accuracy entries from the CheBI-20 training set
to serve as the basis for this dataset. Since model
editing is more likely to affect knowledge that is
semantically similar to the editing target, we select
locality samples with high similarity to those in the
reliability dataset, making the editing task more
challenging. Similar to UnKEBench (Deng et al.,
2024a), both the reliability and locality datasets
contain unstructured knowledge, as molecule cap-
tions are complex and involve multiple entities.

4.2.2 Editing Molecule Generation

Reliability. To assess the effectiveness of knowl-
edge editing in improving molecule SMILES gener-
ation, we construct the molecule reliability dataset,
Dfdit. Following a similar approach to caption edit-
ing dataset construction, we identify suboptimal
entries shared across multiple MoL.Ms within the
CheBI-20 dataset. The ground truth SMILES repre-

sentations in the dataset serve as the editing targets.

Locality. To construct the generation locality
dataset, Dl‘gc, we select high-accuracy entries from
multiple MoLMs within the CheBI-20 training set.
To ensure a rigorous evaluation of the model’s abil-
ity to preserve existing knowledge, we choose en-
tries with the highest semantic similarity to those

in the reliability dataset.

Generality. To assess a model’s ability to gener-
alize across different phrasings, we construct the
generality dataset, A/(7). This dataset consists of
rephrased captions from the molecule reliability
dataset, evaluating whether semantically equiva-
lent descriptions consistently generate the same
molecular structures.

4.3 Methodology

To tackle the challenges of editing MoLLMs, we
propose MolEdit, a novel framework designed to
enable localized updates to multifaceted molecu-
lar knowledge. As shown in Figure 3, MolEdit
comprises two key components: (1) Multi-Expert
Knowledge Adapter - This module disentangles and
customizes the editing of diverse molecular knowl-
edge (e.g., functional groups in molecules, descrip-
tive elements in captions) by dynamically routing
them to specialized editing experts via a Mixture-
of-Experts (MoE) architecture. (2)Expertise-Aware
Editing Switcher - This component ensures edits
are applied only to highly relevant inputs by lever-
aging a memory bank of expertise embeddings, ac-
tivating modifications only when the input exhibits
substantial overlap with stored edits.

4.3.1

Since errors can originate from both input and out-
put modalities (Cheng et al., 2023), MolEdit en-
ables knowledge editing by wrapping selected lay-
ers in both the encoder and decoder with adapters,
allowing localized parameter updates. Taking the
molecule generation editing task as an example,
when editing the encoder at layer [, we employ
P distinct experts to perform customized edits for

Multi-Expert Knowledge Adapter



Editing Molecule-to-Caption Generation

Original ’—{EB e
Layer FFN 1 (XX} |FFNNI

o i

A benzene ring with acetyl
land carboxylic acid

i | Text Decoder
i | Mol Encoder

(XX ) |FFNNI

MoE Router

I'ITTWI'ITT"I'I'I

B3 O

Original
Layer

FOOY

Memory Bank

T T
Expertise-Aware Editing Switcher ~ Multi-Expert Knowledge Adapter

Editing Caption-to-Molecule Generation

Original
Layer ]
Mol Decoder -
. [ MoE Router ]
Editing

| | | Text Encoder

e ring with acetyl

(XX} |FFN1\I

[ MoE Router ]

I Abenzene ring with
| carboxylic acid. __,
It's highly foxic.

! Ithasaroleasa
1 metabolite.
1

1
1
1
1
Tt is an organic anion. |

1 Memory Bank

T T
Expertise-Aware Editing Switcher ~ Multi-Expert Knowledge Adapter

Figure 3: An overview of MolEdit to edit MoLMs for molecule/caption generation by modifying a chosen layer in
either the encoder and decoder. It is composed of two components: (1) Multi-Expert Knowledge Adapter (MEKA)
and (2) Expertise-Aware Editing Switcher (EAES). Specifically, MEKA utilizes expertise-wise MoE for encoder
and token-wise MoE for decoder to route expertise to different editing experts (instantiated as FFN). EAES stores
edited knowledge expertise (functional groups/descriptions) and activates MEKA only when all input expertise finds

a similar match in its memory bank during inference.

different descriptions in the input. Each expert
is instantiated as a feed-forward network (FFN)
layer. To achieve this, a gating function dynami-
cally routes the (I — 1)-th layer embeddings of each
description to the appropriate expert, illustrated as,

e +e)),
(6)
where t" is the n-th description and zll-_l is the em-
bedding of i-th token in ¢t™ at (I — 1)-th layer. W,
is the trainable weights in gate decision, while €
denotes the noise term. The topy(-) operator zeros
out all but the top-k values. After getting the gate
decision vector G™ of the n-th description, the cor-
responding output is generated through a weighted

aggregation of each expert’s computation on zzl-,

G" = topy, (softmax (W Ezetn(

P
A=+ g W, et ()
p=1

where W, is the trainable weights. When editing
the decoder at layer I, the ground truth expertise
segmentation is unavailable. As a result, the MoE
adapter is applied to each token, which is expected
to route tokens associated with different expertise
to the appropriate experts, demonstrated as,

G' = topy, (softmax (W; . zll-lfl + e)) ,

+)\Zgz ’ l’ 1

®)

/

l’ l’
b=

Similarly, for editing caption generation, the in-
put molecule is composed of multiple functional
groups, each representing a distinct molecule exper-
tise. We route by functional groups during encoder
editing and by token during decoder editing due to
the lack of predefined expertise in decoder.

4.3.2 Expertise-Aware Editing Switcher

In order to minimize unintended interference with
untargeted molecules that share a few functional
groups or descriptions, we design a expertise-aware
switching mechanism that only allows activation
of the knowledge adapters for molecules with high
expertise overlap with edited molecules. Specif-
ically, we keep an expertise-based memory bank
that stores the expertise-wise knowledge through
the form of encoder embeddings of the edit queries:

iEtnj

zZ = {Zn}v Zn; = X, (zz‘enc)/|tnj|> €)
where 2" represents the encoder embedding of

the ¢-th token (node) within the n;-th description
(functional group) of the j-th sample. During infer-
ence, the switcher compares each expertise in the
input to the expertise of stored edits in the mem-
ory bank Z. The adapter is activated only if all
expertise distances are below a threshold e:

MolEdit (ZZH if max, (d (2, 2)) < €,

Zzl‘ = 7l (zﬁ_l)

where d(+) is a distance function.

otherwise,

(10)



MoMu MolFM
BLEU-41 LEV] MACCS?T BLEU-41 LEV] MACCS?T

FT (Encoder) 0.758 (£0.022) 22.974 (+3.224) 0.987 (+0.018) 0.983 (+£0.000)  2.015 (+0.018)  0.998 (+0.001)

FT (Decoder) 0.711 (£0.002) 29.936 (+0.112) 0.938 (£0.002) 0.894 (£0.035)  11.560 (£4.244)  0.977 (+£0.013)

Reliability FT (All) 0.781 (£0.000)  19.940 (+0.035) 1.000 (£0.000) 0.977 (£0.011)  2.554 (£1.091)  0.995 (+0.001)

MEND 0.802 (+£0.019) 21.079 (£1.360) 0.834 (£0.011) 0.789 (£0.003)  23.547 (£0.125)  0.869 (+£0.003)

GRACE 0.718 (£0.000) 28.331 (£0.025) 0.938 (£0.000) 0.770 (£0.001) 11.464 (+15.122) 0.987 (4+0.004)

MolEdit 0.953 (+£0.025) 4.667 (+2.154)  0.989 (+0.008) 0.975 (+£0.003)  2.862 (+0.479)  1.000 (+0.000)

FT (Encoder) 0.829 (+£0.001) 18.786 (+0.089) 0.881 (£0.008) 0.829 (£0.001) 19.622 (£0.154)  0.943 (+0.005)

FT (Decoder) 0.881 (£0.001) 12.562 (£0.094) 0.936 (£0.003) 0.725 (£0.001)  31.195 (£0.203)  0.826 (£0.002)

Locality FT (All) 0.891 (£0.004) 11.756 (£0.413)  0.949 (+0.005) 0.803 (£0.009) 21.985 (£1.189)  0.909 (40.006)

MEND 0912 (£0.028) 9.512 (£3.291)  0.940 (£0.030) 0.833 (+£0.020) 17.581 (£1.750)  0.937 (+0.014)

GRACE 0.859 (£0.000)  15.732 (+0.005) 0.937 (£0.000) 0.757 (£0.001)  30.112 (£0.121)  0.894 (+0.015)

MolEdit 0.980 (+0.007)  1.853 (+£0.727)  0.997 (+£0.000) 0.918 (+0.034)  9.167 (+£3.963)  0.991 (+0.007)

FT (Encoder) 0.526 (£0.013) 55.008 (£0.359) 0.629 (£0.012) 0.727 (£0.021)  30.209 (£1.162)  0.697 (4+0.051)

FT (Decoder) 0.590 (£0.011) 48.795 (£1.465) 0.753 (£0.021) 0.665 (£0.002)  38.035 (£0.172)  0.649 (£0.023)

. FT (All) 0.586 (£0.006) 47.872 (+£1.192) 0.745 (£0.013) 0.713 (£0.002)  30.755 (£2.094)  0.691 (+0.017)
Generality

MEND 0.707 (£0.025) 30.551 (£2.379) 0.721 (£0.009) 0.731 (£0.000)  30.945 (£0.513)  0.678 (+0.052)

GRACE 0.703 (£0.000) 32.574 (+£0.000) 0.913 (£0.000) 0.645 (+£0.000) 44.521 (+£0.732)  0.892 (+0.029)

MolEdit 0.842 (+£0.028) 15.609 (+2.304) 0.917 (£0.020) 0.796 (£0.020) 23.314 (£1.576)  0.895 (£0.044)

Table 1: Main results on MEBench for editing MoMu and MolFM in molecule generation, evaluated across three
dimensions: Reliability, Locality, and Generality. Each dimension uses three metrics: BLEU-4, LEV, and MACSS.
The best and second-best results are shown in bold and underlined, respectively. FT denotes fine-tuning.

MoMu MolFM
BLEU-21 METEOR? ROUGE-11 BLEU-21 METEORTY ROUGE-11
FT (Encoder) 0.334 (£0.005) 0.365 (£:0.006) 0.472 (£0.007) 0.321 (£0.014) 0.346 (£0.019) 0.448 (£0.023)
FT (Decoder) 0.784 (£0.017) 0.813 (£0.014) 0.854 (£:0.013) 0.916 (£0.000) 0.937 (£0.000) 0.958 (::0.000)
Reliability FT (All) 0.886 (£0.034)  0.907 (£0.030) 0.925 (£0.024) 0.921 (£0.001) 0.941 (£0.001) 0.960 (40.001)
MEND 0.557 (£0.034)  0.569 (£0.024) 0.631 (£0.022) 0.627 (£0.025) 0.652 (£0.014) 0.715 (40.007)
GRACE 0.928 (+£0.000) 0.947 (£0.000) 0.965 (£0.000) 0.928 (£0.000) 0.947 (£0.000) 0.965 (40.000)
MolEdit 0.978 (+0.006) 0.978 (+0.007) 0.982 (+0.005) 0.977 (+0.006) 0.979 (+0.004) 0.983 (+0.004)
FT (Encoder) 0.511 (£0.006) 0.536 (£0.010) 0.604 (+0.006) 0.491 (£0.054) 0.508 (+0.065) 0.587 (£0.052)
FT (Decoder) 0.637 (£0.023) 0.653 (£0.030) 0.699 (+£0.023) 0.669 (£0.000) 0.688 (+£0.000) 0.732 (+0.000)
Locality FT (All) 0.625 (£0.066) 0.637 (+£0.063) 0.688 (£0.056) 0.656 (+£0.004) 0.671 (£0.006) 0.721 (£0.007)
MEND 0.615 (£0.010)  0.633 (£0.011) 0.676 (£0.016) 0.844 (£0.005) 0.856 (40.006) 0.873 (40.005)
GRACE 0.875 (+0.013)  0.883 (£0.006) 0.904 (£0.005) 0.893 (£0.002) 0.899 (40.001) 0.917 (40.002)
MolEdit 0.978 (+0.010)  0.981 (£0.009) 0.983 (+£0.008) 0.991 (£0.001) 0.991 (£0.000) 0.993 (4:0.000)

Table 2: Main results on MEBench for editing MoMu and MolFM in caption generation, evaluated across Reliability
and Locality dimensions. Each dimension uses three metrics: BLEU-2, METEOR, and ROUGE-1. The best and
second-best results are shown in bold and underlined, respectively. FT denotes fine-tuning.

S Experiments

We aim to answer three key research questions:
RQ1: How does MolEdit perform compared to
baselines on MEBench? RQ2: How does each
component contribute to MolEdit’s performance?
RQ3: How can we explain the effectiveness of
each modules? The analysis is presented below.

5.1 Experiment Settings

Below we briefly introduce to the experiment set-
tings, with details explained in Appendix A.

5.1.1 MoLM Backbone

In this paper, we use two widely used multimodal
MoLMs as the editing backbones: MoMu (Su et al.,
2022) and MolFM (Luo et al., 2023).

MoMu. MoMu is a multimodal MoLM aligning
molecule graphs and text through contrastive learn-
ing (Li et al., 2021). MoMu utilizes GIN (Xu et al.,
2018) and Bert (Devlin, 2018) as the graph and text
encoders, and MolT5 (Edwards et al., 2022) as the
decoder for molecule and caption generation.
MolFM. MolFM is a multimodal MoLM inte-
grating molecular structures, biomedical texts,
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Figure 4: Ablation study on MoMu in caption gener-
ation and MolFM in molecule generation under three
evaluation dimensions. We evaluate BLEU-2 for cap-
tion generation and BLEU-4 for molecule generation.
EAES denotes Expertise-Aware Editing Switcher and
MEKA denotes Multi-Expert Knowledge Adapter.

and knowledge graphs via cross-modal attention.
MolFM utilizes GraphM VP (Liu et al., 2021) and
BERT as the graph and text encoders, and MolT5
as the decoder for molecule and caption generation.

5.1.2 Baselines

Fine-tune. Fine-tune adapts pre-trained language
models to specific tasks and is a common base-
line for knowledge editing (Li et al., 2023; Zhong
et al., 2023). We experiment with three fine-tuning
strategies: editing the encoder, decoder, and both.
MEND. MEND (Mitchell et al., 2021) enables effi-
cient local edits using a single input-output pair. It
employs auxiliary editing networks that transform
model gradients via low-rank decomposition.
GRACE. GRACE (Hartvigsen et al., 2024) em-
ploys a deferral mechanism to decide whether to
activate an adapter by comparing a given input
against a codebook of stored edits. We extend both
GRACE and MEND to a multi-modal setting.

5.1.3 Maetrics

To evaluate each method on MEBench, we use stan-
dard metrics commonly applied to MoLMs. For
editing molecule generation, we employ BLEU-
4 (Papineni et al., 2002), and Levenshtein (Yu-
jian and Bo, 2007), MACCS FTS (Zhang et al.,
2024c). For editing caption generation, we use
BLEU-2, METEOR (Banerjee and Lavie, 2005),
and ROUGE-1 (Lin, 2004).

5.2 Main Experiments

To answer RQ1, we first evaluate MolEdit’s perfor-
mance against all baseline methods on MEBench
for both molecule and caption generation tasks.
We make the following observations in Table 1
and Table 2: (1) MolEdit consistently outperforms
baselines across most metrics in three dimensions
for both generation tasks. Specifically, under the
BLEU-4 metric, MolEdit outperforms the second-
best method by an average of 9.0% in Reliability,
by 8.8% in Locality, and by 14.0% in General-
ity, which demonstrates MolEdit’s ability to up-
date molecule-specific knowledge precisely. (2)
Different methods excel in different evaluation di-
mensions on MEBench. Fine-tuning, while ef-
fective at reliable knowledge updates, struggles
to preserve untargeted knowledge, particularly in
molecule generation. MEND performs better at
knowledge preservation but underperforms in Re-
liability, potentially due to the complexity of un-
structured molecular knowledge, which poses a
challenge for meta-learning approaches. GRACE
excels at editing caption generation, but performs
poorly in editing molecule generation, underscor-
ing the necessity for molecule-specific solutions.
(3) The choice of the edited module significantly in-
fluences performance. Fine-tuning the encoder gen-
erally enhances performance in editing molecule
generation (particularly for MolFM) but leads to
weaker performance in editing caption generation,
suggesting that knowledge is stored in different
locations depending on the task and MoLLM. Fur-
thermore, the superior performance achieved by
editing both modules highlights the presence of
synergistic knowledge storage across them.

5.3 Ablation Study

To answer RQ2, we assess the contribution of each
module in MolEdit to the performance. We use w/o
MEKA to denote the use of a plain LoORA adapter
without MoE and w/o EAES to denote calculating
similarity at the sample level rather than the ex-
pertise level. Additionally, we evaluate the impact
of editing only the encoder or decoder in MolEdit.
The results are presented in Figure 4. We make
the following observations: (1) Both MEKA and
EAES contribute to overall performance, validating
their effectiveness in addressing molecule-specific
challenges in MoLLM editing. (2) EAES enhances
Locality performance, indicating that it success-
fully defers untargeted inputs to unedited layers.
MEKA improves Reliability performance, suggest-
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Structure (Stru), (4) Type, and (5) Property (Prop).

ing that multiple experts are better equipped to han-
dle multifaceted molecular knowledge. (3) Editing
both the encoder and decoder outperforms editing
either component individually, highlighting syner-
gistic knowledge storage across these components.

5.4 Rationale Validation

To answer RQ3, we aim to provide a deeper analy-
sis of each module’s rationale. We first validate
two interconnected principles behind the multi-
expert knowledge adapter: (1) The necessity of
expertise-wise editing. We hypothesize that differ-
ent expertise exhibits varying sensitivities to edit-
ing, posing risks of both over-editing and under-
editing, thereby necessitating expertise-specific ad-
justments. To validate this, we curate a specialized
dataset from MEBench for molecular caption gen-
eration, where each subset focuses on modifying a
single targeted expertise. By evaluating fine-tuning
performance on this dataset (Figure 5), we observe
that editing sensitivities vary across expertise do-
mains, with structure edits being the most challeng-
ing. This divergence underscores the importance of
adopting expertise-wise editing strategies. (2) The
effectiveness of expertise-wise editing. We vali-
date this by analyzing the expert activation distribu-
tion of MoE under different experimental settings,
as shown in Figure 6. The results indicate that all
experts consistently exhibit high activation rates,
demonstrating that the MoE effectively isolates and
routes different expertise during editing.

Next, we validate the effectiveness of expertise-
aware editing switcher (EAES) in selectively
activating relevant knowledge while suppressing
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Figure 6: The activation distribution of the experts under
different settings. For the label in x-axis, "M" denotes
MoMu, "F" denotes MolFM; "C" denotes editing cap-
tion generation, "S" denotes editing molecule genera-
tion; "E" denotes editing encoder, "D" denotes decoder.

M-Cap F-Cap M-Mol F-Mol
Accuracy 0.827 0.772  0.635  0.529
AT 65.5% 544% 90.7% 58.9%

Table 3: Accuracy of Expertise-Aware Editing Switcher
under different settings. A 1 represents the improve-
ment in accuracy compared to switchers that do not
consider expertise. "M" denotes MoMu, "F" denotes
MolFM; "Cap" denotes editing caption generation,
"Mol" denotes editing molecule generation.

untargeted information. As shown in Table 3,
EAES achieves significantly higher switching ac-
curacy than non-expertise-aware alternatives, with
improvements of up to 90.7%. By validating these
principles, we demonstrate that MolEdit’s modular
design effectively addresses molecule-specific edit-
ing challenges, resulting in enhanced performance.

6 Conclusion

In this paper, we make the first attempt to edit
MoLMs for both molecule and caption generation.
To address the unique challenges associated with
molecular editing, we propose MolEdit, a novel
framework which consists of two key components:
(1) MEKA, which directs molecular knowledge to
specialized editing experts, enabling fine-grained
control over multi-faceted updates; and (2) EAES,
which maintains a memory bank of edited molecu-
lar expertise to activate MEKA only for highly rel-
evant inputs. To enable systematic evaluation, we
introduce MEBench, a comprehensive benchmark
that assesses three critical dimensions: Reliability,
Locality, and Generality. Extensive experiments
demonstrate the effectiveness of MolEdit.



Limitation

Task Scope. While our work lays the foundation
for editing Molecular Language Models (MoLMs),
its scope is currently limited to molecule-to-caption
and caption-to-molecule generation. Broader ap-
plications of MoLMs, such as molecular property
prediction, cross-modal retrieval, and IUPAC name
prediction, remain unexplored in the context of
model editing. These tasks also rely on accurate
molecular knowledge and may require specialized
editing strategies to address domain-specific errors.
Extending our approach to a wider range of ap-
plications presents an exciting direction for future
research.

MoLM Generality. Our experiments focus on
two representative Molecular Language Mod-
els (MoLMs), MoMu and MolFM, but the in-
creasing diversity of molecular foundation mod-
els—including decoder-only and unified generative
architectures—introduces new challenges. Expand-
ing our methodology to accommodate a broader
range of model architectures, scales, and training
paradigms will further enhance its practical utility
and robustness in real-world deployment scenarios.
Benchmark Limitation. While MEBench pro-
vides a comprehensive evaluation of MoLM edit-
ing capabilities, it is limited in both scale and
knowledge structure. Specifically, MEBench is
constructed from a small set of suboptimal en-
tries generated by MoLLMs, constraining its over-
all scale. Moreover, its knowledge remains un-
structured, whereas a more structured MoLM edit-
ing dataset—organized in a source-relation-target
format—could introduce new challenges. De-
veloping a large-scale MoLM editing benchmark
that aligns structurally with molecular knowledge
graphs would be a promising direction for future
research.
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A Implemention Details

In this section, we will introduce the implemen-
tation details of MolEdit. The Multi-Expert
Knowledge Adapter’s similarity threshold € is 0.98
for MolFM molecule generation, 0.8 for MoMu
molecule generation, and 0.9 for caption genera-
tion. The number of experts P is set to 5, with top-k
fixed at 1. The distance function d(-) is instantiated
as cosine similarity. Following prior work (Cheng
et al., 2023; Wang et al., 2024a), we edit mid-to-
late layers (specifically, layer 4 of the encoder and
layer 10 of the decoder in our work) for all tasks
and backbones. We edit one piece of knowledge
at a time for molecule generation and two pieces
for caption generation, due to batch normalization
in the MoMu and MolFM molecule encoders. In
addition, learning rates are le-4 for caption genera-
tion, 2e-5 for MoMu molecule generation, and 1e-5
for MolFM molecule generation. All experiments
were conducted on an NVIDIA A100 server with
four GPUs.

B Dataset Statistics

As introduced previously, MEBench consists of
two core components: (1) molecule generation edit-
ing, with 390 total samples, where each editing
sample includes a Reliability (verifying direct ed-
its), a Locality (preserving unrelated knowledge),
and a Generality sample (maintaining consistency
across rephrasing); and (2) caption generation edit-
ing with 572 total samples, where each editing sam-
ple contains a Reliability and a Locality sample.

We further propose a variant of MEBench com-
prising five specialized subsets, each targeting a
single molecular expertise type: the Function set
(192 samples) modifies molecule functions (e.g., "It
has a role as a progestin."), the Origin set (114 sam-
ples) edits molecular derivations (e.g., "It derives
from a D-mannitol."), the Property set (102 sam-
ples) adjusts chemical properties (e.g., "It is a con-
jugate acid of a 1-deoxy-D-gluconate."), the Struc-
ture set (570 samples) revises structural descriptors
(e.g., "The molecule is an artemoin in which the
two hydroxy groups on the C-30 side-chain are lo-
cated at positions 19 and 20."), and the Type set
(358 samples) updates categorical classifications
(e.g., "It is a scalastatin, a 3beta-D-glucoside, a
scaloside and a 3beta-hydroxy steroid.").
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C Supplementary Experiments

In this section, we present supplementary experi-
ments on MEBench, expanding on overall perfor-
mance and ablation studies.

To answer R1, we compare MolEdit against
all baselines using additional metrics for a more
comprehensive evaluation. For molecule gener-
ation editing, we include RDK FTS (Schneider
et al., 2015), MORGAN FTS (Rogers and Hahn,
2010), Exact (Edwards et al., 2022), and Bad (Ed-
wards et al., 2022). FTS stands for fingerprint Tan-
imoto similarity (Tanimoto, 1958), Exact denotes
exact match rates with the ground truth molecule
SMILES strings, and Bad denotes invalid SMILES
string rates. For caption generation editing, we add
BLEU-4, ROUGE-2, and ROUGE-L. The results
are shown in Table 4 and Table 5. We make similar
observations as in main text that MolEdit consis-
tently outperforms all baselines across most met-
rics in three dimensions for both generation tasks,
further demonstrating its precise molecule-specific
knowledge updating capabilities..

To answer R2, we provide a comprehensive in-
vestigation of the contribution of different mod-
ules in MolEdit. We make similar observations
from Figure 7 and Figure 8 as in the main paper:
(1) MEKA and EAES both contribute to the over-
all performance, validating their effectiveness for
molecule-specific MoLM editing challenges. (2)
EAES improves Locality by deferring untargeted
inputs. MEKA improves Reliability, showing that
multiple experts can better handle multifaceted
molecular knowledge. (3) Editing both the encoder
and decoder outperforms editing either component
alone, indicating a synergistic distribution of knowl-
edge across these modules.

D Packages Required

Below we list the key packages and their associated
versions in our implementation.

torch==2.5.1
torch-geometric == 2.6.1
rdkit == 2024.3.6
transformers == 4.46.3
local-attention == 1.9.15
SentencePiece == 0.2.0

* pandas ==2.2.3
* numpy ==2.2.2
* einops == 0.8.0

scanpy == 1.10.4



MoMu MolFM
RDK?t MORGANT Exactt Bad| RDKT MORGAN?T Exactf Bad]
FT (Encoder) 0.979 (£0.029) 0.976 (+0.030) 0.747 (£0.092) 0.221 (£0.058) 0.996 (£0.001)  0.995 (£0.001)  0.740 (£0.009)  0.240 (+£0.009)
FT (Decoder) 0.910 (+0.003) 0 901 (£0.002) 0 606 (£0.002)  0.297 (+£0.004) 0 971 (£0.015)  0.961 (+0.021) 0.505 (+0.073) 0429 (£0.063)
Reliability FT (All) 1.000 (+0.000)  0.999 (+0.000) 0.822 (4+0.001) 0.174 (+0.000) 0.990 (£+0.003) 0.987 (£0.004) 0.695 (+£0.029) 0.269 (+0.018)
MEND 0.734 (£0.024)  0.705 (£0.022)  0.250 (£0.016)  0.445 (£0.002) 0.780 (£0.005) 0.755 (£0.007) 0.088 (£0.002) 0.801 (£0.002)
GRACE 0.918 (£0.000)  0.909 (£0.000)  0.636 (£0.000) 0.267 (£0.000) 0.985 (£0.005) 0.980 (£0.006) 0.699 (+£0.013)  0.250 (£0.020)
MolEdit 0.986 (£0.009)  0.975 (£0.016)  0.742 (£0.024)  0.201 (£0.009)  0.999 (£0.000) 0.998 (£0.000) 0.764 (+0.022) 0.223 (+0.018)
FT (Encoder) 0.808 (+£0.006) 0.787 (£0.001) 0.301 (£0.005) 0.513 (£0.007) 0.879 (£0.007) 0.881 (£0.006) 0.203 (+0.022) 0.713 (+0.022)
FT (Decoder) 0.899 (+£0.007) 0.876 (£0.005) 0.415 (£0.000) 0.408 (£0.004) 0.696 (+0.005) 0.682 (£0.014) 0.041 (£0.004) 0.865 (+0.009)
Locality FT (All) 0.920 (+0.006)  0.903 (+0.010)  0.472 (£0.000) 0.382 (+0.017) 0.819 (£0.020) 0.819 (+0.014)  0.129 (£0.024)  0.765 (£0.027)
MEND 0.903 (+0.041)  0.885 (+0.048)  0.494 (+0.082) 0.336 (+0.033) 0.889 (+£0.024) 0.886 (+£0.023) 0.186 (£0.020) 0.731 (£0.018)
GRACE 0.899 (40.000)  0.887 (£0.000)  0.372 (£0.000) 0.500 (£0.000) 0.809 (£0.000) 0.848 (+£0.001) 0.032 (+£0.002) 0.949 (+£0.007)
MolEdit 0.996 (+0.001)  0.992 (+0.002)  0.769 (+0.015) 0.214 (£0.009) 0.982 (+£0.014) 0.979 (+£0.012) 0.404 (+£0.024) 0.569 (£0.018)
FT (Encoder) 0.422 (£0.002) 0.364 (£0.004) 0.022 (£0.002) 0.623 (£0.018) 0.522 (£0.074) 0.484 (£0.060) 0.022 (£0.013)  0.855 (£0.013)
FT (Decoder) 0.646 (+£0.030) 0.592 (£0.035) 0.160 (£0.016) 0.550 (£0.005) 0.503 (£0.039) 0.450 (£0.028) 0.012 (£0.002) 0.928 (+0.004)
Generality FT (All) 0.617 (£0.018)  0.571 (£0.024)  0.150 (£0.023)  0.541 (£0.008) 0.533 (£0.065) 0.498 (£0.064) 0.018 (£0.004) 0.869 (£0.025)
MEND 0.568 (£0.012)  0.524 (£0.009)  0.099 (£0.005)  0.535 (£0.002) 0.471 (£0.045) 0.476 (£0.045) 0.004 (£0.002) 0.865 (£0.005)
GRACE 0.872 (£0.000)  0.859 (£0.000)  0.523 (£0.000) 0.346 (+£0.000) 0.811 (£0.044) 0.789 (£0.032) 0.091 (£0.009) 0.829 (+£0.005)
MolEdit 0.887 (£0.033)  0.856 (+0.022)  0.465 (£0.049) 0.346 (+£0.062) 0.808 (£0.090) 0.790 (£0.071) 0.119 (+£0.024) 0.776 (£0.002)

Table 4: Additional results on MEBench for editing MoMu and MolFM in molecule generation, evaluated across
three dimensions: Reliability, Locality, and Generality. Each dimension uses four metrics: RDK, MORGAN, Exact,
and Bad. The experiments are run with multiple random seeds, where the average and standard deviations are
recorded. The best and second-best results are shown in bold and underlined, respectively. FT denotes fine-tuning.

MoMu MolFM

BLEU-41 ROUGE-21 ROUGE-LT BLEU-41 ROUGE-21 ROUGE-L1

FT (Encoder) 0.229 (£0.006) 0.283 (+0.009) 0.405 (£0.007) 0.216 (+0.014) 0.258 (£0.027) 0.375 (£0.026)

FT (Decoder) 0.760 (£0.018) 0.813 (+0.016) 0.839 (£0.013) 0.914 (+0.000) 0.954 (£0.000) 0.956 (+0.000)

Reliability FT (All) 0.880 (£0.040) 0.920 (£0.034) 0.928 (+0.029) 0.919 (£0.001) 0.958 (+0.001) 0.959 (£0.001)
MEND 0.494 (£0.033) 0.519 (£0.021) 0.591 (£0.022) 0.567 (£0.024) 0.612 (+0.008) 0.675 (£0.007)

GRACE 0.928 (£0.000) 0.964 (+£0.000) 0.965 (4+0.000) 0.928 (£0.000) 0.965 (+0.000) 0.965 (£0.000)

MolEdit 0.975 (+0.006) 0.975 (£0.008) 0.979 (+£0.006) 0.974 (+£0.006) 0.977 (+0.005) 0.981 (+0.004)

FT (Encoder) 0.438 (+0.008) 0.472 (£0.007) 0.560 (+£0.006) 0.417 (£0.060) 0.451 (£0.071) 0.538 (+0.060)

FT (Decoder) 0.581 (£0.027) 0.599 (£0.029) 0.664 (+£0.025) 0.615 (£0.000) 0.637 (£0.000) 0.699 (+0.000)

Locality FT (All) 0.567 (£0.076) 0.584 (£0.077) 0.651 (£0.064) 0.601 (£0.005) 0.624 (£0.009) 0.687 (+0.007)
MEND 0.561 (£0.011) 0.582 (£0.013) 0.646 (+0.015) 0.819 (£0.006) 0.827 (+0.006) 0.859 (£0.005)

GRACE 0.860 (+0.011)  0.877 (£0.006) 0.896 (+0.003) 0.878 (£0.001) 0.894 (+0.001) 0.910 (£0.001)

MolEdit 0.976 (+0.011) 0.978 (+0.011) 0.982 (£0.009) 0.990 (+0.000) 0.990 (£0.000) 0.992 (40.000)

Table 5: Additional results on MEBench for editing MoMu and MolFM in molecule generation, evaluated across
Reliability and Locality dimensions. Each dimension uses three metrics: BLEU-4, ROUGE-2, ROUGE-L. The
experiments are run with multiple random seeds, where the average and standard deviations are recorded. The best
and second-best results are shown in bold and underlined, respectively. FT denotes fine-tuning.
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Figure 7: Ablation study for editing caption generation under the Reliability and Locality evaluation dimensions.
For each dimension, we perform the evaluation by using three metrics: BLEU-2, METEOR, and ROUGE-1. EAES
denotes Expertise-Aware Editing Switcher while MEKA denotes Multi-Expert Knowledge Adapter.
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Figure 8: Ablation study for editing molecule generation under the Reliability, Locality, and Generality dimensions.
For each dimension, we perform the evaluation by using three metrics: BLEU-4, LEV, and MACCS. EAES denotes
Expertise-Aware Editing Switcher while MEKA denotes Multi-Expert Knowledge Adapter.
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