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ABSTRACT

Causal discovery from time series data is a typical and fundamental problem across
various domains. In real-world scenarios, these data often have missing values
occurring under different mechanisms, which limits the applicability of most ex-
isting approaches, especially when the missing values do not occur randomly due
to the influence of other variables. This challenge is further exacerbated when
missingness mechanisms also depend on nonstationarity in time series data. In this
paper, we propose CANMI, a novel constraint-based approach designed for CAusal
discovery under Nonstationary MIssingness mechanisms. Our proposed method
can recover the causal structure using only observed data with different missingness
mechanisms, including missing not at random (MNAR). Furthermore, we prove
the identifiability of the direct causes of missingness and reveal a formula for recov-
ering the data distribution from nonstationary data with missing values. Extensive
experiments on both synthetic and real-world datasets demonstrated that our pro-
posed model outperforms state-of-the-art approaches for causal discovery across
various evaluation metrics even under substantial missingness. Our source codes are
available at https://anonymous.4open.science/r/CANMI-0CDD.

1 INTRODUCTION

At the heart of comprehending complex systems lies the task of causal discovery – the process of
inferring causal relationships from observational data Pearl (2009), and it is utilized across various
types of domains, including climate science Kotz et al. (2024), health care Snyder-Mackler et al.
(2020); Shen et al. (2020), and neuroscience Lee et al. (2010); Tu et al. (2019), where mechanistic
understanding guides prediction and decision-making Aglietti et al. (2020). Randomized controlled
trials (RCTs) Fisher (1935) are generally the gold standard for identification of causal relations, but
are largely unavailable due to cost and ethical constraints. Therefore, for decades, many researchers
have attempted to discover causal relationships purely from observations Glymour et al. (2019);
Vowels et al. (2023); Hiremath et al. (2024).

A further challenge with causal discovery methods is the presence of missing values, which may
compromise inference accuracy. With the recent development of sensing technologies and the spread
of digital survey infrastructures, large amounts of data can be collected and utilized to enhance
performance. Nevertheless, regarding real-world scenarios, it is inevitable that such data will have
missing values due to various factors, such as sampling drops and deliberate non-responses, making
it increasingly important to develop methods capable of handling observational data with missing
values Little & Rubin (1987); Zhou et al. (2019); Gao et al. (2022); Obata et al. (2024). Importantly,
we must recognize that missing values are often caused by specific variables, rather than occurring
randomly. This dependence structure is referred to as the missingness mechanism. Missingness
mechanisms can be categorized into three types, i.e., missing completely at random (MCAR), missing
at random (MAR), and missing not at random (MNAR) Rubin (1975). When data are MCAR, it
is sufficient to perform a list-wise deletion that simply drops the samples with missing values for
accurate causal discovery. In contrast, under MAR or MNAR, ignoring the causes of missing values
biases the outcome, leading to the unintentional detection of spurious edges and the omission of
correct ones.

Nevertheless, these issues are more severe in time series data, where the missingness mechanisms
may depend not only on other variables but also on time. A notable characteristic of time series
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Table 1: Capabilities of approaches.
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Causal discovery ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Nonlinear ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓
Nonstationary data ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓
Missing completely at random ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓
Missing not at random ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓
Nonstationary missingness mechanisms ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

data is nonstationarity, meaning that the statistical properties of the observed data change over time.
Generally, nonstationarity poses additional challenges in the modeling and processing of time series
data, and the same holds true for causal discovery. Specifically, this nonstationarity is not limited to
the observed data themselves, but may also extend to the missingness mechanisms. It is crucial to
focus on this situation if we are to accurately discover causal relationships in more complex scenarios
that reflect real-world conditions. For example, with sensor networks during the cold season, machine
malfunctions tend to occur due to seasonal factors such as battery failures and condensation-induced
short circuits. Without capturing these temporal changes in missingness mechanisms, extraneous
edges may be produced unintentionally. Here, we refer to such missingness mechanisms where
missing values are caused by both other variables and nonstationarity as nonstationary missingness
mechanisms. So, how can we discover causal relationships from the partially observed data with
nonstationary missingness mechanisms?

A fundamental difficulty in addressing this problem is that we only have access to partially observed
data whose distribution is distorted by both nonstationarity and non-random missingness, relative
to the complete data distribution. As a result, standard conditional independence (CI) tests applied
directly to the observed data may generate spurious edges. To overcome this challenge, we first
establish a set of theoretical results, including a recoverability formula for the complete data distribu-
tion under nonstationary missingness (Theorem 1). Building on these theoretical foundations, we
propose a novel constraint-based algorithm called CANMI designed for CAusal discovery under
Nonstationary MIssingness mechanisms. Our algorithm achieves consistent causal discovery by using
the theoretical condition in Proposition 4 to detect CI relations that may be artifacts of nonstationary
missingness mechanisms, and then correcting corresponding edges through reconstruction of the
complete data distribution followed by importance resampling.

Contributions. Our method has the following desired contributions:

• Our proposed method can discover causal relationships purely from partially observed
data under nonstationary missingness mechanisms, that is, the missing values do not occur
randomly caused by both other variables and nonstationarity.

• We provide theoretical results showing that our proposed algorithm correctly discovers the
causal structure in our settings. In particular, we prove that it can identify the missingness
mechanisms and recover the data distribution required for unbiased CI tests by using only
observed data with missing values.

• Extensive experiments on both synthetic and real-world datasets showed that CANMI
accurately discovers causal relationships in terms of various types of evaluation metrics and
achieves consistent performance even in the presence of substantial missing values, whereas
baseline methods exhibited degraded accuracy as the missingness increased.

In addition, Table 1 summarizes six advantages of CANMI. We provide an extensive discussion of
related works in Appendix B.
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Outline. The remainder of this paper is organized in a conventional format. After the introduction,
we present preliminaries in Section 2. Next, we theoretically analyze our proposed method and
explain our algorithms to identify a causal structure in Section 3. We then provide our experimental
results in Section 4, followed by a conclusion in Section 5.

2 PRELIMINARIES

We begin by stating the preliminaries for our work. We mainly follow the longitudinal causal discovery
setting found in previous research related to our work. We aim to discover causal relationships from
observations, so we need to formulate the true causal structure. We provide the details below.

Notation. The main symbols and some basic notation and terminology related to causal modeling
and missingness that we use in this paper are given in Appendix A. We use italic uppercase such as
X and italic bold uppercase such as X to indicate scalar random variables and multivariate random
variables, respectively. In addition, upright bold upper-case letters such as X, bold lower-case letters
such as x, and regular lower-case letters such as x denote deterministic matrices, vectors, and scalars,
respectively. Let V = (X1, . . . , Xd) ∈ Rd be a d-dimensional vector with a joint distribution P (V ).

2.1 CAUSAL BAYESIAN NETWORK

We consider a class of probabilistic graphical models known as causal Bayesian networks, which
represent causal relationships among a set of random variables. A causal Bayesian network is defined
by (G, P ), where G(V ,E) is a directed acyclic graph (DAG) with a node set V = (X1, . . . , Xd) and
an edge set E, and P is a joint probability distribution over these variables. Specifically, under the
causal Markov condition (see Section 2.3 for details), a variable Xi is conditionally independent of
its non-descendants given its parents. In other words, according to the graph G, the joint distribution
P (V ) is factorized as follows:

P (V ) =
∏
i

P (Xi | Pa(Xi)), (1)

where Pa(Xi) denotes the parents of Xi and P (Xi | Pa(Xi)) encodes how the variable Xi is
influenced by its parents and called the causal mechanism of Xi Reddy & Balasubramanian (2024);
Mameche et al. (2025). As a result, the graph G determines which conditional independence relations
must hold in the joint distribution P (V ). In a causal interpretation, we say that X is a direct cause
of Y within the graph G if and only if X ∈ Pa(Y ). In summary, if we assume that observations
are generated according to the factorization implied by a causal Bayesian network, the process of
identifying an underlying graph structure G from the observed joint distribution P is referred to as
causal discovery.

2.2 MISSINGNESS GRAPH

To consider formalizing the observed data with missing values, we utilize the notation of the missing-
ness graph (m-graph, for short) Mohan et al. (2013). Let G(V,E) be an m-graph, which is also a
directed acyclic graph, where V is composed of V = V ∪ V ∗ ∪R. V is the set of observable nodes
and is partitioned into a set of fully observed variables V o and a set of partially observed variables
V m. Regarding the partially observed variable Xi ∈ V m, let X∗

i ∈ V ∗ be a proxy variable that
corresponds to the actual observed value if available, and takes a missing-entry value (similar to
null) otherwise. In addition, since we need to represent the status of missingness of the value of the
proxy variable X∗

i , Ri ∈ R is introduced and referred to as the missingness indicator. Specifically,
Ri = 1 denotes that the corresponding entry is missing, while Ri = 0 indicates that the corresponding
entry is observed and the proxy variable X∗

i takes the value of Xi.

2.3 ASSUMPTIONS

Here, we provide the assumptions used throughout the following sections.
Assumption 1 (Pseudo causal sufficiency). We assume that all the possible confounders can be
written as smooth functions of the time index. It follows that at each time instance, the values of these
confounders are fixed.
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Assumption 2 (Causal Markov condition). Each variable X is independent of all its non-descendants,
given its parents Pa(X) in the graph G, i.e., X ⊥⊥ V \Pa(X) ∪De(X) ∪ {X} | Pa(X).

Assumption 3 (Faithfulness). Let P be a probability distribution generated by the graph G. P is
faithful to G if each conditional independence relationship in P implies d-separation in G.

Assumption 4 (No child node for missingness indicators). No missingness indicator can be the
cause of any variable, i.e., for any R, we have Ch(R) = ∅.
Assumption 5 (Faithful observability). Any conditional independence relation in the observed data
also holds in the unobserved data, i.e., for any X,Y ∈ V , it holds that X ⊥⊥ Y | {S,R = 0} ⇐⇒
X ⊥⊥ Y | {S,R = 1}, where R is the missingness indicator set {RX , RY ,RS}. Specifically, R = 0
indicates that every R ∈ R takes the value zero, while R = 1 indicates that there exists at least
R ∈ R taking the value one.

Assumption 6 (No causal interactions between missingness indicators). No missingness indicator
can be a deterministic function of any other missingness indicator.

Assumption 7 (No self-masking missingness). Self-masking missingness shows that there is a
missingness indicator that is caused by the corresponding variable. For example, for a variable X ,
this is described by X → RX . This assumption indicates that there is no such edge in the graph G.

Note that Assumptions 1-3 are conventional and commonly utilized in most existing research on
causal discovery. In contrast, Assumptions 4-7 are required in order to handle missing values with
different missingness mechanisms. We provide detailed intuitive descriptions that these assumptions
are required and minimal in Appendix C.

3 PROPOSED METHOD: CANMI

In this section, we present CANMI, a novel approach for causal discovery under nonstationary
missingness mechanisms. Our proposed method can handle changes in the underlying data generating
process over time and the occurrence of missing values under different mechanisms.

3.1 PROBLEM DEFINITION

We aim to identify causal relationships from partially observed data whose distribution changes over
time. Let G(V ,E) be the underlying contemporaneous causal graph over the complete variables
V = (X1, . . . , Xd) ∈ Rd, and let R ∈ {0, 1}d be the missingness indicators. Note that our approach
can be naturally generalized to incorporate time-lagged dependencies, analogous to how a constraint-
based approach was adapted to handle time series data Chu & Glymour (2008). We consider a
sequence of samples indexed by time t ∈ {1, . . . , N}. At time point t, the complete data vector
Vt and the missingness indicators Rt are generated from a distribution Pt(V ,R). Here, we focus
on nonstationary settings; that is, there exist t1 ̸= t2 such that Pt1(V ,R) ̸= Pt2(V ,R). This
distributional change is driven by latent factors U that represent slowly changing environments (e.g.,
seasonal effects and user behavior trends). Both the variables in V and the missingness indicators R
depend on U . This formulation assumes that the causal graph G is time-invariant. Also, we cannot
observe the complete variables V and the latent factors U in our settings. Instead, we can use only
the proxy variables V ∗ and the corresponding missingness indicators R. Consequently, we need to
solve the following discrepancy:

Proposition 1. Suppose that for X,Y ∈ V , S ⊆ V , and latent factors U that drive the nonstationary
changes, even if it holds that X ⊥⊥ Y |S∪U , it does not necessarily hold that X ⊥⊥ Y |S∪ {RX =
0, RY = 0,RS = 0}.

Intuitively, the reason for this discrepancy is that we can use only partially observed samples, and
latent nonstationary factors U influence not only the variables V but also the missingness indicators
R. Therefore, conditioning on missingness indicators acts like conditioning on a collider influenced
by these time-varying latent factors, which can introduce spurious dependencies between X and Y
that were absent under conditioning on S ∪U . Resolving this discrepancy is non-trivial, as it arises
in complex scenarios where the distributional nonstationarity and the missingness mechanisms are
mutually dependent through both the latent factors and conditioning on the missingness indicators. In
summary, the problem addressed in this paper is as follows:
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Given partially observed data D = {(V ∗
t ,Rt)}Nt=1 generated as above, where the complete data

distribution Pt(V ,R) may vary over time due to latent factors U , Identify a causal graph G(V ,E)
under Assumptions 1-7.

3.2 THEORETICAL ANALYSIS

In this section, we provide theoretical results that validate the proposed algorithm presented in
Section 3.3. Before turning to the main results, we introduce the time index variable T as a surrogate
variable (i.e., it is not part of a causal system) that is instrumental in our analysis. Specifically, we
assume that when the causal mechanism governing the variable X changes over time, such a change
can be attributed to an unobserved confounder denoted as u(T ). Furthermore, all of the proofs for
our theoretical results in this section are provided in Appendix D. First, we discuss the identifiability
of the causal relationships involving the missing indicators.
Proposition 2. Under Assumptions 1-7, the direct causes of missingness indicators are identifiable.

As mentioned briefly in the previous section, nonstationarity gives rise to an apparent presence of
unobserved confounders, which may generate spurious causal relations. However, this theoretical
analysis indicates that the parents responsible for the missingness of a variable, including the
unobserved confounders, are identifiable.
Proposition 3. Under Assumptions 1-7, for any X,Y ∈ V and S ⊆ V ∪ {T} \ {X,Y }, if it holds
that X ⊥⊥ Y |S ∪ {RX = 0, RY = 0,RS = 0}, it also holds that X ⊥⊥ Y |S, where T is the time
index and RS = 0 means that every R ∈ RS takes the value zero.

Proposition 3 implies that if a CI relation is obtained using only the partially observed data and
the time index T , then the same CI relation also holds in the full data distribution. This analysis
justifies the use of partially observed data and the time index T for CI tests before recovering the data
distribution in our algorithm (Step 3). Next, we discuss the conditions where extraneous conditional
relations occur in the observed data due to missingness.
Proposition 4. Suppose that X and Y are not adjacent in a true m-graph, and that for any S ⊆
V ∪ {T} \ {X,Y } such that X ⊥⊥ Y |S, it holds X ⊥̸⊥ Y |S ∪ {RX = 0, RY = 0,RS = 0}. Then,
under Assumptions 1-7, for at least one variable Z ∈ {X} ∪ {Y } ∪ S, the missingness indicator
RZ is either the direct common effect or a descendant of the direct common effect of X and Y .

To achieve accurate causal discovery, we need to clarify whether potential extraneous CI relations as
mentioned in Proposition 4 are truly present in the underlying true m-graph. We tackle this problem
by applying density ratio weighting to adjust for the missingness mechanism.
Theorem 1 (Recoverability of data distribution). Under Assumptions 1-7, given the parents of each
missingness indicator Pa(Ri), the joint distribution P (V ) is recoverable, and we then have

P (V ) =
P (R = 0,V )∏

i P (Ri = 0 | Pa+(Ri),RPa(Ri) = 0)
(2)

=
1

Z
P (V |R = 0)

∏
i

ωPa(Ri) (3)

where

Pa+(Ri) = Pa(Ri) ∪ {T} (time-augmented parents),

Z =

∏
i P (Ri = 0 |RPa(Ri) = 0)

P (R = 0)
(normalizing constant),

ωPa(Ri) =
P (Pa+(Ri) |RPa(Ri) = 0)

P (Pa+(Ri) |Ri = 0,RPa(Ri) = 0)
(density ratio weights).

Also, it is known that typical constraint-based methods are order-dependent, in other words, their
output depends on the order of CI tests. However, our proposed algorithm is fully order-independent.
Theorem 2 (Order independence). Under Assumptions 1-7, the skeleton result from CANMI algorithm
is independent of the order of variables (X1, . . . , Xd).
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Algorithm 1 CANMI

Input: Partially observed data X = {x(t)}Nt=1 with length N , Significance threshold α
Output: Causal structure G

1: Step 1: Detecting direct effects of changing causal mechanisms by employing CI tests between
each variable and the time index.

2: Step 2. Identifying variables that influence missingness indicators by employing CI tests between
each variable and the corresponding missingness indicators.

3: Step 3. Searching for the causal skeleton of G in the observations X , discarding any records with
missing values for variables involved in each CI test.

4: Step 4. Removing potential extraneous edges using recovered joint distribution according to
Theorem 1.

5: Step 5. Determining the orientation of as many edges in G as possible by applying Meek’s
orientation rules.

3.3 ALGORITHM

In this section, we describe in detail the CANMI algorithm for identifying the causal structure under
nonstationary missingness mechanisms. The algorithm integrates conditional independence (CI) tests
with time-varying proxy structures, while mitigating the spurious dependencies induced by influences
of other variables and nonstationarity. Algorithm 1 provides an overview of our proposed algorithm.
We provide a step-by-step description below:

Step 1: Detecting changing causal mechanisms

We begin by identifying variables whose causal mechanisms change over time. For each variable
X ∈ V , we perform CI tests between X and the time index T conditioned on subsets of V \ {X}.
If there is a subset S ⊆ V \ {X} such that X ⊥⊥ T |S, then we consider the corresponding causal
mechanism of X to be time-invariant; otherwise, we regard one of X as time-variant.

Step 2: Identifying parents of missingness indicators

Next, for each missingness indicator RX , we detect its potential causes by CI tests between RX and
each variable Y ∈ V ∪ {T} \ {X}, conditioned on subsets of V ∪ {T} \ {X,Y }. If it finds a subset
S ⊆ V ∪ {T} \ {X,Y } such that RX ⊥⊥ Y |S, it reveals that Y is not a parent of RX . This step
identifies direct causes of missingness indicators, including time-dependent causes, in accordance
with Proposition 2. The resulting estimates are then used in Step 4 to reconstruct the data distribution.

Step 3: Skeleton search under missingness

We construct the skeleton of the causal graph, using only the partially observed data associated with
each CI test. Specifically, for any X,Y ∈ V , we discard samples in which at least one of X , Y , or
any variable from the conditioning set S ⊆ V ∪ {T} \ {X,Y } used in the CI test are missing. If the
two nodes X,Y are determined to be conditionally independent (i.e., X ⊥⊥ Y |S) at this step, it is
also satisfied in the true graph by Proposition 3. Note that Proposition 3 provides a sufficient condition
only; the converse does not generally hold. Such an issue is addressed in Step 4 via distributional
recoverability and reweighting.

Step 4: Pruning extraneous edges

Some edges in the estimated causal skeleton in Step 3 may be artifacts of missingness and nonstation-
arity in the observed data. To address the issue, we apply the recoverability formula Equation (2)
shown in Theorem 1 to reconstruct the joint distribution P (V ), and employ it to eliminate poten-
tial spurious edges. When we perform a CI test between X and Y given S, we only focus on
VCI = {X} ∪ {Y } ∪ S ∪ Z where Z = {Pa(RX),Pa(RY ),Pa(RS),Pa(RZ)}, which increases
the number of samples we can use, leading to a more accurate CI test. Specifically, we use kernel
density estimation (KDE) Sheather & Jones (1991) to compute each density ratio ωPa(Ri). With the
estimated weights as a basis, we perform importance resampling to generate a modified dataset that
more faithfully reflects the underlying true distribution.

Step 5: Edge orientation via Meek’s rules

6
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Finally, we apply Meek’s orientation rules Meek (1995) to direct as many edges as possible, utilizing
known v-structures and acyclicity constraints. This procedure ensures consistency with the established
skeleton and causal semantics.

We conclude this section by introducing the soundness of our proposed algorithm CANMI built
according to our theoretical results.
Theorem 3 (Soundness of CANMI). Under Assumptions 1-7, CANMI returns a causal skeleton
graph that is exactly consistent with the true causal skeleton.

4 EXPERIMENTS

We conducted extensive experiments to evaluate the performance of CANMI from various perspec-
tives, using both synthetic and real-world datasets. In the main text, we reported the accuracy and
robustness of CANMI and validated on the fMRI datasets to demonstrate the applicability of our
method. In particular, since it is believed that one of the basic properties of the neural connections is
their time-dependence Havlicek et al. (2011), fMRI data is suitable for the evaluation of CANMI.
Additional results, including statistical analysis, sensitivity analysis, and computational efficiency,
are provided in Appendix E.

4.1 EXPERIMENTAL SETUP

Here, we briefly provide the settings we used for our experiments. The reader can find a more detailed
description in Appendix E.1.

Baselines. We compared our proposed method with the following eight state-of-the-art approaches
for causal discovery, comprising (i) two constraint-based methods (CD-NOD Huang et al. (2020),
MVPC Tu et al. (2019)), (ii) four score-based methods (SpaceTime Mameche et al. (2025),
NOTEARS-MLP Zheng et al. (2019), NOTEARS Zheng et al. (2018), GGES Huang et al. (2018)),
(iii) two FCM-based methods (MissDAG Gao et al. (2022), LiNGAM Shimizu et al. (2006)). To
better explore the effectiveness of data distribution recovery, we prepared a limited version, namely
CANMI-L, which leaves extraneous edges without Step 4. In the following sections, we abbreviate
NOTEARS-MLP as NO-MLP for simplicity.

Evaluation metrics. For all our experiments, we reported five common scores with which to evaluate
the estimated causal dependencies, namely true positive rate (TPR), false positive rate (FPR), false
discovery rate (FDR), F1-score (F1), and structural Hamming distance (SHD).

4.2 SYNTHETIC DATASETS

First, we quantitatively compared CANMI with its baselines using synthetic datasets whose ground
truth is known in advance.

Data generating process. First, we explain our synthetic data generating process. We mainly
followed the procedure of Liu & Constantinou (2022) and adapted it to align with our problem setting.
Specifically, for each variable Xi, we generated time series data {x(t)

i }Nt=1 of length N by

x
(t)
i =

∑
j∈pa(i)

bi,jfi(x
(t)
j ) + ε

(t)
i .

where, bij is the strength of the causal dependency between Xi and its parents and ε
(t)
i ∼ N (0, 1) is

a mutually independent exogenous variable corresponding to Xi. Furthermore, fi denotes a nonlinear
deterministic function describing the causal mechanisms of Xi constructed by MLPs, where we
consider two hidden layers and each of which has 100 hidden dimensions. A random graph G was
generated from a well-known random graph model, namely Erdös-Rényi (ER) Erdös & Rényi (1960).
Given a graph G, we sampled the strengths of the influence bi,j from U([−2.0,−0.5] ∪ [0.5, 2.0]).
In addition, we needed to validate the effectiveness of our proposed method against the ubiquitous
properties of time series, i.e., nonstationarity. Specifically, we randomly selected 50% of the functions
fi as changing causal mechanisms. We changed these functions by adding a nonstationarity driver
c(t) = sin(2πkct/N + ϕ), where kc = 2 is the number of cycles and ϕ is a phase that is randomly
chosen from U(0, 2π).
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Table 2: Causal discovery results in nonlinear settings. We used dimensional synthetics data of length
N = 3000 generated based on {ER2, ER4} graphs. The best results are in bold and the second best
are underlined. CANMI consistently outperforms its baselines across various evaluation metrics.

Metric TPR (↑) FPR (↓) FDR (↓) F1 (↑) SHD (↓)
LiNGAM ER2 0.161 ± 0.040 0.464 ± 0.126 0.903 ± 0.025 0.121 ± 0.030 14.0 ± 4.062

ER4 0.151 ± 0.102 0.493 ± 0.177 0.834 ± 0.129 0.157 ± 0.111 19.2 ± 2.588

GGES ER2 0.518 ± 0.176 0.100 ± 0.016 0.400 ± 0.064 0.542 ± 0.088 7.4 ± 2.408
ER4 0.357 ± 0.060 0.036 ± 0.051 0.143 ± 0.202 0.502 ± 0.092 11.8 ± 2.387

NOTEARS ER2 0.609 ± 0.158 0.200 ± 0.103 0.286 ± 0.165 0.649 ± 0.144 5.8 ± 2.775
ER4 0.264 ± 0.138 0.043 ± 0.064 0.173 ± 0.241 0.381 ± 0.165 12.6 ± 2.408

NO-MLP ER2 0.877 ± 0.081 0.200 ± 0.103 0.402 ± 0.118 0.706 ± 0.093 6.2 ± 2.775
ER4 0.615 ± 0.170 0.157 ± 0.117 0.276 ± 0.091 0.651 ± 0.103 9.6 ± 2.510

MVPC ER2 0.905 ± 0.096 0.050 ± 0.032 0.152 ± 0.103 0.869 ± 0.046 2.2 ± 0.837
ER4 0.655 ± 0.028 0.086 ± 0.041 0.180 ± 0.094 0.725 ± 0.033 7.6 ± 0.548

CD-NOD ER2 0.855 ± 0.055 0.093 ± 0.041 0.261 ± 0.111 0.788 ± 0.066 3.4 ± 0.894
ER4 0.765 ± 0.195 0.071 ± 0.051 0.141 ± 0.083 0.802 ± 0.141 5.0 ± 3.536

MissDAG ER2 0.905 ± 0.096 0.057 ± 0.041 0.161 ± 0.097 0.865 ± 0.049 2.2 ± 0.837
ER4 0.770 ± 0.239 0.093 ± 0.032 0.174 ± 0.043 0.783 ± 0.161 6.0 ± 3.536

SpaceTime ER2 0.429 ± 0.052 0.321 ± 0.062 0.707 ± 0.077 0.346 ± 0.070 10.2 ± 2.280
ER4 0.501 ± 0.205 0.279 ± 0.099 0.491 ± 0.200 0.504 ± 0.202 11.6 ± 4.506

CANMI-L ER2 0.887 ± 0.151 0.079 ± 0.043 0.220 ± 0.098 0.825 ± 0.103 3.0 ± 1.717
ER4 0.726 ± 0.127 0.071 ± 0.033 0.140 ± 0.062 0.783 ± 0.096 5.2 ± 2.546

CANMI ER2 0.922 ± 0.130 0.029 ± 0.016 0.093 ± 0.062 0.910 ± 0.083 1.6 ± 1.517
ER4 0.765 ± 0.160 0.043 ± 0.047 0.092 ± 0.115 0.822 ± 0.120 4.6 ± 2.608

Next, we added missing values to complete time series data as explained above. First, we randomly
selected 50% of the variables as partially observed variables and chose up to 2 parents of their
missingness indicators from both complete and partially observed variables for the MNAR mechanism.
In addition, we randomly selected 50% of the partially observed variables as time-varying missingness,
and we set one of the parents to the time index T . The procedure for removing observations from
partially observed variables is as follows. If a missingness indicator had no parents, we removed
observations with missing probability p = 0.3. Alternatively, if the missingness indicator had parents,
we removed them with missing probability p = ph when the parent fell within its most frequently
populated bin under a discretization with five bins per dimension. Otherwise, we removed them with
missing probability p = min(ph, 0.1). In addition, we focus that missingness mechanisms change
over time in our work. Thus, we randomly selected 50% of the missingness indicators and added sine
wave functions c(t) to them.

Effectiveness. We demonstrated the accuracy with which CANMI can discover causal relationships
from partially observed data compared with its baselines. Table 2 shows the overall causal discovery
results on 8 dimensional synthetic data of length N = 3000 generated based on {ER2, ER4}
graphs and missing probability ph = 0.6, where the best and second-best levels of performance
are shown in bold and underlined, respectively. These results show that CANMI outperforms the
state-of-the-art baselines by precisely accounting for complicated missingness mechanisms that
depend on both other variables and nonstationarity, which is consistent with our theoretical results
provided in Section 3.2. Recalling that nonstationarity and missing values may unintentionally
produce extraneous CI relations, the substantially lower FPR and FDR achieved by CANMI indicate
that it effectively mitigates such artifacts, thereby leading to a more accurate identification of the
underlying causal structure. SpaceTime aims to discover the causal relationships from nonstationary
time series data, but it implicitly assumes that nonstationary time series data consist of multiple
piecewise-stationary segments, which cannot handle smoothly changing causal mechanisms, resulting
in decreased discovery accuracy. While MVPC is capable of recovering the data distribution from
observed data with missing values, the temporal dependency inherent in the synthetic data can lead
to biased and spurious relations. Since the accurate recovery of the data distribution depends on
appropriately identifying the parents of each missingness indicator, MVPC exhibits poorer detection
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Figure 1: Causal discovery results for synthetic datasets with different missing probabilities
ph ∈ {0.0, 0.4, 0.6, 0.8}. CANMI consistently achieved strong discovery performance across any
missingness levels while its baselines result in decreased discovery accuracy.

power in such settings, especially when the true graph is relatively dense. Moreover, GGES is
comparable to our proposed method CANMI in ER4 from the perspective of the FPR, but CANMI
still outperforms it significantly regarding other evaluation metrics. Note that the lowest FPR can be
trivially achieved by an empty graph; however, this renders the result meaningless in practice. The
approaches that rely solely on the linear causal model (i.e., LiNGAM and NOTEARS) inherently
fail to capture nonlinear dependencies. We can see that CANMI-L causes a drop in accuracy. This
suggests that the recovery of the data distribution are crucial for reliable causal discovery under
nonstationary missingness mechanisms, consistent with the discussion presented in Theorem 2. In
particular, FDR and SHD values on ER2 graphs were significantly higher. This is because more
extraneous edges were generated due to the sparsity of the true causal graph, and CANMI-L failed to
prune them.

Robustness. We evaluated the robustness of CANMI compared with competitive baselines (i.e.,
MissDAG, CO-NOD, MVPC, and NO-MLP) on synthetic datasets spanning a range of missing
probabilities and dimensionalities. Figure 1 shows the results obtained with different missing
probabilities ph ∈ {0.0, 0.4, 0.6, 0.8}. For brevity, additional results for various dimensionalities
are shown in Figure 2 of Appendix E.2. These results indicate that CANMI consistently achieves
noteworthy performance in terms of all evaluation metrics, specifically the F1 score and SHD, across
various levels of missingness while its baseline methods show substantial degradation as the missing
probability ph increases. This is because none of its baselines have the ability to handle partially
observed data, where missing values occur not at random but instead are caused by both other variables
and nonstationarity. In particular, we can observe a significant drop in the discovery performance
of NO-MLP, which cannot handle both nonstationary data and non-random missingness. Therefore,
our proposed method exhibits robustness against high missing probabilities, which indicates that it
remains applicable in practice even when missingness is substantial and not at random.

4.3 REAL-WORLD DATASETS

We show the applicability of CANMI for real-world fMRI datasets. We utilized the NetSim dataset1
which describes the connecting dynamics of 15 human brain regions from blood oxygenation level-
dependent (BOLD) imaging data Smith et al. (2011). It is commonly used as a benchmark for
evaluating temporal causal discovery methods Gong et al. (2023). We introduced missingness by
following the same procedure used for synthetic datasets because the NetSim dataset originally has no
missing values. Table 3 presents the causal discovery results of CANMI and its competitive baselines
on the NetSim dataset with missing values, where the best and second-best levels of performance

1https://www.fmrib.ox.ac.uk/datasets/netsim/index.html
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Table 3: Causal discovery results for the NetSim dataset with missing values across 10 subjects, where
the best results are in bold and the second best are underlined. CANMI consistently outperforms its
baselines in terms of various types of evaluation metrics.

Metric TPR (↑) FPR (↓) FDR (↓) F1 (↑) SHD (↓)
NO-MLP 0.382 ± 0.049 0.786 ± 0.053 0.923 ± 0.010 0.128 ± 0.017 86.500 ± 4.913
MVPC 0.461 ± 0.087 0.030 ± 0.012 0.280 ± 0.109 0.561 ± 0.096 10.400 ± 1.823
CD-NOD 0.509 ± 0.120 0.044 ± 0.022 0.326 ± 0.128 0.571 ± 0.104 12.500 ± 2.022
MissDAG 0.285 ± 0.067 0.676 ± 0.077 0.931 ± 0.022 0.111 ± 0.033 77.062 ± 7.996

CANMI 0.520 ± 0.054 0.030 ± 0.008 0.250 ± 0.060 0.613 ± 0.051 10.071 ± 1.346

are shown in bold and underlined, respectively. CANMI consistently outperformed its baselines,
meaning that it is practical for real-world scenarios.

5 CONCLUSION

Our work investigated the challenges associated with causal discovery under the mechanisms where
missing values are caused by both other variables and nonstationarity. To address this difficulty, we
presented a novel constraint-based method CANMI, which discovers causal relationships purely from
partially observed data with nonstationary missingness mechanisms. Our proposed method achieved
our goal by theoretically detecting the direct causes of missingness indicators under nonstationary
missingness mechanisms (Proposition 2) and the recovery of the joint distribution required for
removing extraneous edges through unbiased CI tests (Theorem 1). Our experimental evaluation on
both synthetic and real-world datasets showed that CANMI achieved highly accurate causal discovery
compared with multiple state-of-the-art competitors across various types of evaluation metrics.

ETHICS STATEMENT

In this work, we proposed a novel constraint-based causal discovery method under complicated but
ubiquitous missingness mechanisms that depend on both other variables and nonstationarity (i.e.,
nonstationary missingness mechanisms). Given the scope of our research, we do not anticipate any
significant negative societal or ethical consequences arising from our proposed method. Also, we
evaluated our method on synthetic and public datasets only; no personally identifiable or sensitive
data are used.

REPRODUCIBILITY STATEMENT

All assumptions used in this paper and proofs of our theoretical results are provided in Section 2.3
and Appendix D, respectively. Our source codes that we used in the experiments are available at
https://anonymous.4open.science/r/CANMI-0CDD, which will be made public after
the review process. We described the experimental setup including computing infrastructure and
implementation details in Section 4.1 and Appendix E.1.
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APPENDIX

A NOTATION AND TERMINOLOGY

A.1 CAUSAL BAYESIAN NETWORK

We summarize the causal relations between two nodes used in the longitudinal causal discovery
framework.

• Children: let Ch(X) be causal children of X , i.e., for every Xj ∈ Ch(Xi), we write
Xi → Xj .

• Parents: let Pa(X) be causal parents of X , i.e., for every Xj ∈ Pa(Xi), we write Xj → Xi.
• Ancestors: let An(X) be causal ancestors of X , i.e., for every Xj ∈ An(Xi), we write
Xj 99K Xi.

• Descendants: let De(X) be causal descendants of X , i.e., for every Xj ∈ De(Xi), we
write Xi 99K Xj .

In addition, nodes can also be classified in terms of triadic relationships.

• Xi is a confounder of Xj , Xk if and only if Xi ∈ Pa(Xj) ∩ Pa(Xk). This corresponds to
the causal path structure Xj ← Xi → Xk, which is called a fork structure.

• Xi is a mediator of Xj , Xk if and only if Xi ∈ Ch(Xj) ∩ Pa(Xk). This corresponds to
the causal path structure Xj → Xi → Xk, which is called a chain structure.

• Xi is a collider of Xj , Xk if and only if Xi ∈ Ch(Xj) ∩ Ch(Xk). This corresponds to the
causal path structure Xj → Xi ← Xk, which is called a v-structure.

Any causal graph is composed of the three above structures. Based on these structures, we also
introduce the idea of open and blocked paths between two nodes to discuss causal relationships.
Generally, these paths are described by the d-separation criterion.
Definition 1 (d-separation Pearl (1988)). A path U in a DAG G is said to be blocked by a set of nodes
S if either,

• U contains a fork structure Xj ← Xi → Xk or a chain structure Xj → Xi → Xk such
that the middle node Xi is in S,

• U contains a v-structure Xj → Xi ← Xk such that the collider node Xi is not in S, and
neither is any descendant Xl ∈ De(Xi).

If S blocks every path between two nodes, then they are d-separated given S, and thus are independent
conditional on S. Such a relation is denoted by Xj ▷◁ Xk |S.

Conversely, a path which is not blocked is called an open path, and when there is at least one open
path between two nodes, they are not d-separated, i.e., some information is shared between the two.
Also, we need to estimate the above relations from multivariate time series data. We use ⊥⊥ for an
independent relation in a dataset.

A.2 MISSINGNESS MECHANISMS

Missing values V m in observational data do not always occur at random. Missingness mechanisms
can be commonly categorized into the following three classes according to the factors behind the
missing data.

• Data are Missing Completely At Random (MCAR) if the reasons for missing values V m

are independent of any variables, i.e., {V o,V m} ▷◁ R.
• Data are Missing At Random (MAR) if the reasons for missing values V m depend only

on the observed data V o and not on the missing values themselves, i.e., V m ▷◁ R |V o. For
example, women are relatively more likely to omit their age.

• Data are Missing Not At Random (MNAR) if it is neither MAR nor MCAR. This is also
referred to as non-ignorable missing.
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B RELATED WORK

In this section, we briefly describe investigations related to our work. As mentioned in the main text,
Table 1 summarizes six relative advantages of CANMI.

Causal discovery from observational data has attracted huge interest for many applications including
recommendation systems Wang et al. (2020); Gao et al. (2024), epidemiology Robins et al. (2000),
and others Kyono et al. (2021); Chihara et al. (2025). In general, typical causal discovery approaches
fall mainly into three categories: constraint-based methods Spirtes et al. (1995); Colombo & Maathuis
(2014), score-based methods Zheng et al. (2019); Li et al. (2024), and functional causal model
(FCM)-based methods Peters et al. (2014). Constraint-based methods, such as PC-algorithm Spirtes
et al. (1993), use CI tests to identify a causal structure by removing irrelevant edges and orienting the
remaining edges based on separation rules. Score-based methods assess causal structure candidates
by assigning them scores based on predefined scoring criteria (e.g., BIC Schwarz (1978)), and
select candidates that achieve the highest scores as the most plausible results. GES Chickering
(2002) is a traditional score-based Bayesian algorithm that discovers causal relationships in a greedy
manner, and Generalized-GES (GGES) Huang et al. (2018) extends it to nonlinear settings via
kernel-based score functions. NOTEARS Zheng et al. (2018) introduces a differentiable optimization
method for discovering directed acyclic graphs by substituting the acyclic combinatorial constraint
with a continuous regularization formulation. FCM-based methods take a different approach by
assuming specific functional forms for the data-generating mechanisms, such as additive noise
models (ANMs) Hoyer et al. (2008) or post-nonlinear (PNL) models Zhang & Chan (2006); Zhang &
Hyvarinen (2009). LiNGAM Shimizu et al. (2006) assumes a linear acyclic model with non-Gaussian
errors and utilizes this assumption to identify the causal structure. However, most of these approaches
rely on assumptions of time independence and completeness in the observed data.

Alternative approaches have been developed to address temporal dependencies more explicitly Pamfil
et al. (2020); Hasan et al. (2023); Wu et al. (2024); Chihara et al. (2025). Granger causality Granger
(1969) is one of the classical statistical approaches for causality in time series data and has been
widely utilized over decades Wei et al. (2023), but Granger causality only indicates the presence
of a predictive relationship Granger & Newbold (1986); Peters et al. (2017), so it is then different
from true causality. PCMCI Runge et al. (2019) and its derivatives Gerhardus & Runge (2020);
Runge (2020); Ferdous et al. (2023); Gao et al. (2023) handle autocorrelation, which is a major
source of false positives in time series causal discovery. However, most of the above approaches
make a stationary assumption. PCMCIΩ Gao et al. (2023) is the first causal discovery algorithm that
is capable of handling semi-stationary time series with periodically recurring causal mechanisms.
However, it assumes that structural changes follow a fixed periodic pattern, which may limit its
applicability in practice. CD-NOD Huang et al. (2020) is a framework designed to discover causal
relations from heterogeneous or nonstationary data by exploiting distribution shifts across domains or
over time. SpaceTime Mameche et al. (2025) discovers distinct temporal regimes and context-specific
causal structures from nonstationary multivariate time series using the score built on the minimum
description length (MDL) principle Rissanen (1978), and Gaussian processes for modeling causal
relationships. However, they implicitly assume that nonstationary time series data consist of multiple
piecewise-stationary segments, then cannot handle continuous change over time effectively.

Real-world datasets generally contain missing values for various reasons, and it is necessary to
develop causal discovery approaches from partially observed data. MissDAG Gao et al. (2022)
utilizes an EM-based paradigm for causal discovery in the presence of missing values and models
the simpler noise distributions instead of directly modeling the complex likelihood of the partially
observed samples with the additive noise models, but it only focuses on MCAR data. Recent studies
have increasingly stressed that missing values often reflect systematic patterns driven by an underlying
causal structure, rather than occurring purely at random Mohan et al. (2013); Ma & Chen (2019); Ma
& Zhang (2021). MVPC Tu et al. (2019) focuses on the task of causal discovery from observations
with non-random missing values. However, it implicitly assumes that the data distribution and
missingness mechanisms are time-independent.

To the best of our knowledge, this is the first work to propose an algorithm specifically designed for
causal discovery from partially observed time series data with nonstationary missingness mechanisms
and establish theoretical guarantees including soundness and recoverability of the joint distribution.
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C PRELIMINARIES

C.1 INTUITIVE DESCRIPTIONS OF ASSUMPTIONS

We describe why the assumptions provided in Section 2.3 are required and clarify that these assump-
tions are minimal for identifiability.

C.1.1 ASSUMPTION 1

Assumption 1 states that all unobserved confounders responsible for nonstationarity can be represented
as smooth functions of the time index. This formulation effectively captures practically common
phenomena where dominant changes are driven by low-dimensional, smoothly time-varying factors,
such as seasonal effects and user behavior trends. This smoothness constraint allows us to model
complex temporal patterns, including nonlinear and periodic behaviors, without relying on a restrictive
parametric form. Furthermore, Assumption 1 rules out scenarios in which latent factors cannot be
expressed as smooth functions of the time index, such as abrupt changes or instantaneous external
shocks.

C.1.2 ASSUMPTION 5

Assumption 5 states that missingness neither obscures true CI relations nor introduces spurious
independencies. This assumption rules out two pathological cases: (i) spurious independences created
purely by selection through missingness and (ii) true independences being masked in the observed
marginal. Pathology would mislead constraint-based methods (e.g., either by erroneously deleting a
true edge or by retaining a spurious one).

Assumption 5 can be viewed as a natural extension of the classical faithfulness principle (i.e.,
Assumption 3) to settings involving non-random missing data, thereby placing it in alignment with
established frameworks in causal discovery. Several previous studies have adopted this assumption Tu
et al. (2019); Dai et al. (2024); Strobl et al. (2018). In particular, Dai et al. (2024) said this assumption
is rarely violated. Thus, rather than being overly strong, Assumption 5 can be viewed as a necessary
and practically satisfied condition for ensuring identifiability in realistic settings.

C.1.3 ASSUMPTION 7

Assumption 7 states that the probability of missingness for a variable X is not affected by the value of
X . In well-designed data collection, whether X is observed is decided a priori by protocol and before
observing its value itself. Assumption 7 formalizes this practice and removes a rare but anomalous
case that would otherwise entangle the missingness mechanism with latent values in a way that
undermines identifiability, so this assumption reflects standard measurement practice rather than an
ad-hoc modeling choice. In fact, some existing methods also utilize the no-self masking missingness
assumption Tu et al. (2019); Kyono et al. (2021). For example, we consider clinical data, such as
(blood pressure, Duke Treadmill Score (DTS), age). To mitigate potential harm, physicians may
cancel physically demanding examinations, such as a treadmill exercise test (TET), for hypertensive
or older patients. Since the DTS is obtained with the TET, the presence or absence of the DTS is
determined by blood pressure and age, rather than the score itself.

In addition, note that when a missingness indicator RX is influenced solely by X , our algorithm
returns the true causal relationship. For example, we consider a causal graph where V = {X,Y }
and only the edge X → RX exists. In this case, under Assumptions 3 and 5, it is clear that
X ⊥⊥ Y ⇔ X ⊥⊥ Y |RX = 0 holds. Without Assumption 7, it is challenging to identify the causal
relationship where X → RX exists and other variables also have an influence on RX . Thus, although
Assumption 7 rules out only a narrow class of missingness mechanisms, specifically self-masking,
our algorithm remains widely applicable across real-world scenarios.

D PROOFS

Proposition 1. Suppose that for X,Y ∈ V , S ⊆ V , and latent factors U that drive the nonstationary
changes, even if it holds that X ⊥⊥ Y |S ∪ U , it does not necessarily hold X ⊥⊥ Y |S ∪ {RX =
0, RY = 0,RS = 0}.
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Proof. We prove this by constructing a counterexample. Consider a causal graph, where U is a
common latent factor of X and RX , and S is an empty set, i.e., X ← U → RX . In addition, let Y be a
parent of RX . In this graph, the path between X and Y is written as X ← U → RX ← Y , indicating
that X ⊥⊥ Y |U according to Definition 1. Here, consider the conditional independence given the
missingness indicators {RX = 0, RY = 0,RS = 0}. In this case, the set of conditioning variables
includes the collider RX . Conditioning on a collider RX unblocks the v-structure U → RX ← Y by
Definition 1. Since the latent factor U is unobserved, the path X ← U → RX ← Y becomes open.
This induces a spurious dependency between X and Y . Therefore, although X ⊥⊥ Y |U holds, it
does not necessarily hold X ⊥⊥ Y |S ∪ {RX = 0, RY = 0,RS = 0}.

Proposition 2. Under Assumptions 1-7, the direct causes of missingness indicators are identifiable.

Proof. Under Assumption 7, it suffices to consider the case where we can test whether a variable
Xi ∈ V is a direct cause of the missingness indicator Rj that i ̸= j. First, when there is a dependency
Xi → Rj , then by definition, this relationship holds regardless of any external influence and can
be detected through CI tests. In contrast, when there is no direct edge between Xi and Rj , we
need to identify the CI relation between the two nodes, but a spurious dependency may occur due
to unobserved confounders of nonstationary causal mechanisms, and shared confounders. With
Assumption 1, such an influence can be written as smooth functions of time {u(T )}, where each
u is a function of the time index T . These functions can be thought of as covering all possible
confounders. Then, there exists S ⊆ V \ {Xi, Xj} such that the true CI relation can be described as

Xi ⊥⊥ Rj |S ∪ {u(T )}. (4)

Since T is a surrogate variable and it is not part of a causal system, T is also not a descendant of Xi,
so it holds by Assumptions 2 and 3,

Xi ⊥⊥ T |S ∪ {u(T )}. (5)

Both Eq. (4) and Eq. (5) indicate

Xi ⊥⊥ Rj |S ∪ {u(T )} ∪ {T}. (6)

Here, since each u(T ) is a deterministic function, we have σ(u(T )) ⊆ σ(T ), meaning that the
information carried by u(T ) is measurable with respect to the σ-algebra generated by T . Eq. (6) is
then equivalent to Xi ⊥⊥ Rj |S ∪ {T}. Therefore, the direct causes of missingness indicators are
identifiable under nonstationary missingness mechanisms.

Proposition 3. Under Assumptions 1-7, for any X,Y ∈ V , and S ⊆ V ∪ {T} \ {X,Y }, if it holds
that X ⊥⊥ Y |S ∪ {RX = 0, RY = 0,RS = 0}, it also holds that X ⊥⊥ Y |S, where T is the time
index and RS = 0 means that every R ∈ RS takes the value zero.

Proof. In this proof, we derive that the following conditional independence implication holds

X ⊥⊥ Y |S ∪ {RX = 0, RY = 0,RS = 0} =⇒ X ⊥⊥ Y |S. (7)

First, with Assumption 5, the above condition is equivalent to X ⊥⊥ Y |S ∪ {RX , RY ,RS}. And,
with Assumptions 4 and 6, every missingness indicator R can only be a leaf node in an m-graph,
in other words, R becomes neither a confounder nor a mediator for any pair of nodes. Note that
if R becomes a collider of X,Y , then R cannot open any path because removing variables from a
conditioning set S does not open paths containing a v-structure. Thus, if X and Y are conditionally
independent given the missingness indicators, then this CI relation still holds in spite of the absence
of the missingness indicators in the conditioning set according to Definition 1. Hence, it holds that
X ⊥⊥ Y |S.

Proposition 4. Suppose that X and Y are not adjacent in a true m-graph, and that for any S ⊆
V ∪ {T} \ {X,Y } such that X ⊥⊥ Y |S, it holds X ⊥̸⊥ Y |S ∪ {RX = 0, RY = 0,RS = 0}. Then,
under Assumptions 1-7, for at least one variable Z ∈ {X} ∪ {Y } ∪ S, the missingness indicator
RZ is either the direct common effect or a descendant of the direct common effect of X and Y .
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Proof. We separate the proof into Necessity and Sufficiency. Let UXY be an arbitrary path between
X and Y , and W be a collider on the path UXY .

Necessary: Suppose that ∀S ⊆ V ∪ {T} \ {X,Y } : X ⊥⊥ Y |S ⇒ X ⊥̸⊥ Y |S ∪ {RX =
0, RY = 0,RS = 0} holds. First, with Assumption 5, it holds that X ⊥̸⊥ Y |S ∪ {RX = 0, RY =
0,RS = 0} ⇔ X ⊥̸⊥ Y |S ∪ {RX , RY ,RS}. Here, since it holds that X ⊥⊥ Y |S, as shown in
Definition 1, every path between X and Y is blocked by the d-separation definition, either (i) at
least one of the confounders or mediators on the path UXY lies in S, (ii) a collider node W on the
path UXY and all its descendants are not in S. Since we consider that conditioning additionally on
the missingness indicators {RX , RY ,RS} opens a previously blocked path between X and Y , it
is sufficient to only focus on the second condition of the d-separation rules. Hence, for the path
UXY to open, there must exist Z ∈ {X} ∪ {Y } ∪ S such that RZ is either the collider W itself or a
descendant of W . In addition, under Assumptions 4 and 6, since any missing indicator is only affected
by variables in V ∪ {T} and cannot affect others, we claim that a collider W on the path UXY must
be a direct common effect with structure X →W ← Y ; otherwise one could choose S⋆ to block the
path UXY even when conditioning on the missingness indicators {RX , RY ,RS}. Specifically, if a
collider W is not a direct common effect, then there exists a first non-collider node B that appears
when starting from X or Y toward W along with the path UXY . Choosing S⋆ including the node
B yields X ⊥⊥ Y |S⋆ by Definition 1. And, this CI relation is preserved even after the addition of
{RX , RY ,RS}. Therefore, for at least one variable Z ∈ {X} ∪ {Y } ∪ S, the missingness indicator
RZ is either the direct common effect or a descendant of the direct common effect of X and Y .

Sufficiency: Conversely, suppose there exists Z ∈ {X} ∪ {Y } ∪ S whose missingness indicator RZ

is either the direct common effect or a descendant of the direct common effect of X and Y ; then there
exists a direct common effect W , it holds that RZ ∈ De(W ) or RZ = W , and there exists a path
UXY which has the structure written as X →W ← Y . Since X ⊥⊥ Y |S holds, neither W nor any
of its descendants are in S, and the path UXY is blocked at W . When we additionally condition on
{RX , RY ,RS}, the missingness indicator RZ is included in the conditioning set S∪{RX , RY ,RS}.
Since RZ = W or RZ ∈ De(W ), conditioning RZ opens the X →W ← Y path, implying

X ⊥̸⊥ Y |S ∪ {RX = 0, RY = 0,RS = 0},

under Assumption 5. Moreover, by Assumption 4, missingness indicators have no children, so adding
them as leaf nodes cannot spuriously open non-collider paths. This ensures that the collider at W
only opens the path UXY .

In summary, we conclude that when conditioning additionally on the missingness indicators {RX =
0, RY = 0,RS = 0} opens a path UXY between the nodes X and Y , the missingness indicator RZ

is either the direct common effect or a descendant of the direct common effect of X and Y .

Theorem 1. Under Assumptions 1-7, given the parents of each missingness indicator Pa(Ri), the
joint distribution P (V ) is recoverable, and we then have

P (V ) =
P (R = 0,V )∏

i P (Ri = 0 | Pa+(Ri),RPa(Ri) = 0)

=
1

Z
P (V |R = 0)

∏
i

ωPa(Ri)

where

Pa+(Ri) = Pa(Ri) ∪ {T} (time-augmented parents),

Z =

∏
i P (Ri = 0 |RPa(Ri) = 0)

P (R = 0)
(normalizing constant),

ωPa(Ri) =
P (Pa+(Ri) |RPa(Ri) = 0)

P (Pa+(Ri) |Ri = 0,RPa(Ri) = 0)
(density ratio weights).
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Proof. The observed joint distribution P (V |R = 0) can be described according to the graph G as

P (V |R = 0) =
P (R = 0 |V )P (V )

P (R = 0)

P (V ,R = 0) =
∑
U

P (V ,U)P (R = 0 |V ,U)

P (V ,R = 0) = P (V )
∑
U

P (U |V )P (R = 0 |V ,U).

Under Assumption 6, the above formula is equivalent to

P (V ,R = 0) = P (V )
∑
U

P (U |V )

{∏
i

P (Ri = 0 | Pa(Ri),Pa
m(Ri))

}
.

With Assumption 1, we only have the unobserved confounders written as smooth functions of time.
Accordingly, we can replace Pam(Ri) with ui(T ), which is a deterministic function of T . Note that
in the case of no unobserved confounders for Ri, ui(T ) is an empty set (i.e., ui(T ) = ∅). Under
Assumptions 2 and 3 it follows that Ri ⊥⊥ T | Pa(Ri) ∪ ui(T ). Consequently, the conditional
probability satisfies

P (Ri = 0 | Pa(Ri),ui(T )) = P (Ri = 0 | Pa(Ri),ui(T ), T ).

Here, since each component u(T ) ∈ ui(T ) is a deterministic function of T , it holds σ(ui(T )) ⊆
σ(T ), meaning that the information carried by u(T ) is measurable with respect to the σ-algebra
generated by T . Hence, it holds that

P (Ri = 0 | Pa(Ri),ui(T ), T ) = P (Ri = 0 | Pa(Ri), T︸ ︷︷ ︸
Pa+(Ri)

),

where Pa+(Ri) = Pa(Ri) ∪ {T}. Based on the above, we have that the joint distribution can be
decomposed as

P (V ,R = 0) = P (V )
∑
U

P (U |V )

{∏
i

P (Ri = 0 | Pa+(Ri))

}
= P (V )

∏
i

P (Ri = 0 | Pa+(Ri)),

where
∑

U P (U |V ) = 1 because
∏

i P (Ri = 0 | Pa+(Ri)) dose not depend on U . Under
Assumption 7, i.e., Xi is not a parent of Ri, we have Ri ⊥⊥ RPa(Ri) | Pa(Ri) ∪ T , therefore,

P (V ,R = 0) = P (V )
∏
i

P (Ri = 0 | Pa+(Ri),RPa(Ri) = 0).

Solving for P (V ) from the equality above and expanding the terms via Bayes rule, we obtain

P (V ) =
P (V ,R = 0)∏

i P (Ri = 0 | Pa+(Ri),RPa(Ri) = 0)

=
P (V |R = 0)P (R = 0)∏

i

P (Ri = 0,Pa+(Ri) |RPa(Ri) = 0)

P (Pa+(Ri) |RPa(Ri) = 0)

=
P (V |R = 0)P (R = 0)∏

i

P (Pa+(Ri) |Ri = 0,RPa(Ri) = 0)P (Ri = 0 |RPa(Ri) = 0)

P (Pa+(Ri) |RPa(Ri) = 0)

= P (V |R = 0) · P (R = 0)∏
i P (Ri = 0 |RPa(Ri) = 0)︸ ︷︷ ︸

normalizing constant Z

·
∏
i

P (Pa+(Ri) |RPa(Ri) = 0)

P (Pa+(Ri) |Ri = 0,RPa(Ri) = 0)︸ ︷︷ ︸
density ratio ωPa(Ri)

.

Hence, the desired result is obtained.
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Theorem 2. Under Assumptions 1-7, the skeleton result from the CANMI algorithm is independent
of the order of variables (X1, . . . , Xd).

Proof. This proof is straightforward and mainly follows the theoretical result found in Colombo
& Maathuis (2014). CI tests in our algorithm are conducted in stages according to the cardinality
ℓ = |S| of the conditioning sets. Specifically, for each ℓ, conditioning sets are formed from adjacency
sets that are kept fixed throughout the loop |S| = ℓ, and no edge is deleted within the loop. Since
the family of CI tests considered at the loop |S| = ℓ does not depend on the order of variables in
which they are executed, the set of edges marked for deletion depends only on the CI test results,
not on their execution order; hence, the post-stage skeleton is uniquely determined. By iterating
this procedure over ℓ, the final skeleton is uniquely determined as well. Hence, our algorithm is
order-independent.

Theorem 3. Under Assumptions 1-7, CANMI returns a causal skeleton graph that is exactly consistent
with the true causal skeleton.

Proof. First, for each pair X,Y ∈ V , our proposed algorithm deletes an edge between X and Y
if there is a subset S ⊆ V ∪ {T} such that X ⊥⊥ Y |S in Step 3. Here, the algorithm determines
whether the time index T is included in the conditioning set S according to the outputs of Step 1.
According to Proposition 3, while extraneous edges may occur, an edge is deleted in Step 3 only if it is
absent in the true graph. Also, according to Proposition 4, it identifies all extraneous edge candidates
in the estimated graph obtained after Step 3. Next, in Step 4, for each such candidate edge, it recovers
the data distribution using the recoverability formula in Theorem 1, and performs CI tests on a
modified dataset obtained by importance resampling drawn from the reconstructed distribution. By
Assumption 3, CI relations inferred from the reconstructed data imply true d-separations in the true
causal graph. Therefore, it eliminates all false positives and preserves all true causal dependencies.
Hence, the estimated skeleton graph returned by CANMI is exactly consistent with the true causal
skeleton under Assumptions 1-7.

E EXPERIMENTS

E.1 EXPERIMENTAL SETUP

Computing infrastructure. We conducted all our experiments on a system running Ubuntu 22.04.4
LTS (GNU/Linux 5.15.0-97-generic x86_64), equipped with 2 ∗ Intel Xeon Platinum 8268 2.7GHz
24-core CPUs, 8 ∗ 64GB DDR4 RAM, and 2 ∗ NVIDIA RTX A6000 GPUs.

Baselines. We compared the following eight methods for causal discovery.

• SpaceTime Mameche et al. (2025): discovers causal relationships from nonstationary time
series data by detecting multiple piecewise-stationary segments.

• MissDAG Gao et al. (2022): is a general EM-based framework in the presence of missing
data, which leverages identifiable additive noise models (ANMs) and penalized likelihood
optimization.

• CD-NOD Huang et al. (2020): is a nonparametric approach designed to recover the skeleton
and determine orientations of the causal structure over nonstationary observed variables.

• MVPC Tu et al. (2019): is a correction-based extension of the PC-algorithm, which removes
extraneous edges generated due to missingness mechanisms underlying the causal process.

• NOTEARS-MLP (NO-MLP, for short) Zheng et al. (2019): is an extension of
NOTEARS Zheng et al. (2018) (mentioned below) for nonlinear settings, which aims
to approximate the generative structural equation model by MLP.

• NOTEARS Zheng et al. (2018): is a differentiable optimization method with an acyclic
regularization term to estimate the structure of a directed acyclic graph.

• GGES Huang et al. (2018): provides generalized score functions for causal discovery based
on the characterization of general CI relations without assuming specific model classes.

• LiNGAM Shimizu et al. (2006): is a traditional FCM-based causal discovery approach with
a linear non-Gaussian acyclic model.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

6 7 8 9 10
Dimension

0.7

0.8

0.9
F1 Score

6 7 8 9 10
Dimension

0.7

0.8

0.9
True Positive Rate (TPR)

6 7 8 9 10
Dimension

0.2

0.4
False Discovery Rate (FDR)

6 7 8 9 10
Dimension

5

10
Structural Hamming Distance (SHD)

6 7 8 9 10
Dimension

0.1

0.2
False Positive Rate (FPR)

Method
CANMI
MissDAG
CD-NOD

MVPC
NO-MLP

Figure 2: Causal discovery results for synthetic datasets with various d ∈ {6, 7, 8, 9, 10}.

Implementation details. For the constraint-based methods, we used the KCI-test Zhang et al. (2011)
for CI tests and we set the significance level at α = 0.05. For MissDAG, we reported the results for
the Non-Linear (NL)-ANM case. And we utilized Zero-order Holder to evaluate approaches, which
cannot handle missing values in observed data. Finally, we conducted all our experiments with five
different seeds for a fair comparison.

Furthermore, regarding the baselines used in this paper, we mainly employed the publicly available
implementations of the baseline methods to ensure reproducibility and consistency with prior work.
The implementations of SpaceTime2, MissDAG3, NOTEARS4, NO-MLP4, and LiNGAM5 were
obtained from the authors’ original repositories. We utilized the implementations of CD-NOD,
MVPC, and GGES from the causal-learn package Zheng et al. (2023), which is available at https:
//github.com/py-why/causal-learn.

E.2 ROBUSTNESS

Setup. We conducted the experiments on various numbers of variables and missing probabilities.
Specifically, we varied the dimensionality d ∈ {6, 7, 8, 9, 10} and the missing probability ph ∈
{0.0, 0.4, 0.6, 0.8} while fixing the sample size N = 3000 and the average degree kd = 2.

Results. Figure 2 shows results for synthetic datasets with dimensionalities d ∈ {6, 7, 8, 9, 10}
for CANMI and competing methods. Overall, our proposed method outperforms the competitive
baselines across all evaluation metrics. We can also see that CANMI partly degrades for high-
dimensional data, as mentioned in the limitations. Nevertheless, some baselines already fail to
discover causal relationships in low dimensions, while others experience a similar decline in discovery
accuracy as dimensionality increases. Thus, CANMI is relatively robust compared with its baselines
against various dimensionalities.

E.3 STATISTICAL ANALYSIS

Figure 3 shows critical difference diagrams for F1 Score and SHD. These diagrams are based on
the Wilcoxon-Holm method Wilcoxon (1945), where methods not connected by a bold line are
sufficiently different regarding their average rank. We can observe that the significant improvements
that CANMI achieved over its baselines are valid according to statistical tests.

2https://github.com/srhmm/spacetime
3https://github.com/ErdunGAO/MissDAG
4https://github.com/xunzheng/notears
5https://github.com/cdt15/lingam
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Figure 3: Critical difference diagrams of causal discovery results. The ticks at the top indicate the
average rank of each method (smaller is better).

E.4 SENSITIVITY ANALYSIS

We conducted a sensitivity analysis with respect to the kernel functions and bandwidth selection rules
of kernel density estimation (KDE) to compute the density ratio weights in Theorem 1. We considered
four kernel functions (Gaussian, Epanechnikov, Tophat, and Exponential) and two bandwidth selection
rules (Scott’s Rule and Silverman’s Rule). Table 4 reports the results across different kernels
and bandwidth rules. We can observe that the performance of CANMI remains consistently high
performance, with negligible variance across all evaluation metrics. This indicates that our proposed
method is robust with respect to moderate changes in KDE hyperparameters.

Table 4: Sensitivity analysis results.

Metric TPR (↑) FPR (↓) FDR (↓) F1 (↑) SHD (↓)
Epanechnikov Scott 0.774 0.0452 0.0936 0.828 4.40

Silverman 0.770 0.0452 0.0936 0.826 4.47

Exponential Scott 0.776 0.0429 0.0917 0.828 4.40
Silverman 0.776 0.0429 0.0917 0.828 4.40

Gaussian Scott 0.774 0.0452 0.0929 0.828 4.40
Silverman 0.770 0.0452 0.0936 0.826 4.47

Tophat Scott 0.777 0.0452 0.0929 0.828 4.40
Silverman 0.777 0.0452 0.0936 0.828 4.40

E.5 COMPUTATIONAL EFFICIENCY

We measured wall-clock time and peak memory usage for synthetic datasets of length N = 1, 000
and varying dimensions d ∈ {5, 10, 20, 50, 100}. Figure 4 shows the computational efficiency of
CANMI and its competitive baselines (i.e., MissDAG and CD-NOD). Although, as mentioned in
the limitation, the worst-case time complexity of CANMI is exponential in theory, our empirical
experiments demonstrated that the computational time needed for our method is competitive with its
baselines, and its memory usage grows only moderately with increasing dimensionality. This slight
increase primarily stems from the use of kernel density estimation in the density ratio adjustment step.
First, unlike MissDAG, which relies on iterative EM procedures over latent distributions, CANMI
adopts a constraint-based framework that avoids costly likelihood-based optimization, reducing
memory overhead. Second, compared with CD-NOD, which does not account for missing values,
spurious edges caused by missingness remain unpruned, leading to an increased number of CI tests
and larger conditioning sets.

F LIMITATIONS

The proposed method has some limitations that may be interesting to address in future work. First,
as with other constraint-based causal discovery methods, the worst-case time complexity remains
exponential, which may limit its scalability for high-dimensional or long time series datasets. And,
in real-world scenarios, nonstationarity may not only induce spurious dependencies but also lead to
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Figure 4: Comparison of computational efficiency between CANMI and its baselines with various
d ∈ {5, 10, 20, 50, 100}.

incorrect edge orientations. It is important to investigate whether such phenomena can actually occur
and, if so, to develop algorithms for such phenomena.

G BROADER IMPACTS

The primary objective of this work was to take a significant step toward causal discovery in more
realistic and challenging conditions, specifically nonstationary and MNAR missingness, which
are commonly encountered in neuroscience, healthcare, and sensor networks, as explained in the
introduction. Therefore, although we believe that our method will serve beneficial purposes, it is still
important for the reader to be aware of the underlying assumptions, which are relatively general and
commonly used in previous causal discovery approaches and therefore are unlikely to interfere with
most practical applications; however, if these assumptions are violated, misinterpretation may still
lead to incorrect conclusions.
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