

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CANMI: CAUSAL DISCOVERY UNDER NONSTATIONARY MISSINGNESS MECHANISMS

Anonymous authors

Paper under double-blind review

ABSTRACT

Causal discovery from time series data is a typical and fundamental problem across various domains. In real-world scenarios, these data often have missing values occurring under different mechanisms, which limits the applicability of most existing approaches, especially when the missing values do not occur randomly due to the influence of other variables. This challenge is further exacerbated when missingness mechanisms also depend on nonstationarity in time series data. In this paper, we propose CANMI, a novel constraint-based approach designed for CAusal discovery under Nonstationary MIssingness mechanisms. Our proposed method can recover the causal structure using only observed data with different missingness mechanisms, including missing not at random (MNAR). Furthermore, we prove the identifiability of the direct causes of missingness and reveal a formula for recovering the data distribution from nonstationary data with missing values. Extensive experiments on both synthetic and real-world datasets demonstrated that our proposed model outperforms state-of-the-art approaches for causal discovery across various evaluation metrics even under substantial missingness. Our source codes are available at <https://anonymous.4open.science/r/CANMI-0CDD>.

1 INTRODUCTION

At the heart of comprehending complex systems lies the task of causal discovery – the process of inferring causal relationships from observational data Pearl (2009), and it is utilized across various types of domains, including climate science Kotz et al. (2024), health care Snyder-Mackler et al. (2020); Shen et al. (2020), and neuroscience Lee et al. (2010); Tu et al. (2019), where mechanistic understanding guides prediction and decision-making Aglietti et al. (2020). Randomized controlled trials (RCTs) Fisher (1935) are generally the gold standard for identification of causal relations, but are largely unavailable due to cost and ethical constraints. Therefore, for decades, many researchers have attempted to discover causal relationships purely from observations Glymour et al. (2019); Vowels et al. (2023); Hiremath et al. (2024).

A further challenge with causal discovery methods is the presence of missing values, which may compromise inference accuracy. With the recent development of sensing technologies and the spread of digital survey infrastructures, large amounts of data can be collected and utilized to enhance performance. Nevertheless, regarding real-world scenarios, it is inevitable that such data will have missing values due to various factors, such as sampling drops and deliberate non-responses, making it increasingly important to develop methods capable of handling observational data with missing values Little & Rubin (1987); Zhou et al. (2019); Gao et al. (2022); Obata et al. (2024). Importantly, we must recognize that missing values are often caused by specific variables, rather than occurring randomly. This dependence structure is referred to as the missingness mechanism. Missingness mechanisms can be categorized into three types, i.e., missing completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR) Rubin (1975). When data are MCAR, it is sufficient to perform a list-wise deletion that simply drops the samples with missing values for accurate causal discovery. In contrast, under MAR or MNAR, ignoring the causes of missing values biases the outcome, leading to the unintentional detection of spurious edges and the omission of correct ones.

Nevertheless, these issues are more severe in time series data, where the missingness mechanisms may depend not only on other variables but also on time. A notable characteristic of time series

Table 1: Capabilities of approaches.

	Constraint			Score			FCM			CANMI
	PC	CD-NOD	MVPC	NOTEARS	GGES	SpaceTime	LiNGAM	PNL	MissDAG	
Causal discovery	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Nonlinear	✗	✓	✓	✗	✓	✓	✓	✗	✓	✓
Nonstationary data	✗	✓	✗	✗	✗	✗	✓	✗	✗	✓
Missing completely at random	✗	✗	✓	✗	✗	✓	✗	✗	✗	✓
Missing not at random	✗	✗	✓	✗	✗	✗	✗	✗	✗	✓
Nonstationary missingness mechanisms	✗	✗	✗	✗	✗	✗	✗	✗	✗	✓

data is nonstationarity, meaning that the statistical properties of the observed data change over time. Generally, nonstationarity poses additional challenges in the modeling and processing of time series data, and the same holds true for causal discovery. Specifically, this nonstationarity is not limited to the observed data themselves, but may also extend to the missingness mechanisms. It is crucial to focus on this situation if we are to accurately discover causal relationships in more complex scenarios that reflect real-world conditions. For example, with sensor networks during the cold season, machine malfunctions tend to occur due to seasonal factors such as battery failures and condensation-induced short circuits. Without capturing these temporal changes in missingness mechanisms, extraneous edges may be produced unintentionally. Here, we refer to such missingness mechanisms where missing values are caused by both other variables and nonstationarity as nonstationary missingness mechanisms. So, *how can we discover causal relationships from the partially observed data with nonstationary missingness mechanisms?*

A fundamental difficulty in addressing this problem is that we only have access to partially observed data whose distribution is distorted by both nonstationarity and non-random missingness, relative to the complete data distribution. As a result, standard conditional independence (CI) tests applied directly to the observed data may generate spurious edges. To overcome this challenge, we first establish a set of theoretical results, including a recoverability formula for the complete data distribution under nonstationary missingness (Theorem 1). Building on these theoretical foundations, we propose a novel constraint-based algorithm called CANMI designed for CAusal discovery under Nonstationary MIssingness mechanisms. Our algorithm achieves consistent causal discovery by using the theoretical condition in Proposition 4 to detect CI relations that may be artifacts of nonstationary missingness mechanisms, and then correcting corresponding edges through reconstruction of the complete data distribution followed by importance resampling.

Contributions. Our method has the following desired contributions:

- Our proposed method can discover causal relationships purely from partially observed data under nonstationary missingness mechanisms, that is, the missing values do not occur randomly caused by both other variables and nonstationarity.
- We provide theoretical results showing that our proposed algorithm correctly discovers the causal structure in our settings. In particular, we prove that it can identify the missingness mechanisms and recover the data distribution required for unbiased CI tests by using only observed data with missing values.
- Extensive experiments on both synthetic and real-world datasets showed that CANMI accurately discovers causal relationships in terms of various types of evaluation metrics and achieves consistent performance even in the presence of substantial missing values, whereas baseline methods exhibited degraded accuracy as the missingness increased.

In addition, Table 1 summarizes six advantages of CANMI. We provide an extensive discussion of related works in Appendix B.

108 **Outline.** The remainder of this paper is organized in a conventional format. After the introduction,
 109 we present preliminaries in Section 2. Next, we theoretically analyze our proposed method and
 110 explain our algorithms to identify a causal structure in Section 3. We then provide our experimental
 111 results in Section 4, followed by a conclusion in Section 5.

113 2 PRELIMINARIES

115 We begin by stating the preliminaries for our work. We mainly follow the longitudinal causal discovery
 116 setting found in previous research related to our work. We aim to discover causal relationships from
 117 observations, so we need to formulate the true causal structure. We provide the details below.

119 **Notation.** The main symbols and some basic notation and terminology related to causal modeling
 120 and missingness that we use in this paper are given in Appendix A. We use italic uppercase such as
 121 X and italic bold uppercase such as \mathbf{X} to indicate scalar random variables and multivariate random
 122 variables, respectively. In addition, upright bold upper-case letters such as \mathbf{X} , bold lower-case letters
 123 such as \mathbf{x} , and regular lower-case letters such as x denote deterministic matrices, vectors, and scalars,
 124 respectively. Let $\mathbf{V} = (X_1, \dots, X_d) \in \mathbb{R}^d$ be a d -dimensional vector with a joint distribution $P(\mathbf{V})$.

125 2.1 CAUSAL BAYESIAN NETWORK

127 We consider a class of probabilistic graphical models known as causal Bayesian networks, which
 128 represent causal relationships among a set of random variables. A causal Bayesian network is defined
 129 by (\mathcal{G}, P) , where $\mathcal{G}(\mathbf{V}, \mathbf{E})$ is a directed acyclic graph (DAG) with a node set $\mathbf{V} = (X_1, \dots, X_d)$ and
 130 an edge set \mathbf{E} , and P is a joint probability distribution over these variables. Specifically, under the
 131 causal Markov condition (see Section 2.3 for details), a variable X_i is conditionally independent of
 132 its non-descendants given its parents. In other words, according to the graph \mathcal{G} , the joint distribution
 133 $P(\mathbf{V})$ is factorized as follows:

$$134 \quad P(\mathbf{V}) = \prod_i P(X_i \mid \text{Pa}(X_i)), \quad (1)$$

136 where $\text{Pa}(X_i)$ denotes the parents of X_i and $P(X_i \mid \text{Pa}(X_i))$ encodes how the variable X_i is
 137 influenced by its parents and called the *causal mechanism* of X_i Reddy & Balasubramanian (2024);
 138 Mameche et al. (2025). As a result, the graph \mathcal{G} determines which conditional independence relations
 139 must hold in the joint distribution $P(\mathbf{V})$. In a causal interpretation, we say that X is a direct cause
 140 of Y within the graph \mathcal{G} if and only if $X \in \text{Pa}(Y)$. In summary, if we assume that observations
 141 are generated according to the factorization implied by a causal Bayesian network, the process of
 142 identifying an underlying graph structure \mathcal{G} from the observed joint distribution P is referred to as
 143 causal discovery.

144 2.2 MISSINGNESS GRAPH

147 To consider formalizing the observed data with missing values, we utilize the notation of the missing-
 148 ness graph (m-graph, for short) Mohan et al. (2013). Let $\mathcal{G}(\mathbb{V}, \mathbf{E})$ be an m-graph, which is also a
 149 directed acyclic graph, where \mathbb{V} is composed of $\mathbb{V} = \mathbf{V} \cup \mathbf{V}^* \cup \mathbf{R}$. \mathbf{V} is the set of observable nodes
 150 and is partitioned into a set of fully observed variables \mathbf{V}^o and a set of partially observed variables
 151 \mathbf{V}^m . Regarding the partially observed variable $X_i \in \mathbf{V}^m$, let $X_i^* \in \mathbf{V}^*$ be a proxy variable that
 152 corresponds to the actual observed value if available, and takes a missing-entry value (similar to
 153 `null`) otherwise. In addition, since we need to represent the status of missingness of the value of the
 154 proxy variable X_i^* , $R_i \in \mathbf{R}$ is introduced and referred to as the *missingness indicator*. Specifically,
 155 $R_i = 1$ denotes that the corresponding entry is missing, while $R_i = 0$ indicates that the corresponding
 156 entry is observed and the proxy variable X_i^* takes the value of X_i .

157 2.3 ASSUMPTIONS

158 Here, we provide the assumptions used throughout the following sections.

159 **Assumption 1** (Pseudo causal sufficiency). *We assume that all the possible confounders can be
 160 written as smooth functions of the time index. It follows that at each time instance, the values of these
 161 confounders are fixed.*

162 **Assumption 2** (Causal Markov condition). *Each variable X is independent of all its non-descendants, given its parents $\text{Pa}(X)$ in the graph \mathcal{G} , i.e., $X \perp\!\!\!\perp \mathbf{V} \setminus \text{Pa}(X) \cup \text{De}(X) \cup \{X\} \mid \text{Pa}(X)$.*

163
164 **Assumption 3** (Faithfulness). *Let P be a probability distribution generated by the graph \mathcal{G} . P is faithful to \mathcal{G} if each conditional independence relationship in P implies d-separation in \mathcal{G} .*

165
166 **Assumption 4** (No child node for missingness indicators). *No missingness indicator can be the cause of any variable, i.e., for any R , we have $\text{Ch}(R) = \emptyset$.*

167
168 **Assumption 5** (Faithful observability). *Any conditional independence relation in the observed data also holds in the unobserved data, i.e., for any $X, Y \in \mathbf{V}$, it holds that $X \perp\!\!\!\perp Y \mid \{\mathbf{S}, \mathbf{R} = \mathbf{0}\} \iff X \perp\!\!\!\perp Y \mid \{\mathbf{S}, \mathbf{R} = \mathbf{1}\}$, where \mathbf{R} is the missingness indicator set $\{R_X, R_Y, R_S\}$. Specifically, $\mathbf{R} = \mathbf{0}$ indicates that every $R \in \mathbf{R}$ takes the value zero, while $\mathbf{R} = \mathbf{1}$ indicates that there exists at least $R \in \mathbf{R}$ taking the value one.*

169
170 **Assumption 6** (No causal interactions between missingness indicators). *No missingness indicator can be a deterministic function of any other missingness indicator.*

171
172 **Assumption 7** (No self-masking missingness). *Self-masking missingness shows that there is a missingness indicator that is caused by the corresponding variable. For example, for a variable X , this is described by $X \rightarrow R_X$. This assumption indicates that there is no such edge in the graph \mathcal{G} .*

173
174 Note that Assumptions 1-3 are conventional and commonly utilized in most existing research on causal discovery. In contrast, Assumptions 4-7 are required in order to handle missing values with different missingness mechanisms. We provide detailed intuitive descriptions that these assumptions are required and minimal in Appendix C.

184 3 PROPOSED METHOD: CANMI

185
186 In this section, we present CANMI, a novel approach for causal discovery under nonstationary missingness mechanisms. Our proposed method can handle changes in the underlying data generating process over time and the occurrence of missing values under different mechanisms.

187 3.1 PROBLEM DEFINITION

188
189 We aim to identify causal relationships from partially observed data whose distribution changes over time. Let $\mathcal{G}(\mathbf{V}, \mathbf{E})$ be the underlying contemporaneous causal graph over the complete variables $\mathbf{V} = (X_1, \dots, X_d) \in \mathbb{R}^d$, and let $\mathbf{R} \in \{0, 1\}^d$ be the missingness indicators. Note that our approach can be naturally generalized to incorporate time-lagged dependencies, analogous to how a constraint-based approach was adapted to handle time series data Chu & Glymour (2008). We consider a sequence of samples indexed by time $t \in \{1, \dots, N\}$. At time point t , the complete data vector \mathbf{V}_t and the missingness indicators \mathbf{R}_t are generated from a distribution $P_t(\mathbf{V}, \mathbf{R})$. Here, we focus on nonstationary settings; that is, there exist $t_1 \neq t_2$ such that $P_{t_1}(\mathbf{V}, \mathbf{R}) \neq P_{t_2}(\mathbf{V}, \mathbf{R})$. This distributional change is driven by latent factors \mathbf{U} that represent slowly changing environments (e.g., seasonal effects and user behavior trends). Both the variables in \mathbf{V} and the missingness indicators \mathbf{R} depend on \mathbf{U} . This formulation assumes that the causal graph \mathcal{G} is time-invariant. Also, we cannot observe the complete variables \mathbf{V} and the latent factors \mathbf{U} in our settings. Instead, we can use only the proxy variables \mathbf{V}^* and the corresponding missingness indicators \mathbf{R} . Consequently, we need to solve the following discrepancy:

200
201 **Proposition 1.** *Suppose that for $X, Y \in \mathbf{V}$, $\mathbf{S} \subseteq \mathbf{V}$, and latent factors \mathbf{U} that drive the nonstationary changes, even if it holds that $X \perp\!\!\!\perp Y \mid \mathbf{S} \cup \mathbf{U}$, it does not necessarily hold that $X \perp\!\!\!\perp Y \mid \mathbf{S} \cup \{R_X = 0, R_Y = 0, R_S = 0\}$.*

202
203 Intuitively, the reason for this discrepancy is that we can use only partially observed samples, and latent nonstationary factors \mathbf{U} influence not only the variables \mathbf{V} but also the missingness indicators \mathbf{R} . Therefore, conditioning on missingness indicators acts like conditioning on a collider influenced by these time-varying latent factors, which can introduce spurious dependencies between X and Y that were absent under conditioning on $\mathbf{S} \cup \mathbf{U}$. Resolving this discrepancy is non-trivial, as it arises in complex scenarios where the distributional nonstationarity and the missingness mechanisms are mutually dependent through both the latent factors and conditioning on the missingness indicators. In summary, the problem addressed in this paper is as follows:

Given partially observed data $\mathcal{D} = \{(\mathbf{V}_t^*, \mathbf{R}_t)\}_{t=1}^N$ generated as above, where the complete data distribution $P_t(\mathbf{V}, \mathbf{R})$ may vary over time due to latent factors \mathbf{U} , Identify a causal graph $\mathcal{G}(\mathbf{V}, \mathbf{E})$ under Assumptions 1-7.

3.2 THEORETICAL ANALYSIS

In this section, we provide theoretical results that validate the proposed algorithm presented in Section 3.3. Before turning to the main results, we introduce the time index variable T as a surrogate variable (i.e., it is not part of a causal system) that is instrumental in our analysis. Specifically, we assume that when the causal mechanism governing the variable X changes over time, such a change can be attributed to an unobserved confounder denoted as $u(T)$. Furthermore, all of the proofs for our theoretical results in this section are provided in Appendix D. First, we discuss the identifiability of the causal relationships involving the missing indicators.

Proposition 2. *Under Assumptions 1-7, the direct causes of missingness indicators are identifiable.*

As mentioned briefly in the previous section, nonstationarity gives rise to an apparent presence of unobserved confounders, which may generate spurious causal relations. However, this theoretical analysis indicates that the parents responsible for the missingness of a variable, including the unobserved confounders, are identifiable.

Proposition 3. *Under Assumptions 1-7, for any $X, Y \in \mathbf{V}$ and $\mathbf{S} \subseteq \mathbf{V} \cup \{T\} \setminus \{X, Y\}$, if it holds that $X \perp\!\!\!\perp Y | \mathbf{S} \cup \{R_X = 0, R_Y = 0, \mathbf{R}_S = \mathbf{0}\}$, it also holds that $X \perp\!\!\!\perp Y | \mathbf{S}$, where T is the time index and $\mathbf{R}_S = \mathbf{0}$ means that every $R \in \mathbf{R}_S$ takes the value zero.*

Proposition 3 implies that if a CI relation is obtained using only the partially observed data and the time index T , then the same CI relation also holds in the full data distribution. This analysis justifies the use of partially observed data and the time index T for CI tests before recovering the data distribution in our algorithm (Step 3). Next, we discuss the conditions where extraneous conditional relations occur in the observed data due to missingness.

Proposition 4. *Suppose that X and Y are not adjacent in a true m-graph, and that for any $\mathbf{S} \subseteq \mathbf{V} \cup \{T\} \setminus \{X, Y\}$ such that $X \perp\!\!\!\perp Y | \mathbf{S}$, it holds $X \not\perp\!\!\!\perp Y | \mathbf{S} \cup \{R_X = 0, R_Y = 0, \mathbf{R}_S = \mathbf{0}\}$. Then, under Assumptions 1-7, for at least one variable $Z \in \{X\} \cup \{Y\} \cup \mathbf{S}$, the missingness indicator R_Z is either the direct common effect or a descendant of the direct common effect of X and Y .*

To achieve accurate causal discovery, we need to clarify whether potential extraneous CI relations as mentioned in Proposition 4 are truly present in the underlying true m-graph. We tackle this problem by applying density ratio weighting to adjust for the missingness mechanism.

Theorem 1 (Recoverability of data distribution). *Under Assumptions 1-7, given the parents of each missingness indicator $\text{Pa}(R_i)$, the joint distribution $P(\mathbf{V})$ is recoverable, and we then have*

$$P(\mathbf{V}) = \frac{P(\mathbf{R} = \mathbf{0}, \mathbf{V})}{\prod_i P(R_i = 0 | \text{Pa}^+(R_i), \mathbf{R}_{\text{Pa}(R_i)} = \mathbf{0})} \quad (2)$$

$$= \frac{1}{Z} P(\mathbf{V} | \mathbf{R} = \mathbf{0}) \prod_i \omega_{\text{Pa}(R_i)} \quad (3)$$

where

$$\text{Pa}^+(R_i) = \text{Pa}(R_i) \cup \{T\} \quad (\text{time-augmented parents}),$$

$$Z = \frac{\prod_i P(R_i = 0 | \mathbf{R}_{\text{Pa}(R_i)} = \mathbf{0})}{P(\mathbf{R} = \mathbf{0})} \quad (\text{normalizing constant}),$$

$$\omega_{\text{Pa}(R_i)} = \frac{P(\text{Pa}^+(R_i) | \mathbf{R}_{\text{Pa}(R_i)} = \mathbf{0})}{P(\text{Pa}^+(R_i) | R_i = 0, \mathbf{R}_{\text{Pa}(R_i)} = \mathbf{0})} \quad (\text{density ratio weights}).$$

Also, it is known that typical constraint-based methods are order-dependent, in other words, their output depends on the order of CI tests. However, our proposed algorithm is fully order-independent.

Theorem 2 (Order independence). *Under Assumptions 1-7, the skeleton result from CANMI algorithm is independent of the order of variables (X_1, \dots, X_d) .*

270

271

Algorithm 1 CANMI

272

Input: Partially observed data $\mathbf{X} = \{\mathbf{x}^{(t)}\}_{t=1}^N$ with length N , Significance threshold α **Output:** Causal structure \mathcal{G}

273

- 1: Step 1: Detecting direct effects of changing causal mechanisms by employing CI tests between each variable and the time index.
- 2: Step 2. Identifying variables that influence missingness indicators by employing CI tests between each variable and the corresponding missingness indicators.
- 3: Step 3. Searching for the causal skeleton of \mathcal{G} in the observations \mathbf{X} , discarding any records with missing values for variables involved in each CI test.
- 4: Step 4. Removing potential extraneous edges using recovered joint distribution according to Theorem 1.
- 5: Step 5. Determining the orientation of as many edges in \mathcal{G} as possible by applying Meek’s orientation rules.

274

275

286 3.3 ALGORITHM

287

In this section, we describe in detail the CANMI algorithm for identifying the causal structure under nonstationary missingness mechanisms. The algorithm integrates conditional independence (CI) tests with time-varying proxy structures, while mitigating the spurious dependencies induced by influences of other variables and nonstationarity. Algorithm 1 provides an overview of our proposed algorithm. We provide a step-by-step description below:

293

Step 1: Detecting changing causal mechanisms

294

We begin by identifying variables whose causal mechanisms change over time. For each variable $X \in \mathcal{V}$, we perform CI tests between X and the time index T conditioned on subsets of $\mathcal{V} \setminus \{X\}$. If there is a subset $\mathbf{S} \subseteq \mathcal{V} \setminus \{X\}$ such that $X \perp\!\!\!\perp T | \mathbf{S}$, then we consider the corresponding causal mechanism of X to be time-invariant; otherwise, we regard one of X as time-variant.

298

Step 2: Identifying parents of missingness indicators

300

Next, for each missingness indicator R_X , we detect its potential causes by CI tests between R_X and each variable $Y \in \mathcal{V} \cup \{T\} \setminus \{X\}$, conditioned on subsets of $\mathcal{V} \cup \{T\} \setminus \{X, Y\}$. If it finds a subset $\mathbf{S} \subseteq \mathcal{V} \cup \{T\} \setminus \{X, Y\}$ such that $R_X \perp\!\!\!\perp Y | \mathbf{S}$, it reveals that Y is not a parent of R_X . This step identifies direct causes of missingness indicators, including time-dependent causes, in accordance with Proposition 2. The resulting estimates are then used in Step 4 to reconstruct the data distribution.

305

Step 3: Skeleton search under missingness

306

We construct the skeleton of the causal graph, using only the partially observed data associated with each CI test. Specifically, for any $X, Y \in \mathcal{V}$, we discard samples in which at least one of X, Y , or any variable from the conditioning set $\mathbf{S} \subseteq \mathcal{V} \cup \{T\} \setminus \{X, Y\}$ used in the CI test are missing. If the two nodes X, Y are determined to be conditionally independent (i.e., $X \perp\!\!\!\perp Y | \mathbf{S}$) at this step, it is also satisfied in the true graph by Proposition 3. Note that Proposition 3 provides a sufficient condition only; the converse does not generally hold. Such an issue is addressed in Step 4 via distributional recoverability and reweighting.

313

Step 4: Pruning extraneous edges

314

Some edges in the estimated causal skeleton in Step 3 may be artifacts of missingness and nonstationarity in the observed data. To address the issue, we apply the recoverability formula Equation (2) shown in Theorem 1 to reconstruct the joint distribution $P(\mathcal{V})$, and employ it to eliminate potential spurious edges. When we perform a CI test between X and Y given \mathbf{S} , we only focus on $\mathcal{V}_{CI} = \{X\} \cup \{Y\} \cup \mathbf{S} \cup \mathbf{Z}$ where $\mathbf{Z} = \{\text{Pa}(R_X), \text{Pa}(R_Y), \text{Pa}(R_S), \text{Pa}(R_Z)\}$, which increases the number of samples we can use, leading to a more accurate CI test. Specifically, we use kernel density estimation (KDE) Sheather & Jones (1991) to compute each density ratio $\omega_{\text{Pa}(R_i)}$. With the estimated weights as a basis, we perform importance resampling to generate a modified dataset that more faithfully reflects the underlying true distribution.

323

Step 5: Edge orientation via Meek’s rules

324 Finally, we apply Meek’s orientation rules Meek (1995) to direct as many edges as possible, utilizing
 325 known v-structures and acyclicity constraints. This procedure ensures consistency with the established
 326 skeleton and causal semantics.

327 We conclude this section by introducing the soundness of our proposed algorithm CANMI built
 328 according to our theoretical results.

329 **Theorem 3** (Soundness of CANMI). *Under Assumptions 1-7, CANMI returns a causal skeleton
 330 graph that is exactly consistent with the true causal skeleton.*

332 4 EXPERIMENTS

335 We conducted extensive experiments to evaluate the performance of CANMI from various perspec-
 336 tives, using both synthetic and real-world datasets. In the main text, we reported the accuracy and
 337 robustness of CANMI and validated on the fMRI datasets to demonstrate the applicability of our
 338 method. In particular, since it is believed that one of the basic properties of the neural connections is
 339 their time-dependence Havlicek et al. (2011), fMRI data is suitable for the evaluation of CANMI.
 340 Additional results, including statistical analysis, sensitivity analysis, and computational efficiency,
 341 are provided in Appendix E.

342 4.1 EXPERIMENTAL SETUP

344 Here, we briefly provide the settings we used for our experiments. The reader can find a more detailed
 345 description in Appendix E.1.

346 **Baselines.** We compared our proposed method with the following eight state-of-the-art approaches
 347 for causal discovery, comprising (i) two constraint-based methods (CD-NOD Huang et al. (2020),
 348 MVPC Tu et al. (2019)), (ii) four score-based methods (SpaceTime Mameche et al. (2025),
 349 NOTEARS-MLP Zheng et al. (2019), NOTEARS Zheng et al. (2018), GGES Huang et al. (2018)),
 350 (iii) two FCM-based methods (MissDAG Gao et al. (2022), LiNGAM Shimizu et al. (2006)). **To**
 351 **better explore the effectiveness of data distribution recovery, we prepared a limited version, namely**
 352 **CANMI-L, which leaves extraneous edges without Step 4.** In the following sections, we abbreviate
 353 NOTEARS-MLP as NO-MLP for simplicity.

354 **Evaluation metrics.** For all our experiments, we reported five common scores with which to evaluate
 355 the estimated causal dependencies, namely true positive rate (TPR), false positive rate (FPR), false
 356 discovery rate (FDR), F1-score (F1), and structural Hamming distance (SHD).

358 4.2 SYNTHETIC DATASETS

360 First, we quantitatively compared CANMI with its baselines using synthetic datasets whose ground
 361 truth is known in advance.

362 **Data generating process.** First, we explain our synthetic data generating process. We mainly
 363 followed the procedure of Liu & Constantinou (2022) and adapted it to align with our problem setting.
 364 Specifically, for each variable X_i , we generated time series data $\{x_i^{(t)}\}_{t=1}^N$ of length N by

$$366 \quad x_i^{(t)} = \sum_{j \in \text{pa}(i)} b_{i,j} f_i(x_j^{(t)}) + \varepsilon_i^{(t)}.$$

368 where, $b_{i,j}$ is the strength of the causal dependency between X_i and its parents and $\varepsilon_i^{(t)} \sim \mathcal{N}(0, 1)$ is
 369 a mutually independent exogenous variable corresponding to X_i . Furthermore, f_i denotes a nonlinear
 370 deterministic function describing the causal mechanisms of X_i constructed by MLPs, where we
 371 consider two hidden layers and each of which has 100 hidden dimensions. A random graph \mathcal{G} was
 372 generated from a well-known random graph model, namely Erdős-Rényi (ER) Erdős & Rényi (1960).
 373 Given a graph \mathcal{G} , we sampled the strengths of the influence $b_{i,j}$ from $\mathcal{U}([-2.0, -0.5] \cup [0.5, 2.0])$.
 374 In addition, we needed to validate the effectiveness of our proposed method against the ubiquitous
 375 properties of time series, i.e., nonstationarity. Specifically, we randomly selected 50% of the functions
 376 f_i as changing causal mechanisms. We changed these functions by adding a nonstationarity driver
 377 $c(t) = \sin(2\pi k_c t / N + \phi)$, where $k_c = 2$ is the number of cycles and ϕ is a phase that is randomly
 378 chosen from $\mathcal{U}(0, 2\pi)$.

378
 379 Table 2: Causal discovery results in nonlinear settings. We used dimensional synthetics data of length
 380 $N = 3000$ generated based on $\{\text{ER2}, \text{ER4}\}$ graphs. The best results are in **bold** and the second best
 381 are underlined. CANMI consistently outperforms its baselines across various evaluation metrics.

Metric		TPR (\uparrow)	FPR (\downarrow)	FDR (\downarrow)	F1 (\uparrow)	SHD (\downarrow)
LiNGAM	ER2	0.161 ± 0.040	0.464 ± 0.126	0.903 ± 0.025	0.121 ± 0.030	14.0 ± 4.062
	ER4	0.151 ± 0.102	0.493 ± 0.177	0.834 ± 0.129	0.157 ± 0.111	19.2 ± 2.588
GGES	ER2	0.518 ± 0.176	0.100 ± 0.016	0.400 ± 0.064	0.542 ± 0.088	7.4 ± 2.408
	ER4	0.357 ± 0.060	0.036 ± 0.051	0.143 ± 0.202	0.502 ± 0.092	11.8 ± 2.387
NOTEARS	ER2	0.609 ± 0.158	0.200 ± 0.103	0.286 ± 0.165	0.649 ± 0.144	5.8 ± 2.775
	ER4	0.264 ± 0.138	0.043 ± 0.064	0.173 ± 0.241	0.381 ± 0.165	12.6 ± 2.408
NO-MLP	ER2	0.877 ± 0.081	0.200 ± 0.103	0.402 ± 0.118	0.706 ± 0.093	6.2 ± 2.775
	ER4	0.615 ± 0.170	0.157 ± 0.117	0.276 ± 0.091	0.651 ± 0.103	9.6 ± 2.510
MVPC	ER2	0.905 ± 0.096	0.050 ± 0.032	0.152 ± 0.103	0.869 ± 0.046	2.2 ± 0.837
	ER4	0.655 ± 0.028	0.086 ± 0.041	0.180 ± 0.094	0.725 ± 0.033	7.6 ± 0.548
CD-NOD	ER2	0.855 ± 0.055	0.093 ± 0.041	0.261 ± 0.111	0.788 ± 0.066	3.4 ± 0.894
	ER4	0.765 ± 0.195	0.071 ± 0.051	0.141 ± 0.083	<u>0.802 ± 0.141</u>	<u>5.0 ± 3.536</u>
MissDAG	ER2	0.905 ± 0.096	0.057 ± 0.041	0.161 ± 0.097	0.865 ± 0.049	<u>2.2 ± 0.837</u>
	ER4	0.770 ± 0.239	0.093 ± 0.032	0.174 ± 0.043	0.783 ± 0.161	<u>6.0 ± 3.536</u>
SpaceTime	ER2	0.429 ± 0.052	0.321 ± 0.062	0.707 ± 0.077	0.346 ± 0.070	10.2 ± 2.280
	ER4	0.501 ± 0.205	0.279 ± 0.099	0.491 ± 0.200	0.504 ± 0.202	11.6 ± 4.506
CANMI-L	ER2	0.887 ± 0.151	0.079 ± 0.043	0.220 ± 0.098	0.825 ± 0.103	3.0 ± 1.717
	ER4	0.726 ± 0.127	0.071 ± 0.033	<u>0.140 ± 0.062</u>	<u>0.783 ± 0.096</u>	<u>5.2 ± 2.546</u>
CANMI	ER2	0.922 ± 0.130	0.029 ± 0.016	0.093 ± 0.062	0.910 ± 0.083	1.6 ± 1.517
	ER4	0.765 ± 0.160	0.043 ± 0.047	0.092 ± 0.115	0.822 ± 0.120	4.6 ± 2.608

405
 406 Next, we added missing values to complete time series data as explained above. First, we randomly
 407 selected 50% of the variables as partially observed variables and chose up to 2 parents of their
 408 missingness indicators from both complete and partially observed variables for the MNAR mechanism.
 409 In addition, we randomly selected 50% of the partially observed variables as time-varying missingness,
 410 and we set one of the parents to the time index T . The procedure for removing observations from
 411 partially observed variables is as follows. If a missingness indicator had no parents, we removed
 412 observations with missing probability $p = 0.3$. Alternatively, if the missingness indicator had parents,
 413 we removed them with missing probability $p = p_h$ when the parent fell within its most frequently
 414 populated bin under a discretization with five bins per dimension. Otherwise, we removed them with
 415 missing probability $p = \min(p_h, 0.1)$. In addition, we focus that missingness mechanisms change
 416 over time in our work. Thus, we randomly selected 50% of the missingness indicators and added sine
 417 wave functions $c(t)$ to them.

418 **Effectiveness.** We demonstrated the accuracy with which CANMI can discover causal relationships
 419 from partially observed data compared with its baselines. Table 2 shows the overall causal discovery
 420 results on 8 dimensional synthetic data of length $N = 3000$ generated based on $\{\text{ER2}, \text{ER4}\}$
 421 graphs and missing probability $p_h = 0.6$, where the best and second-best levels of performance
 422 are shown in **bold** and underlined, respectively. These results show that CANMI outperforms the
 423 state-of-the-art baselines by precisely accounting for complicated missingness mechanisms that
 424 depend on both other variables and nonstationarity, which is consistent with our theoretical results
 425 provided in Section 3.2. Recalling that nonstationarity and missing values may unintentionally
 426 produce extraneous CI relations, the substantially lower FPR and FDR achieved by CANMI indicate
 427 that it effectively mitigates such artifacts, thereby leading to a more accurate identification of the
 428 underlying causal structure. SpaceTime aims to discover the causal relationships from nonstationary
 429 time series data, but it implicitly assumes that nonstationary time series data consist of multiple
 430 piecewise-stationary segments, which cannot handle smoothly changing causal mechanisms, resulting
 431 in decreased discovery accuracy. While MVPC is capable of recovering the data distribution from
 432 observed data with missing values, the temporal dependency inherent in the synthetic data can lead
 433 to biased and spurious relations. Since the accurate recovery of the data distribution depends on
 434 appropriately identifying the parents of each missingness indicator, MVPC exhibits poorer detection

Figure 1: Causal discovery results for synthetic datasets with different missing probabilities $p_h \in \{0.0, 0.4, 0.6, 0.8\}$. CANMI consistently achieved strong discovery performance across any missingness levels while its baselines result in decreased discovery accuracy.

power in such settings, especially when the true graph is relatively dense. Moreover, GGES is comparable to our proposed method CANMI in ER4 from the perspective of the FPR, but CANMI still outperforms it significantly regarding other evaluation metrics. Note that the lowest FPR can be trivially achieved by an empty graph; however, this renders the result meaningless in practice. The approaches that rely solely on the linear causal model (i.e., LiNGAM and NOTEARS) inherently fail to capture nonlinear dependencies. **We can see that CANMI-L causes a drop in accuracy. This suggests that the recovery of the data distribution are crucial for reliable causal discovery under nonstationary missingness mechanisms, consistent with the discussion presented in Theorem 2.** In particular, FDR and SHD values on ER2 graphs were significantly higher. This is because more extraneous edges were generated due to the sparsity of the true causal graph, and CANMI-L failed to prune them.

Robustness. We evaluated the robustness of CANMI compared with competitive baselines (i.e., MissDAG, CO-NOD, MVPC, and NO-MLP) on synthetic datasets spanning a range of missing probabilities and dimensionalities. Figure 1 shows the results obtained with different missing probabilities $p_h \in \{0.0, 0.4, 0.6, 0.8\}$. For brevity, additional results for various dimensionalities are shown in Figure 2 of Appendix E.2. These results indicate that CANMI consistently achieves noteworthy performance in terms of all evaluation metrics, specifically the F1 score and SHD, across various levels of missingness while its baseline methods show substantial degradation as the missing probability p_h increases. This is because none of its baselines have the ability to handle partially observed data, where missing values occur not at random but instead are caused by both other variables and nonstationarity. In particular, we can observe a significant drop in the discovery performance of NO-MLP, which cannot handle both nonstationary data and non-random missingness. Therefore, our proposed method exhibits robustness against high missing probabilities, which indicates that it remains applicable in practice even when missingness is substantial and not at random.

4.3 REAL-WORLD DATASETS

We show the applicability of CANMI for real-world fMRI datasets. We utilized the NetSim dataset¹ which describes the connecting dynamics of 15 human brain regions from blood oxygenation level-dependent (BOLD) imaging data Smith et al. (2011). It is commonly used as a benchmark for evaluating temporal causal discovery methods Gong et al. (2023). We introduced missingness by following the same procedure used for synthetic datasets because the NetSim dataset originally has no missing values. Table 3 presents the causal discovery results of CANMI and its competitive baselines on the NetSim dataset with missing values, where the best and second-best levels of performance

¹<https://www.fmrib.ox.ac.uk/datasets/netsim/index.html>

486
 487 Table 3: Causal discovery results for the NetSim dataset with missing values across 10 subjects, where
 488 the best results are in **bold** and the second best are underlined. CANMI consistently outperforms its
 489 baselines in terms of various types of evaluation metrics.

Metric	TPR (\uparrow)	FPR (\downarrow)	FDR (\downarrow)	F1 (\uparrow)	SHD (\downarrow)
NO-MLP	0.382 ± 0.049	0.786 ± 0.053	0.923 ± 0.010	0.128 ± 0.017	86.500 ± 4.913
MVPC	0.461 ± 0.087	<u>0.030 ± 0.012</u>	<u>0.280 ± 0.109</u>	0.561 ± 0.096	<u>10.400 ± 1.823</u>
CD-NOD	<u>0.509 ± 0.120</u>	0.044 ± 0.022	0.326 ± 0.128	<u>0.571 ± 0.104</u>	12.500 ± 2.022
MissDAG	0.285 ± 0.067	0.676 ± 0.077	0.931 ± 0.022	0.111 ± 0.033	77.062 ± 7.996
CANMI	0.520 ± 0.054	0.030 ± 0.008	0.250 ± 0.060	0.613 ± 0.051	10.071 ± 1.346

496
 497 are shown in **bold** and underlined, respectively. CANMI consistently outperformed its baselines,
 498 meaning that it is practical for real-world scenarios.

5 CONCLUSION

503 Our work investigated the challenges associated with causal discovery under the mechanisms where
 504 missing values are caused by both other variables and nonstationarity. To address this difficulty, we
 505 presented a novel constraint-based method CANMI, which discovers causal relationships purely from
 506 partially observed data with nonstationary missingness mechanisms. Our proposed method achieved
 507 our goal by theoretically detecting the direct causes of missingness indicators under nonstationary
 508 missingness mechanisms (Proposition 2) and the recovery of the joint distribution required for
 509 removing extraneous edges through unbiased CI tests (Theorem 1). Our experimental evaluation on
 510 both synthetic and real-world datasets showed that CANMI achieved highly accurate causal discovery
 511 compared with multiple state-of-the-art competitors across various types of evaluation metrics.

ETHICS STATEMENT

521 In this work, we proposed a novel constraint-based causal discovery method under complicated but
 522 ubiquitous missingness mechanisms that depend on both other variables and nonstationarity (i.e.,
 523 nonstationary missingness mechanisms). Given the scope of our research, we do not anticipate any
 524 significant negative societal or ethical consequences arising from our proposed method. Also, we
 525 evaluated our method on synthetic and public datasets only; no personally identifiable or sensitive
 526 data are used.

REPRODUCIBILITY STATEMENT

527 All assumptions used in this paper and proofs of our theoretical results are provided in Section 2.3
 528 and Appendix D, respectively. Our source codes that we used in the experiments are available at
 529 <https://anonymous.4open.science/r/CANMI-0CDD>, which will be made public after
 530 the review process. We described the experimental setup including computing infrastructure and
 531 implementation details in Section 4.1 and Appendix E.1.

REFERENCES

532 Virginia Aglietti, Xiaoyu Lu, Andrei Paleyes, and Javier González. Causal bayesian optimization. In
 533 *International Conference on Artificial Intelligence and Statistics*, volume 108 of *Proceedings of
 534 Machine Learning Research*, pp. 3155–3164. PMLR, 2020.

535 D M Chickering. Optimal structure identification with greedy search. *Journal of machine learning
 536 research: JMLR*, 3(Nov):507–554, 2002.

537 Naoki Chihara, Yasuko Matsubara, Ren Fujiwara, and Yasushi Sakurai. Modeling time-evolving
 538 causality over data streams. In *Proceedings of the 31st ACM SIGKDD international conference on
 539 Knowledge discovery and data mining*, pp. 153–164, 2025.

540 T Chu and C Glymour. Search for additive nonlinear time series causal models. *Journal of machine*
 541 *learning research: JMLR*, 9:967–991, 1 June 2008.
 542

543 D Colombo and M H Maathuis. Order-independent constraint-based causal structure learning. *Journal*
 544 *of Machine Learning Research*, 15:3921–3962, 2014.

545 Haoyue Dai, Ignavier Ng, Gongxu Luo, Peter Spirtes, Petar Stojanov, and Kun Zhang. Gene regulatory
 546 network inference in the presence of dropouts: A causal view. In *The Twelfth International*
 547 *Conference on Learning Representations*, 21 March 2024.

548

549 P Erdős and A Rényi. On the evolution of random graphs. *Publications of the Mathematical Institute*
 550 *of the Hungarian Academy of Sciences*, 5:17–61, 1960.

551 Muhammad Hasan Ferdous, Uzma Hasan, and Md Osman Gani. CDANs: Temporal causal discovery
 552 from autocorrelated and non-stationary time series data. In *Proceedings of the 8th Machine*
 553 *Learning for Healthcare Conference*, volume 219 of *Proceedings of Machine Learning Research*,
 554 pp. 186–207. PMLR, 7 February 2023.

555

556 Ronald A Fisher. *The Design of Experiments*. Oliver and Boyd, Edinburgh and London, 1935.

557

558 Chen Gao, Yu Zheng, Wenjie Wang, Fuli Feng, Xiangnan He, and Yong Li. Causal inference in
 559 recommender systems: A survey and future directions. *ACM transactions on information systems*,
 560 42(4):1–32, 31 July 2024.

561

562 Erdun Gao, Ignavier Ng, Mingming Gong, Li Shen, Wei Huang, Tongliang Liu, Kun Zhang, and
 563 H Bondell. MissDAG: Causal discovery in the presence of missing data with continuous additive
 564 noise models. In *Advances in Neural Information Processing Systems*, volume 35, pp. 5024–5038.
 Curran Associates, Inc., 27 May 2022.

565

566 Shanyun Gao, Raghavendra Addanki, Tong Yu, Ryan A Rossi, and Murat Kocaoglu. Causal discovery
 567 in semi-stationary time series. In *Advances in Neural Information Processing Systems*, volume 36,
 568 pp. 46624–46657. Curran Associates, Inc., 2023.

569

570 Andreas Gerhardus and J Runge. High-recall causal discovery for autocorrelated time series with la-
 571 tent confounders. In *Advances in Neural Information Processing Systems*, volume abs/2007.01884,
 572 pp. 12615–12625. Curran Associates, Inc., 3 July 2020.

573

574 Clark Glymour, Kun Zhang, and Peter Spirtes. Review of causal discovery methods based on
 575 graphical models. *Frontiers in genetics*, 10:524, 4 June 2019.

576

577 Chang Gong, Di Yao, Chuzhe Zhang, Wenbin Li, and Jingping Bi. Causal discovery from temporal
 578 data: An overview and new perspectives. *ACM Computing Surveys*, 57(4):1–38, 17 March 2023.

579

580 C Granger. Investigating causal relations by econometric models and cross-spectral methods. *Econo-*
 581 *metrica: journal of the Econometric Society*, pp. 31–47, 1 August 1969.

582

583 Clive W J Granger and Paul Newbold. *Forecasting Economic Time Series*. Economic Theory and
 584 Mathematical Economics. Academic Press, 2nd edition, 1986.

585

586 Uzma Hasan, Emam Hossain, and Md Osman Gani. A survey on causal discovery methods for I.I.D.
 587 and time series data. *Transactions on Machine Learning Research*, 2023.

588

589 Martin Havlicek, Karl J Friston, Jiri Jan, Milan Brazdil, and Vince D Calhoun. Dynamic modeling
 590 of neuronal responses in fMRI using cubature kalman filtering. *NeuroImage*, 56(4):2109–2128,
 591 15 June 2011.

592

593 Sujai Hiremath, Jacqueline R M Maasch, Mengxiao Gao, Promit Ghosal, and Kyra Gan. Hybrid
 594 top-down global causal discovery with local search for linear and nonlinear additive noise models.
 595 In *Advances in Neural Information Processing Systems*, 23 May 2024.

596

597 P Hoyer, D Janzing, J Mooij, J Peters, and B Scholkopf. Nonlinear causal discovery with additive
 598 noise models. In *Advances in Neural Information Processing Systems*, volume 21, pp. 689–696,
 599 8 December 2008.

594 Biwei Huang, Kun Zhang, Yizhu Lin, Bernhard Schölkopf, and Clark Glymour. Generalized score
 595 functions for causal discovery. In *Proceedings of the 24th ACM SIGKDD international conference*
 596 *on Knowledge discovery and data mining*, volume 2018, pp. 1551–1560, 2018.

597 Biwei Huang, Kun Zhang, Jiji Zhang, J Ramsey, Ruben Sanchez-Romero, C Glymour, and
 598 B Scholkopf. Causal discovery from heterogeneous/Nonstationary data. *Journal of machine*
 599 *learning research*, 21(89):89:1–89:53, 2020.

600 M Kotz, Anders Levermann, and L Wenz. The economic commitment of climate change. *Nature*,
 601 628:551–557, 1 April 2024.

602 Trent Kyono, Yao Zhang, A Bellot, and M Schaar. MIRACLE: Causally-aware imputation via
 603 learning missing data mechanisms. In *Advances in Neural Information Processing Systems*,
 604 volume 34, pp. 23806–23817. Curran Associates, Inc., 4 November 2021.

605 Jin Hyung Lee, Remy Durand, Viviana Gradinaru, Feng Zhang, Inbal Goshen, Dae-Shik Kim, Lief E
 606 Fennyo, Charu Ramakrishnan, and Karl Deisseroth. Global and local fMRI signals driven by
 607 neurons defined optogenetically by type and wiring. *Nature*, 465(7299):788–792, 10 June 2010.

608 Loka Li, Haoyue Dai, Hanin Al Ghothani, Biwei Huang, Jiji Zhang, Shahar Harel, Isaac Bentwich,
 609 Guan-Hong Chen, and Kun Zhang. On causal discovery in the presence of deterministic relations.
 610 In *Advances in Neural Information Processing Systems*, volume 37, pp. 130920–130952, 2024.

611 Roderick J A Little and Donald B Rubin. *Statistical analysis with missing data*. John Wiley & Sons,
 612 New York, 1987.

613 Yang Liu and Anthony C Constantinou. Greedy structure learning from data that contain systematic
 614 missing values. *Machine learning*, 111(10):3867–3896, October 2022.

615 Chao Ma and Cheng Zhang. Identifiable generative models for missing not at random data imputation.
 616 In *Advances in Neural Information Processing Systems*, volume 34, pp. 27645–27658. Curran
 617 Associates, Inc., 2021.

618 Wei Ma and George H Chen. Missing not at random in matrix completion: The effectiveness of
 619 estimating missingness probabilities under a low nuclear norm assumption. In *Advances in Neural*
 620 *Information Processing Systems*, 28 October 2019.

621 Sarah Mameche, Lénaïg Cornanguer, Urmi Ninad, and Jilles Vreeken. SpaceTime: Causal discovery
 622 from non-stationary time series. In *AAAI conference on artificial intelligence*, 17 January 2025.

623 Christopher Meek. Strong completeness and faithfulness in bayesian networks. In *Proceedings of the*
 624 *11th Conference on Uncertainty in Artificial Intelligence*, 1995.

625 K Mohan, J Pearl, and J Tian. Graphical models for inference with missing data. In *Advances in*
 626 *Neural Information Processing Systems*. proceedings.neurips.cc, 2013.

627 Kohei Obata, Koki Kawabata, Yasuko Matsubara, and Yasushi Sakurai. Mining of switching sparse
 628 networks for missing value imputation in multivariate time series. In *ACM SIGKDD Conference on*
 629 *Knowledge Discovery and Data Mining*, volume 1. Association for Computing Machinery, 2024.

630 Roxana Pamfil, Nisara Sriwattanaworachai, Shaan Desai, Philip Pilgerstorfer, Konstantinos Geor-
 631 gatzis, Paul Beaumont, and Bryon Aragam. DYNOTEARs: Structure learning from time-series
 632 data. In *Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics*,
 633 volume 108 of *Proceedings of Machine Learning Research*, pp. 1595–1605. PMLR, 2020.

634 J Pearl. Causality: Models, reasoning and inference. 2009.

635 Judea Pearl. *Probabilistic reasoning in intelligent systems: Networks of plausible inference*. Morgan
 636 Kaufmann, San Mateo, CA, 1988.

637 Jonas Peters, Joris Mooij, Dominik Janzing, and Bernhard Schölkopf. Causal discovery with
 638 continuous additive noise models. *Journal of Machine Learning Research*, 2014.

639 Jonas Peters, Dominik Janzing, and Bernhard Scholkopf. *Elements of causal inference: foundations*
 640 *and learning algorithms*. Hachette Pratique, 7 June 2017.

648 Abbavaram Gowtham Reddy and Vineeth N Balasubramanian. Detecting and measuring confounding
 649 using causal mechanism shifts. In *Advances in Neural Information Processing Systems*, volume
 650 abs/2409.17840, pp. 61677–61699. Curran Associates, Inc., 26 September 2024.

651

652 J Rissanen. Modeling by shortest data description. *Automatica: the journal of IFAC, the International*
 653 *Federation of Automatic Control*, 14(5):465–471, September 1978.

654 J Robins, M Hernán, and B Brumback. Marginal structural models and causal inference in epidemiol-
 655 ogy. *Epidemiology (Cambridge, Mass.)*, 11(5):550–560, 1 September 2000.

656 D Rubin. Inference and missing data. *Psychometrika*, 1975:19, 1 June 1975.

657

658 Jakob Runge. Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear
 659 time series datasets. In *Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence*,
 660 volume abs/2003.03685. proceedings.mlr.press, 7 March 2020.

661 Jakob Runge, Peer Nowack, Marlene Kretschmer, Seth Flaxman, and Dino Sejdinovic. Detecting
 662 and quantifying causal associations in large nonlinear time series datasets. *Science advances*, 5
 663 (11):eaau4996, November 2019.

664

665 G Schwarz. Estimating the dimension of a model. *Annals of Statistics*, 6(2):461–464, 1 March 1978.

666 S J Sheather and M C Jones. A reliable data-based bandwidth selection method for kernel density
 667 estimation. *Journal of the Royal Statistical Society. Series B, Statistical methodology*, 53(3):
 668 683–690, 1 July 1991.

669

670 Xinpeng Shen, Sisi Ma, Prashanthi Vemuri, Gyorgy Simon, and Alzheimer’s Disease Neuroimaging
 671 Initiative. Challenges and opportunities with causal discovery algorithms: Application to
 672 alzheimer’s pathophysiology. *Scientific reports*, 10(1):2975, 19 February 2020.

673 Shohei Shimizu, P Hoyer, Aapo Hyvärinen, and Antti J Kerminen. A linear non-gaussian acyclic
 674 model for causal discovery. *Journal of machine learning research: JMLR*, 7(10):2003–2030,
 675 1 December 2006.

676 Stephen M Smith, Karla L Miller, Gholamreza Salimi-Khorshidi, Matthew Webster, Christian F
 677 Beckmann, Thomas E Nichols, Jose Ramsey, and Mark W Woolrich. Network modelling methods
 678 for FMRI. *NeuroImage*, 54(2):875–891, 15 January 2011.

679

680 Noah Snyder-Mackler, Joseph Robert Burger, Lauren Gaydosh, Daniel W Belsky, Grace A Noppert,
 681 Fernando A Campos, Alessandro Bartolomucci, Yang Claire Yang, Allison E Aiello, Angela
 682 O’Rand, Kathleen Mullan Harris, Carol A Shively, Susan C Alberts, and Jenny Tung. Social
 683 determinants of health and survival in humans and other animals. *Science (New York, N.Y.)*, 368
 684 (6493):eaax9553, 22 May 2020.

685 Peter Spirtes, Clark Glymour, and Richard Scheines. *Causation, prediction, and search*. Lecture
 686 Notes in Statistics. Springer-Verlag, New York, 1st edition, 4 March 1993.

687 Peter L Spirtes, Christopher Meek, and Thomas S Richardson. Causal inference in the presence
 688 of latent variables and selection bias. In *Proceedings of the 11th Conference on Uncertainty in*
 689 *Artificial Intelligence*, 1995.

690 Eric V Strobl, Shyam Visweswaran, and Peter L Spirtes. Fast causal inference with non-random
 691 missingness by test-wise deletion. *International journal of data science and analytics*, 6(1):47–62,
 692 August 2018.

693

694 Ruibo Tu, Cheng Zhang, P Ackermann, H Kjellström, and Kun Zhang. Causal discovery in the
 695 presence of missing data. In *Proceedings of the 22nd International Conference on Artificial*
 696 *Intelligence and Statistics*, pp. 1762–1770. PMLR, 2019.

697 Matthew J Vowels, Necati Cihan Camgoz, and Richard Bowden. D’ya like DAGs? a survey on
 698 structure learning and causal discovery. *ACM computing surveys*, 55(4):1–36, 30 April 2023.

699

700 Yixin Wang, Dawen Liang, Laurent Charlin, and David M Blei. Causal inference for recommender
 701 systems. In *Proceedings of 40th ACM Conference on Recommender Systems*, New York, NY, USA,
 22 September 2020. ACM.

702 Song Wei, Yao Xie, Christopher S Josef, and Rishikesan Kamaleswaran. Granger causal chain
 703 discovery for sepsis-associated derangements via continuous-time hawkes processes. In *ACM
 704 SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 2536–2546, 2023.
 705

706 Frank Wilcoxon. Individual comparisons by ranking methods. *Biometrics bulletin*, 1(6):80–83,
 707 December 1945.

708 Anpeng Wu, Haoxuan Li, Kun Kuang, Keli Zhang, and Fei Wu. Learning causal relations from
 709 subsampled time series with two time-slices. In *International Conference on Machine Learning*.
 710 PMLR, 2024.

711 Kun Zhang and Lai-Wan Chan. Extensions of ICA for causality discovery in the hong kong stock
 712 market. In *Lecture Notes in Computer Science*, Lecture notes in computer science, pp. 400–409.
 713 Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

714 Kun Zhang and Aapo Hyvärinen. On the identifiability of the post-nonlinear causal model. In
 715 *Conference on Uncertainty in Artificial Intelligence*, 2009.

716 Kun Zhang, Jonas Peters, Dominik Janzing, and Bernhard Schoelkopf. Kernel-based conditional
 717 independence test and application in causal discovery. In *Proceedings of the 27th Conference on
 718 Uncertainty in Artificial Intelligence*, 2011.

719 Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. Dags with no tears: Continuous
 720 optimization for structure learning. In *Advances in Neural Information Processing Systems*,
 721 volume 31, 2018.

722 Xun Zheng, Chen Dan, Bryon Aragam, Pradeep Ravikumar, and E Xing. Learning sparse non-
 723 parametric DAGs. In *International Conference on Artificial Intelligence and Statistics*, volume
 724 abs/1909.13189, pp. 3414–3425. PMLR, 1 September 2019.

725 Yujia Zheng, Biwei Huang, Wei Chen, J Ramsey, Mingming Gong, Ruichu Cai, Shohei Shimizu,
 726 P Spirtes, and Kun Zhang. Causal-learn: Causal discovery in python. *Journal of Machine Learning
 727 Research*, abs/2307.16405(60):1–8, 31 July 2023.

728 Fan Zhou, Tengfei Li, Haibo Zhou, Hongtu Zhu, and Jieping Ye. Graph-based semi-supervised
 729 learning with non-ignorable non-response. In *Advances in Neural Information Processing Systems*,
 730 volume 32, pp. 7013–7023, 2019.

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

APPENDIX

A NOTATION AND TERMINOLOGY

A.1 CAUSAL BAYESIAN NETWORK

We summarize the causal relations between two nodes used in the longitudinal causal discovery framework.

- **Children:** let $\text{Ch}(X)$ be causal children of X , i.e., for every $X_j \in \text{Ch}(X_i)$, we write $X_i \rightarrow X_j$.
- **Parents:** let $\text{Pa}(X)$ be causal parents of X , i.e., for every $X_j \in \text{Pa}(X_i)$, we write $X_j \rightarrow X_i$.
- **Ancestors:** let $\text{An}(X)$ be causal ancestors of X , i.e., for every $X_j \in \text{An}(X_i)$, we write $X_j \dashrightarrow X_i$.
- **Descendants:** let $\text{De}(X)$ be causal descendants of X , i.e., for every $X_j \in \text{De}(X_i)$, we write $X_i \dashrightarrow X_j$.

In addition, nodes can also be classified in terms of triadic relationships.

- X_i is a **confounder** of X_j, X_k if and only if $X_i \in \text{Pa}(X_j) \cap \text{Pa}(X_k)$. This corresponds to the causal path structure $X_j \leftarrow X_i \rightarrow X_k$, which is called a **fork structure**.
- X_i is a **mediator** of X_j, X_k if and only if $X_i \in \text{Ch}(X_j) \cap \text{Pa}(X_k)$. This corresponds to the causal path structure $X_j \rightarrow X_i \rightarrow X_k$, which is called a **chain structure**.
- X_i is a **collider** of X_j, X_k if and only if $X_i \in \text{Ch}(X_j) \cap \text{Ch}(X_k)$. This corresponds to the causal path structure $X_j \rightarrow X_i \leftarrow X_k$, which is called a **v-structure**.

Any causal graph is composed of the three above structures. Based on these structures, we also introduce the idea of open and blocked paths between two nodes to discuss causal relationships. Generally, these paths are described by the d-separation criterion.

Definition 1 (d-separation Pearl (1988)). *A path U in a DAG \mathcal{G} is said to be **blocked** by a set of nodes \mathbf{S} if either,*

- U contains a fork structure $X_j \leftarrow X_i \rightarrow X_k$ or a chain structure $X_j \rightarrow X_i \rightarrow X_k$ such that the middle node X_i is in \mathbf{S} ,
- U contains a v-structure $X_j \rightarrow X_i \leftarrow X_k$ such that the collider node X_i is not in \mathbf{S} , and neither is any descendant $X_l \in \text{De}(X_i)$.

If \mathbf{S} blocks every path between two nodes, then they are d-separated given \mathbf{S} , and thus are independent conditional on \mathbf{S} . Such a relation is denoted by $X_j \bowtie X_k \mid \mathbf{S}$.

Conversely, a path which is not blocked is called an **open** path, and when there is at least one open path between two nodes, they are not d-separated, i.e., some information is shared between the two. Also, we need to estimate the above relations from multivariate time series data. We use $\perp\!\!\!\perp$ for an independent relation in a dataset.

A.2 MISSINGNESS MECHANISMS

Missing values \mathbf{V}^m in observational data do not always occur at random. Missingness mechanisms can be commonly categorized into the following three classes according to the factors behind the missing data.

- Data are **Missing Completely At Random (MCAR)** if the reasons for missing values \mathbf{V}^m are independent of any variables, i.e., $\{\mathbf{V}^o, \mathbf{V}^m\} \bowtie \mathbf{R}$.
- Data are **Missing At Random (MAR)** if the reasons for missing values \mathbf{V}^m depend only on the observed data \mathbf{V}^o and not on the missing values themselves, i.e., $\mathbf{V}^m \bowtie \mathbf{R} \mid \mathbf{V}^o$. For example, women are relatively more likely to omit their age.
- Data are **Missing Not At Random (MNAR)** if it is neither MAR nor MCAR. This is also referred to as non-ignorable missing.

810 B RELATED WORK
811
812
813814 In this section, we briefly describe investigations related to our work. As mentioned in the main text,
815 Table 1 summarizes six relative advantages of CANMI.816 Causal discovery from observational data has attracted huge interest for many applications including
817 recommendation systems Wang et al. (2020); Gao et al. (2024), epidemiology Robins et al. (2000),
818 and others Kyono et al. (2021); Chihara et al. (2025). In general, typical causal discovery approaches
819 fall mainly into three categories: constraint-based methods Spirtes et al. (1995); Colombo & Maathuis
820 (2014), score-based methods Zheng et al. (2019); Li et al. (2024), and functional causal model
821 (FCM)-based methods Peters et al. (2014). Constraint-based methods, such as PC-algorithm Spirtes
822 et al. (1993), use CI tests to identify a causal structure by removing irrelevant edges and orienting the
823 remaining edges based on separation rules. Score-based methods assess causal structure candidates
824 by assigning them scores based on predefined scoring criteria (e.g., BIC Schwarz (1978)), and
825 select candidates that achieve the highest scores as the most plausible results. GES Chickering
826 (2002) is a traditional score-based Bayesian algorithm that discovers causal relationships in a greedy
827 manner, and Generalized-GES (GGES) Huang et al. (2018) extends it to nonlinear settings via
828 kernel-based score functions. NOTEARS Zheng et al. (2018) introduces a differentiable optimization
829 method for discovering directed acyclic graphs by substituting the acyclic combinatorial constraint
830 with a continuous regularization formulation. FCM-based methods take a different approach by
831 assuming specific functional forms for the data-generating mechanisms, such as additive noise
832 models (ANMs) Hoyer et al. (2008) or post-nonlinear (PNL) models Zhang & Chan (2006); Zhang &
833 Hyvärinen (2009). LiNGAM Shimizu et al. (2006) assumes a linear acyclic model with non-Gaussian
834 errors and utilizes this assumption to identify the causal structure. However, most of these approaches
835 rely on assumptions of time independence and completeness in the observed data.836 Alternative approaches have been developed to address temporal dependencies more explicitly Pamfil
837 et al. (2020); Hasan et al. (2023); Wu et al. (2024); Chihara et al. (2025). Granger causality Granger
838 (1969) is one of the classical statistical approaches for causality in time series data and has been
839 widely utilized over decades Wei et al. (2023), but Granger causality only indicates the presence
840 of a predictive relationship Granger & Newbold (1986); Peters et al. (2017), so it is then different
841 from true causality. PCMCI Runge et al. (2019) and its derivatives Gerhardus & Runge (2020);
842 Runge (2020); Ferdous et al. (2023); Gao et al. (2023) handle autocorrelation, which is a major
843 source of false positives in time series causal discovery. However, most of the above approaches
844 make a stationary assumption. PCMCI $_{\Omega}$ Gao et al. (2023) is the first causal discovery algorithm that
845 is capable of handling semi-stationary time series with periodically recurring causal mechanisms.
846 However, it assumes that structural changes follow a fixed periodic pattern, which may limit its
847 applicability in practice. CD-NOD Huang et al. (2020) is a framework designed to discover causal
848 relations from heterogeneous or nonstationary data by exploiting distribution shifts across domains or
849 over time. SpaceTime Mameche et al. (2025) discovers distinct temporal regimes and context-specific
850 causal structures from nonstationary multivariate time series using the score built on the minimum
851 description length (MDL) principle Rissanen (1978), and Gaussian processes for modeling causal
852 relationships. However, they implicitly assume that nonstationary time series data consist of multiple
853 piecewise-stationary segments, then cannot handle continuous change over time effectively.854 Real-world datasets generally contain missing values for various reasons, and it is necessary to
855 develop causal discovery approaches from partially observed data. MissDAG Gao et al. (2022)
856 utilizes an EM-based paradigm for causal discovery in the presence of missing values and models
857 the simpler noise distributions instead of directly modeling the complex likelihood of the partially
858 observed samples with the additive noise models, but it only focuses on MCAR data. Recent studies
859 have increasingly stressed that missing values often reflect systematic patterns driven by an underlying
860 causal structure, rather than occurring purely at random Mohan et al. (2013); Ma & Chen (2019); Ma
861 & Zhang (2021). MVPC Tu et al. (2019) focuses on the task of causal discovery from observations
862 with non-random missing values. However, it implicitly assumes that the data distribution and
863 missingness mechanisms are time-independent.864 To the best of our knowledge, this is the first work to propose an algorithm specifically designed for
865 causal discovery from partially observed time series data with nonstationary missingness mechanisms
866 and establish theoretical guarantees including soundness and recoverability of the joint distribution.

864

C PRELIMINARIES

865

C.1 INTUITIVE DESCRIPTIONS OF ASSUMPTIONS

866 We describe why the assumptions provided in Section 2.3 are required and clarify that these assumptions
 867 are minimal for identifiability.

870

C.1.1 ASSUMPTION 1

872 Assumption 1 states that all unobserved confounders responsible for nonstationarity can be represented
 873 as smooth functions of the time index. This formulation effectively captures practically common
 874 phenomena where dominant changes are driven by low-dimensional, smoothly time-varying factors,
 875 such as seasonal effects and user behavior trends. This smoothness constraint allows us to model
 876 complex temporal patterns, including nonlinear and periodic behaviors, without relying on a restrictive
 877 parametric form. Furthermore, Assumption 1 rules out scenarios in which latent factors cannot be
 878 expressed as smooth functions of the time index, such as abrupt changes or instantaneous external
 879 shocks.

880

C.1.2 ASSUMPTION 5

882 Assumption 5 states that missingness neither obscures true CI relations nor introduces spurious
 883 independencies. This assumption rules out two pathological cases: (i) spurious independencies created
 884 purely by selection through missingness and (ii) true independencies being masked in the observed
 885 marginal. Pathology would mislead constraint-based methods (e.g., either by erroneously deleting a
 886 true edge or by retaining a spurious one).

887 Assumption 5 can be viewed as a natural extension of the classical faithfulness principle (i.e.,
 888 Assumption 3) to settings involving non-random missing data, thereby placing it in alignment with
 889 established frameworks in causal discovery. Several previous studies have adopted this assumption Tu
 890 et al. (2019); Dai et al. (2024); Strobl et al. (2018). In particular, Dai et al. (2024) said this assumption
 891 is rarely violated. Thus, rather than being overly strong, Assumption 5 can be viewed as a necessary
 892 and practically satisfied condition for ensuring identifiability in realistic settings.

893

C.1.3 ASSUMPTION 7

895 Assumption 7 states that the probability of missingness for a variable X is not affected by the value of
 896 X . In well-designed data collection, whether X is observed is decided a priori by protocol and before
 897 observing its value itself. Assumption 7 formalizes this practice and removes a rare but anomalous
 898 case that would otherwise entangle the missingness mechanism with latent values in a way that
 899 undermines identifiability, so this assumption reflects standard measurement practice rather than an
 900 ad-hoc modeling choice. In fact, some existing methods also utilize the no-self masking missingness
 901 assumption Tu et al. (2019); Kyono et al. (2021). For example, we consider clinical data, such as
 902 (*blood pressure, Duke Treadmill Score (DTS), age*). To mitigate potential harm, physicians may
 903 cancel physically demanding examinations, such as a treadmill exercise test (TET), for hypertensive
 904 or older patients. Since the DTS is obtained with the TET, the presence or absence of the DTS is
 905 determined by blood pressure and age, rather than the score itself.

906 In addition, note that when a missingness indicator R_X is influenced solely by X , our algorithm
 907 returns the true causal relationship. For example, we consider a causal graph where $V = \{X, Y\}$
 908 and only the edge $X \rightarrow R_X$ exists. In this case, under Assumptions 3 and 5, it is clear that
 909 $X \perp\!\!\!\perp Y \Leftrightarrow X \perp\!\!\!\perp Y | R_X = 0$ holds. Without Assumption 7, it is challenging to identify the causal
 910 relationship where $X \rightarrow R_X$ exists and other variables also have an influence on R_X . Thus, although
 911 Assumption 7 rules out only a narrow class of missingness mechanisms, specifically self-masking,
 912 our algorithm remains widely applicable across real-world scenarios.

913

D PROOFS

914 **Proposition 1.** *Suppose that for $X, Y \in V$, $S \subseteq V$, and latent factors U that drive the nonstationary
 915 changes, even if it holds that $X \perp\!\!\!\perp Y | S \cup U$, it does not necessarily hold $X \perp\!\!\!\perp Y | S \cup \{R_X = 0, R_Y = 0, R_S = 0\}$.*

918 *Proof.* We prove this by constructing a counterexample. Consider a causal graph, where U is a
 919 common latent factor of X and R_X , and \mathbf{S} is an empty set, i.e., $X \leftarrow U \rightarrow R_X$. In addition, let Y be a
 920 parent of R_X . In this graph, the path between X and Y is written as $X \leftarrow U \rightarrow R_X \leftarrow Y$, indicating
 921 that $X \perp\!\!\!\perp Y | U$ according to Definition 1. Here, consider the conditional independence given the
 922 missingness indicators $\{R_X = 0, R_Y = 0, \mathbf{R}_S = 0\}$. In this case, the set of conditioning variables
 923 includes the collider R_X . Conditioning on a collider R_X unblocks the v-structure $U \rightarrow R_X \leftarrow Y$ by
 924 Definition 1. Since the latent factor U is unobserved, the path $X \leftarrow U \rightarrow R_X \leftarrow Y$ becomes open.
 925 This induces a spurious dependency between X and Y . Therefore, although $X \perp\!\!\!\perp Y | U$ holds, it
 926 does not necessarily hold $X \perp\!\!\!\perp Y | \mathbf{S} \cup \{R_X = 0, R_Y = 0, \mathbf{R}_S = 0\}$. \square

928 **Proposition 2.** *Under Assumptions 1-7, the direct causes of missingness indicators are identifiable.*

931 *Proof.* Under Assumption 7, it suffices to consider the case where we can test whether a variable
 932 $X_i \in \mathbf{V}$ is a direct cause of the missingness indicator R_j that $i \neq j$. First, when there is a dependency
 933 $X_i \rightarrow R_j$, then by definition, this relationship holds regardless of any external influence and can
 934 be detected through CI tests. In contrast, when there is no direct edge between X_i and R_j , we
 935 need to identify the CI relation between the two nodes, but a spurious dependency may occur due
 936 to unobserved confounders of nonstationary causal mechanisms, and shared confounders. With
 937 Assumption 1, such an influence can be written as smooth functions of time $\{u(T)\}$, where each
 938 u is a function of the time index T . These functions can be thought of as covering all possible
 939 confounders. Then, there exists $\mathbf{S} \subseteq \mathbf{V} \setminus \{X_i, X_j\}$ such that the true CI relation can be described as

$$X_i \perp\!\!\!\perp R_j | \mathbf{S} \cup \{u(T)\}. \quad (4)$$

941 Since T is a surrogate variable and it is not part of a causal system, T is also not a descendant of X_i ,
 942 so it holds by Assumptions 2 and 3,

$$X_i \perp\!\!\!\perp T | \mathbf{S} \cup \{u(T)\}. \quad (5)$$

945 Both Eq. (4) and Eq. (5) indicate

$$X_i \perp\!\!\!\perp R_j | \mathbf{S} \cup \{u(T)\} \cup \{T\}. \quad (6)$$

949 Here, since each $u(T)$ is a deterministic function, we have $\sigma(u(T)) \subseteq \sigma(T)$, meaning that the
 950 information carried by $u(T)$ is measurable with respect to the σ -algebra generated by T . Eq. (6) is
 951 then equivalent to $X_i \perp\!\!\!\perp R_j | \mathbf{S} \cup \{T\}$. Therefore, the direct causes of missingness indicators are
 952 identifiable under nonstationary missingness mechanisms. \square

953 **Proposition 3.** *Under Assumptions 1-7, for any $X, Y \in \mathbf{V}$, and $\mathbf{S} \subseteq \mathbf{V} \cup \{T\} \setminus \{X, Y\}$, if it holds
 954 that $X \perp\!\!\!\perp Y | \mathbf{S} \cup \{R_X = 0, R_Y = 0, \mathbf{R}_S = 0\}$, it also holds that $X \perp\!\!\!\perp Y | \mathbf{S}$, where T is the time
 955 index and $\mathbf{R}_S = \mathbf{0}$ means that every $R \in \mathbf{R}_S$ takes the value zero.*

957 *Proof.* In this proof, we derive that the following conditional independence implication holds

$$X \perp\!\!\!\perp Y | \mathbf{S} \cup \{R_X = 0, R_Y = 0, \mathbf{R}_S = \mathbf{0}\} \implies X \perp\!\!\!\perp Y | \mathbf{S}. \quad (7)$$

958 First, with Assumption 5, the above condition is equivalent to $X \perp\!\!\!\perp Y | \mathbf{S} \cup \{R_X, R_Y, \mathbf{R}_S\}$. And,
 959 with Assumptions 4 and 6, every missingness indicator R can only be a leaf node in an m-graph,
 960 in other words, R becomes neither a confounder nor a mediator for any pair of nodes. Note that
 961 if R becomes a collider of X, Y , then R cannot open any path because removing variables from a
 962 conditioning set \mathbf{S} does not open paths containing a v-structure. Thus, if X and Y are conditionally
 963 independent given the missingness indicators, then this CI relation still holds in spite of the absence
 964 of the missingness indicators in the conditioning set according to Definition 1. Hence, it holds that
 965 $X \perp\!\!\!\perp Y | \mathbf{S}$. \square

966 **Proposition 4.** *Suppose that X and Y are not adjacent in a true m-graph, and that for any $\mathbf{S} \subseteq$
 967 $\mathbf{V} \cup \{T\} \setminus \{X, Y\}$ such that $X \perp\!\!\!\perp Y | \mathbf{S}$, it holds $X \not\perp\!\!\!\perp Y | \mathbf{S} \cup \{R_X = 0, R_Y = 0, \mathbf{R}_S = 0\}$. Then,
 968 under Assumptions 1-7, for at least one variable $Z \in \{X\} \cup \{Y\} \cup \mathbf{S}$, the missingness indicator
 969 R_Z is either the direct common effect or a descendant of the direct common effect of X and Y .*

972 *Proof.* We separate the proof into Necessity and Sufficiency. Let U_{XY} be an arbitrary path between
 973 X and Y , and W be a collider on the path U_{XY} .

974 *Necessary:* Suppose that $\forall \mathbf{S} \subseteq \mathbf{V} \cup \{T\} \setminus \{X, Y\} : X \perp\!\!\!\perp Y | \mathbf{S} \Rightarrow X \not\perp\!\!\!\perp Y | \mathbf{S} \cup \{R_X = 0, R_Y = 0, \mathbf{R}_S = \mathbf{0}\}$ holds. First, with Assumption 5, it holds that $X \not\perp\!\!\!\perp Y | \mathbf{S} \cup \{R_X = 0, R_Y = 0, \mathbf{R}_S = \mathbf{0}\} \Leftrightarrow X \not\perp\!\!\!\perp Y | \mathbf{S} \cup \{R_X, R_Y, \mathbf{R}_S\}$. Here, since it holds that $X \perp\!\!\!\perp Y | \mathbf{S}$, as shown in
 975 Definition 1, every path between X and Y is blocked by the d-separation definition, either (i) at
 976 least one of the confounders or mediators on the path U_{XY} lies in \mathbf{S} , (ii) a collider node W on the
 977 path U_{XY} and all its descendants are not in \mathbf{S} . Since we consider that conditioning additionally on
 978 the missingness indicators $\{R_X, R_Y, \mathbf{R}_S\}$ opens a previously blocked path between X and Y , it
 979 is sufficient to only focus on the second condition of the d-separation rules. Hence, for the path
 980 U_{XY} to open, there must exist $Z \in \{X\} \cup \{Y\} \cup \mathbf{S}$ such that R_Z is either the collider W itself or a
 981 descendant of W . In addition, under Assumptions 4 and 6, since any missing indicator is only affected
 982 by variables in $\mathbf{V} \cup \{T\}$ and cannot affect others, we claim that a collider W on the path U_{XY} must
 983 be a direct common effect with structure $X \rightarrow W \leftarrow Y$; otherwise one could choose \mathbf{S}^* to block the
 984 path U_{XY} even when conditioning on the missingness indicators $\{R_X, R_Y, \mathbf{R}_S\}$. Specifically, if a
 985 collider W is not a direct common effect, then there exists a first non-collider node B that appears
 986 when starting from X or Y toward W along with the path U_{XY} . Choosing \mathbf{S}^* including the node
 987 B yields $X \perp\!\!\!\perp Y | \mathbf{S}^*$ by Definition 1. And, this CI relation is preserved even after the addition of
 988 $\{R_X, R_Y, \mathbf{R}_S\}$. Therefore, for at least one variable $Z \in \{X\} \cup \{Y\} \cup \mathbf{S}$, the missingness indicator
 989 R_Z is either the direct common effect or a descendant of the direct common effect of X and Y .

990 *Sufficiency:* Conversely, suppose there exists $Z \in \{X\} \cup \{Y\} \cup \mathbf{S}$ whose missingness indicator R_Z
 991 is either the direct common effect or a descendant of the direct common effect of X and Y ; then there
 992 exists a direct common effect W , it holds that $R_Z \in \text{De}(W)$ or $R_Z = W$, and there exists a path
 993 U_{XY} which has the structure written as $X \rightarrow W \leftarrow Y$. Since $X \perp\!\!\!\perp Y | \mathbf{S}$ holds, neither W nor any
 994 of its descendants are in \mathbf{S} , and the path U_{XY} is blocked at W . When we additionally condition on
 995 $\{R_X, R_Y, \mathbf{R}_S\}$, the missingness indicator R_Z is included in the conditioning set $\mathbf{S} \cup \{R_X, R_Y, \mathbf{R}_S\}$.
 996 Since $R_Z = W$ or $R_Z \in \text{De}(W)$, conditioning R_Z opens the $X \rightarrow W \leftarrow Y$ path, implying
 997

$$998 \quad X \not\perp\!\!\!\perp Y | \mathbf{S} \cup \{R_X = 0, R_Y = 0, \mathbf{R}_S = \mathbf{0}\},$$

1000 under Assumption 5. Moreover, by Assumption 4, missingness indicators have no children, so adding
 1001 them as leaf nodes cannot spuriously open non-collider paths. This ensures that the collider at W
 1002 only opens the path U_{XY} .

1003 In summary, we conclude that when conditioning additionally on the missingness indicators $\{R_X = 0, R_Y = 0, \mathbf{R}_S = \mathbf{0}\}$ opens a path U_{XY} between the nodes X and Y , the missingness indicator R_Z
 1004 is either the direct common effect or a descendant of the direct common effect of X and Y . \square

1005 **Theorem 1.** *Under Assumptions 1-7, given the parents of each missingness indicator $\text{Pa}(R_i)$, the
 1006 joint distribution $P(\mathbf{V})$ is recoverable, and we then have*

$$1007 \quad P(\mathbf{V}) = \frac{P(\mathbf{R} = \mathbf{0}, \mathbf{V})}{\prod_i P(R_i = 0 | \text{Pa}^+(R_i), \mathbf{R}_{\text{Pa}(R_i)} = 0)} \\ 1008 \quad = \frac{1}{Z} P(\mathbf{V} | \mathbf{R} = \mathbf{0}) \prod_i \omega_{\text{Pa}(R_i)}$$

1009 where

$$1010 \quad \text{Pa}^+(R_i) = \text{Pa}(R_i) \cup \{T\} \quad (\text{time-augmented parents}), \\ 1011 \quad Z = \frac{\prod_i P(R_i = 0 | \mathbf{R}_{\text{Pa}(R_i)} = \mathbf{0})}{P(\mathbf{R} = \mathbf{0})} \quad (\text{normalizing constant}), \\ 1012 \quad \omega_{\text{Pa}(R_i)} = \frac{P(\text{Pa}^+(R_i) | \mathbf{R}_{\text{Pa}(R_i)} = \mathbf{0})}{P(\text{Pa}^+(R_i) | R_i = 0, \mathbf{R}_{\text{Pa}(R_i)} = \mathbf{0})} \quad (\text{density ratio weights}).$$

1026 *Proof.* The observed joint distribution $P(\mathbf{V} | \mathbf{R} = \mathbf{0})$ can be described according to the graph \mathcal{G} as
 1027

$$\begin{aligned} 1028 \quad P(\mathbf{V} | \mathbf{R} = \mathbf{0}) &= \frac{P(\mathbf{R} = \mathbf{0} | \mathbf{V})P(\mathbf{V})}{P(\mathbf{R} = \mathbf{0})} \\ 1029 \quad P(\mathbf{V}, \mathbf{R} = \mathbf{0}) &= \sum_{\mathbf{U}} P(\mathbf{V}, \mathbf{U})P(\mathbf{R} = \mathbf{0} | \mathbf{V}, \mathbf{U}) \\ 1030 \quad P(\mathbf{V}, \mathbf{R} = \mathbf{0}) &= P(\mathbf{V}) \sum_{\mathbf{U}} P(\mathbf{U} | \mathbf{V})P(\mathbf{R} = \mathbf{0} | \mathbf{V}, \mathbf{U}). \\ 1031 \end{aligned}$$

1032 Under Assumption 6, the above formula is equivalent to
 1033

$$1034 \quad P(\mathbf{V}, \mathbf{R} = \mathbf{0}) = P(\mathbf{V}) \sum_{\mathbf{U}} P(\mathbf{U} | \mathbf{V}) \left\{ \prod_i P(R_i = 0 | \text{Pa}(R_i), \text{Pa}^m(R_i)) \right\}. \\ 1035$$

1036 With Assumption 1, we only have the unobserved confounders written as smooth functions of time.
 1037 Accordingly, we can replace $\text{Pa}^m(R_i)$ with $\mathbf{u}_i(T)$, which is a deterministic function of T . Note that
 1038 in the case of no unobserved confounders for R_i , $\mathbf{u}_i(T)$ is an empty set (i.e., $\mathbf{u}_i(T) = \emptyset$). Under
 1039 Assumptions 2 and 3 it follows that $R_i \perp\!\!\!\perp T | \text{Pa}(R_i) \cup \mathbf{u}_i(T)$. Consequently, the conditional
 1040 probability satisfies
 1041

$$1042 \quad P(R_i = 0 | \text{Pa}(R_i), \mathbf{u}_i(T)) = P(R_i = 0 | \text{Pa}(R_i), \mathbf{u}_i(T), T). \\ 1043$$

1044 Here, since each component $u(T) \in \mathbf{u}_i(T)$ is a deterministic function of T , it holds $\sigma(\mathbf{u}_i(T)) \subseteq$
 1045 $\sigma(T)$, meaning that the information carried by $u(T)$ is measurable with respect to the σ -algebra
 1046 generated by T . Hence, it holds that
 1047

$$1048 \quad P(R_i = 0 | \text{Pa}(R_i), \mathbf{u}_i(T), T) = P(R_i = 0 | \underbrace{\text{Pa}(R_i), T}_{\text{Pa}^+(R_i)}), \\ 1049$$

1050 where $\text{Pa}^+(R_i) = \text{Pa}(R_i) \cup \{T\}$. Based on the above, we have that the joint distribution can be
 1051 decomposed as
 1052

$$\begin{aligned} 1053 \quad P(\mathbf{V}, \mathbf{R} = \mathbf{0}) &= P(\mathbf{V}) \sum_{\mathbf{U}} P(\mathbf{U} | \mathbf{V}) \left\{ \prod_i P(R_i = 0 | \text{Pa}^+(R_i)) \right\} \\ 1054 \quad &= P(\mathbf{V}) \prod_i P(R_i = 0 | \text{Pa}^+(R_i)), \\ 1055 \end{aligned}$$

1056 where $\sum_{\mathbf{U}} P(\mathbf{U} | \mathbf{V}) = 1$ because $\prod_i P(R_i = 0 | \text{Pa}^+(R_i))$ dose not depend on \mathbf{U} . Under
 1057 Assumption 7, i.e., X_i is not a parent of R_i , we have $R_i \perp\!\!\!\perp \mathbf{R}_{\text{Pa}(R_i)} | \text{Pa}(R_i) \cup T$, therefore,
 1058

$$1059 \quad P(\mathbf{V}, \mathbf{R} = \mathbf{0}) = P(\mathbf{V}) \prod_i P(R_i = 0 | \text{Pa}^+(R_i), \mathbf{R}_{\text{Pa}(R_i)} = \mathbf{0}). \\ 1060$$

1061 Solving for $P(\mathbf{V})$ from the equality above and expanding the terms via Bayes rule, we obtain
 1062

$$\begin{aligned} 1063 \quad P(\mathbf{V}) &= \frac{P(\mathbf{V}, \mathbf{R} = \mathbf{0})}{\prod_i P(R_i = 0 | \text{Pa}^+(R_i), \mathbf{R}_{\text{Pa}(R_i)} = \mathbf{0})} \\ 1064 \quad &= \frac{P(\mathbf{V} | \mathbf{R} = \mathbf{0})P(\mathbf{R} = \mathbf{0})}{\prod_i \frac{P(R_i = 0, \text{Pa}^+(R_i) | \mathbf{R}_{\text{Pa}(R_i)} = \mathbf{0})}{P(\text{Pa}^+(R_i) | \mathbf{R}_{\text{Pa}(R_i)} = \mathbf{0})}} \\ 1065 \quad &= \frac{P(\mathbf{V} | \mathbf{R} = \mathbf{0})P(\mathbf{R} = \mathbf{0})}{\prod_i \frac{P(\text{Pa}^+(R_i) | R_i = 0, \mathbf{R}_{\text{Pa}(R_i)} = \mathbf{0})P(R_i = 0 | \mathbf{R}_{\text{Pa}(R_i)} = \mathbf{0})}{P(\text{Pa}^+(R_i) | \mathbf{R}_{\text{Pa}(R_i)} = \mathbf{0})}} \\ 1066 \quad &= P(\mathbf{V} | \mathbf{R} = \mathbf{0}) \cdot \underbrace{\frac{P(\mathbf{R} = \mathbf{0})}{\prod_i P(R_i = 0 | \mathbf{R}_{\text{Pa}(R_i)} = \mathbf{0})}}_{\text{normalizing constant } Z} \cdot \underbrace{\prod_i \frac{P(\text{Pa}^+(R_i) | \mathbf{R}_{\text{Pa}(R_i)} = \mathbf{0})}{P(\text{Pa}^+(R_i) | R_i = 0, \mathbf{R}_{\text{Pa}(R_i)} = \mathbf{0})}}_{\text{density ratio } \omega_{\text{Pa}(R_i)}}. \\ 1067 \end{aligned}$$

1068 Hence, the desired result is obtained. □
 1069

1080
 1081 **Theorem 2.** *Under Assumptions 1-7, the skeleton result from the CANMI algorithm is independent*
 1082 *of the order of variables (X_1, \dots, X_d) .*

1083 *Proof.* This proof is straightforward and mainly follows the theoretical result found in Colombo
 1084 & Maathuis (2014). CI tests in our algorithm are conducted in stages according to the cardinality
 1085 $\ell = |\mathbf{S}|$ of the conditioning sets. Specifically, for each ℓ , conditioning sets are formed from adjacency
 1086 sets that are kept fixed throughout the loop $|\mathbf{S}| = \ell$, and no edge is deleted within the loop. Since
 1087 the family of CI tests considered at the loop $|\mathbf{S}| = \ell$ does not depend on the order of variables in
 1088 which they are executed, the set of edges marked for deletion depends only on the CI test results,
 1089 not on their execution order; hence, the post-stage skeleton is uniquely determined. By iterating
 1090 this procedure over ℓ , the final skeleton is uniquely determined as well. Hence, our algorithm is
 1091 order-independent. \square

1092 **Theorem 3.** *Under Assumptions 1-7, CANMI returns a causal skeleton graph that is exactly consistent*
 1093 *with the true causal skeleton.*

1094 *Proof.* First, for each pair $X, Y \in \mathbf{V}$, our proposed algorithm deletes an edge between X and Y
 1095 if there is a subset $\mathbf{S} \subseteq \mathbf{V} \cup \{T\}$ such that $X \perp\!\!\!\perp Y \mid \mathbf{S}$ in Step 3. Here, the algorithm determines
 1096 whether the time index T is included in the conditioning set \mathbf{S} according to the outputs of Step 1.
 1097 According to Proposition 3, while extraneous edges may occur, an edge is deleted in Step 3 only if it is
 1098 absent in the true graph. Also, according to Proposition 4, it identifies all extraneous edge candidates
 1099 in the estimated graph obtained after Step 3. Next, in Step 4, for each such candidate edge, it recovers
 1100 the data distribution using the recoverability formula in Theorem 1, and performs CI tests on a
 1101 modified dataset obtained by importance resampling drawn from the reconstructed distribution. By
 1102 Assumption 3, CI relations inferred from the reconstructed data imply true d-separations in the true
 1103 causal graph. Therefore, it eliminates all false positives and preserves all true causal dependencies.
 1104 Hence, the estimated skeleton graph returned by CANMI is exactly consistent with the true causal
 1105 skeleton under Assumptions 1-7. \square

1107 E EXPERIMENTS

1109 E.1 EXPERIMENTAL SETUP

1111 **Computing infrastructure.** We conducted all our experiments on a system running Ubuntu 22.04.4
 1112 LTS (GNU/Linux 5.15.0-97-generic x86_64), equipped with 2 * Intel Xeon Platinum 8268 2.7GHz
 1113 24-core CPUs, 8 * 64GB DDR4 RAM, and 2 * NVIDIA RTX A6000 GPUs.

1114 **Baselines.** We compared the following eight methods for causal discovery.

- 1116 • SpaceTime Mameche et al. (2025): discovers causal relationships from nonstationary time
 1117 series data by detecting multiple piecewise-stationary segments.
- 1118 • MissDAG Gao et al. (2022): is a general EM-based framework in the presence of missing
 1119 data, which leverages identifiable additive noise models (ANMs) and penalized likelihood
 1120 optimization.
- 1121 • CD-NOD Huang et al. (2020): is a nonparametric approach designed to recover the skeleton
 1122 and determine orientations of the causal structure over nonstationary observed variables.
- 1123 • MVPC Tu et al. (2019): is a correction-based extension of the PC-algorithm, which removes
 1124 extraneous edges generated due to missingness mechanisms underlying the causal process.
- 1125 • NOTEARS-MLP (NO-MLP, for short) Zheng et al. (2019): is an extension of
 1126 NOTEARS Zheng et al. (2018) (mentioned below) for nonlinear settings, which aims
 1127 to approximate the generative structural equation model by MLP.
- 1128 • NOTEARS Zheng et al. (2018): is a differentiable optimization method with an acyclic
 1129 regularization term to estimate the structure of a directed acyclic graph.
- 1130 • GGES Huang et al. (2018): provides generalized score functions for causal discovery based
 1131 on the characterization of general CI relations without assuming specific model classes.
- 1132 • LiNGAM Shimizu et al. (2006): is a traditional FCM-based causal discovery approach with
 1133 a linear non-Gaussian acyclic model.

Figure 2: Causal discovery results for synthetic datasets with various $d \in \{6, 7, 8, 9, 10\}$.

Implementation details. For the constraint-based methods, we used the KCI-test Zhang et al. (2011) for CI tests and we set the significance level at $\alpha = 0.05$. For MissDAG, we reported the results for the Non-Linear (NL)-ANM case. And we utilized Zero-order Holder to evaluate approaches, which cannot handle missing values in observed data. Finally, we conducted all our experiments with five different seeds for a fair comparison.

Furthermore, regarding the baselines used in this paper, we mainly employed the publicly available implementations of the baseline methods to ensure reproducibility and consistency with prior work. The implementations of SpaceTime², MissDAG³, NOTEARS⁴, NO-MLP⁴, and LiNGAM⁵ were obtained from the authors' original repositories. We utilized the implementations of CD-NOD, MVPC, and GGES from the causal-learn package Zheng et al. (2023), which is available at <https://github.com/py-why/causal-learn>.

E.2 ROBUSTNESS

Setup. We conducted the experiments on various numbers of variables and missing probabilities. Specifically, we varied the dimensionality $d \in \{6, 7, 8, 9, 10\}$ and the missing probability $p_h \in \{0.0, 0.4, 0.6, 0.8\}$ while fixing the sample size $N = 3000$ and the average degree $k_d = 2$.

Results. Figure 2 shows results for synthetic datasets with dimensionalities $d \in \{6, 7, 8, 9, 10\}$ for CANMI and competing methods. Overall, our proposed method outperforms the competitive baselines across all evaluation metrics. We can also see that CANMI partly degrades for high-dimensional data, as mentioned in the limitations. Nevertheless, some baselines already fail to discover causal relationships in low dimensions, while others experience a similar decline in discovery accuracy as dimensionality increases. Thus, CANMI is relatively robust compared with its baselines against various dimensionalities.

E.3 STATISTICAL ANALYSIS

Figure 3 shows critical difference diagrams for F1 Score and SHD. These diagrams are based on the Wilcoxon-Holm method Wilcoxon (1945), where methods not connected by a bold line are sufficiently different regarding their average rank. We can observe that the significant improvements that CANMI achieved over its baselines are valid according to statistical tests.

²<https://github.com/srhmm/spacetime>

³<https://github.com/ErdungAO/MissDAG>

⁴<https://github.com/xunzheng/notears>

⁵<https://github.com/cdt15/lingam>

Figure 3: Critical difference diagrams of causal discovery results. The ticks at the top indicate the average rank of each method (smaller is better).

E.4 SENSITIVITY ANALYSIS

We conducted a sensitivity analysis with respect to the kernel functions and bandwidth selection rules of kernel density estimation (KDE) to compute the density ratio weights in Theorem 1. We considered four kernel functions (Gaussian, Epanechnikov, Tophat, and Exponential) and two bandwidth selection rules (Scott’s Rule and Silverman’s Rule). Table 4 reports the results across different kernels and bandwidth rules. We can observe that the performance of CANMI remains consistently high performance, with negligible variance across all evaluation metrics. This indicates that our proposed method is robust with respect to moderate changes in KDE hyperparameters.

Table 4: Sensitivity analysis results.

Metric		TPR (\uparrow)	FPR (\downarrow)	FDR (\downarrow)	F1 (\uparrow)	SHD (\downarrow)
Epanechnikov	Scott	0.774	0.0452	0.0936	0.828	4.40
	Silverman	0.770	0.0452	0.0936	0.826	4.47
Exponential	Scott	0.776	0.0429	0.0917	0.828	4.40
	Silverman	0.776	0.0429	0.0917	0.828	4.40
Gaussian	Scott	0.774	0.0452	0.0929	0.828	4.40
	Silverman	0.770	0.0452	0.0936	0.826	4.47
Tophat	Scott	0.777	0.0452	0.0929	0.828	4.40
	Silverman	0.777	0.0452	0.0936	0.828	4.40

E.5 COMPUTATIONAL EFFICIENCY

We measured wall-clock time and peak memory usage for synthetic datasets of length $N = 1,000$ and varying dimensions $d \in \{5, 10, 20, 50, 100\}$. Figure 4 shows the computational efficiency of CANMI and its competitive baselines (i.e., MissDAG and CD-NOD). Although, as mentioned in the limitation, the worst-case time complexity of CANMI is exponential in theory, our empirical experiments demonstrated that the computational time needed for our method is competitive with its baselines, and its memory usage grows only moderately with increasing dimensionality. This slight increase primarily stems from the use of kernel density estimation in the density ratio adjustment step. First, unlike MissDAG, which relies on iterative EM procedures over latent distributions, CANMI adopts a constraint-based framework that avoids costly likelihood-based optimization, reducing memory overhead. Second, compared with CD-NOD, which does not account for missing values, spurious edges caused by missingness remain unpruned, leading to an increased number of CI tests and larger conditioning sets.

F LIMITATIONS

The proposed method has some limitations that may be interesting to address in future work. First, as with other constraint-based causal discovery methods, the worst-case time complexity remains exponential, which may limit its scalability for high-dimensional or long time series datasets. And, in real-world scenarios, nonstationarity may not only induce spurious dependencies but also lead to

Figure 4: Comparison of computational efficiency between CANMI and its baselines with various $d \in \{5, 10, 20, 50, 100\}$.

incorrect edge orientations. It is important to investigate whether such phenomena can actually occur and, if so, to develop algorithms for such phenomena.

G BROADER IMPACTS

The primary objective of this work was to take a significant step toward causal discovery in more realistic and challenging conditions, specifically nonstationary and MNAR missingness, which are commonly encountered in neuroscience, healthcare, and sensor networks, as explained in the introduction. Therefore, although we believe that our method will serve beneficial purposes, it is still important for the reader to be aware of the underlying assumptions, which are relatively general and commonly used in previous causal discovery approaches and therefore are unlikely to interfere with most practical applications; however, if these assumptions are violated, misinterpretation may still lead to incorrect conclusions.