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Abstract

Designing experiments and result interpretations are core scientific competen-
cies, particularly in biology, where researchers perturb complex systems to un-
cover the underlying systems. Recent efforts to evaluate the scientific capabil-
ities of large language models (LLMs) fail to test these competencies because
wet-lab experimentation is prohibitively expensive: in expertise, time and equip-
ment. We introduce SciGym, a first-in-class benchmark that assesses LLMs’
iterative experiment design and analysis abilities in open-ended scientific dis-
covery tasks. SciGym overcomes the challenge of wet-lab costs by running
a dry lab of biological systems. These models, encoded in Systems Biology
Markup Language, are efficient for generating simulated data, making them ideal
testbeds for experimentation on realistically complex systems. We evaluated
six frontier LLMs on 137 small systems, and released a total of 350 systems
at https://huggingface.co/datasets/h4duan/scigym-sbml. Our evalua-
tion shows that while more capable models demonstrated superior performance,
all models’ performance declined significantly as system complexity increased,
suggesting substantial room for improvement in the scientific capabilities of LLM
agents.

1 Introduction

Scientific experimentation is the primary tool that researchers in the natural sciences use to gain
insight about our world’s physical and biological systems. A researcher can test a hypothesis by
systematically perturbing systems and observing effects. They then interpret their results and identify
the next best experiment to perform, closing the scientific discovery loop. Thus, when assessing
large language models (LLMs) capabilities as scientists, it is essential to have evaluation frameworks
effectively testing these skills. However, in this context, a fundamental challenge emerges: How can
we generate experimental data in the loop to evaluate an LLM’s scientific iteration?

For each experiment proposed by an LLM, we need to obtain data corresponding to how the system
responds to the suggested perturbations. In other domains, the success of end-to-end benchmarks has
hinged on our ability to quickly and automatically assess LLM actions. For example, SWE-bench
tests an LLM’s ability to resolve real-world GitHub issues, as evaluated by a suite of unit tests
Jimenez et al. (2024). Importantly, coding is done in formal programming languages that can be
executed and analyzed cheaply. Unfortunately, this is not attainable with a traditional laboratory
setup in which experiments are expensive and laborious to perform. Substantial progress has been
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Figure 1: SCIGYM simulates scientific discovery. Real-world scientists (left) iteratively refine
their hypotheses by designing experiments, collecting lab data, and analyzing results. In SCIGYM
(right), agents request experimental actions, receive the observation data simulated from the perturbed
reference system, and then perform analyses in a Python shell to refine their hypotheses.

made in robotics and control for self-driving labs, however these technologies are not yet mature
enough to easily be used to assess LLM performance at scale Abolhasani & Kumacheva (2023).

A promising approach comes from systems biology, where formal mathematical models of various
biological processes have been developed. BioModels (Malik-Sheriff et al., 2020) is a public
repository that hosts manually-curated models from published literature in variety of fields —such
as cell signaling, metabolic pathways, gene regulatory networks, and epidemiological models of
infectious disease. These models are stored in Systems Biology Markup Language (SBML), a
standard exchange format which provides a machine-readable representation supported by numerous
software tools for simulation and analysis (SBML.org; Dubitzky et al., 2013; Medley et al., 2018;
Hoops et al., 2006). Crucially, SBMLs can facilitate a “dry lab” in the context of a benchmark: when
an LLM requests an experiment, we can create an SBML file describing the proposed perturbation,
and return the corresponding simulated data.

Based on this insight, we introduce SCIGYM, an agentic benchmark that evaluates LLMs’ end-to-end
scientific discovery abilities. We leverage 350 SBML models from BioModels (Malik-Sheriff et al.,
2020) ranging in complexity from simple linear pathways with a handful of species and reactions to
sophisticated networks containing hundreds of molecular components and interactions. We release
two benchmark splits: small, which contains 137 models with fewer than 10 reactions each, and
large, which contains the remaining 213 models with up to 400 reactions each. Our framework
operates as follows: the agent is tasked with discovering a reference system described by a biology
model by analyzing data simulated from the SBML. The agent can perturb the simulated system and
write Python code to analyze the resulting data. Performance is assessed by measuring correctness
in topology of the graph of the true system, recovery of the reactions in the system, and percent
error in data generated by a model proposed by the agent. To succeed in our tasks, the agent must
excel in both experimental design and data analysis in an open-ended manner, mirroring the core
competencies of human scientists.

In addition to our specific benchmarking settings, SCIGYMis highly extensible, allowing researchers
to add various configurations that test different tasks, abilities, and biological systems. Although
these SBML models do not fully capture all physiological variables, these carefully curated dynamic
systems represent a treasure trove of biochemical insights derived from expert knowledge. By
harnessing these models to simulate from, we posit that faithfully recovering the underlying systems
which generate the trajectories of species concentration over time is a challenge which is suitably
complex to evaluate an agents’s scientific reasoning. We foresee this is a capability which will
translate to real-world performance when it comes to inferring mechanisms from experimental data.

We evaluated six LLMs from three frontier model families (Gemini, Claude, GPT-4) on SCIGYM-
small. We found that more capable models generally outperform their smaller counterparts, with
Gemini-2.5-Pro leading our benchmark followed by Claude-Sonnet. However, we also identified
consistent limitations across all models: 1) performance decreases as the underlying biological
system becomes more complex; 2) proposed mechanisms often overfit to experimental data without
generalizing to unseen initial conditions; and 3) models struggle to identify subtle relationships,
particularly those involving modifiers.

2 Background on formal biology models and SBML

Mathematical modeling of biochemical reaction networks, such as metabolic, gene regulatory, and
protein-signaling networks is one of the central tasks in systems biology (Sauro, 2020). Motivated
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by the need to share models, researchers have developed standard machine-readable formats for
describing chemical reaction networks. Among these, the Systems Biology Markup Language
(SBML) has become a de facto standard for formal specifications of dynamic network models via an
XML-based standard. Going forward, we use texttt when referring to specific SBML tag types.

SBML adopts terminologies from biochemistry: reaction is the central object for describing pro-
cesses that change the quantities of species (entities such as small molecules, proteins, etc.) in a
model. The kineticLaw of a reaction specifies in MathML the speed with which this process hap-
pens. Systems described by SBMLs can be simulated as systems of ordinary differential equations, as
we discuss below, or other frameworks like discrete stochastic systems. The reaction tag can be un-
derstood in terms of the participating species found in the listOfReactants, listOfProducts,
and possibly listOfModifiers. A reaction is a directed relationship: the quantities of reactants
decrease as they are consumed, while the quantities of products increase as they are generated due
to the reaction proceeding. Modifiers affect reaction rates, and their quantities remain unchanged
through the reactions. A reaction can also define the relevant kineticLaw and listOfParameters
to characterize the rate of reactions. SBML can include other optional components, such as rule
and event tags. We refer readers to Appendix D.1 major SBML components and the SBML Level 3
language specification for more details (Hucka et al., 2019).
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Figure 2: Biological process in The
Michaelis–Menten enzymatic process.
The substrate S binds to the enzyme E
(left) which catalyzes the formation of
the product P (right).

Reduced SBML Representation. For our purposes, an
SBML is a 4-tuple (S,Θ,R, T ) ∈ S consisting of its
listOfSpecies S := {Sj}nj=1, listOfParameters
Θ, listOfReactions R := {Ri}mi=1, and all other
tags T . Each reaction Ri := (Ri,Pi,Mi, θi, ri,Ti)
consists of its listOfReactants Ri, listOfProducts
Pi, listOfModifiers Mi, listOfParameters θi, a
kineticLaw represented as a function ri : S → R+,
and all other tags Ti.

Example system. The Michaelis–Menten (Michaelis
et al., 2011) enzymatic process describes a system that
produces product P from the substrate S, catalyzed by
the enzyme E. The reaction is illustrated in Figure 2 and represented via the chemical equa-

tion: E + S
kon−−⇀↽−−
koff

ES kcat−−→ E + P. The SBML model to describe this system consists of the

set of species S = {S,E,ES,P}, two reactions R1, R2, and parameters Θ = {koff, kon, kcat}.
The first reaction describes the reversible formation of the enzyme-substrate complex with rate
r1(S,Θ,R, T ) = vkon[E][S] − vkoff[ES], where v > 0 is the volume of the compartment where
the reaction occurs, specified in T . The second reaction represents the conversion of the substrate
to the product with rate r2(S,Θ,R, T ) = vkcat[ES]. The square brackets [·] map a species to its
time-varying concentration. We omit the time index to avoid notational clutter.

To translate this into an ODE, we sum the rates implied by the reactions for each species. For Sj we
have v · d[Sj ]/dt =

∑m
i=1 sij · ri(S,Θ,R, T ). sij are stoichiometric coefficients (specified in Ri or

Pi) that describe how much of each species is consumed or produced in the reaction. They are signed
according to the role of Sj in Ri: concentration decreases and sij < 0 if Sj is a reactant in reaction
Ri, concentration increases and sij > 0 if Sj is a product, and sij = 0 otherwise. We include a full
worked example of this enzyme system’s SBML and ODE in Appendix D.2, and a worked example
of an SBML with a modifier in Appendix D.3.

Simulation. Numerous simulation softwares have been developed to efficiently generate time-series
data from SBML models, with the most popular ones being libRoadRunner (Somogyi et al., 2015), and
COPASI (Hoops et al., 2006). These simulators are typically based on ordinary differential equation
(ODE) solvers. They are highly efficient and can handle various complexities in SBML specifications,
such as stiff equations arising from different reaction timescales and algebraic constraints defined
by rules. In this work, we use Tellurium (Medley et al., 2018), a python-based library using
libRoadRunner as the backend simulation engine.
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Figure 3: Open-ended scientific iteration Agents must discover all components of missing reactions
and can update the SBML models using Python code (left). SBML models are encoded as structured
XML files, with reactions consisting of five components: reactants, products, modifiers, kinetic laws
and parameters (right).

3 SCIGYM Benchmark

3.1 Data Curation

The full curation pipeline is shown in Figure S1, and we describe briefly the major steps below.

Filtering. Starting from the curated collection of 1096 peer-reviewed models in the BioModels
repository (Malik-Sheriff et al., 2020), we first removed models with no reactions or no species. Next,
we removed models containing rule and event tags. We found that rules could leak information
about held-out reactions, artificially inflating scores. On the other hand, agents often got stuck trying
to trigger events, which can require complex combinations of interventions that our experimental
interface may not support. We classified the models in our benchmark by their curated gene ontol-
ogy (Ashburner et al., 2000) (GO) terms (Figure S4). Finally, we removed models that failed to parse
with libsbml or failed to simulate using Tellurium. This resulted in 350 models in our benchmark.
We provide a detailed breakdown of removed instances in Appendix C.1.

Preprocessing. In order to prevent memorization of SBML documents by the agent, we preprocessed
each of the filtered models by stripping optional metadata fields, shuffling core components, and
anonymizing identifiers to a unique 4-character alphanumeric string (see Appendix C.3). This
preprocessing step is how we derive an initial partial SBML which the agent has access to, from the
reference system which is kept hidden from the agent.

Determining Simulation Duration. We found that a large proportion of the models in the BioModels
database did not provide an appropriate simulation timescale in order to observe the characteristic
behavior of the mechanism. Thus, we systematically analyzed each model in our benchmark and
chose a simulation duration that either enabled the system to reach a steady state or a maximum
duration of 10000 seconds (see Appendix C.2).
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3.2 Framework

Task. As illustrated in Figure 1, SBML models provide a general framework to simulate the scientific
discovery process: an SBML model is used to generate time-series data; the agent is tasked with
discovering the underlying reference system by designing experiments and analyzing their results.
One can design tasks of varying difficulty by modulating the agent’s access to the system (what
species can be observed and what perturbations are permitted). We decided to focus on a fully-
observed reaction discovery task, but SCIGYM is easily extended to any task or degree of observability
that SBML simulators can support. We allowed the agent to fully observe the concentration time
series of all species and asked it to discover the missing reaction tags connecting species in
the system. This task mirrors fundamental research problems in biology, such as inferring gene
regulatory networks from Perturb-seq experiments (Dixit et al., 2016) or reconstructing cellular
signaling pathways from spatial transcriptomics data (Papin et al., 2005).

Starting with a reference SBML mref = (S,Θ,R, T ), the agent is given a partial SBML mhyp =
(S,Θ′, ∅, T ) where the reactions R have been removed completely and the parameter set Θ′ contains
all parameters except those that exclusively appear in a reaction’s θi. Additionally, we remove
initialAssignment, functionDefinition, and constraint tags that reference the removed
reactions to prevent information leakage. The agent is given all units, compartments, and species
from the original model. The agent’s task is to recover the missing reactions R in mref.

Agent. We implemented a ReAct-style agent (Yao et al., 2023)using a Thoughts-Actions-Observations
framework due to its simplicity for comparing performance across different models. The agent is
required to articulate its reasoning process before taking actions, structuring its response in markdown
format with ## Thoughts and ## Action sections. The environment’s outputs (code execution
and experiment results) are then added as ## Observation sections. In the prompt, we inform the
agent that its goal is to discover the underlying biological mechanisms. To maintain an open-ended
task that better mirrors actual scientific discovery processes, we deliberately avoid specifying exact
evaluation metrics to the agent. The system prompt is provided in Section A.1.

Agent Dry Lab

Set Initial

Concentration

Substrate S

0 Molar

S

Perturbed SystemReference System
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Figure 4: SBML models serve as data simulators for vari-
ous experimental perturbations. The agent proposes pertur-
bations to the system, such as changing its initial conditions
and can receive the observed data of the perturbed system.

Action Space. In each iteration, the
agent can choose from three actions:
writing code, conducting experiments,
or submitting the model. The agent
can choose to write code or conduct
experiments or both within a single
iteration. However, once the agent
chooses to submit the model, no fur-
ther experiments or code execution
is permitted. Each action is signaled
with a corresponding markdown sub-
section, with specific response for-
mats detailed in the system prompt.

Coding. We provide a Python exe-
cution environment that enables the
agent to analyze experimental results.
When the agent chooses to write code,
the environment executes it and re-
turns stdout output or stderr messages
for any errors. The agent is instructed
in the system prompts to use print
statements for important outputs that
should be communicated back to its
reasoning process. The environment
maintains state as global variables in
its Python shell between iterations, but the agent must explicitly choose which variables to store for
future access. This design allows the agent to reuse some important data structures especially large
objects like pandas DataFrames. The agent has access to a specified set of libraries and customized
functions. A customized tool documentation is provided with docstrings (example in Section A.2). In
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Table 1: Pro models outperform their mini counterparts in SCIGYM, with Gemini dominating
in both size categories. We report the average Simulation Trajectory Error (STE) and Reaction
Matching Score (RMS) across all benchmark instances. Bold values indicate best performance.

Model STE ↓
RMS ↑

With Modifiers Without Modifiers
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.4181 0.1527 0.1071 0.1217 0.2399 0.1839 0.2005
GPT-4.1-mini 0.6007 0.1516 0.1253 0.1320 0.2530 0.2313 0.2322
Claude-3.5-Haiku 0.6281 0.0858 0.0421 0.0530 0.1454 0.0805 0.0987

Gemini-2.5-Pro 0.3212 0.2138 0.1664 0.1817 0.3781 0.3219 0.3383
GPT-4.1 0.4611 0.2067 0.1597 0.1740 0.3517 0.2888 0.3038
Claude-3.7-Sonnet 0.3615 0.1780 0.1698 0.1688 0.3160 0.3170 0.3047

our experiments, we provide a wrapper around the Tellurium simulator as the customized functions
to help them simulate the proposed mechanisms.

Experiments. The agent is provided with a list of permitted experimental perturbations, detailed in
an experiment manual (example in Section A.3). This documentation explains the effects of available
perturbations and specifies the JSON format for requesting each type. In our experiments, we allow
agents to use one simple type of perturbations: changing the initial concentrations of a species, with a
detailed discussion in Section 5. When the agent requests an experiment, our environment applies the
specified perturbation to the SBML model (using libSBML libraries), simulates the modified system,
and returns time-series data to the agent. The resulting time-series data is stored in a dictionary
where the key is the iteration number and the value is the pandas DataFrame. Each dataset remains
accessible throughout the session, allowing the agent to reference previous experimental results. The
environment also provides a summary of each dataset in the observation output, giving the agent an
overview of the experimental results to inform its subsequent actions.

Model Submission. The agent may submit its final model and conclude the discovery process at
any point, subject to a maximum iteration limit (20 in our benchmark). To submit a model, the agent
must provide a code block that defines the final model in a variable named finalsbml. The agent
has direct access to the initial incomplete SBML structure inputsbml and can reference it in their
code. This approach encourages the agent to use libSBML libraries for model manipulation rather
than manual SBML construction. If the submitted model is invalid or cannot be simulated, we allow
for 3 additional debugging iterations before evaluating against the incomplete SBML structure.

3.3 Evaluation Metrics

We developed three complementary metrics to evaluate how well an agent recovers the underlying
SBML model. Our evaluation is designed to balance structural and dynamical similarity. However, it
should be noted that these metrics do not capture all aspects of SBML equivalence. For example, we
do not explicitly evaluate whether the proposed kinetic laws match the ground truth formulations.
For formal definitions of these metrics, see Appendix B.2.

Network Topology Score (NTS). To assess success in recovering the correct system topology, we
measure pairwise interactions between all species in the system and calculate F1 score. If identical
relationships between the same species appear in multiple reactions, we count them only once.

Reaction Matching Score (RMS). We evaluate the agent’s ability to recover the structures of ground
truth reactions. We consider two reactions "matched" if they have identical sets of reactants and
products. In the second, more stringent version, we additionally require matching modifiers.

Simulation Trajectory Error (STE). This metric evaluates how accurately the predicted system
matches the dynamic behavior of the true system by comparing time-series trajectories of each
species. We employ the Symmetric Mean Absolute Percentage Error (SMAPE) (Makridakis, 1993),
which normalizes errors relative to magnitude.
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Table 2: All models struggle significantly more with identifying modifier relationships compared
to reactant-product. We report network topolgy performance (NTS precision and recall) across
different types of edges in reaction networks.

Metric Relationship Gemi-M Gemi-P GPT-M GPT-P Clau-M Clau-P

Pre
Reactant-Product 0.453 0.448 0.415 0.371 0.385 0.442
Reactant-Modifier 0.005 0.075 0.010 0.000 0.037 0.068
Modifier-Product 0.000 0.106 0.014 0.000 0.054 0.119

Rec
Reactant-Product 0.362 0.346 0.340 0.305 0.214 0.435
Reactant-Modifier 0.001 0.032 0.002 0.000 0.016 0.042
Modifier-Product 0.000 0.055 0.007 0.000 0.021 0.088

4 Related Work

AI Scientist Benchmarks. Most existing benchmarks have either focused on evaluating a single skill
in the scientific discovery pipeline (Laurent et al., 2024; Narayanan et al., 2024) or the one-shot ability
of LLMs to solve scientific tasks (Newsham et al., 2025). To the best of our knowledge, no previous
work evaluating the scientific method end-to-end has effectively challenged LLMs to perform open-
ended biological discovery research using experimental perturbations. DiscoveryWorld (Jansen et al.,
2024) evaluates protein outlier detection and chemical optimization in a fixed, observed dataset. That
is, unlike SCIGYM, DiscoveryWorld does not evaluate the LLM’s ability to discover the underlying
mechanisms of action in a system —it only asks the agent to reproduce the observed data. Moreover,
the evaluation pipeline used in BioDiscoveryAgent (Roohani et al., 2024) only deals with genetic
perturbations from a fixed, predefined dataset, rather than a general model that can evaluate open-
ended hypothesis from the agent. Finally, there exist other benchmarks exploring the discovery of
equations (Shojaee et al., 2025; Ma et al., 2024; Romera-Paredes et al., 2024) and chemicals (Sprueill
et al., 2024a) with LLMs and simulated data. This line of work does not allow the agent to perturb
the system and feedback is given through fixed reward functions, a fundamentally different pipeline
from the open-ended setting we explore in SCIGYM.

Causal Discovery Benchmarks. Causal discovery seeks to identify cause-effect relationships be-
tween variables from observational or, when possible, interventional data (Tian & Pearl, 2013). Many
recent efforts have applied LLMs to causal discovery tasks with varying degrees of success (Long
et al., 2023; Jiralerspong et al., 2024). This has motivated the development of causal reasoning
benchmarks across a wide-range of scientific domains including gene regulatory networks (Chevalley
et al., 2023), clinical disease modeling (Abdulaal et al., 2024), and causal question answering for
coding and math (Wang, 2024). SCIGYM differs from existing causality benchmarks in two main
ways: 1) SCIGYM requires active planning and design of intervention experiments rather than passive
analysis of a static dataset or context; 2) SCIGYM demands a more comprehensive skill-set to succeed,
requiring agents to combine domain knowledge, data analysis skills, and coding ability to effectively
discover biological mechanisms —not just their structural relationships.

Simulations in AI for Science. When the cost of obtaining experimental data in the real world is
prohibitively expensive, simulations offer a cheaper alternative, albeit at the risk of a simulation-to-
reality gap. In the biochemical sciences, simulation tools such as molecular dynamics (Hollingsworth
& Dror, 2018) and quantum computational chemistry (McArdle et al., 2020) have provided valuable
datasets leading to significant advances in drug discovery (Kitchen et al., 2004) and molecular
modeling (Ramakrishnan et al., 2014). Furthermore, many scientific discovery benchmarks incor-
porate simulations into their workflow to evaluate AI systems without the constraints of physical
experimentation. ChemReasoner (Sprueill et al., 2024b) provides quantum-chemical feedback to
discover active catalysts while Ma et al. (2024) use differentiable simulation to fit the coordinates of
LLM-proposed molecules. Despite these advances, most simulations in AI benchmarks fail to capture
the iterative, open-ended nature of real-world scientific discovery. Our benchmark addresses this
gap by utilizing structured SBML documents that are manually curated with experimental support to
create the drylab-in-the-loop.
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Figure 5: All agents outperform their respective zero-shot baselines. We compare each agent’s
performance with zero-shot prompting. Each marker represents performance on one system, with
circles representing pro models and squares representing mini models. Blue shows zero-shot perfor-
mance while red shows agent performance.

5 Experiments

We evaluated six models from three frontier model families, each represented by their professional
and mini variants: Anthropic’s Claude-3.7-Sonnet-20250219 (P) and Claude-3.5-Haiku-20241022
(M); Google’s Gemini-2.5-Pro-Preview-03-25 (P) and Gemini-2.5-Flash-Preview-04-17 (M); and
OpenAI’s GPT-4.1-2025-04-14 (P) and GPT-4.1-Mini-2025-04-14 (M). These variants are categorized
based on their API pricing tiers. Due to computational resource constraints, we restricted our
evaluation to SCIGYM-small, with a total of 137 tasks.

Perturbations. For our main experiments, we permitted one type of experimental perturbation:
changing the initial concentration of a specified species to a designated amount. We selected this
approach as it represents a common and cost-effective perturbation in biological research. For
example, researchers might alter initial protein concentrations to observe downstream effects on
a signaling pathway. This perturbation type, when strategically designed, provides substantial
information about species relationships, reaction types, kinetic laws, and reaction rates. In an ablation
study, we evaluated a second perturbation type: species knockout, which completely removes a species
from the system. We used this condition to assess whether models could improve performance when
given more powerful experimental tools. The results are shown in Appendix E.1. This style of
perturbation has two main limitations: 1) they may not always be biologically plausible. For example,
scientists may not have the equipments to change initial concentrations of the requested species to the
specified amount. 2) our perturbations cannot guarantee complete system recovery of every SBML
model (Villaverde et al., 2016). However, this mirrors real-world biological research where scientists
often work with limited experimental tools.

5.1 Results

Figure 6: Agents’ performance decline as the under-
lying system’s complexity grows.

Do models learn from experiments? As
an initial validation, we implemented a
baseline direct prompting of the models.
For fair comparison, we employed similar
ReAct prompts across conditions, exclud-
ing only the experiment and tools compo-
nents. We also permitted three additional
debugging rounds in the baseline condition.
Results shown in Figure 5 demonstrate that
all models achieved lower STE and higher
RMS when using the SCIGYM framework
compared to zero-shot prompting. This
confirms that models are effectively extract-
ing and incorporating information from ex-
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perimental results during the scientific dis-
covery process.

Do pro models demonstrate superior sci-
entific discovery capabilities? Table 1
presents the average performance of all six models across all systems. Detailed results per system
can be found in Section F. Our results show that across all model families, pro variants consis-
tently outperform their mini counterparts, with both lower STE errors and higher RMS scores. This
performance difference suggests that success in the scientific discovery process benefits from the
enhanced capabilities of models. Among all models evaluated, Gemini-Pro achieved the best overall
performance. Gemini-Mini also demonstrated superior performance among the mini models.

How does model performance scale with the complexity of the underlying mechanism? We plot
the performance of each model on instances aggregated by the number of reactions and species in
Figure 6. We find that as system complexity grows, the simulation error consistently increases across
all models tested. For example, both Claude-Sonnet and GPT-4.1 show error increases from close
to 0.1 to 0.55 when the number of reactions increases from 2 to 10. This demonstrates that agents
struggle increasingly with larger and more complex biological systems.

How does performance vary across different types of species relationships? We analyzed the
models’ ability to discover different types of relationships in biological systems. We categorized
relationships based on the roles of connected species: reactant/product, reactant/modifier, and
product/modifier connections. For each category, we computed average precision, recall, and F1
scores of NTS. Table 2 shows that all models performed substantially better at discovering reactant-
product relationships compared to relationships involving modifiers. Claude-Sonnet achieved the
highest F1 score across all relationship types, yet its score for reactant-product relationships was
more than 5 times higher than for modifier-related connections. This performance gap is expected, as
identifying modifiers requires more targeted experiments to test how specific species affect reaction
rates rather than simply observing which species are consumed or produced.

Figure 7: Agents’ proposed systems are sensitive to
perturbing initial conditions.

How robust are the proposed sys-
tems? We conducted analyses to determine
whether agents’ proposed SBML models
generalize to different initial conditions or
overfit to the specific experimental data.
We added Gaussian noise (mean zero, vari-
ance proportional to the original concen-
tration) to the initial concentrations. We
then compared the STE between proposed
models and the true system under these
perturbed conditions. Figure 7 shows that
STE increases consistently with noise lev-
els across all models. This degradation in
performance under perturbations indicates
that agents’ proposed mechanisms overfit
to the specific experimental data to some
degree rather than capturing the underly-
ing biological system’s fundamental prop-
erties.

6 Conclusion and Limitations

We introduced SCIGYM, a benchmark that evaluates an LLM’s scientific discovery ability through a
complete discovery cycle, with emphasis on experiment design and analysis. Our work addressed the
challenge of collecting experimental data by using formal biology models constructed by biologists
to create a dry lab in the loop. These models represent established knowledge of biological systems
with precise mathematical formulations of reactions, species interactions, and kinetics. In creating
SCIGYM we identified the following limitations:

Simulation to Reality Gap. Although the SBMLs in SCIGYM are peer-reviewed models of real-
world biological mechanisms, many simplifications are made in order to transform these into systems
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that are possible to represent with an ODE. Therefore, conclusions derived from SCIGYM may be
systematically biased in subtle ways and not fully generalize to real-world settings. There is also
Lack of realistic noise. The ODE-based SBMLs we selected for SCIGYM gave us a realistic level
of complexity, but they do not contain any noise in the experimental simulations. As such, we are
not able to measure the effect of noise level on LLM’s ability to recover the underlying system. In
a similar vein, our simulations always provide comprehensive time-series data with many sampled
timepoints, and we did not study how measurement sparsity impacts performance.

Simplification of SBML Representations. In the curation pipeline of SCIGYM, we filter out SBML
models with more complex components like rules and events. This restricts the set of biological
systems we can evaluate and possible experiment perturbations we can design. SCIGYM does not
make full use of the richness of the SBML standard. For example, we are not specifically interrogating
the kineticLaw equations when comparing reactions. Thus, there is significant scope to increase
the richness and impact of SCIGYM.

Despite these limitations, we believe that SCIGYM realizes an interesting new direction for AI
scientist benchmarks. To our knowledge, SCIGYM is the first benchmark to evaluate LLMs on the full
cycle of scientific experimentation, and makes possible the study of agentic scientific decision-making.
SCIGYM is also a framework which can improve over time. As systems biologists continue to make
discoveries in their domain and add to the BioModels database, SCIGYM will also become more
robust and potentially expand to cover more, different, experimental modalities. For experimental
protocols that can be precisely specified and simulated, SCIGYM can easily be extended.

Our benchmarking results on six frontier LLMs are immediately relevant to LLM-based autonomous
experiment planning in self-driving labs, where selecting the right AI scientist to put in-the-loop has
the potential to enhance search efficiency, lower operational costs, and accelerate scientific discovery.
Looking forward, our framework produces artifacts: logs from best performer agents could be used
to improve future agent’s performance. Examples of successful strategies may aid reasoning by
chain-of-thought prompting Wei et al. (2023) or be useful data to improve agents via finetuning
Llama Team (2024). We hope that our work introduces a valuable testbed that can continue to evolve
to better capture the complexities of real scientific discovery.
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A Agent Framework

A.1 System Prompts

You are a biologist investigating a biological system. Your goal is
to discover the biological mechanisms missing from your model by
designing experiments and analyzing results. You must ultimately
express your findings as a complete SBML model that accurately
represents the biological system. Your final model will be
evaluated based on how accurately it represents the true
biological system.

Your final model will be evaluated by its similarity with the actual
system under different perturbations , so discovering the true
underlying mechanisms rather than overfitting to observed data is
crucial.

# Action

Each time , you can choose one of the three actions:

1. Request Experiments: You can request experiments to gather data
from the true biological system you are studying. You can also
choose to perturb the system and see how the system responds.
This will help you better understand the mechanism of the system.

2. Write Code: You have access to a Python environment to run
analysis. You can use several scientific computing libraries and
customized functions. Your code is executed as provided , so
ensure your syntax is correct.

3. Submit the model: You can choose to submit the model and end the
process if you think your hypothesis completely explains the
mechanism.

<!-- BEGIN EXPERIMENTAL_ACTIONS -->
<!-- END EXPERIMENTAL_ACTIONS -->

## Code Execution

For your code , print the results you want to see , and we will provide
them for you. However , ensure your print content isn ’t too large

, as large outputs will be truncated. For large variables like
long arrays or dataframes , you can store them using the ‘
shared_variables ‘ and access them in future sessions:

* ‘shared_variables.add(variable_name , val)‘: Store a variable for
future access

* ‘shared_variables.access(variable_name)‘: Retrieve a previously
stored variable

### Libraries

You are allowed to import the following libaries in your code: ‘numpy
‘, ‘pandas ‘, ‘math ‘, ‘scipy ‘, ‘sklearn ‘, ‘libsbml ‘

### Global variable access

- input_sbml_string (str): Initial incomplete SBML model
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- experiment_history (Dict[str , pd.DataFrame ]): Time -series data for
all experiments

- shared_variables: Storage for all variables you ’ve added in
previous code executions

** Important ** You can access these variables directly in your code.
You can assume they are global variables provided to you.

### Customized Functions

You can also call the follow functions in your code.

<!-- BEGIN CUSTOMIZED_FUNCTIONS -->
<!-- END CUSTOMIZED_FUNCTIONS -->

## Add reactions using libsbml

‘‘‘python
# Example of adding a reaction to an SBML model using libSBML
import libsbml

# Assuming we already have an SBML string loaded
sbml_doc = libsbml.readSBMLFromString(input_sbml_string)
model = sbml_doc.getModel ()

# Create a new reaction
reaction = model.createReaction ()
reaction.setId(" reaction1 ")
reaction.setReversible(False)
reaction.setFast(False) # Required in SBML Level 3

# Add a reactant
reactant = reaction.createReactant ()
reactant.setSpecies ("A") # Species ID
reactant.setStoichiometry (1.0)
reactant.setConstant(False) # Required in SBML Level 3

# Add a product
product = reaction.createProduct ()
product.setSpecies ("B") # Species ID
product.setStoichiometry (1.0)
product.setConstant(True) # Required in SBML Level 3

# Write the updated SBML
writer = libsbml.SBMLWriter ()
updated_sbml = writer.writeSBMLToString(sbml_doc)
‘‘‘

# Submit the model

If you want to submit the model and end the process , put your final
model as a string variable called ‘final_sbml ‘ in your python
code. It is recommended using libsbml to modify ‘
input_sbml_string ‘ rather than write the entire xml on your own.

# Response Format
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Your response should follow thought -action framework in markdown
formats. You should have a thoughts section followed by an action
section.

"""
## Thoughts
write down your thoughs here.

## Action

### Code
Include this if you want to write codes. Put your code in a python

block. You can only include one code block in each response.
‘‘‘python
import numpy as np
import pandas as pd
‘‘‘

### Experiment
Include this if you want to request experiments. Put your experiment

configuration in a json block. You can only include one json
block in each response.

‘‘‘json
{

"action ": "",
"meta_data ": {}

}
‘‘‘

### Submit
Include this if you want to submit the model and end the process. Put

your final model as a string variable called ‘final_sbml ‘ in
your python code.

‘‘‘python
import libsbml
final_sbml =...
‘‘‘
"""

A.2 Tool Manual

‘‘‘python
def simulate(sbml_string: str) -> pd.DataFrame:

"""
Simulates an SBML model and returns time series data.

You can use this function to run simulations on your hypothesis
model and compare it with the data gathered from the experiments.

Args:
sbml_string: an SBML model in xml format

Returns:
- A pandas dataframe of time series data for the given sbml

models (with columns ’Time ’ and the species ID.)
"""

‘‘‘
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A.3 Experiment Manual

## Available Experiment Actions

### Observe
This experiment runs the system with default settings.

‘‘‘json
{

"action ": "observe",
"meta_data ": {}

}
‘‘‘

### change initial concentrations

This perturbation changes the initial concentrations of the given
species. You cannot change the concentration of boundary and
constant species.

‘‘‘json
{

"action ": "change_initial_concentration",
"meta_data ": {

"id_species1 ": 0.2, // Set the initial concentration of
species id_species1 to 0.2.

"id_species2 ": 0.5
// Only include the id of the species you want to modify. Any

species not listed will keep their default values
}

}
‘‘‘
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B Evaluation Metrics

In this section, we provide additional details on the evaluation metrics used in the paper.

B.1 Network Topology Scores

For each SBML model, we construct a directed graph G = (S, E) where nodes S represent species
and edges E represent direct relationships between species in reactions. An edge (si, sj) ∈ E exists
if species si appears as a reactant and sj appears as a product in any reaction. This score focuses on
the recovery of existence of pairwise interactions between species, without requiring all species in a
reaction to be correctly identified.

B.2 Reaction Recovery Scores

The language model is shown all the species in the SBML file and is explicitly tasked with recovering
deleted reactions. Thus, we can evaluate its performance using standard classification metrics
if we define a binary function f : R × R → {0, 1} that indicates whether two reactions are
equivalent. Formally, let Rtrue = {R1, R2, . . . , Rn} denote the set of ground truth reactions and let
Rpred = {R′

1, R
′
2, . . . , R

′
m} denote the set of predicted reactions. Given an equivalence function f ,

we compute the true positive (TP) count, the false positive (FP) count, and the false negative (FN)
count.

TP = Rpred ∩Rtrue = {R′ ∈ Rpred| ∃R ∈ Rtrue : f(R
′, R) = 1}

FP = Rpred −Rtrue = {R′ ∈ Rpred| ∀R ∈ Rtrue : f(R
′, R) = 0}

FN = Rtrue −Rpred = {R′ ∈ Rpred| ∀R′ ∈ Rpred : f(R′, R) = 0}

Using these counts, we report the precision, recall, and F1 score as follows:

Precision =
|TP |

|TP |+ |FP |
Recall =

|TP |
|TP |+ |FN |

F1 = 2 · Precision · Recall
Precision + Recall

Note how RMS differs from NTS: NTS focuses on species relationships at a coarser level, awards
partial credit for partial relationships, and does not account for multiple relationships between species.

B.3 Symmetric Mean Absolute Percentage Error (SMAPE)

For ground truth time-series y and predicted series ŷ of length N , SMAPE is calculated as
SMAPE(y, ŷ) = 1

N

∑N−1
i=0

|yi−ŷi|
|y|+|ŷ| . We then average SMAPE across all species. We evaluate

models under both original and perturbed initial conditions to test whether they capture underlying
mechanistic principles or merely overfit specific experiment data.
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C Benchmark Curation Details
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Figure S1: SCIGYM benchmark curation pipeline

C.1 Filtering BioModels

Among the 1,096 manually curated systems on BioModels, we filter out models that:

1. Can not be parsed by libsbml (49)

2. Can not be simulated with Tellurium (19)

3. Have no reactions (106)

4. Have no species (5)

5. Have events (145)

6. Have rules (422)

This resulted in 350 SBML models out of the original 1,096 manually curated instances.
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Figure S2: Number of species (left), reactions (middle), and simulation wall-clock time (right) for
filtered BioModels.

C.2 De-identifying SBML files

To prevent language models from memorizing the SBML files, we design a pre-processing pipeline
that removes potentially compromising information from the models without affecting their function-
ality or simulation dynamics. This de-identification pipeline consists of three steps.

1. Strip metadata. We remove optional metadata fields from the SBML entities. These include
metaid, notes, annotations, model history, control vocabulary, dates, author information, and names*.

2. Shuffle components. We shuffle the order of parameters, reactions, species, and compartments.

3. Renaming ids. We rename the ids of all components in the model to a unique 4 character
alphanumeric identifier.

*Species names are kept such that biological entities in the system remain identifiable.
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C.3 Determining Simulation Timescale

Each SBML instance in the BioModels database is accompanied by a SED-ML file that specifies
the simulation setup in order to reproduce the curated model. However, 204 out of the 350 filtered
models provided an auto-generated template SED-ML file with a default simulation duration of 10
seconds. We found this to be troublesome since some models require a longer simulation budget to
observe interesting behavior or reach a steady state. Thus, we developed a pipeline to systematically
compute a suitable simulation duration for every filtered BioModel. Our procedure consists of three
stages.

1. Steady-state analysis: For each model, we first attempt to solve for the steady state of the ODE
system (when every species has a rate of change less than 10−6) using the NLEQ2 algorithm. This
step may fail for some models due to numerical issues or the absence of a steady state.

2. Time-course simulation: We then simulate the ODE system by integrating over time with the
following specifications: We use the integrator defined in the original SED-ML file, defaulting to
CVODE if missing. We use a fixed step size of t = 0.05 seconds. We simulate until at least one of
three termination criteria is met:

• A steady state is reached
• The integrator fails (typically due to stiffness issues or numerical instabilities)
• The maximum simulation budget of 10,000 seconds is exhausted

3. Final duration determination: We select the final simulation duration by taking the maximum
value among the time required to reach steady state (if successfully solved in step 1), the end time of
the time-course simulation, and the original end time specified in the SED-ML file.

This approach ensures that sufficient simulation time is allocated for each model to either reach steady
state or exhibit its characteristic dynamic behavior, while still respecting any intentionally specified
simulation parameters in the original SED-ML file. We have plotted the simulation duration and
maximum species rate of change at simulation endpoint in Figure S3.
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Figure S3: Simulation duration (left) and maximum species rate of change at endpoint (right) before
and after processing.

C.4 Creating Incomplete SBML Models

To create benchmark questions, the final step consists of removing reactions in the SBML files that
the language model is tasked with recovering. Below, we describe this deletion operation in greater
detail.

Removing reactions. To remove a reaction without leaving any traces, we edit the SBML file such
that all references to the deleted reaction are also removed. This includes initial assignments, function
definitions, constraints that use the deleted reaction’s rate to define its own declaration.
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Removing orphaned parameters. After removing the reactions for each question, we make a final
pass through the SBML file and remove orphaned parameters that are no longer referenced. This step
ensures that we aren’t leaking any unnecessary information to the language model.

To ensure that masked models remain valid SBML files, we only remove core SBML objects†

that contain nested references to the deleted reaction. For example, if we find a constraint with a
clause referencing a deleted reaction, we remove the entire constraint instead of removing only the
problematic clause. This guarantees that components are never functionally modified in a way that
might mutate their biological significance.

C.5 Classifying Curated Models

To gain further insight into the types of biochemical networks that our benchmark contains, we
perform an analysis of the gene ontology (Ashburner et al., 2000) (GO) terms that are tagged by each
SBML model that pass the filtration step. More precisely, for each GO term, we identify its ancestors
and attempt to map it onto one of the 318 grandchildren of the biological_process root term.
Altogether, we were able to map 601 of the 765 filtered models to target GO terms. We provide a
breakdown of these terms in Figure S4.
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Figure S4: SCIGYM covers a wide range of biology processes. Classification of SCIGYMmodels
by Gene Ontology (GO) terms.

†We identify first level objects as the list of core SBML objects in the libsbml package.

22



D Additional Details on SBML

D.1 Major SBML Components

Table S1: SBML Element Definitions, reproduced from Hucka et al. (2019) Level 3 Version 2 Core
specification

SBML Element Description
Function A named mathematical function that may be used throughout the rest of a model.
Unit A named definition of a new unit of measurement. Named units can be used in

the expression of quantities in a model.
Compartment A well-stirred container of finite size where species may be located. Compart-

ments may or may not represent actual physical structures.
Species A pool of entities of the same kind located in a compartment and participating

in reactions (processes). In biochemical network models, common examples
of species include ions, proteins and other molecules; however, in practice, an
SBML species can be any kind of entity that makes sense in the context of a
given model.

Parameter A quantity with a symbolic name. In SBML, the term parameter is used in
a generic sense to refer to named quantities regardless of whether they are
constants or variables in a model. SBML Level 3 provides the ability to define
parameters that are global to a model as well as parameters that are local to a
single reaction.

Initial Assignment A mathematical expression used to determine the initial conditions of a model.
This type of object can only be used to define how the value of a symbol can be
calculated from other values and symbols at the start of simulated time.

Rule A mathematical expression added to the set of equations constructed based on
the reactions defined in a model. Rules can be used to define how a symbol’s
value can be calculated from other symbols, or used to define the rate of change
of a symbol. The set of rules in a model can be used with the reaction rate
equations to determine the behavior of the model with respect to time. Rules
constrain the model for the entire duration of simulated time.

Constraint A means of detecting out-of-bounds conditions during a dynamical simulation
and optionally issuing diagnostic messages. Constraints are defined by an
arbitrary mathematical expression computing a true/false value from model
symbols. An SBML constraint applies at all instants of simulated time; however,
the set of constraints in model should not be used to determine the behavior of
the model with respect to time.

Reaction A statement describing some transformation, transport or binding process that
can change the amount of one or more species. For example, a reaction may
describe how certain entities (reactants) are transformed into certain other entities
(products). Reactions have associated kinetic rate expressions describing how
quickly they take place.

Event A statement describing an instantaneous, discontinuous change in one or more
symbols of any type (species, compartment, parameter, etc.) when a triggering
condition is satisfied.

D.2 Example SBML Document of Enzyme Process

We provide in Listing 1 the full SBML document of the enzymatic process introduced as an example
in Section 2 and used throughout the text.

Listing 1: SBML file for Enzymatic Process
1 <?xml version="1.0" encoding="UTF-8"?>
2 <sbml xmlns="http://www.sbml.org/sbml/level3/version2/core" level="3" version="2">
3 <model timeUnits="second" extentUnits="mole">
4 <listOfUnitDefinitions>
5 <unitDefinition id="per_second">
6 <listOfUnits>
7 <unit kind="second" exponent="-1" scale="0" multiplier="1" />
8 </listOfUnits>
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9 </unitDefinition>
10 <unitDefinition id="litre_per_mole_sec">
11 <listOfUnits>
12 <unit kind="mole" exponent="-1" scale="0" multiplier="1" />
13 <unit kind="litre" exponent="1" scale="0" multiplier="1" />
14 <unit kind="second" exponent="-1" scale="0" multiplier="1" />
15 </listOfUnits>
16 </unitDefinition>
17 </listOfUnitDefinitions>
18 <listOfCompartments>
19 <compartment id="comp" spatialDimensions="3" size="1e-14" units="litre"

constant="true" />
20 </listOfCompartments>
21 <listOfSpecies>
22 <species id="E" compartment="comp" initialAmount="5e-21" substanceUnits="mole"
23 hasOnlySubstanceUnits="false" boundaryCondition="false" constant="false" />
24 <species id="S" compartment="comp" initialAmount="1e-20" substanceUnits="mole"
25 hasOnlySubstanceUnits="false" boundaryCondition="false" constant="false" />
26 <species id="P" compartment="comp" initialAmount="0" substanceUnits="mole"
27 hasOnlySubstanceUnits="false" boundaryCondition="false" constant="false" />
28 <species id="ES" compartment="comp" initialAmount="0" substanceUnits="mole"
29 hasOnlySubstanceUnits="false" boundaryCondition="false" constant="false" />
30 </listOfSpecies>
31 <listOfParameters>
32 <parameter id="veq_koff" value="0.2" units="per_second" constant="true" />
33 <parameter id="veq_kon" value="1e6" units="litre_per_mole_sec" constant="true"

/>
34 <parameter id="vcat_kcat" value="0.1" units="per_second" constant="true" />
35 </listOfParameters>
36 <listOfReactions>
37 <reaction id="veq" reversible="true">
38 <listOfReactants>
39 <speciesReference species="E" stoichiometry="1" constant="true" />
40 <speciesReference species="S" stoichiometry="1" constant="true" />
41 </listOfReactants>
42 <listOfProducts>
43 <speciesReference species="ES" stoichiometry="1" constant="true" />
44 </listOfProducts>
45 <kineticLaw>
46 <math xmlns="http://www.w3.org/1998/Math/MathML">
47 <apply>
48 <times />
49 <ci> comp </ci>
50 <apply>
51 <minus />
52 <apply>
53 <times />
54 <ci> veq_kon </ci>
55 <ci> E </ci>
56 <ci> S </ci>
57 </apply>
58 <apply>
59 <times />
60 <ci> veq_koff </ci>
61 <ci> ES </ci>
62 </apply>
63 </apply>
64 </apply>
65 </math>
66 </kineticLaw>
67 </reaction>
68 <reaction id="vcat" reversible="false">
69 <listOfReactants>
70 <speciesReference species="ES" stoichiometry="1" constant="true" />
71 </listOfReactants>
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72 <listOfProducts>
73 <speciesReference species="E" stoichiometry="1" constant="true" />
74 <speciesReference species="P" stoichiometry="1" constant="true" />
75 </listOfProducts>
76 <kineticLaw>
77 <math xmlns="http://www.w3.org/1998/Math/MathML">
78 <apply>
79 <times />
80 <ci> comp </ci>
81 <ci> vcat_kcat </ci>
82 <ci> ES </ci>
83 </apply>
84 </math>
85 </kineticLaw>
86 </reaction>
87 </listOfReactions>
88 </model>
89 </sbml>

To translate this SBML model into an ODE, we sum the rates of change implied by the reactions for
each species. The kineticLaw specifies the rate for each reaction as a function of the participating
species. To calculate the differential equation for each species, we multiply its signed stoichiometric
coefficient by the rate of change specified in the kineticLaw. The sign of the stoichiometric
coefficient is -1 if the species is a reactant in the reaction, +1 if it is a product in the reaction, and 0
otherwise.

For this example, we have

v
d[E]

dt
= −(vkon[E][S]− vkoff[ES]) + (vkcat[ES]) (1)

v
d[S]

dt
= −(vkon[E][S]− vkoff[ES]) (2)

v
d[ES]

dt
= (vkon[E][S]− vkoff[ES])− (vkcat[ES]) (3)

v
d[P ]

dt
= (vkcat[ES]) (4)

where v > 0 is the volume of compartment comp.

D.3 Example SBML Document with Modifier

We provide in Listing 2 a full SBML document that includes a modifier. Modifiers change kinetic
laws but are not consumed or produced in the reaction.

Listing 2: SBML example with a modifier
1 <?xml version="1.0" encoding="UTF-8"?>
2 <sbml xmlns="http://www.sbml.org/sbml/level3/version2/core" level="3" version="2">
3 <model id="catalyzed_reaction_model">
4 <listOfCompartments>
5 <compartment id="v" spatialDimensions="3" size="1" constant="true"/>
6 </listOfCompartments>
7 <listOfSpecies>
8 <species id="S1" compartment="v" initialAmount="10" hasOnlySubstanceUnits="

true" boundaryCondition="false" constant="false"/>
9 <species id="S2" compartment="v" initialAmount="0" hasOnlySubstanceUnits="true

" boundaryCondition="false" constant="false"/>
10 <species id="M" compartment="v" initialAmount="5" hasOnlySubstanceUnits="true"

boundaryCondition="false" constant="false"/>
11 </listOfSpecies>
12 <listOfParameters>
13 <parameter id="k1" value="0.1" constant="true"/>
14 </listOfParameters>
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15 <listOfReactions>
16 <reaction id="R1" reversible="false">
17 <listOfReactants>
18 <speciesReference species="S1" stoichiometry="1" constant="true"/>
19 </listOfReactants>
20 <listOfProducts>
21 <speciesReference species="S2" stoichiometry="1" constant="true"/>
22 </listOfProducts>
23 <listOfModifiers>
24 <modifierSpeciesReference species="M"/>
25 </listOfModifiers>
26 <kineticLaw>
27 <math xmlns="http://www.w3.org/1998/Math/MathML">
28 <apply>
29 <times/>
30 <ci> v </ci>
31 <ci> k1 </ci>
32 <ci> S1 </ci>
33 <ci> M </ci>
34 </apply>
35 </math>
36 </kineticLaw>
37 </reaction>
38 </listOfReactions>
39 </model>
40 </sbml>

To translate this SBML model into an ODE, we sum the rates of change implied by the reactions for
each species. The kineticLaw specifies the rate for each reaction as a function of the participating
species. To calculate the differential equation for each species, we multiply its signed stoichiometric
coefficient by the rate of change specified in the kineticLaw. The sign of the stoichiometric
coefficient is -1 if the species is a reactant in the reaction, +1 if it is a product in the reaction, and 0
otherwise.

For this example, we have

v
d[S1]

dt
= −vk1[S1][M] (5)

v
d[S2]

dt
= vk1[S1][M] (6)

v
d[M]

dt
= 0 (7)

where v > 0 is the volume of compartment.
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E Additional Experiments

E.1 Other types of experiment perturbations

How do models perform with other types of experimental perturbations? We explored an
additional experimental capability by enabling agents to perform species knockouts, which completely
removes a specified species from the system by eliminating all reactions where it participates
and setting its initial concentration to zero. Such knockouts are typically extremely expensive or
impossible in general biological systems. We also acknowledge this abstraction is our custom design
rather than a standard SBML operation. Due to the computational constraints, we only did this
ablation study on two Gemini models. We observed modest performance improvements as shown in
Table S2. Future work should focus on designing biologically meaningful perturbations and exploring
whether more realistic experimental tools can substantially improve discovery performance.

Table S2: Adding knockout perturbations improve model performance modestly. We compared
Gemini models’ performance with and without access to our designed knockout operations. C
indicates changing initial concentrations, and K indicates knockout experiments. Models generally
demonstrated modest performance improvements when given access to knockout capabilities.

Model Experiment STE ↓ RMS ↑
with mod w/o mod

Gemi-M C 0.4181 0.1217 0.2005
C + K 0.4276 0.1417 0.2454

Gemi-P C 0.3212 0.1817 0.3383
C + K 0.3003 0.1923 0.3527

E.2 Does SciGym require reasoning like a biologist does?

E.2.1 Experiments

SciGym uses models studied by actual biologists to represent real biological processes, so reasoning
like a biologist would be essential to recover these models in SciGym. We designed a controlled
experiment to test whether SciGym requires biological knowledge by removing domain context
while keeping identical mathematical structure. Results show significant performance drops when
biological reasoning is removed, confirming our hypothesis. Furthermore, SciGym explicitly tests
the core reasoning skills required for scientists: hypothesis formation, experiment design and data
analysis. These skills are essential for scientific discovery and go beyond what’s required for standard
ODE discovery tasks.

If our benchmark only tests general ODE discovery, then domain context shouldn’t matter, which
means that models should perform equally well regardless of how we describe the task. To test this,
we conducted a controlled experiment where we kept the exact same underlying SBML mathematical
system but only changed the context in the system prompt. By describing the studied system as other
subjects (such as Epidemiology and Ecology) instead of molecular biology, we prevented the model
from accessing its knowledge of common biological mechanisms and known gene pathways. More
specifically, we have changed the first paragraph of the system prompt:

• For ecology: You are an ecological researcher at an environmental institute that has devel-
oped a new modeling platform for complex ecosystem dynamics.

• For Epidemiology: You are an epidemiologist at a public health research institute that has
developed a new modeling platform for complex disease transmission systems.

This allows us to isolate to what extent biological reasoning provides a genuine advantage in SciGym.
If biological reasoning doesn’t matter, performance should be identical across all framings since the
mathematical structure remains unchanged. We tested this hypothesis using Gemini-2.5-Flash on all
instances:

The result above in Table S3 shows that when the agent does not use biology reasoning (row 2 and 3),
their performance drops significantly (p < 0.05 across all metrics). This confirms our hypothesis that
biology reasoning is essential in our benchmark.
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Table S3: Model performance degrades with biological domain context. Results show significantly
worse performance when the system is framed as Biology compared to domain-agnostic fram-
ings (Ecology, Epidemiology), demonstrating that biological reasoning requirements increase task
difficulty beyond pure mathematical discovery.

Domain Framing STE RMS (w/ modifier) RMS (w/o modifier)
Biology (Original) 0.4181 0.1217 0.2005
Ecology 0.4382** 0.0623** 0.1023**
Epidemiology 0.4417** 0.0761** 0.1241**

E.2.2 Discussions

As we have mentioned, SBML models in SciGym are designed by the systems biologists to represent
the real biology process. While it might theoretically be possible to discover these systems through
brute-force mathematical exploration, our benchmark limits agents to 20 interaction rounds. In order
to succeed within a limited interaction round, we think agents must leverage biological priors like
mass action kinetics (rather than testing arbitrary functional forms), common regulatory patterns
(feedback loops, competitive inhibition), and systematic perturbation strategies to efficiently navigate
the vast space of hypotheses. Without this biological knowledge, agents would likely exhaust their
interaction budget on implausible hypotheses, failing to discover the correct mechanisms in time.

Most importantly, SciGym test skills essential for scientific discovery. In the end, we acknowledge
that Scigym involves abstraction, but this is a necessary tradeoff in almost all benchmarks. Creating
end-to-end scientific discovery tasks requires abstraction from real-world complexities as actual
biological experiments involve extensive human labor, specialized equipment, and months of work.
However, we believe we’ve made the best possible tradeoff (to date) by preserving the core reasoning
skills required for scientists: experimental design, hypothesis formation, mechanistic thinking, and
iterative model refinement. These skills are essential for biological discovery and go beyond what’s
required for standard ODE discovery tasks: by requiring an agent to write code, make choices on
how to analyze data, and select which experiments to execute, and in what order. Unlike other
abstract-ODE benchmarks (LLM-SR) which focus on equation recovery, we focus our evaluation
primarily on discovering causal relationships, and SciGym represents the largest dataset to date of
such evaluations, making our benchmark a uniquely valuable test of scientific reasoning capability.

E.3 Do Models have sufficient SBML knowledge for SciGym?

Knowing the syntax of SBML is a requirement to succeed in SciGym, but this challenge exists in
virtually every benchmark. It’s impossible to completely isolate abstract capabilities from concrete
syntactic or domain-specific knowledge. We also designed SciGym to minimize the SBML technical
burden. We filtered out advanced SBML features and retained only basic, standardized components
(removing complex elements like <events> and <rules>). Our task primarily requires knowing
how to add reactions, a simple operation that we also demonstrate with examples in the system
prompt. We hope that this ensures that models can focus on the scientific reasoning aspects rather
than getting bogged down in technical SBML complexities.

E.3.1 Experiment Design

Therefore, we designed a simple zero-shot task to test whether the evaluated LLMs have the necessary
SBML knowledge to succeed. In this experiment, the agent is given an incomplete SBML model
and its corresponding complete SBML model. The agent is tasked to write a Python script using
the libsbml package to add missing components to the incomplete model such that it matches the
complete model. The incomplete and complete models are provided to the agent, both in its LLM
context and in the scope of the Python script it submits. If errors occur during parsing or execution of
the agent’s script, we allow up to 4 submission attempts.

Upon successful execution of the agent’s script, we extract the modified incomplete SBML model and
systematically evaluate its equivalence to the complete version. We consider two models equivalent
if they contain the exact same set of species, reactions, kinetic laws, parameters, values, and initial
concentrations (this equivalence is sufficient to obtain perfect scores on the NTS, RMS, STE metrics).
To prevent cheating, we enforce the usage of the libsbml package to interact with SBML variables,

28



and prohibit direct string manipulation of the SBML input variables. We randomly picked 50 models
from the small SciGym split and evaluated the same six models in our paper.

E.3.2 Experiment Results

Model % Equiv Avg. Iter. Fail. Mode(s)

claude-3-5-haiku-20241022 80 2.04 wrong ID (2), equation (8)
claude-3-7-sonnet-20250219 100 1.16 N/A
gemini-2.5-flash-preview-05-20 98 1.16 failed (1)
gemini-2.5-pro-preview-03-25 100 1.71 N/A
gpt-4.1-2025-04-14 64 2.17 wrong ID (9), failed (9)
gpt-4.1-mini-2025-04-14 66 2.44 wrong eq. (1), failed (16)
o3-2025-04-16 96 1.47 wrong ID (1), failed (1)
o4-mini-2025-04-16 44 2.73 failed (28)

Notes on the failure modes:

• Wrong ID → There was a mismatch in the IDs of at least one component
• Wrong equation → There was a mismatch in the kinetic law equations
• Failed → LLM submitted more than 4 responses that failed to parse or run

E.3.3 Key Findings

• From the results, we first observe that most models possess sufficient SBML knowledge
to succeed in our task. If models lacked SBML knowledge, they should achieve near-zero
success rates. Given that we used the same incomplete SBML models as those in our
SciGym benchmark, these models demonstrate they can effectively manipulate SBML via
libsbml for SciGym tasks.

• More importantly, all frontier models (Sonnet, Gemini, o3) achieve near-perfect performance
on this task. This implies that the performance bottleneck for frontier LLMs on SciGym
stems primarily from scientific discovery aptitude rather than coding ability or SBML
language mastery.

End-to-end scientific discovery inherently requires a combination of technical and reasoning skills.
We agree that coding is essential to succeed in our benchmark, but this reflects the reality of modern
scientific research. Scientists routinely need to write code for data analysis, implement statistical
tests, and use domain-specific software tools. The coding requirement forces models to translate
scientific hypotheses into testable implementations—a crucial skill in computational biology and
scientific research more broadly. Rather than being a confound, this translation step from conceptual
understanding to executable code is an essential component of the scientific discovery process we
aim to evaluate. Creating a benchmark that isolates pure scientific reasoning while eliminating all
technical skills would be less representative of real scientific work.

F Detailed Results by BioMD

Table S4: Detailed results for benchmark BIOMD0000000039 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.2213 0.1667 0.1429 0.1538 0.3333 0.3333 0.3333
Gemini-2.5-Pro 0.1022 0.2500 0.1429 0.1818 0.5000 0.3333 0.4000

Gpt-4.1-mini 0.5452 0.0000 0.0000 0.0000 0.2500 0.1667 0.2000
Gpt-4.1 0.5729 0.2000 0.1429 0.1667 0.2000 0.1667 0.1818

Claude-3.5-Haiku 0.1629 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.1298 0.0000 0.0000 0.0000 0.2500 0.1667 0.2000
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Table S5: Detailed results for benchmark BIOMD0000000039 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.2213 0.1667 0.1429 0.1538 0.3333 0.3333 0.3333
Gemini-2.5-Pro 0.1022 0.2500 0.1429 0.1818 0.5000 0.3333 0.4000

Gpt-4.1-mini 0.5452 0.0000 0.0000 0.0000 0.2500 0.1667 0.2000
Gpt-4.1 0.5729 0.2000 0.1429 0.1667 0.2000 0.1667 0.1818

Claude-3.5-Haiku 0.1629 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.1298 0.0000 0.0000 0.0000 0.2500 0.1667 0.2000

Table S6: Detailed results for benchmark BIOMD0000000041 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.6552 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.3252 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.8718 0.1429 0.1111 0.1250 0.1429 0.1111 0.1250
Gpt-4.1 0.7187 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.8415 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.3036 0.0455 0.1111 0.0645 0.0455 0.1111 0.0645

Table S7: Detailed results for benchmark BIOMD0000000043 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.9965 0.4000 0.2857 0.3333 0.6000 0.5000 0.5455
Gemini-2.5-Pro 0.5637 0.1667 0.1429 0.1538 0.1667 0.1667 0.1667

Gpt-4.1-mini 0.7097 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.7679 0.0000 0.0000 0.0000 0.1667 0.1667 0.1667

Claude-3.5-Haiku 0.8383 0.0000 0.0000 0.0000 0.3333 0.1667 0.2222
Claude-3.7-Sonnet 0.5688 0.1000 0.1429 0.1176 0.2000 0.3333 0.2500

Table S8: Detailed results for benchmark BIOMD0000000044 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.4545 0.3333 0.2500 0.2857 0.3333 0.3333 0.3333
Gemini-2.5-Pro 0.3169 0.0000 0.0000 0.0000 0.1429 0.1667 0.1538

Gpt-4.1-mini 0.4833 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.4163 0.3333 0.3750 0.3529 0.3333 0.5000 0.4000

Claude-3.5-Haiku 0.4833 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.2929 0.1667 0.1250 0.1429 0.1667 0.1667 0.1667
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Table S9: Detailed results for benchmark BIOMD0000000045 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.9667 0.2500 0.3333 0.2857 0.2500 0.3333 0.2857
Gemini-2.5-Pro 0.6670 0.2000 0.1667 0.1818 0.2000 0.1667 0.1818

Gpt-4.1-mini 0.8494 0.5000 0.3333 0.4000 0.5000 0.3333 0.4000
Gpt-4.1 0.7270 0.2222 0.3333 0.2667 0.2222 0.3333 0.2667

Claude-3.5-Haiku 0.8563 0.3333 0.1667 0.2222 0.3333 0.1667 0.2222
Claude-3.7-Sonnet 0.9199 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667

Table S10: Detailed results for benchmark BIOMD0000000066 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.5611 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.3937 0.2857 0.2857 0.2857 0.2857 0.2857 0.2857

Gpt-4.1-mini 0.8539 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.6358 0.3333 0.1429 0.2000 0.3333 0.1429 0.2000

Claude-3.5-Haiku 0.8511 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.6764 0.1250 0.1429 0.1333 0.1250 0.1429 0.1333

Table S11: Detailed results for benchmark BIOMD0000000068 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.0040 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.1896 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.0257 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S12: Detailed results for benchmark BIOMD0000000072 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.3495 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.3401 0.2000 0.1429 0.1667 0.2000 0.1429 0.1667

Gpt-4.1-mini 0.7310 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.4918 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.4244 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.6369 0.2500 0.2857 0.2667 0.2500 0.2857 0.2667
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Table S13: Detailed results for benchmark BIOMD0000000076 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.0035 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.1815 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.0136 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.0003 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

Table S14: Detailed results for benchmark BIOMD0000000079 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.2022 0.0000 0.0000 0.0000 0.2500 0.1667 0.2000
Gemini-2.5-Pro 0.2869 0.4286 0.5000 0.4615 0.5714 0.6667 0.6154

Gpt-4.1-mini 0.3794 0.2500 0.1667 0.2000 0.2500 0.1667 0.2000
Gpt-4.1 0.5643 0.2857 0.3333 0.3077 0.4286 0.5000 0.4615

Claude-3.5-Haiku 0.2413 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.3171 0.3333 0.5000 0.4000 0.5556 0.8333 0.6667

Table S15: Detailed results for benchmark BIOMD0000000080 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.2300 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.3577 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.6403 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.5796 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.5873 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.1367 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S16: Detailed results for benchmark BIOMD0000000082 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.2705 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.2033 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.5927 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.4703 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.6056 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.5290 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table S17: Detailed results for benchmark BIOMD0000000084 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.2929 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.2624 0.2500 0.1250 0.1667 1.0000 0.5000 0.6667

Gpt-4.1-mini 0.6967 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.5450 0.0909 0.1250 0.1053 0.0909 0.1250 0.1053

Claude-3.5-Haiku 0.8307 0.3333 0.1250 0.1818 1.0000 0.3750 0.5455
Claude-3.7-Sonnet 0.2615 0.2500 0.1250 0.1667 1.0000 0.5000 0.6667

Table S18: Detailed results for benchmark BIOMD0000000092 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.3167 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.0021 0.5000 0.3333 0.4000 0.5000 0.3333 0.4000

Gpt-4.1-mini 0.9322 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.1430 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.5402 0.5000 0.3333 0.4000 0.5000 0.3333 0.4000
Claude-3.7-Sonnet 0.0846 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S19: Detailed results for benchmark BIOMD0000000098 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.7426 1.0000 0.5000 0.6667 1.0000 0.5000 0.6667
Gemini-2.5-Pro 0.4478 0.3333 0.2500 0.2857 0.3333 0.2500 0.2857

Gpt-4.1-mini 0.1116 0.6667 0.5000 0.5714 0.6667 0.5000 0.5714
Gpt-4.1 0.4069 1.0000 0.5000 0.6667 1.0000 0.5000 0.6667

Claude-3.5-Haiku 0.3561 1.0000 0.2500 0.4000 1.0000 0.2500 0.4000
Claude-3.7-Sonnet 0.2657 0.1667 0.2500 0.2000 0.1667 0.2500 0.2000

Table S20: Detailed results for benchmark BIOMD0000000156 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.2671 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.6261 0.3333 0.2000 0.2500 0.3333 0.2000 0.2500

Gpt-4.1-mini 0.2769 0.3333 0.2000 0.2500 0.3333 0.2000 0.2500
Gpt-4.1 0.3085 0.1667 0.2000 0.1818 0.3333 0.4000 0.3636

Claude-3.5-Haiku 0.4243 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.3023 0.3333 0.4000 0.3636 0.6667 0.8000 0.7273

33



Table S21: Detailed results for benchmark BIOMD0000000157 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.5773 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.5918 0.3333 0.3333 0.3333 0.3333 0.4000 0.3636

Gpt-4.1-mini 0.5829 0.3333 0.3333 0.3333 0.3333 0.4000 0.3636
Gpt-4.1 0.3561 0.2500 0.1667 0.2000 0.2500 0.2000 0.2222

Claude-3.5-Haiku 0.4965 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.4263 0.5000 0.5000 0.5000 0.6667 0.8000 0.7273

Table S22: Detailed results for benchmark BIOMD0000000159 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 1.0000 0.2500 0.1667 0.2000 0.2500 0.2000 0.2222
Gemini-2.5-Pro 0.2588 0.7500 0.5000 0.6000 0.7500 0.6000 0.6667

Gpt-4.1-mini 0.9990 0.5714 0.6667 0.6154 0.5714 0.8000 0.6667
Gpt-4.1 0.4786 0.1667 0.1667 0.1667 0.3333 0.4000 0.3636

Claude-3.5-Haiku 0.9990 0.3333 0.1667 0.2222 0.3333 0.2000 0.2500
Claude-3.7-Sonnet 0.2440 0.6667 0.6667 0.6667 0.6667 0.8000 0.7273

Table S23: Detailed results for benchmark BIOMD0000000184 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.1836 0.5000 0.1429 0.2222 0.5000 0.1667 0.2500
Gemini-2.5-Pro 0.1107 0.6667 0.2857 0.4000 0.6667 0.3333 0.4444

Gpt-4.1-mini 0.3354 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.1673 0.6000 0.4286 0.5000 0.6000 0.5000 0.5455

Claude-3.5-Haiku 0.3201 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.4057 0.6000 0.4286 0.5000 0.6000 0.5000 0.5455

Table S24: Detailed results for benchmark BIOMD0000000191 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.0275 0.4000 0.4000 0.4000 0.4000 0.5000 0.4444
Gemini-2.5-Pro 0.0163 0.5000 0.4000 0.4444 0.5000 0.5000 0.5000

Gpt-4.1-mini 0.4203 0.2500 0.2000 0.2222 0.5000 0.5000 0.5000
Gpt-4.1 0.0055 0.5000 0.4000 0.4444 0.5000 0.5000 0.5000

Claude-3.5-Haiku 0.0438 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.4257 0.5000 0.4000 0.4444 0.5000 0.5000 0.5000
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Table S25: Detailed results for benchmark BIOMD0000000192 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.4250 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.1003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.6365 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.3599 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.2660 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S26: Detailed results for benchmark BIOMD0000000224 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.6407 0.2000 0.1667 0.1818 0.6000 0.5000 0.5455
Gemini-2.5-Pro 0.3212 0.2000 0.1667 0.1818 0.6000 0.5000 0.5455

Gpt-4.1-mini 0.4353 0.0000 0.0000 0.0000 0.6667 0.3333 0.4444
Gpt-4.1 0.3359 0.0000 0.0000 0.0000 0.3333 0.1667 0.2222

Claude-3.5-Haiku 0.7506 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.4060 0.1667 0.1667 0.1667 0.5000 0.5000 0.5000

Table S27: Detailed results for benchmark BIOMD0000000231 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.0231 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.1208 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.5512 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.3539 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.5060 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.0371 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S28: Detailed results for benchmark BIOMD0000000233 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.2611 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.2732 0.3333 0.2500 0.2857 0.3333 0.2500 0.2857

Gpt-4.1-mini 0.2065 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.2401 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.4110 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.3013 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table S29: Detailed results for benchmark BIOMD0000000258 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.1344 0.3333 0.2500 0.2857 0.6667 0.5000 0.5714
Gemini-2.5-Pro 0.2931 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.4833 0.3333 0.2500 0.2857 0.3333 0.2500 0.2857
Gpt-4.1 0.3291 0.5000 0.2500 0.3333 1.0000 0.5000 0.6667

Claude-3.5-Haiku 0.5966 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.0885 0.3333 0.2500 0.2857 1.0000 0.7500 0.8571

Table S30: Detailed results for benchmark BIOMD0000000282 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.0918 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.1365 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.3644 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.3056 0.5000 0.3333 0.4000 0.5000 0.3333 0.4000

Claude-3.5-Haiku 0.3980 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.2512 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S31: Detailed results for benchmark BIOMD0000000283 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.8293 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Gemini-2.5-Pro 0.2757 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.5541 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.5206 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.5216 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.2165 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S32: Detailed results for benchmark BIOMD0000000319 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.2432 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.0467 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

Gpt-4.1-mini 0.5681 0.3750 0.7500 0.5000 0.3750 0.7500 0.5000
Gpt-4.1 0.3117 0.6000 0.7500 0.6667 0.6000 0.7500 0.6667

Claude-3.5-Haiku 0.3284 0.5000 0.2500 0.3333 0.5000 0.2500 0.3333
Claude-3.7-Sonnet 0.0851 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500

36



Table S33: Detailed results for benchmark BIOMD0000000322 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.5064 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.5171 0.3333 0.2222 0.2667 0.3333 0.2222 0.2667

Gpt-4.1-mini 0.4708 0.1429 0.1111 0.1250 0.1429 0.1111 0.1250
Gpt-4.1 0.4354 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.8012 0.3333 0.1111 0.1667 0.3333 0.1111 0.1667
Claude-3.7-Sonnet 0.5632 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S34: Detailed results for benchmark BIOMD0000000323 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.2559 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.2966 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

Gpt-4.1-mini 0.5472 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.5136 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

Claude-3.5-Haiku 0.7152 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.1352 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

Table S35: Detailed results for benchmark BIOMD0000000329 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.3470 0.5000 0.2500 0.3333 0.5000 0.3333 0.4000
Gemini-2.5-Pro 0.8958 0.1667 0.1250 0.1429 0.6667 0.6667 0.6667

Gpt-4.1-mini 0.7202 0.2000 0.1250 0.1538 0.6000 0.5000 0.5455
Gpt-4.1 0.7084 0.4286 0.3750 0.4000 0.5714 0.6667 0.6154

Claude-3.5-Haiku 0.9347 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.5742 0.5714 0.5000 0.5333 1.0000 1.0000 1.0000

Table S36: Detailed results for benchmark BIOMD0000000357 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.8159 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.4504 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250

Gpt-4.1-mini 0.7683 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.7003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.8223 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.6243 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table S37: Detailed results for benchmark BIOMD0000000359 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.8930 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250
Gemini-2.5-Pro 0.4009 0.1429 0.1250 0.1333 0.1429 0.1250 0.1333

Gpt-4.1-mini 0.7740 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.8763 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.7591 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.7117 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250

Table S38: Detailed results for benchmark BIOMD0000000360 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.6096 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.5411 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.8952 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.7970 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.8390 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.5745 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S39: Detailed results for benchmark BIOMD0000000361 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.5061 0.1667 0.2000 0.1818 0.1667 0.2000 0.1818
Gemini-2.5-Pro 0.4931 0.1667 0.2000 0.1818 0.1667 0.2000 0.1818

Gpt-4.1-mini 0.9735 0.0556 0.2000 0.0870 0.0556 0.2000 0.0870
Gpt-4.1 0.5194 0.2500 0.2000 0.2222 0.2500 0.2000 0.2222

Claude-3.5-Haiku 0.9661 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.5663 0.2500 0.4000 0.3077 0.2500 0.4000 0.3077

Table S40: Detailed results for benchmark BIOMD0000000363 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.2280 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Gemini-2.5-Pro 0.0018 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571

Gpt-4.1-mini 0.7069 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.1685 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571

Claude-3.5-Haiku 0.8193 0.3333 0.2500 0.2857 0.3333 0.2500 0.2857
Claude-3.7-Sonnet 0.0678 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500
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Table S41: Detailed results for benchmark BIOMD0000000405 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.0563 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.4653 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.3312 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.6334 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.4975 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S42: Detailed results for benchmark BIOMD0000000413 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.1108 0.5000 0.2222 0.3077 0.5000 0.2222 0.3077
Gemini-2.5-Pro 0.0726 0.2000 0.1111 0.1429 0.2000 0.1111 0.1429

Gpt-4.1-mini 0.4716 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.0924 0.8000 0.4444 0.5714 0.8000 0.4444 0.5714

Claude-3.5-Haiku 0.5709 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.0824 0.3333 0.2222 0.2667 0.4000 0.2222 0.2857

Table S43: Detailed results for benchmark BIOMD0000000435 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.3934 0.0000 0.0000 0.0000 0.6667 0.2500 0.3636
Gemini-2.5-Pro 0.5931 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.9993 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.7326 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.4821 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.6931 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000

Table S44: Detailed results for benchmark BIOMD0000000438 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.6830 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.4543 0.0000 0.0000 0.0000 0.2000 0.1429 0.1667

Gpt-4.1-mini 0.8708 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.6301 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.8708 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.7962 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table S45: Detailed results for benchmark BIOMD0000000454 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.0161 0.0000 0.0000 0.0000 0.3333 0.2500 0.2857
Gemini-2.5-Pro 0.0020 0.0000 0.0000 0.0000 0.2500 0.2500 0.2500

Gpt-4.1-mini 0.2175 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.3276 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.1641 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.0190 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S46: Detailed results for benchmark BIOMD0000000455 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.0056 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.1924 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.1399 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S47: Detailed results for benchmark BIOMD0000000456 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.0001 0.0000 0.0000 0.0000 0.1429 0.1667 0.1538
Gemini-2.5-Pro 0.0033 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.1217 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.1114 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.0934 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.0013 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S48: Detailed results for benchmark BIOMD0000000458 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.1334 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.1455 0.0000 0.0000 0.0000 0.5000 0.3333 0.4000

Gpt-4.1-mini 0.2124 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.2314 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.2269 0.0000 0.0000 0.0000 0.5000 0.3333 0.4000
Claude-3.7-Sonnet 0.2100 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table S49: Detailed results for benchmark BIOMD0000000459 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.1024 0.0000 0.0000 0.0000 0.2500 0.3333 0.2857
Gemini-2.5-Pro 0.0935 0.0000 0.0000 0.0000 0.3333 0.3333 0.3333

Gpt-4.1-mini 0.6115 0.0000 0.0000 0.0000 0.6667 0.6667 0.6667
Gpt-4.1 0.7493 0.0000 0.0000 0.0000 0.3333 0.3333 0.3333

Claude-3.5-Haiku 0.6208 0.0000 0.0000 0.0000 0.6667 0.6667 0.6667
Claude-3.7-Sonnet 0.1001 0.0000 0.0000 0.0000 0.3750 1.0000 0.5455

Table S50: Detailed results for benchmark BIOMD0000000460 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.4210 0.0000 0.0000 0.0000 0.1667 0.3333 0.2222
Gemini-2.5-Pro 0.1022 0.0000 0.0000 0.0000 0.6000 1.0000 0.7500

Gpt-4.1-mini 0.4094 0.0000 0.0000 0.0000 0.6000 1.0000 0.7500
Gpt-4.1 0.5281 0.0000 0.0000 0.0000 0.1667 0.3333 0.2222

Claude-3.5-Haiku 0.4153 0.0000 0.0000 0.0000 0.6667 0.6667 0.6667
Claude-3.7-Sonnet 0.2646 0.0000 0.0000 0.0000 0.6000 1.0000 0.7500

Table S51: Detailed results for benchmark BIOMD0000000461 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.0070 0.0000 0.0000 0.0000 0.1667 0.3333 0.2222
Gemini-2.5-Pro 0.0093 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.6213 0.0000 0.0000 0.0000 0.1429 0.3333 0.2000
Gpt-4.1 0.4508 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.7499 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.1315 0.0000 0.0000 0.0000 0.2500 0.6667 0.3636

Table S52: Detailed results for benchmark BIOMD0000000462 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.2277 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.2251 0.0000 0.0000 0.0000 0.6667 0.2500 0.3636

Gpt-4.1-mini 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 1.0000 0.0000 0.0000 0.0000 0.5000 0.2500 0.3333

Claude-3.5-Haiku 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.0795 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

41



Table S53: Detailed results for benchmark BIOMD0000000483 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.0000 0.0000 0.0000 0.0000 0.3333 0.2500 0.2857

Gpt-4.1-mini 0.0000 0.0000 0.0000 0.0000 0.3333 0.2500 0.2857
Gpt-4.1 0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000

Claude-3.5-Haiku 0.0000 0.0000 0.0000 0.0000 0.3333 0.1250 0.1818
Claude-3.7-Sonnet 0.0000 0.0000 0.0000 0.0000 0.2500 0.2500 0.2500

Table S54: Detailed results for benchmark BIOMD0000000484 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.0118 1.0000 0.5000 0.6667 1.0000 0.5000 0.6667
Gemini-2.5-Pro 0.9999 1.0000 0.5000 0.6667 1.0000 0.5000 0.6667

Gpt-4.1-mini 0.9999 0.5000 0.5000 0.5000 1.0000 1.0000 1.0000
Gpt-4.1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.9999 1.0000 0.5000 0.6667 1.0000 0.5000 0.6667
Claude-3.7-Sonnet 0.0000 1.0000 0.5000 0.6667 1.0000 0.5000 0.6667

Table S55: Detailed results for benchmark BIOMD0000000485 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.0034 1.0000 0.3333 0.5000 1.0000 0.5000 0.6667
Gemini-2.5-Pro 0.0023 1.0000 0.3333 0.5000 1.0000 0.5000 0.6667

Gpt-4.1-mini 0.7563 1.0000 0.3333 0.5000 1.0000 0.5000 0.6667
Gpt-4.1 0.0029 1.0000 0.3333 0.5000 1.0000 0.5000 0.6667

Claude-3.5-Haiku 0.7004 1.0000 0.3333 0.5000 1.0000 0.5000 0.6667
Claude-3.7-Sonnet 0.0028 0.5000 0.3333 0.4000 0.5000 0.5000 0.5000

Table S56: Detailed results for benchmark BIOMD0000000486 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.0000 0.0000 0.0000 0.0000 1.0000 0.5000 0.6667
Gemini-2.5-Pro 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000

Gpt-4.1-mini 0.0000 0.0000 0.0000 0.0000 1.0000 0.5000 0.6667
Gpt-4.1 0.0000 0.0000 0.0000 0.0000 1.0000 0.5000 0.6667

Claude-3.5-Haiku 0.9995 0.0000 0.0000 0.0000 1.0000 0.5000 0.6667
Claude-3.7-Sonnet 0.0000 0.0000 0.0000 0.0000 1.0000 0.5000 0.6667
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Table S57: Detailed results for benchmark BIOMD0000000487 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.0000 0.0000 0.0000 0.0000 0.8000 0.6667 0.7273

Gpt-4.1-mini 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S58: Detailed results for benchmark BIOMD0000000573 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.8462 0.5000 0.1429 0.2222 1.0000 0.2857 0.4444
Gemini-2.5-Pro 0.9305 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.9871 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.4936 0.5000 0.1429 0.2222 1.0000 0.2857 0.4444

Claude-3.5-Haiku 0.9726 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 1.0000 0.0000 0.0000 0.0000 0.5000 0.1429 0.2222

Table S59: Detailed results for benchmark BIOMD0000000591 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.4766 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.5343 0.0000 0.0000 0.0000 0.1667 0.2222 0.1905

Gpt-4.1-mini 0.8804 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.6136 0.0000 0.0000 0.0000 0.1429 0.1111 0.1250

Claude-3.5-Haiku 0.8804 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.5046 0.0000 0.0000 0.0000 0.1250 0.2222 0.1600

Table S60: Detailed results for benchmark BIOMD0000000624 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.1591 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.0152 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.6379 0.5000 0.6000 0.5455 0.5000 0.6000 0.5455
Gpt-4.1 0.0894 0.2500 0.2000 0.2222 0.2500 0.2000 0.2222

Claude-3.5-Haiku 0.6102 0.2500 0.2000 0.2222 0.2500 0.2000 0.2222
Claude-3.7-Sonnet 0.0369 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table S61: Detailed results for benchmark BIOMD0000000626 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.2852 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.3496 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.8130 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.2121 0.0000 0.0000 0.0000 0.4000 1.0000 0.5714

Claude-3.5-Haiku 0.8031 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.0752 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S62: Detailed results for benchmark BIOMD0000000629 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.0680 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.1034 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.6441 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.1589 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.1727 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.1898 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000

Table S63: Detailed results for benchmark BIOMD0000000657 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.5022 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.2482 0.0000 0.0000 0.0000 0.1667 0.3333 0.2222

Gpt-4.1-mini 0.4208 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.9890 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.9166 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 1.0000 0.0000 0.0000 0.0000 0.0833 0.3333 0.1333

Table S64: Detailed results for benchmark BIOMD0000000663 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.9007 0.2000 0.1111 0.1429 0.2000 0.1429 0.1667
Gemini-2.5-Pro 0.4541 0.0000 0.0000 0.0000 0.3333 0.1429 0.2000

Gpt-4.1-mini 0.8295 0.2000 0.1111 0.1429 0.4000 0.2857 0.3333
Gpt-4.1 0.8195 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.8609 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.6529 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table S65: Detailed results for benchmark BIOMD0000000713 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.6132 0.3333 0.1429 0.2000 0.3333 0.1429 0.2000
Gemini-2.5-Pro 0.4825 0.0000 0.0000 0.0000 0.6667 0.2857 0.4000

Gpt-4.1-mini 0.5950 0.2500 0.2857 0.2667 0.5000 0.5714 0.5333
Gpt-4.1 0.5572 0.4000 0.2857 0.3333 0.8000 0.5714 0.6667

Claude-3.5-Haiku 1.0000 0.0000 0.0000 0.0000 0.3333 0.1429 0.2000
Claude-3.7-Sonnet 0.7514 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429

Table S66: Detailed results for benchmark BIOMD0000000728 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.5007 0.2500 0.2500 0.2500 0.7500 0.7500 0.7500
Gemini-2.5-Pro 0.3680 0.0000 0.0000 0.0000 0.3333 0.2500 0.2857

Gpt-4.1-mini 0.3541 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000
Gpt-4.1 0.7721 0.0000 0.0000 0.0000 0.3333 0.2500 0.2857

Claude-3.5-Haiku 0.5765 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.3408 0.0000 0.0000 0.0000 0.3333 0.2500 0.2857

Table S67: Detailed results for benchmark BIOMD0000000732 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.4081 0.2857 0.3333 0.3077 0.4286 0.5000 0.4615
Gemini-2.5-Pro 0.3624 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.5978 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.5924 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.5962 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.4691 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S68: Detailed results for benchmark BIOMD0000000733 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.1791 0.0000 0.0000 0.0000 0.3333 0.1667 0.2222
Gemini-2.5-Pro 0.0431 0.2857 0.3333 0.3077 1.0000 1.0000 1.0000

Gpt-4.1-mini 0.7708 0.0000 0.0000 0.0000 0.3333 0.1667 0.2222
Gpt-4.1 0.7855 0.0000 0.0000 0.0000 0.6667 0.3333 0.4444

Claude-3.5-Haiku 0.7443 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.0946 0.0000 0.0000 0.0000 1.0000 0.5000 0.6667
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Table S69: Detailed results for benchmark BIOMD0000000742 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.3315 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.7254 0.0000 0.0000 0.0000 1.0000 0.5000 0.6667

Gpt-4.1-mini 0.9608 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.9407 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.9608 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.7308 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S70: Detailed results for benchmark BIOMD0000000753 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.0200 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.7700 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.5427 0.5000 0.2857 0.3636 0.5000 0.5000 0.5000
Gpt-4.1 0.7924 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.5112 1.0000 0.2857 0.4444 1.0000 0.5000 0.6667
Claude-3.7-Sonnet 0.0113 0.5000 0.2857 0.3636 0.5000 0.5000 0.5000

Table S71: Detailed results for benchmark BIOMD0000000755 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.5058 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.5712 0.2000 0.1429 0.1667 0.2000 0.1429 0.1667

Gpt-4.1-mini 0.7655 0.1667 0.1429 0.1538 0.1667 0.1429 0.1538
Gpt-4.1 0.7301 0.2500 0.1429 0.1818 0.2500 0.1429 0.1818

Claude-3.5-Haiku 0.7671 1.0000 0.2857 0.4444 1.0000 0.2857 0.4444
Claude-3.7-Sonnet 0.5724 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S72: Detailed results for benchmark BIOMD0000000758 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.5623 0.3333 0.2500 0.2857 0.3333 0.2500 0.2857
Gemini-2.5-Pro 0.6223 0.2500 0.2500 0.2500 0.5000 0.5000 0.5000

Gpt-4.1-mini 0.7293 0.2000 0.2500 0.2222 0.6000 0.7500 0.6667
Gpt-4.1 0.6609 0.0000 0.0000 0.0000 0.6667 0.5000 0.5714

Claude-3.5-Haiku 0.5101 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.8190 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000
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Table S73: Detailed results for benchmark BIOMD0000000760 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.2239 0.5000 0.5000 0.5000 0.7500 1.0000 0.8571
Gemini-2.5-Pro 0.4864 0.2500 0.2500 0.2500 0.3333 0.3333 0.3333

Gpt-4.1-mini 0.9457 0.2500 0.5000 0.3333 0.3750 1.0000 0.5455
Gpt-4.1 0.1693 0.5000 0.5000 0.5000 0.7500 1.0000 0.8571

Claude-3.5-Haiku 0.9801 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.1298 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S74: Detailed results for benchmark BIOMD0000000762 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.3301 0.2500 0.1429 0.1818 0.7500 0.7500 0.7500
Gemini-2.5-Pro 0.3810 0.5000 0.2857 0.3636 1.0000 1.0000 1.0000

Gpt-4.1-mini 0.6533 0.4000 0.2857 0.3333 0.8000 1.0000 0.8889
Gpt-4.1 0.6205 0.2500 0.1429 0.1818 0.5000 0.5000 0.5000

Claude-3.5-Haiku 0.6062 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.3334 0.1429 0.1429 0.1429 0.2857 0.5000 0.3636

Table S75: Detailed results for benchmark BIOMD0000000763 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.8348 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.4946 0.3333 0.2222 0.2667 0.8333 0.8333 0.8333

Gpt-4.1-mini 0.5109 0.0000 0.0000 0.0000 0.5000 0.1667 0.2500
Gpt-4.1 0.9041 0.3333 0.2222 0.2667 0.5000 0.5000 0.5000

Claude-3.5-Haiku 0.3560 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.6461 0.5000 0.3333 0.4000 0.6667 0.6667 0.6667

Table S76: Detailed results for benchmark BIOMD0000000767 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.3167 0.3333 0.2000 0.2500 0.6667 0.5000 0.5714
Gemini-2.5-Pro 0.0859 0.5000 0.4000 0.4444 1.0000 1.0000 1.0000

Gpt-4.1-mini 0.5740 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000
Gpt-4.1 0.4296 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.6288 0.6667 0.4000 0.5000 0.6667 0.5000 0.5714
Claude-3.7-Sonnet 0.0971 0.2000 0.2000 0.2000 0.4000 0.5000 0.4444
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Table S77: Detailed results for benchmark BIOMD0000000771 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.5263 0.5000 0.1667 0.2500 0.5000 0.1667 0.2500
Gemini-2.5-Pro 0.6038 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.9068 0.0000 0.0000 0.0000 0.4000 0.3333 0.3636
Gpt-4.1 0.6406 0.5000 0.3333 0.4000 0.5000 0.3333 0.4000

Claude-3.5-Haiku 0.9123 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 1.0000 0.3333 0.1667 0.2222 0.3333 0.1667 0.2222

Table S78: Detailed results for benchmark BIOMD0000000772 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.6903 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.4789 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.5893 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.5102 0.0000 0.0000 0.0000 0.3333 0.1667 0.2222

Claude-3.5-Haiku 0.5716 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.5113 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S79: Detailed results for benchmark BIOMD0000000777 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.0943 0.5000 0.1250 0.2000 0.5000 0.1667 0.2500

Gpt-4.1-mini 0.0511 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.3728 0.0000 0.0000 0.0000 0.3333 0.1667 0.2222

Claude-3.5-Haiku 0.6439 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.0323 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S80: Detailed results for benchmark BIOMD0000000783 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.0345 0.6000 0.3750 0.4615 0.6000 0.5000 0.5455
Gemini-2.5-Pro 0.1222 0.4000 0.2500 0.3077 0.4000 0.3333 0.3636

Gpt-4.1-mini 0.2966 0.4444 0.5000 0.4706 0.6667 1.0000 0.8000
Gpt-4.1 0.3509 0.4000 0.2500 0.3077 0.4000 0.3333 0.3636

Claude-3.5-Haiku 0.5880 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.6153 0.1429 0.1250 0.1333 0.2857 0.3333 0.3077

48



Table S81: Detailed results for benchmark BIOMD0000000785 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.6810 0.5000 0.2000 0.2857 0.5000 0.2500 0.3333
Gemini-2.5-Pro 0.7157 0.5000 0.4000 0.4444 0.5000 0.5000 0.5000

Gpt-4.1-mini 0.9884 1.0000 0.4000 0.5714 1.0000 0.5000 0.6667
Gpt-4.1 0.5916 0.7500 0.6000 0.6667 0.7500 0.7500 0.7500

Claude-3.5-Haiku 0.7081 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.1420 0.5000 0.6000 0.5455 0.5000 0.7500 0.6000

Table S82: Detailed results for benchmark BIOMD0000000793 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.2251 0.6667 0.4000 0.5000 0.6667 0.5000 0.5714
Gemini-2.5-Pro 0.1611 0.5000 0.2000 0.2857 0.5000 0.2500 0.3333

Gpt-4.1-mini 0.2318 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.4011 0.0000 0.0000 0.0000 1.0000 0.2500 0.4000

Claude-3.5-Haiku 0.3884 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.2087 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S83: Detailed results for benchmark BIOMD0000000795 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.2925 0.2500 0.1667 0.2000 0.7500 0.7500 0.7500
Gemini-2.5-Pro 0.2218 0.3333 0.1667 0.2222 0.6667 0.5000 0.5714

Gpt-4.1-mini 0.4772 0.4000 0.3333 0.3636 0.6000 0.7500 0.6667
Gpt-4.1 0.2908 0.3333 0.1667 0.2222 0.6667 0.5000 0.5714

Claude-3.5-Haiku 0.7931 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.2540 0.2500 0.1667 0.2000 0.5000 0.5000 0.5000

Table S84: Detailed results for benchmark BIOMD0000000799 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.0052 0.6667 0.5000 0.5714 0.6667 0.5000 0.5714
Gemini-2.5-Pro 0.0139 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.0539 1.0000 0.5000 0.6667 1.0000 0.5000 0.6667
Gpt-4.1 0.0477 0.6667 0.5000 0.5714 0.6667 0.5000 0.5714

Claude-3.5-Haiku 0.1059 1.0000 0.5000 0.6667 1.0000 0.5000 0.6667
Claude-3.7-Sonnet 0.0007 0.5000 0.5000 0.5000 1.0000 1.0000 1.0000
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Table S85: Detailed results for benchmark BIOMD0000000800 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.6423 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.6242 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.4681 0.6000 0.5000 0.5455 0.6000 0.5000 0.5455
Gpt-4.1 0.7413 0.0000 0.0000 0.0000 1.0000 0.5000 0.6667

Claude-3.5-Haiku 0.4336 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.5820 0.2500 0.1667 0.2000 0.2500 0.1667 0.2000

Table S86: Detailed results for benchmark BIOMD0000000813 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.6201 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.1664 0.5000 0.2500 0.3333 0.5000 0.3333 0.4000

Gpt-4.1-mini 0.9950 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.2338 0.7500 0.3750 0.5000 0.7500 0.5000 0.6000

Claude-3.5-Haiku 0.4548 0.0000 0.0000 0.0000 0.5000 0.1667 0.2500
Claude-3.7-Sonnet 0.1605 0.5000 0.2500 0.3333 0.5000 0.3333 0.4000

Table S87: Detailed results for benchmark BIOMD0000000821 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.3363 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.0417 0.3333 0.2857 0.3077 0.5000 0.6000 0.5455

Gpt-4.1-mini 0.9953 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.6666 0.2500 0.1429 0.1818 0.5000 0.4000 0.4444

Claude-3.5-Haiku 0.6647 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.0721 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S88: Detailed results for benchmark BIOMD0000000827 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.7074 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.2255 0.3750 0.3333 0.3529 0.3750 0.3333 0.3529

Gpt-4.1-mini 0.8146 0.2857 0.2222 0.2500 0.2857 0.2222 0.2500
Gpt-4.1 0.5029 0.1667 0.1111 0.1333 0.1667 0.1111 0.1333

Claude-3.5-Haiku 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.2436 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table S89: Detailed results for benchmark BIOMD0000000830 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.1653 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.0600 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.4087 0.1667 0.1429 0.1538 0.1667 0.1429 0.1538
Gpt-4.1 0.2358 0.2000 0.1429 0.1667 0.2000 0.1429 0.1667

Claude-3.5-Haiku 0.4174 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.0891 0.2308 0.4286 0.3000 0.2308 0.4286 0.3000

Table S90: Detailed results for benchmark BIOMD0000000838 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.0065 0.5000 0.5000 0.5000 1.0000 1.0000 1.0000

Gpt-4.1-mini 0.5255 0.3333 0.3333 0.3333 0.5000 0.5000 0.5000
Gpt-4.1 0.0984 0.1667 0.1667 0.1667 0.5000 0.5000 0.5000

Claude-3.5-Haiku 0.6204 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.2134 0.2500 0.1667 0.2000 0.2500 0.1667 0.2000

Table S91: Detailed results for benchmark BIOMD0000000847 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.3448 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.7626 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.7443 0.5714 0.6667 0.6154 0.5714 0.6667 0.6154
Gpt-4.1 0.7050 0.2500 0.3333 0.2857 0.2500 0.3333 0.2857

Claude-3.5-Haiku 0.9991 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.6848 0.3750 0.5000 0.4286 0.3750 0.5000 0.4286

Table S92: Detailed results for benchmark BIOMD0000000850 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.0257 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.0143 0.5000 0.2500 0.3333 1.0000 0.5000 0.6667

Gpt-4.1-mini 0.4542 0.5000 0.2500 0.3333 0.5000 0.2500 0.3333
Gpt-4.1 0.4082 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500

Claude-3.5-Haiku 0.4525 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.1244 0.3333 0.5000 0.4000 0.3333 0.5000 0.4000
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Table S93: Detailed results for benchmark BIOMD0000000876 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.6702 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.3866 0.5000 0.3333 0.4000 0.6667 0.5000 0.5714

Gpt-4.1-mini 0.8588 0.3333 0.2222 0.2667 0.3333 0.2500 0.2857
Gpt-4.1 0.9531 0.5000 0.2222 0.3077 0.5000 0.2500 0.3333

Claude-3.5-Haiku 0.5998 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.7690 0.2500 0.1111 0.1538 0.2500 0.1250 0.1667

Table S94: Detailed results for benchmark BIOMD0000000877 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.1082 0.5000 0.2222 0.3077 0.7500 0.3750 0.5000
Gemini-2.5-Pro 0.3931 0.2500 0.1111 0.1538 0.2500 0.1250 0.1667

Gpt-4.1-mini 0.7864 0.5000 0.4444 0.4706 0.6250 0.6250 0.6250
Gpt-4.1 0.2414 0.6667 0.2222 0.3333 1.0000 0.3750 0.5455

Claude-3.5-Haiku 0.7771 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.6846 0.2500 0.1111 0.1538 0.2500 0.1250 0.1667

Table S95: Detailed results for benchmark BIOMD0000000878 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.3099 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.1889 0.1667 0.1667 0.1667 1.0000 1.0000 1.0000

Gpt-4.1-mini 0.4244 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.6055 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.5460 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.2081 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S96: Detailed results for benchmark BIOMD0000000882 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.4930 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.2337 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.4131 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.4068 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.4811 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.3510 0.0000 0.0000 0.0000 0.5000 0.3333 0.4000
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Table S97: Detailed results for benchmark BIOMD0000000885 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.5590 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.3732 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.9399 0.5000 0.2500 0.3333 0.7500 0.3750 0.5000
Gpt-4.1 0.2855 0.5714 0.5000 0.5333 0.8571 0.7500 0.8000

Claude-3.5-Haiku 0.4602 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.2594 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S98: Detailed results for benchmark BIOMD0000000888 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.4978 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.9439 0.0000 0.0000 0.0000 0.4000 0.2500 0.3077

Gpt-4.1-mini 0.9667 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.7537 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.9916 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.7780 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S99: Detailed results for benchmark BIOMD0000000891 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.4385 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.7968 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.6286 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.3810 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.6326 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.2680 0.2000 0.1667 0.1818 0.2000 0.1667 0.1818

Table S100: Detailed results for benchmark BIOMD0000000892 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.2837 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.2568 0.4000 0.2500 0.3077 0.6000 0.3750 0.4615

Gpt-4.1-mini 0.6208 0.2222 0.2500 0.2353 0.3333 0.3750 0.3529
Gpt-4.1 0.9315 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.6680 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.3288 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table S101: Detailed results for benchmark BIOMD0000000893 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.6606 0.1667 0.1667 0.1667 0.6667 0.6667 0.6667

Gpt-4.1-mini 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.7179 0.1429 0.1667 0.1538 0.7143 0.8333 0.7692

Claude-3.5-Haiku 0.9990 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.6376 0.2000 0.3333 0.2500 0.7500 1.0000 0.8571

Table S102: Detailed results for benchmark BIOMD0000000894 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.8991 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.8153 0.0000 0.0000 0.0000 0.3333 0.3333 0.3333

Gpt-4.1-mini 0.9424 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.4601 0.2500 0.1667 0.2000 0.5000 0.3333 0.4000

Claude-3.5-Haiku 0.7297 0.0000 0.0000 0.0000 0.5000 0.1667 0.2500
Claude-3.7-Sonnet 0.4252 0.3333 0.3333 0.3333 0.6667 0.6667 0.6667

Table S103: Detailed results for benchmark BIOMD0000000897 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.1853 0.2500 0.2500 0.2500 1.0000 1.0000 1.0000

Gpt-4.1-mini 0.7894 0.2000 0.2500 0.2222 0.8000 1.0000 0.8889
Gpt-4.1 0.1427 0.2500 0.2500 0.2500 0.7500 0.7500 0.7500

Claude-3.5-Haiku 0.0313 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.0221 0.5000 0.5000 0.5000 1.0000 1.0000 1.0000

Table S104: Detailed results for benchmark BIOMD0000000899 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.5355 0.1111 0.1250 0.1176 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.3371 0.2500 0.2500 0.2500 0.3750 0.3750 0.3750

Gpt-4.1-mini 0.6812 0.2000 0.1250 0.1538 0.2000 0.1250 0.1538
Gpt-4.1 0.5021 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.7967 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.6056 0.1667 0.1250 0.1429 0.1667 0.1250 0.1429
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Table S105: Detailed results for benchmark BIOMD0000000902 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.5301 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.3585 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.6784 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.5147 0.0000 0.0000 0.0000 0.2500 0.1667 0.2000

Claude-3.5-Haiku 0.6554 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.5068 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S106: Detailed results for benchmark BIOMD0000000906 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.4454 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.0291 0.2857 0.3333 0.3077 0.5714 0.6667 0.6154

Gpt-4.1-mini 0.9590 0.1429 0.1667 0.1538 0.4286 0.5000 0.4615
Gpt-4.1 0.0571 0.3333 0.3333 0.3333 1.0000 1.0000 1.0000

Claude-3.5-Haiku 0.5222 0.0000 0.0000 0.0000 0.3333 0.1667 0.2222
Claude-3.7-Sonnet 0.0188 0.4444 0.6667 0.5333 1.0000 1.0000 1.0000

Table S107: Detailed results for benchmark BIOMD0000000909 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.2396 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.0270 0.3333 0.1250 0.1818 0.3333 0.1250 0.1818

Gpt-4.1-mini 0.0471 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.4317 0.0000 0.0000 0.0000 0.5000 0.1250 0.2000

Claude-3.5-Haiku 0.4575 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.1786 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S108: Detailed results for benchmark BIOMD0000000910 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.4147 0.3333 0.2000 0.2500 0.6667 0.4000 0.5000
Gemini-2.5-Pro 0.3626 0.1429 0.2000 0.1667 0.7143 1.0000 0.8333

Gpt-4.1-mini 0.9724 0.0000 0.0000 0.0000 0.4000 0.4000 0.4000
Gpt-4.1 0.1799 0.1111 0.2000 0.1429 0.5556 1.0000 0.7143

Claude-3.5-Haiku 0.4670 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.6632 0.1250 0.2000 0.1538 0.5000 0.8000 0.6154
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Table S109: Detailed results for benchmark BIOMD0000000911 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.1151 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.0543 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.5230 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.1657 0.3333 0.1667 0.2222 0.6667 0.3333 0.4444

Claude-3.5-Haiku 0.7329 0.0000 0.0000 0.0000 0.5000 0.1667 0.2500
Claude-3.7-Sonnet 0.0385 0.4286 0.5000 0.4615 0.8571 1.0000 0.9231

Table S110: Detailed results for benchmark BIOMD0000000912 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 1.0000 0.3333 0.3333 0.3333 0.5000 0.5000 0.5000
Gemini-2.5-Pro 0.7861 0.3333 0.3333 0.3333 0.6667 0.6667 0.6667

Gpt-4.1-mini 0.9923 0.3333 0.3333 0.3333 0.5000 0.5000 0.5000
Gpt-4.1 0.9186 0.5000 0.5000 0.5000 1.0000 1.0000 1.0000

Claude-3.5-Haiku 0.9186 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.9276 0.3333 0.5000 0.4000 0.6667 1.0000 0.8000

Table S111: Detailed results for benchmark BIOMD0000000914 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.6481 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.1487 0.2000 0.1111 0.1429 0.2000 0.1111 0.1429

Gpt-4.1-mini 0.7583 0.1250 0.1111 0.1176 0.2500 0.2222 0.2353
Gpt-4.1 0.3154 0.2500 0.1111 0.1538 0.5000 0.2222 0.3077

Claude-3.5-Haiku 0.6166 0.2500 0.1111 0.1538 0.2500 0.1111 0.1538
Claude-3.7-Sonnet 1.0000 0.2000 0.1111 0.1429 0.2000 0.1111 0.1429

Table S112: Detailed results for benchmark BIOMD0000000916 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.8922 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500
Gemini-2.5-Pro 0.4098 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500

Gpt-4.1-mini 0.9948 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Gpt-4.1 0.5238 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500

Claude-3.5-Haiku 0.7434 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500
Claude-3.7-Sonnet 0.5633 0.6000 0.7500 0.6667 0.6000 0.7500 0.6667
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Table S113: Detailed results for benchmark BIOMD0000000919 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.2121 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.0054 0.7500 0.6000 0.6667 1.0000 1.0000 1.0000

Gpt-4.1-mini 0.4756 0.3333 0.2000 0.2500 0.6667 0.5000 0.5714
Gpt-4.1 0.7068 0.6667 0.4000 0.5000 1.0000 0.7500 0.8571

Claude-3.5-Haiku 0.2902 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.2657 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S114: Detailed results for benchmark BIOMD0000000920 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.5930 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.3744 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.3782 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.2855 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.3928 0.0000 0.0000 0.0000 0.6667 0.5000 0.5714
Claude-3.7-Sonnet 0.2175 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S115: Detailed results for benchmark BIOMD0000000922 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.0316 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.0601 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.0601 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.5956 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.0746 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S116: Detailed results for benchmark BIOMD0000000923 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.8408 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.6273 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.6000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.9304 0.1000 0.2500 0.1429 0.1000 0.2500 0.1429

Claude-3.5-Haiku 0.6447 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.7257 0.0000 0.0000 0.0000 0.3333 0.5000 0.4000
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Table S117: Detailed results for benchmark BIOMD0000000927 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.0244 0.3333 0.2000 0.2500 0.6667 0.4000 0.5000
Gemini-2.5-Pro 0.0033 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.2331 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.2655 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000

Claude-3.5-Haiku 0.3901 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.0465 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S118: Detailed results for benchmark BIOMD0000000932 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.5368 0.2000 0.2000 0.2000 0.4000 0.4000 0.4000
Gemini-2.5-Pro 0.5107 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.9231 0.1667 0.2000 0.1818 0.3333 0.4000 0.3636
Gpt-4.1 0.5627 0.5000 0.4000 0.4444 0.5000 0.4000 0.4444

Claude-3.5-Haiku 0.7265 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.3873 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000

Table S119: Detailed results for benchmark BIOMD0000000935 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.1418 0.6667 0.5000 0.5714 0.6667 0.5000 0.5714
Gemini-2.5-Pro 0.1098 0.5000 0.5000 0.5000 0.7500 0.7500 0.7500

Gpt-4.1-mini 0.3588 0.6667 0.5000 0.5714 0.6667 0.5000 0.5714
Gpt-4.1 0.0974 0.5000 0.5000 0.5000 0.7500 0.7500 0.7500

Claude-3.5-Haiku 0.9961 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.1399 0.6667 0.5000 0.5714 0.6667 0.5000 0.5714

Table S120: Detailed results for benchmark BIOMD0000000937 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.9965 0.0000 0.0000 0.0000 0.2500 0.1667 0.2000
Gemini-2.5-Pro 0.4519 0.5000 0.3333 0.4000 0.5000 0.3333 0.4000

Gpt-4.1-mini 0.3588 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.8812 0.2857 0.3333 0.3077 0.4286 0.5000 0.4615

Claude-3.5-Haiku 0.9965 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.4872 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table S121: Detailed results for benchmark BIOMD0000000957 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.4749 0.5000 0.3333 0.4000 0.5000 0.3333 0.4000
Gemini-2.5-Pro 0.4439 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571

Gpt-4.1-mini 0.7762 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.4116 0.5000 0.3333 0.4000 0.5000 0.3333 0.4000

Claude-3.5-Haiku 0.5290 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.4518 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S122: Detailed results for benchmark BIOMD0000000966 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.4007 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.1992 0.5000 0.3333 0.4000 0.5000 0.3333 0.4000

Gpt-4.1-mini 0.7892 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.3250 0.3333 0.1667 0.2222 0.3333 0.1667 0.2222

Claude-3.5-Haiku 0.6848 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.1281 0.0000 0.0000 0.0000 0.2500 0.1667 0.2000

Table S123: Detailed results for benchmark BIOMD0000000967 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.7606 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.4548 0.2000 0.1111 0.1429 0.4000 0.2222 0.2857

Gpt-4.1-mini 0.7703 0.2000 0.1111 0.1429 0.2000 0.1111 0.1429
Gpt-4.1 0.6499 0.1429 0.1111 0.1250 0.2857 0.2222 0.2500

Claude-3.5-Haiku 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.6277 0.1667 0.1111 0.1333 0.3333 0.2222 0.2667

Table S124: Detailed results for benchmark BIOMD0000000970 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.5160 0.6667 0.6667 0.6667 1.0000 1.0000 1.0000
Gemini-2.5-Pro 0.4248 0.5000 0.6667 0.5714 0.7500 1.0000 0.8571

Gpt-4.1-mini 0.6118 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.5339 0.0000 0.0000 0.0000 0.3333 0.3333 0.3333

Claude-3.5-Haiku 0.6859 0.0000 0.0000 0.0000 0.3333 0.3333 0.3333
Claude-3.7-Sonnet 0.4909 0.4000 0.6667 0.5000 0.6000 1.0000 0.7500
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Table S125: Detailed results for benchmark BIOMD0000001013 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.4926 0.0000 0.0000 0.0000 0.5000 0.2500 0.3333
Gemini-2.5-Pro 0.5010 0.2500 0.2500 0.2500 0.5000 0.5000 0.5000

Gpt-4.1-mini 0.9569 0.0000 0.0000 0.0000 0.5000 0.2500 0.3333
Gpt-4.1 0.5601 0.3333 0.2500 0.2857 0.6667 0.5000 0.5714

Claude-3.5-Haiku 0.6273 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.2703 0.0000 0.0000 0.0000 0.3333 0.2500 0.2857

Table S126: Detailed results for benchmark BIOMD0000001016 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.3622 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.3616 0.0000 0.0000 0.0000 0.2500 0.1111 0.1538

Gpt-4.1-mini 0.8454 0.3333 0.2222 0.2667 0.3333 0.2222 0.2667
Gpt-4.1 0.6198 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.6599 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.7653 0.0000 0.0000 0.0000 0.1667 0.1111 0.1333

Table S127: Detailed results for benchmark BIOMD0000001022 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.1473 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.7169 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.7150 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.8688 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.8103 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.8953 0.0000 0.0000 0.0000 0.3333 0.1667 0.2222

Table S128: Detailed results for benchmark BIOMD0000001023 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.5806 0.0000 0.0000 0.0000 0.5000 0.1667 0.2500
Gemini-2.5-Pro 0.3232 0.0000 0.0000 0.0000 0.3333 0.1667 0.2222

Gpt-4.1-mini 0.4891 0.0000 0.0000 0.0000 0.3333 0.1667 0.2222
Gpt-4.1 0.4076 0.0000 0.0000 0.0000 0.7500 0.5000 0.6000

Claude-3.5-Haiku 0.5033 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.3154 0.0000 0.0000 0.0000 0.4000 0.3333 0.3636
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Table S129: Detailed results for benchmark BIOMD0000001024 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.8279 0.3333 0.2500 0.2857 0.3333 0.2500 0.2857
Gemini-2.5-Pro 0.9429 0.0000 0.0000 0.0000 0.3333 0.2500 0.2857

Gpt-4.1-mini 0.8474 0.2500 0.2500 0.2500 0.7500 0.7500 0.7500
Gpt-4.1 0.9378 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.8567 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.8813 0.0000 0.0000 0.0000 0.3333 0.2500 0.2857

Table S130: Detailed results for benchmark BIOMD0000001031 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.8606 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.8863 0.6000 0.7500 0.6667 0.8000 1.0000 0.8889

Gpt-4.1-mini 0.8396 0.3333 0.2500 0.2857 0.3333 0.2500 0.2857
Gpt-4.1 0.9275 0.2000 0.2500 0.2222 0.4000 0.5000 0.4444

Claude-3.5-Haiku 0.9390 1.0000 0.2500 0.4000 1.0000 0.2500 0.4000
Claude-3.7-Sonnet 0.8417 0.3333 0.2500 0.2857 0.6667 0.5000 0.5714

Table S131: Detailed results for benchmark BIOMD0000001035 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.8342 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.1295 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Gpt-4.1-mini 0.9652 0.2500 0.1250 0.1667 0.2500 0.1250 0.1667
Gpt-4.1 0.7968 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.5595 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.4633 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S132: Detailed results for benchmark BIOMD0000001036 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.9579 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.2877 0.5000 0.5000 0.5000 0.6667 0.6667 0.6667

Gpt-4.1-mini 0.9116 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.5812 0.2727 0.5000 0.3529 0.3636 0.6667 0.4706

Claude-3.5-Haiku 0.9709 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.4023 0.5000 0.5000 0.5000 0.6667 0.6667 0.6667
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Table S133: Detailed results for benchmark BIOMD0000001037 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.4483 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.1832 0.0000 0.0000 0.0000 0.3333 0.3333 0.3333

Gpt-4.1-mini 0.5196 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gpt-4.1 0.5216 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Claude-3.5-Haiku 0.5230 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.8787 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S134: Detailed results for benchmark BIOMD0000001038 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.2453 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gemini-2.5-Pro 0.2790 0.0000 0.0000 0.0000 0.2000 0.1667 0.1818

Gpt-4.1-mini 0.7061 0.0000 0.0000 0.0000 0.2500 0.1667 0.2000
Gpt-4.1 0.9284 0.2500 0.1667 0.2000 0.2500 0.1667 0.2000

Claude-3.5-Haiku 0.4480 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.5256 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table S135: Detailed results for benchmark BIOMD0000001045 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.4787 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Gemini-2.5-Pro 0.4427 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Gpt-4.1-mini 0.7036 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Gpt-4.1 0.4207 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Claude-3.5-Haiku 0.9855 0.6667 1.0000 0.8000 0.6667 1.0000 0.8000
Claude-3.7-Sonnet 0.5421 0.3333 0.5000 0.4000 0.5000 0.5000 0.5000

Table S136: Detailed results for benchmark BIOMD0000001048 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.1173 0.2500 0.1667 0.2000 0.2500 0.2500 0.2500
Gemini-2.5-Pro 0.0913 0.3333 0.1667 0.2222 0.3333 0.2500 0.2857

Gpt-4.1-mini 0.3691 0.2500 0.1667 0.2000 0.2500 0.2500 0.2500
Gpt-4.1 0.7415 0.3333 0.1667 0.2222 0.3333 0.2500 0.2857

Claude-3.5-Haiku 0.5294 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.3396 0.1667 0.1667 0.1667 0.1667 0.2500 0.2000
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Table S137: Detailed results for benchmark BIOMD0000001057 across all models.

Model STE ↓ RMS (with modifiers) ↑ RMS (without modifiers) ↑
Precision Recall F1 Precision Recall F1

Gemini-2.5-Flash 0.0068 0.6000 0.6000 0.6000 0.8000 1.0000 0.8889
Gemini-2.5-Pro 0.0068 0.7500 0.6000 0.6667 1.0000 1.0000 1.0000

Gpt-4.1-mini 0.2356 0.5000 0.4000 0.4444 0.7500 0.7500 0.7500
Gpt-4.1 0.0017 0.7500 0.6000 0.6667 1.0000 1.0000 1.0000

Claude-3.5-Haiku 0.9990 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Claude-3.7-Sonnet 0.0250 0.7500 0.6000 0.6667 1.0000 1.0000 1.0000
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Guidelines:

• The answer NA means that the paper does not include theoretical results.
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).
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• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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