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Abstract. We present a method for deep neural network interpretability by com-
bining feature attribution with counterfactual explanations to generate attribution
maps that highlight the most discriminative features between classes. Crucially,
this method can be used to quantitatively evaluate the performance of feature
attribution methods in an objective manner, thus preventing potential observer bias.
We evaluate the proposed method on six diverse datasets, and use it to discover so
far unknown morphological features of synapses in Drosophila melanogaster. We
show quantitatively and qualitatively that the highlighted features are substantially
more discriminative than those extracted using conventional attribution methods
and improve upon similar approaches for counterfactual explainability. We argue
that the extracted explanations are better suited for understanding fine grained class
differences as learned by a deep neural network, in particular for image domains
where humans have little to no visual priors, such as biomedical datasets.

1 Introduction

xR

xC

⇠ ?(x |8)

⇠ ?(x | 9)

G8! 9
Discriminative

Attribution
m m · xR (1 � m) · xC

+

xH

= f

f

f

HR = 8

HH = 8

HC = 9

Fig. 1: Overview of the proposed method: An input image xR of class 8 is converted
through an independently trained cycle-GAN generator ⌧8! 9 into a counterfactual image
xC of class 9 , such that the classifier 5 we wish to interpret predicts HR = 8 and HC = 9 .
A discriminative attribution method then searches for the minimal mask m, such that
copying the most discriminative parts of the real image xR into the counterfactual xC
(resulting in the hybrid xH) is again classified as HH = 8.

Machine Learning—and in particular Deep Learning—continues to see increased
adoption in crucial aspects of society such as industry, science, and healthcare. As a result,
there is an increasing need for tools that make Deep Neural Networks (DNNs) more
interpretable for practitioners. Two popular approaches for explaining DNN classifiers
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are so called feature attribution and counterfactual methods. Feature attribution methods
highlight the input features that influence the output classification the most, whereas
counterfactual methods present the user with a minimally modified input that would have
led to a different output classification. In this work, we combine these two complementary
approaches and devise a method for DNN interpretability that: (1) is able to highlight the
most discriminative features of a given class pair, (2) can be objectively evaluated, and
(3) is suitable for knowledge extraction from DNNs in cases where humans lack a clear
understanding of class differences, a common situation for biomedical image datasets.

Feature attribution methods provide an explanation in terms of a heatmap over input
pixels, highlighting and ranking areas of importance. A large number of approaches
for feature attribution have been proposed in recent years (for a recent review see [27]
and related work below) and they remain a popular choice for practitioners due to their
ease of use, availability in popular Deep Learning frameworks, and intuitive outputs.
However, the effectiveness, accuracy, and trustworthiness of these approaches is still
debated [15,1,11,2], and an objective evaluation of those methods remains a difficult
task [26,14]. Of particular concern are explanations that highlight the entire set of features
that contributed to the output decision, including features that are shared between two
different classes (so-called distractors [16]). This is problematic in the setting we are most
concerned with, i.e., the extraction of information about class differences from a DNN
in order to educate humans. This is particularly relevant in biomedical images, where
humans have little to no visual priors (we show one such example in the experimental
section of this work).

Counterfactual explanations are a complementary approach for explaining DNN
decisions [20,36]. In contrast to feature attribution, counterfactual approaches attempt
to explain a DNN output by presenting the user with another input that is close to the
original input, but changes the classification decision of the DNN from class 8 to another
class 9 . Comparing the two inputs then can be used to understand how class 8 differs from
class 9 , enabling discriminative interpretability. For humans, this approach is arguably
more natural and informative than presenting the full set of characteristics of class 8,
as done by feature attribution maps. However, generating counterfactual explanations
typically involves an optimization procedure that needs to be carefully tuned in order to
obtain a counterfactual with the desired properties. This process can be computationally
expensive and does, in general, not allow for easy computation of attribution maps [35].
Due to these difficulties, counterfactual approaches are comparatively less popular for
image data, where feature attribution methods arguably remain the dominant tool for
practitioners.

To address these issues, we present a simple method that bridges the gap between
counterfactual explainability and feature attribution (DAPI: Discriminative Attribution
from Paired Images, see Fig. 1 for a visual summary). We use a cycle-GAN [40] to
translate real images xR of class 8 to counterfactual images xC of class 9 < 8. We then
find an attribution map by processing the paired images with a new set of discriminative

attribution methods, i.e., generalized versions of standard attribution methods. We show
that this approach is able to generate sparse, high quality feature attribution maps that
highlight the most discriminative features in the real and counterfactual image more
precisely than standard attribution methods and prior approaches for discriminative
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attribution. Crucially, the use of paired images allows quantification of the discriminatory
power of attribution maps by performing an intervention, i.e., replacing the highlighted
pixels in the counterfactual with the corresponding pixels in the real image. The difference
in output classification score of this hybrid image, compared to the real image, then
quantifies the importance of the swapped features. We validate DAPI on a set of six diverse
datasets, including a challenging artificial dataset, a real world biological dataset (where
a DNN solves a task human experts can not), MNIST, and three natural image datasets.
For all six datasets, we show quantitatively and qualitatively that DAPI outperforms all
other considered methods in identifying key discriminatory features between the classes.

Notably, we use DAPI to perform semi-automated knowledge extraction from a DNN
that has been trained to classify electron microscopy images of synapses in Drosophila

melanogaster by the neurotransmitter they release. Using DAPI, we are able to identify
so far unknown morphological differences of synapses that release different neurotrans-
mitters, discovering a crucial structure-function relationship for connectomics. Source
code and datasets are publicly available at anonymizedurl.

2 Related Work

Interpretability methods can be broadly categorized into local or global methods. Local
methods provide an explanation for every input, highlighting the reasons why a particular
input is assigned to a certain class by the DNN. Global methods attempt to distill the DNN
in a representation that is easier to understand for humans, such as decision trees. One
can further distinguish between interpretability methods that are post-hoc, i.e., applicable
to every DNN after it has been trained, and those methods that require modifications
to existing architectures to perform interpretable classification as part of the model. In
this work we focus on local post-hoc approaches to DNN interpretability for image
classification.

Attribution Methods for Image Classification Even in this restricted class of approaches
there is a large variety of methods [24,19,5,4,41,28,34,31,38,16,21,10,8,39,29,30,32]They
have in common that they aim to highlight the most important features that contributed to
the output classification score for a particular class, generating a heatmap indicating the
influence of input pixels and features on the output classification. Among those, of partic-
ular interest to the work presented here are baseline feature attribution methods, which
perform feature attribution estimation with reference to a second input. Those methods
gained popularity as they assert sensitivity and implementation invariance [34,30]. The
baseline is usually chosen to be the zero image as it is assumed to represent a neutral
input.

Counterfactual Interpretability Since the introduction of counterfactual interpretability
methods [20], the standard approach for generating counterfactuals broadly follows
the procedure proposed by [36]. Concretely, a counterfactual is found as a result of an
optimization aiming to maximize output differences while minimizing input differences
between the real image xR and the counterfactual xC: xC = argminx !8 (xR, x) �

anonymized%20url
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!> ( 5 (xR), 5 (x)), with !8 and !> some loss that measures the distance between inputs
and outputs, respectively, and 5 the classifier in question. Optimizing this objective can
be problematic because it contains competing losses and does not guarantee that the
generated counterfactual xC is part of the data distribution ?(x). Current approaches try
to remedy this by incorporating additional regularizers in the objective [18,35], such as
adversarial losses that aim to ensure that the counterfactual xC is not distinguishable from
a sample x ⇠ ?(x) [6,18]. However, this does not address the core problem of competing
objectives and will result in a compromise between obtaining in-distribution samples,
maximizing class differences, and minimizing input differences. We circumvent this
issue by omitting the input similarity loss in the generation of counterfactuals and instead
enforce similarity post-hoc, similar to the strategy used by [22]. Similar to ours, the work
by [23] uses a cycle-GAN to generate counterfactuals for DNN interpretability. However,
this method differs in that the cycle-GAN is applied multiple times to a particular input
in order to increase the visual differences in the real and counterfactual images for
hypothesis generation. Subsequently, the found features are confirmed by contrasting
the original classifiers performance with one that is trained on the discovered features,
which does not lead to attribution maps or an objective evaluation of feature importance.

Attribution and Counterfactuals To the best of our knowledge, two other methods
explore the use of counterfactuals for feature attribution: Wang et al. [37] introduces a
novel family of so-called discriminative explanations that also leverage attribution on
a real and counterfactual image in addition to confidence scores from the classifier to
derive attributions for the real and counterfactual image that show highly discriminative
features. This approach requires calculation of three different attribution maps, which are
subsequently combined to produce a discriminative explanation. In addition, this method
does not generate new counterfactuals using a generative model, but instead selects a real
image from a different class. On one hand this is advantageous because it does not depend
on the generator’s performance, but on the other hand this does not allow creating hybrid
images for the evaluation of attribution maps. Closest to our approach is the method
presented by Goyal et al. [12], where counterfactual visual explanations are generated
by searching for feature sets in two real images of different classes that, if swapped,
influence the classification decision. To this end, an optimization problem is solved to
find the best features to swap, utilizing the network’s feature representations. The usage
of real (instead of generated) counterfactuals can lead to artifacts during the replacement
of features. Furthermore, the attributions are limited in resolution to the field of view
of the feature layer considered for performing the swap. In addition, depending on the
chosen architecture, swapping features between images is not equivalent to swapping
the corresponding pixel regions as the field of view of multiple units are overlapping.
This makes it difficult to cleanly associate input features with the observed change in
classification score, as we show in Section 4.

Attribution Evaluation Being able to objectively evaluate attribution methods is important
for method selection and trusting the generated explanations. Prior work evaluated the
importance of highlighted features by removing them [26]. However, it has been noted
that this strategy is problematic because it is unclear whether any observed performance
degradation is due to the removal of relevant features or because the new sample comes
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(x

H
) 8

m xH

5 (xH )8 � 5 (xC )8 = 0.42

m xH

5 (xH )8 � 5 (xC )8 = 0.95

xR ⇠ ? (x|8)

xC ⇠ ? (x| 9)

a

attribution evaluation

DAPI score

Fig. 2: Evaluation procedure for discriminative attribution methods: Given the real image
xR of class 8 and its counterfactual xC of class 9 , we generate a sequence of binary masks
m by applying different thresholds to the attribution map a. Those masks are then used
to generate a sequence of hybrid images xH. The plot shows the change in classifier
prediction � 5 (xH)8 = 5 (xH)8 � 5 (xC)8 over the size of the mask m (normalized between
0 and 1). The DAPI score is the area under the curve, i.e., a value between 0 and 1. Higher
DAPI scores are better and indicate that a discriminative attribution method found small
regions that lead to the starkest change in classification.

from a different distribution. As a result, strategies to remedy this issue have been
proposed, for example by retraining classifiers on the modified samples [14]. Instead
of removing entire features, in this work we replace them with their corresponding
counterfactual features.

3 Method

The method we propose combines counterfactual interpretability with discriminative
attribution methods to find and highlight the most important features between images of
two distinct classes 8 and 9 , given a pretrained classifier 5 . For that, we first generate
for a given input image xR of class 8 a counterfactual image xC of class 9 . We then use
a discriminative attribution method to find the attribution map of the classifier for this
pair of images. As we will show qualitatively and quantitatively in Section 4, using
paired images results in attribution maps of higher quality. Furthermore, the use of a
counterfactual image gives rise to an objective evaluation procedure for attribution maps.
In the next sections we describe (1) our choice for generating counterfactual images, (2)
the derivation of discriminative attribution methods from existing baseline attribution
methods, and (3) how to use counterfactual images to evaluate attribution maps. We
denote with 5 a pretrained classifier with # output classes, input images x 2 R⌘⇥F , and
output vector 5 (x) = y 2 [0, 1]# with

Õ
8 H8 = 1.

3.1 Creation of Counterfactuals

We train a cycle-GAN [40] for each pair of image classes 8 < 9 2 {1, ..., #}, which
enables translation of images of class 8 into images of class 9 and vice versa. We perform
this translation for each image of class 8 and each target class 9 < 8 to obtain datasets of
paired images ⇡8! 9 =

�
(x:R, x:C) |: = 1, . . . , =(8)

 
, where x:R denotes the :th real image

of class 8 and x:C its counterfactual of class 9 . We then test for each image in the dataset
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whether the translation was successful by classifying the counterfactual image xC and
reject a sample pair whenever 5 (xC) 9 < \, with \ a threshold parameter (in the rest of
this work we set \ = 0.8). This procedure results in a dataset of paired images, where
the majority of the differences between an image pair is expected to be relevant for
the classifiers decision, i.e., we retain formerly present non-discriminatory distractors
such as orientation, lighting, or background. We encourage that the translation makes as
little changes as necessary by choosing a ResNet [13] architecture for the cycle-GAN
generator, which is able to trivially learn the identity function.

3.2 Discriminative Attribution

The datasets ⇡8! 9 are already useful to visualize data-intrinsic class differences (see
Fig. 3 for examples). However, we wish to understand which input features the classifier
5 makes use of. Specifically, we are interested in finding the smallest binary mask m,
such that swapping the contents of xC with xR within this mask changes the classification
under 5 . To find m, we repurpose existing attribution methods that are amendable to
be used with a reference image. The goal of those methods is to produce attribution
maps a, which we convert into a binary mask via thresholding. A natural choice for our
purposes are so-called baseline attribution methods, which derive attribution maps by
contrasting an input image with a baseline sample (e.g., a zero image). In the following,
we review suitable attribution methods and derive discriminative versions that use the
counterfactual image as their baseline. We will denote the discriminative versions with
the prefix ⇡.

Input * Gradients One of the first and simplest attribution methods is Input * Gradients

(INGRADS) [30,31], which is motivated by the first order Taylor expansion of the output
class with respect to the input around the zero point:

INGRADS(x) = |rx 5 (x)8 · x |, (1)

where 8 is the class for which an attribution map is to be generated. We derive an explicit
baseline version for the discriminatory attribution of the real xR and its counterfactual
xC by choosing xC as the Taylor expansion point:

⇡-INGRADS(xR, xC) = |rx 5 (x) 9
���
x=xC

· (xC � xR) |, (2)

where 9 is the class of the counterfactual image.

Integrated Gradients Integrated Gradients (IG) is an explicit baseline attribution
method, where gradients are accumulated along the straight path from a baseline input
x0 to the input image x to generate the attribution map [34]. Integrated gradients along
the :th dimension are given by:

IG: (x) = (x � x0): ·
π 1

U=0

m 5 (x0 + U(x � x0))8
mx:

3U. (3)
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We derive a discriminatory version of IG by replacing the baseline as follows:

⇡-IG: (xR, xC) = (xC � xR): ·
π 1

U=0

m 5 (xR + U(xC � xR)) 9
mx:

3U. (4)

Deep Lift Deep Lift (DL) is also an explicit baseline attribution method which aims to
compare individual neuron’s activations of an input w.r.t. a reference baseline input [30].
It can be expressed in terms of the gradient in a similar functional form to IG:

DL(x) = (x � x0) · �⇡! , (5)

where �⇡! is some function of the gradient of the output (see [3] for the full expression).
The discriminative attribution we consider is simply:

⇡-DL(xR, xC) = (xC � xR) · �⇡! . (6)

GradCAM GradCAM (GC) is an attribution method that considers the gradient weighted
activations of a particular layer, usually the last convolutional layer, and propagates this
value back to the input image [28]. We denote the activation of a pixel (D, E) in layer ;
with size (⌘,F) and channel : by ⇠

;
:,D,E and write the gradient w.r.t. the output y as:

r⇠;
:
y = ( 3y

3⇠
;
:,0,0

,

3y

3⇠
;
:,1,0

,

3y

3⇠
;
:,2,0

, ...,

3y

3⇠
;
:,⌘,F

) (7)

The original GC is then defined as:

GC(x) = ReLU

 ’
:

r⇠: y · Æ⇠:

!

= ReLU

 ’
:

’
D,E

3y

3⇠:,D,E
⇠:,D,E

!

= ReLU

 ’
:

U:⇠:

!
,

(8)

where we ommitted the layer index ; for brevity. Each term 3y
3⇠:,D,E

⇠:,D,E is the contribution
of pixel D, E in channel : to the output classification score y under a linear model. GC
utilizes this fact and projects the layer attribution from layer ; back to the input image,
generating the final attribution map. In contrast to the setting considered by GC, we have
access to a matching pair of real and counterfactual images xR and xC. We extend GC
to consider both feature maps ⇠xR

: and ⇠
xC
: by treating GC as an implicit zero baseline

method similar to INGRADS:

⇡-GC: (xR, xC) =
3y 9

3⇠:

���
⇠=⇠

xC
:

(⇠: (xC) � ⇠: (xR)) . (9)
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Averaging those gradients over feature maps : , and projecting the activations back to
image space then highlights pixels that are most discriminative for a particular pair:

⇡-GCP (xR, xC) =
�����P

’
:

⇡-GC: (xR, xC)
����� , (10)

where P is the projection matrix (in this work we simply rescale to the input size) from
feature space ⇠ to input space - . Note that in contrast to GC, we use the absolute value
of the output attribution, as we do not apply ReLU activations to layer attributions.
Because feature maps can be of lower resolution than the input space, GC tends to
produce coarse attribution maps [28]. To address this issue it is often combined with
Guided Backpropagation (GBP), a method that uses the (positive) gradients of the output
class w.r.t. the input image as the attribution map [33]. Guided GradCAM (GGC) uses
this strategy to sharpen the attribution of GC via element-wise multiplication of the
attribution maps [28]. For the baseline versions we thus consider multiplication of ⇡-GC
with the GBP attribution maps:

GBP(x) = rx 5 (x)8 , withrReLU > 0 (11)
GGC(x) = GC(x) · GBP(x) (12)

⇡-GGC(xR, xC) = ⇡-GC(xR, xC) · GBP(xR). (13)

3.3 Evaluation of Attribution Maps

The discriminative attribution map a obtained for pair of images (xR, xC) can be used to
quantify the causal effect of the attribution. Specifically, we can copy the area highlighted
by a from the real image xR of class 8 to the counterfactual image xC of class 9 , resulting
in a hybrid image xH. If the attribution accurately captures class-relevant features, we
would expect that the classifier 5 assigns a high probability to xH being of class 8. The
ability to create those hybrid images is akin to an intervention, and has two important
practical implications: First, it allows us to find a minimal binary mask that captures the
most class-relevant areas for a given input image. Second, we can compare the change
in classification score for hybrids derived from different attribution maps. This allows
us to compare different methods in an objective manner, following the intuition that an
attribution map is better, if it changes the classification with less pixels changed. To find a
minimal binary mask mmin, we search for a threshold of the attribution map a, such that
the mask score � 5 (xH) = 5 (xH)8 � 5 (xC)8 (i.e., the change in classification score) is
maximized while the size of the mask is minimized, i.e., mmin = arg minm |m |�� 5 (xH)
(where we omitted the dependency of xH on m for brevity). In order to minimize artifacts
in the copying process we also apply a morphological closing operation with a window
size of 10 pixels followed by a Gaussian Blur with f = 11?G. The final masks highlight
the relevant class discriminators by showing the user the counterfactual features, the
original features they are replaced with, and the corresponding mask score � 5 (xH),
indicating the quantitative effect of the replacement on the classifier. See Fig. 3 for
example pairs and corresponding areas mmin. Furthermore, by applying a sequence of
thresholds for the attribution map a, we derive an objective evaluation procedure for
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Fig. 3: Samples from the best performing method pairs (S: “single input”, D: discrimina-
tive) on S�����, H�����, A�����, D���-A and S������� (different rows). Shown in
each row is the input image of class 8, attribution maps according to S- and D- methods
(best performing on the respective dataset), the counterfactual image of class 9 , and the
hybrid images. Bars indicate the classifier’s prediction for class 8 (purple) and 9 (orange).
The last column shows the single image DAPI score. Stars indicate the shown threshold
(corresponding to the optimal DAPI score). Additional qualitative results can be found in
Supplementary Section 2.

a given attribution map: For each hybrid image xH in the sequence of thresholds, we
consider the change in classifier prediction relative to the size of the mask that has been
used to create the hybrid. We accumulate the change in classifier prediction over all mask
sizes to derive our proposed DAPI score. This procedure is explained in detail in Fig. 2
for a single pair of images. When reporting the DAPI score for a particular attribution
method, we average the single DAPI scores over all images, and all distinct pairs of
classes.

4 Experiments

We evaluate the presented method on six datasets: M���� [17], S������� [9]1, two
versions of a synthetic dataset that we call D���-A and D���-B, and three natural image
datasets H�����, A����� and S����� from [40]. For a more detailed overview of all
considered datasets, see Supplementary Section 3.

S������� A real world biological dataset, consisting of 1 ⇥ 128 ⇥ 128px electron
microscopy images of synaptic sites in the brain of Drosophila melanogaster. Each image

1 Dataset kindly provided by the authors of [9].
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is labelled with a functional property of the synapse (six different classes), namely the
neurotransmitter it releases (the label was acquired using immunohistochemistry labelling,
see [9] for details). This dataset is of particular interest for interpretability, since a DNN
can recover the neurotransmitter label from the images with high accuracy, but human
experts are not able to do so. Interpretability methods like the one presented here can thus
be used to gain insights into the relation between structure (from the electron microscopy
image) and function (the neurotransmitter released). See Fig. 6 for an example of a
discriminatory feature between synapses that release the two different neurotransmitters
GABA and Acetylcholine, discovered by applying DAPI on the S������� dataset. A
full description of all discovered feature differences can be found in the supplementary
material.

H�����, A����� & S����� Three natural image datasets corresponding to binary
classification tasks. H����� consists of two sets of images showing horses and zebras
respectively, A����� is a dataset of images depicting apples and oranges, and S�����
shows landscape pictures in summer and winter. We scale each image to 3 ⇥ 256 ⇥ 256
for classification and image translation.

D���-A & D���-B Two synthetic datasets with different discriminatory features. Each
image is 1 ⇥ 128 ⇥ 128px in size and contains spheres, triangles or squares. For D���-A,
the goal is to correctly classify images containing an even or odd number of triangles.
D���-B contains images that show exactly two of the three available shapes and the goal
is to predict which shape is missing (e.g., an image with only triangles and squares is
to be classified as “does not contain spheres” ). This dataset was deliberately designed
to investigate attribution methods in a setting where the discrimination depends on the
absence of a feature.

Training For M����, D���, H�����, A����� and S����� we train a VGG and ResNet for
100 epochs and select the epoch with highest accuracy on a held out validation dataset.
For S������� we adapt the 3D-VGG architecture from [9] to 2D and train for 500,000
iterations. We select the iteration with the highest validation accuracy for testing. For
M����, D��� & S������� we train one cycle-GAN for 200 epochs, on each class pair
and on the same training set the respective classifier was trained on. For H�����, A�����
and S����� we use the pretrained cycle-GAN checkpoints provided by [40] (the full
network specifications are given in the supplement).

Results Quantitative results (in terms of the DAPI score, see Section 3.3) for each
investigated attribution method are shown in Fig. 4 and Table 1. In summary, we find
that attribution maps generated from the proposed discriminative attribution methods
consistently outperform their original versions in terms of the DAPI score. This observa-
tion also holds visually: the generated masks from discriminative attribution methods
are smaller and more often highlight the main discriminatory parts of a considered
image pair (see Fig. 3). In particular, the proposed method substantially outperforms the
considered random baseline, whereas standard attribution methods sometimes fail to
do so (e.g., GC on dataset S�������). Furthermore, on M���� and D���-A, the mask
derived from the residual of real and counterfactual image is already competitive with
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S������� M����

D���-A D���-B

H����� S�����

A�����
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Fig. 4: Quantitative evaluation of discriminative (⇡ - solid) and corresponding original
(( for “single input” - dashed) attribution methods over six datasets (S�������, M����,
two versions of D���, H�����, S�����, and A�����). Attributions for ⇡ and ( methods
are calculated as described in the methods section, with a zero baseline for all ( methods
that are explicit baseline methods, following standard practice. Corresponding ⇡ and (

versions of the same method are shown in the same color. For each, we plot the average
change of classifier prediction � 5 (xH):8 = 5 (xH)8 � 5 (xC)8 as a function of mask size
m 2 [0, 1]. In addition we show performance of the two considered baselines: masks
derived from random attribution maps (random - red, dotted) and mask derived from the
residual of the real and counterfactual image (residual - black, dotted). On all considered
datasets all versions of ⇡ attribution outperform their ( counterparts with the single
exception of INGRAD on the A����� dataset. All experiments shown here are performed
with VGG architectures (we observe similar results with ResNet, see Supplementary
Section 2).
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xR/� xC �0

xH �⇤H�����
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) 8

mask size
xR/� xC �0
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xH �⇤A�����

�
5
(x

H
) 8
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Fig. 5: Comparison of our method to the method presented by Goyal et al. [12] for the
three natural image datasets H�����, S����� and A����� (See Supplementary Section
4 for the other datasets and Table 1 for associated DAPI scores). For each dataset we
show the real/query image(xR/�) as well as the counterfactual xC and hybrid xH for
DAPI. For [12], we show the distractor image �

0 as well as the hybrid �
⇤ after the minimal

amount of swaps needed to change the classifier decision. In addition, we show the DAPI
scores for [12] and our best performing method for each dataset averaged over all image
pairs. Note that [12] considers replacement of patches from the distractor image �

0 to the
query image �, while we consider the opposite direction xR ! xC.
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Dataset D-IG D-DL D-INGR. D-GC D-GGC RES. IG DL INGR. GC GGC RND. GOYAL

M���� 0.83 0.84 0.82 0.73 0.78 0.84 0.77 0.79 0.77 0.52 0.56 0.46 0.27
S������� 0.75 0.79 0.65 0.62 0.65 0.63 0.56 0.43 0.61 0.28 0.52 0.41 0.21
D���-A 0.9 0.9 0.88 0.95 0.79 0.9 0.69 0.7 0.72 0.43 0.48 0.54 0.41
D���-B 0.91 0.91 0.91 0.95 0.88 0.91 0.48 0.51 0.6 0.8 0.79 0.48 0.46
H����� 0.93 0.93 0.9 0.91 0.84 0.56 0.8 0.79 0.78 0.58 0.65 0.53 0.62
S����� 0.73 0.77 0.67 0.7 0.69 0.47 0.63 0.64 0.61 0.6 0.65 0.48 0.49
A����� 0.8 0.88 0.74 0.79 0.77 0.59 0.73 0.75 0.77 0.68 0.69 0.5 0.52

Table 1: Summary of DAPI scores using VGG architecures for each investigated method
on the six datasets M����, S�������, H�����, S�����, A����� and D��� (two versions)
corresponding to 4. Best results are highlighted.

the best considered methods and outperforms standard attribution substantially. However,
for more complex datasets such as S�������, H�����, A����� and S�����, the residual
becomes less accurate in highlighting discriminative features. Here, the discriminatory
attributions outperform all other considered methods.

In addition to the considered baseline attribution methods we also compare DAPI
with the method proposed by Goyal et al. [12]. To this end, we iterated the B���E���
procedure until the features of the query image � have been entirely replaced with features
from the distractor image �

0 (see Algorithm 1 in [12]). We then swapped input patches
that underlie those features between � and �

0 accordingly to obtain a sequence of �
⇤

that gradually transforms � into a shuffled version of �
0. We measure the impact on

the classifier score in the same way as with xH in our method (see Fig. 5 for examples
on H�����, S�����, and A�����; Table 1 for aggregate results on all datasets; and
Supplement Section 4 for an extended analysis). We find that DAPI consistently finds
smaller regions with larger explanatory power.

5 Discussion

This work demonstrates that the combination of counterfactual interpretability with
suitable attribution methods is more accurate in extracting key discriminative features
between class pairs than standard methods. While the method succeeds in the presented
experiments, it comes with a number of limitations. It requires the training of cycle-GANs,
one for each pair of output classes. Thus training time and compute cost scale quadratically
in the number of output classes and it is therefore not feasible for classification problems
with a large number of classes. Furthermore, the translation from the real to the
counterfactual image could fail for a large fraction of input images, i.e., 5 (xC) < 9 . In this
work, we only consider those image pairs where translation was successful, as we focus
on extracting knowledge about class differences from the classifier. For applications that
require an attribution for each input image this approach is not suitable. An additional
concern is that focusing only on images that have a successful translation may bias the
dataset we consider and with it the results. GANs are known to exhibit so-called mode
collapse [7,25], meaning they focus on only a small set of modes of the full distribution.
As a consequence, the method described here may miss discriminatory features present
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GABA ACH ACH GABA
GABA 0.88 — ACH 0.04 GABA 0.13 — ACH 0.84

GABA 0.9 — ACH 0.07 GABA 0.05 — ACH 0.92

GABA 0.96 — ACH 0.01 GABA 0.12 — ACH 0.83

ACH 1.0 — GABA 0.0 ACH 0.04 — GABA 0.94

ACH 1.0 — GABA 0.0 ACH 0.01 — GABA 0.98

ACH 1.0 — GABA 0.0 ACH 0.03 — GABA 0.97

(a) (b)

Fig. 6: DAPI reveals so far unnoticed morphological features of synapses. Shown are
electron microscopy images and associated masks generated by DAPI for real synapses
(blue boxes) that express the neurotransmitters GABA (a) and Acetylcholine (b), next to
their respective translations to the other class (orange boxes). The classification score is
shown above each image, validating a successful translation. As before, masks highlight
regions that change the classification decision back to the real class if swapped from
real to fake sample. Masks consistently highlight the synaptic cleft, and we observe
a brightening of the inside of the cleft when translating from GABA to ACH and a
darkening the other way around.

in other modes. Furthermore, image classes need to be sufficiently similar in appearance
for the cycle-GAN to work, and translating, e.g., an image of a mouse into an image of a
tree is unlikely to work and produce meaningful attributions. However, we believe that
the generation of masks in combination with the corresponding mask score is superior
to classical attribution maps for interpreting DNN decision boundaries, especially for
the analysis of fine-grained class differences; a common situation for biomedical image
datasets and exemplified here by the S������� dataset. Although we present this work
in the context of understanding DNNs and the features they make use of, an uncritical
adaptation of this and other similar interpretability methods can potentially lead to ethical
concerns. As an example, results should be critically evaluated when using this method
to interpret classifiers that have been trained to predict human behaviour, or demographic
and socioeconomic features. As with any data-heavy method, it is important to realize that
results will be reflective of data- and model-intrinsic biases. As such, an interpretability
method like the one we present here can at most identify a correlation between input
features and labels, but not true causal links. The method presented here should therefore
not be used to “prove” that a particular feature leads to a particular outcome.
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A Training Details

A.1 Network Architectures

Cycle-GAN We use the cylce-GAN implementation from https://github.com/
junyanz/pytorch-CycleGAN-and-pix2pix. For M����, S������� and D���, we use
a 9-block R��N�� generator and a 70 ⇥ 70 PatchGAN [3] discriminator. For training we
use a least squares loss (LSGAN [5]), a batch size of one, instance normalization and
normal initialization. We use the Adam optimizer [4] with momentum V1 = 0.5 and a
learning rate of 0.0002 with a linear decay to zero after the first 100 epochs. For H�����,
S����� and A����� we use the pretrained networks from [7].

Classifiers The classifiers used for attribution are either VGG (for datasets S�������,
M����, D���, H�����, S����� and A�����) or R��N�� (for datasets M����, D���, H�����,
S����� and A�����) architectures, trained using a cross-entropy loss. Individual layers
are shown in Table 1 and Table 2. For the training of the VGG network on the S�������
dataset, we use the same strategy (including augmentations) as described in [1], with
the only difference being that we consider 2D images instead of 3D volumes. We did
not attempt to train a R��N�� on the S������� dataset. For the training of the VGG
and R��N�� architectures on the M���� and D��� datasets we did not make use of
augmentations and trained each network for 100 epochs with a batch size of 32 using the
Adam optimizer (learning rate 10�4).

A.2 Compute

The most significant part of the compute costs come from training the cycle-GANs. For
each experiment, cycle-GAN training for 200 epochs took around 5 days on a single
RTX 2080Ti GPU. For M���� experiments we trained a total of 45 cycle GANs, 15 for
S�������, and 4 for D���. In total this results in roughly 320 GPU-days for cycle-GAN
training. In contrast, attribution and mask generation is comparatively cheap and takes
between 1-3 hours on 20 RTX 2080Ti GPUs for each dataset, resulting in 60 GPU hours
for each experiment and 30 GPU days in total.

To alleviate the comparatively large compute costs incurred by the training of cycle-GANs
for each class pair, one could consider a one-vs-all CycleGAN and perform subsequent
attribution on = (instead of =2) cases. However, for practical applications, the compu-
tational complexity of the pairwise analysis is likely acceptable as it is inherited from
the concrete question one seeks to answer and ultimately limited by the number of class
pairs a human is able or willing to look at.

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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GABA ACH GLUT

SER OCT DOP

S������� D���

even odd

no circles no squares no triangles

B:

A:

Fig. 1: Example images of datasets S������� and D���. S������� consists of electron
microscopy images of synapses. Each class is defined by the neurotransmitter the synapse
releases. D��� is a synthetic dataset we designed in order to highlight failure cases of
popular attribution methods. We consider two subsets: D���-A shows triangles in each
image and classes are defined by the parity of the number of triangles. D���-B consists
of images showing triangles, squares, and disks. Each class is one combination of two
shapes.

B Extended Results

In addition to the results using VGG architectures in the main text, below we show
additional results for R��N�� architectures on M����, D���-B, H�����, S����� and
A����� (see Fig. 2 and Table 3). We do not show results for D���-A (even vs. odd number
of shapes), because the considered R��N�� architecture failed to achieve more than chance
level accuracy on the validation dataset (note that we did not attempt any architecture
optimization as this is not the focus of this study). Since our goal is to understand what
the classifier learned about class differences, using a network that did not successfully
learn to classify will not produce meaningful results. Similarly we do not show R��N��
results for the S������� dataset, because the original study uses a VGG classifier, and
reproducing those results with R��N�� architectures is out of the scope of this work. In
summary, the results for R��N�� architectures follow a similar pattern as observed in
the main VGG results: Almost all discriminative attribution methods outperform their
counterparts in terms of DAPI-score. However, DAPI scores of all considered methods
are reduced compared to the results obtained with a VGG, indicating that attribution
methods at large are less effective for R��N�� architectures. As a consequence, for M����
and S�����, the overall best performing method is the residual, which is architecture
independent and already performed well for VGG experiments. However, in general,
the residual is not a good choice for an attribution map as intensity differences between
classes do not generally correlate with feature importance.
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M���� D���-B

H����� S�����

A�����

�
5
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H
) 8

�
5
(x

H
) 8
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5
(x

H
) 8

mask size

mask size

Fig. 2: Quantitative evaluation of discriminative (⇡ - solid) and corresponding original ((
for “single input” - dashed) attribution methods for M����, D���-B, H�����, S����� and
A����� using a R��N�� architecture. Attributions for ⇡ and ( methods are calculated as
described in the methods section, with a zero baseline for all ( methods that are explicit
baseline methods, following standard practice. Corresponding ⇡ and ( versions of the
same method are shown in the same color. For each, we plot the average change of
classifier prediction � 5 (xH):8 = 5 (xH)8 � 5 (xC)8 as a function of mask size m 2 [0, 1].
In addition we show performance of the two considered baselines: masks derived from
random attribution maps (random - red, dotted) and mask derived from the residual of
the real and counterfactual image (residual - black, dotted). On all considered datasets all
versions of ⇡ attribution outperform their ( counterparts, except for DL and INGRADS
on the A����� dataset.
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D���-A D���-B M���� S�������

VGG
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H
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mask size mask size mask size mask size mask size

H����� S����� A����� D���-B M����

R��N��

Fig. 3: Comparison of our method to the method presented by Goyal et al. [2] for the
remaining four datasets using VGG architectures (top row, see main text Fig. 5 for the
three natural image datasets) and all considered R��N�� datasets (bottom row). For each
dataset we show the DAPI scores for [2] and our best performing method averaged over
all image pairs. For all datasets, we outperform [2] in terms of DAPI score. A curious
finding is that the residual for R��N��- S����� has an almost perfect linear relationship
between mask size and classification score, potentially caused by a focus on average
color in the input image by the classifier.

B.1 Hypothetical Discriminators in the S������� Dataset

In order to understand the decision boundaries learned by the S������� classifier [1], we
use DAPI on synapse samples and look for features in the set of the top 40 image pairs
with smallest mask < for each pair of neurotransmitters nt�, nt⌫. We only accept sample
pairs if the real image xR and the fake image xC are classified correctly, i.e. 5 (xR) > 0.9
and 5 (xC) > 0.9. For each pair we consider both directions nt'� ! nt⇠⌫ and =C'⌫ ! =C⇠�
and note an observed change in features as a hypothetical discriminator, if the feature
consistently changes in one direction, and is symmetrically reversed when going in the
other. For example, if we observe a darkening of the cleft from nt'� ! nt⇠⌫ , we require
the cleft to become brighter going from nt'⌫ ! nt⇠� . This ensures that we do not pick up
on features that are not present in real synapses.

All symmetric, hypothetical discriminators can be seen in Fig. 11. Brighter Cleft
refers to less electron density inside the synaptic cleft. Add DCVs is the addition of dense
core vesicles, Lower Density means an overall reduction of content in the pre-synaptic
site. Fill Vesicles means the darkening of the inside of vesicles. Darker Cleft refers to
more electron density inside the synaptic cleft. Remove DCVs is the removal of dense
core vesicles. Remove small Vs means the removal of vesicles with a small diameter.
Brighter DVs refers to the brightening of the inside of medium size vesicles that we call
Dense Vesicles. Thinner Cleft means that the distance between pre and post-synaptic
partners is reduced. !Circ. Vesicles refers to a change of shape from circular to non-
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S-* D-* (ours) Counterfactual hybrid S-* hybrid D-* DAPI score
input image attribution evaluation

Fig. 4: Randomly drawn qualitative samples from the best performing method pairs
(S: “single input”, D: discriminative) on S�������. Shown in each row is the input
image of class 8, attribution maps according to S- and D- methods (best performing
on the respective dataset), the counterfactual image of class 9 , and the hybrid images.
The last column shows the single image DAPI score. Stars indicate the shown threshold
(corresponding to the optimal DAPI score).
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S-* D-* (ours) Counterfactual hybrid S-* hybrid D-* DAPI score
input image attribution evaluation

Fig. 5: Randomly drawn qualitative samples from the best performing method pairs
(S: “single input”, D: discriminative) on D���-A. Shown in each row is the input image
of class 8, attribution maps according to S- and D- methods (best performing on the
respective dataset), the counterfactual image of class 9 , and the hybrid images. The
last column shows the single image DAPI score. Stars indicate the shown threshold
(corresponding to the optimal DAPI score).
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S-* D-* (ours) Counterfactual hybrid S-* hybrid D-* DAPI score
input image attribution evaluation

Fig. 6: Randomly drawn qualitative samples from the best performing method pairs
(S: “single input”, D: discriminative) on D���-B. Shown in each row is the input image
of class 8, attribution maps according to S- and D- methods (best performing on the
respective dataset), the counterfactual image of class 9 , and the hybrid images. The
last column shows the single image DAPI score. Stars indicate the shown threshold
(corresponding to the optimal DAPI score).
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S-* D-* (ours) Counterfactual hybrid S-* hybrid D-* DAPI score
input image attribution evaluation

Fig. 7: Randomly drawn qualitative samples from the best performing method pairs
(S: “single input”, D: discriminative) on M����. Shown in each row is the input image
of class 8, attribution maps according to S- and D- methods (best performing on the
respective dataset), the counterfactual image of class 9 , and the hybrid images. The
last column shows the single image DAPI score. Stars indicate the shown threshold
(corresponding to the optimal DAPI score).
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S-* D-* (ours) Counterfactual hybrid S-* hybrid D-* DAPI score
input image attribution evaluation

Fig. 8: Randomly drawn qualitative samples from the best performing method pairs (S:
“single input”, D: discriminative) on S�����. Shown in each row is the input image
of class 8, attribution maps according to S- and D- methods (best performing on the
respective dataset), the counterfactual image of class 9 , and the hybrid images. The
last column shows the single image DAPI score. Stars indicate the shown threshold
(corresponding to the optimal DAPI score).
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S-* D-* (ours) Counterfactual hybrid S-* hybrid D-* DAPI score
input image attribution evaluation

Fig. 9: Randomly drawn qualitative samples from the best performing method pairs
(S: “single input”, D: discriminative) on H�����. Shown in each row is the input image
of class 8, attribution maps according to S- and D- methods (best performing on the
respective dataset), the counterfactual image of class 9 , and the hybrid images. The
last column shows the single image DAPI score. Stars indicate the shown threshold
(corresponding to the optimal DAPI score).
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S-* D-* (ours) Counterfactual hybrid S-* hybrid D-* DAPI score
input image attribution evaluation

Fig. 10: Randomly drawn qualitative samples from the best performing method pairs
(S: “single input”, D: discriminative) on A�����. Shown in each row is the input image
of class 8, attribution maps according to S- and D- methods (best performing on the
respective dataset), the counterfactual image of class 9 , and the hybrid images. The
last column shows the single image DAPI score. Stars indicate the shown threshold
(corresponding to the optimal DAPI score).
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circular vesicles. Remove PSDs is the removal of post-synaptic densities. Larger Vesicles
means the increase of vesicle diameter. Add DVs means there is an addition of Dense
Vesicles. Less Post-Synapses describes a reduction in the number of post-synaptic partners.

The most notable findings are that the classical transmitters GABA, glutamate and
acetylcholine look different in very subtle ways. For example we observe a consistent
brightening of the inside of the synaptic cleft going from GABA to acetylcholine and
slightly enlarged vesicles going from GABA to glutamate. Changes from acetylcholine
to glutamate are a darker T-bar and a darker cleft. Other notable features are the apparent
removal of post synaptic densities going from acetylcholine and glutamate to dopamine,
in line with findings in mammalian cells [6]. A known discriminator we were able to
rediscover is the addition of dense core vesicles when going from the classical transmitters
to serotonin and octopamine. We leave confirmation of these hypotheses for future work.

C Datasets

The D��� dataset was specifically designed to highlight the advantage of discriminative
attribution over vanilla attribution. In particular, the discriminatory feature of D���-A
is the parity of the number of triangles in the image. This feature is non-local and it
is unclear what vanilla attribution is supposed to highlight. In D���-B the classes are
defined by the absence of a feature, another situation where vanilla attribution is not
designed to give a sensible answer and will often highlight all objects in the image,
providing little information to the user.

D���-A For each image we randomly draw an even (class 0) or odd (class 1) number
between one and six, indicating the number of triangles to generate. Each triangle has a
random size between 20 and 40% of the image size of 128 pixels and a random position.
In addition we draw a random intensity value between 120 and 200, a random rotation
angle, and additive noise strength before applying Gaussian smoothing to generate
different textures. We reject a sample if the fraction of foreground pixels and the total
expected area of all shapes (assuming no overlap) is below 90%, thus avoiding strongly
overlapping configurations.

D���-B Similar to D���-A, we draw a random position, intensity value, rotation and
additive noise strength to generate images showing pairs of a triangle and a square, a disk
and a square or a disk and a triangle. We reject a sample if the fraction of foreground
pixels and the total expected area of all shapes (assuming no overlap) is below 90%.

D Comparison to Goyal et al.

The method presented in [2] is relevant in the context of our work, as it relies on a similar
idea: finding swaps between images in order to teach humans discriminative features of
two image classes. In addition, it does so without the need for generating counterfactuals
with a cycle GAN, instead a real, random distractor image I’ is picked for any given query
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Fig. 11: Hypothetical Discriminator Matrix of features that change between images
of two different neurotransmitter classes as discoverd by DAPI. We only show the
direction from rows to columns in the upper triangle of the matrix, as we only consider
symmetrically reversed features as valid hypotheses. Each box shows the feature change
from the respective row title to the column title. See section B.1 for an explanation of each
discovered feature. Inlets above the hypothesis matrix show example image pairs and
highlighted regions lead to a change of classification decision in the indicated direction
if swapped.
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image I (see main text Fig. 5 for an example.). This is advantageous in terms of compute
cost and can also be applied to datasets where training a cycle GAN is impossible. This
is achieved by searching for (a minimal set of) spatial features in a query image � that,
if replaced with spatial features from a distractor image � 0, leads to a hybrid �⇤ that is
classified as � 0, i.e.:

5 (�⇤) = ( � a) � 5 (�) + a � % 5 (� 0) (1)

with � the Hadamard product and a, % a binary vector and a permutation matrix, which
together define the feature replacements and are found via relaxation of a discrete
optimization problem.

However, this approach comes with a number of downsides. In particular, optimizing
for replacements in feature space is problematic, because for most DNN architectures,
there is not a one to one correspondence between input pixels and spatial features due to
overlapping field of views. Thus, swapping spatial features can produce different results
to swapping the corresponding field of view in the input image. In order to show this, we
compute the classification scores of the optimal 5 (�⇤) and calculate how often we do not
reach the desired target class (defined by the distractor). In addition, we compute how
often we fail to reach the desired target, when we use the same edits as found during
optimization in feature space, but this time replace input patches corresponding to the
spatial features (via upscaling of the feature map). The results are shown in Table 4
and reveal that there is a significant discrepancy between these two approaches. This
is problematic if the goal is to educate humans on class relevant differences in the
input images. Note that this issue is shared by any method that produces counterfactuals
via optimization in feature space. In addition, we observed that the relaxation of the
optimization in [2] can lead to cases where the target class is not reached, even if we
only consider scores based on feature replacements, as it can get stuck in local minima
(see Table 4 - S������� dataset). In our experiments, we also observed that a common
failure case leading to significantly decreased DAPI scores is caused by the greedy
relaxation. Because each edit is considered individually, there are cases where each
single replacement has an identical score and no ordering of swaps can be derived. Thus
a linear scan or a random replacement is the only option, unnecessarily increasing mask
size and reducing DAPI score. Devising improved relaxations is thus a promising avenue
for future work considering discriminative attribution from unpaired images.

E Code and Data Availability

All code, datasets, checkpoints, and instructions needed to reproduce the presented results
are available at anonymizedurl.

anonymizedurl
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Operation Tensor Size

input image (2,F, ⌘)
Conv2d, size (3, 3) (12,F, ⌘)
BatchNorm2d (12,F, ⌘)
ReLU (12,F, ⌘)
Conv2d, size (3, 3) (12,F, ⌘)
BatchNorm2d (12,F, ⌘)
ReLU (12,F, ⌘)
MaxPool2d, size (2, 2) (12,F/2, ⌘/2)
Conv2d, size (3, 3) (24,F/2, ⌘/2)
BatchNorm2d (24,F/2, ⌘/2)
ReLU (24,F/2, ⌘/2)
Conv2d, size (3, 3) (24,F/2, ⌘/2)
BatchNorm2d (24,F/2, ⌘/2)
ReLU (24,F/2, ⌘/2)
MaxPool2d, size (2, 2) (24,F/4, ⌘/4)
Conv2d, size (3, 3) (48,F/4, ⌘/4)
BatchNorm2d (48,F/4, ⌘/4)
ReLU (48,F/4, ⌘/4)
Conv2d, size (3, 3) (48,F/4, ⌘/4)
BatchNorm2d (48,F/4, ⌘/4)
ReLU (48,F/4, ⌘/4)
MaxPool2d, size (2, 2) (48,F/8, ⌘/8)
Conv2d, size (3, 3) (96,F/8, ⌘/8)
BatchNorm2d (96,F/8, ⌘/8)
ReLU (96,F/8, ⌘/8)
Conv2d, size (3, 3) (96,F/8, ⌘/8)
BatchNorm2d (96,F/8, ⌘/8)
ReLU (96,F/8, ⌘/8)
MaxPool2d, size (2, 2) (96,F/16, ⌘/16)
Linear (4096)
ReLU (4096)
Dropout (4096)
Linear (4096)
ReLU (4096)
Dropout (4096)
Linear (:)

(a) VGG architecture used for the
S������� (2 = 1, ⌘ = F = 128, : = 6),
D���-A (2 = 1, ⌘ = F = 128, : = 2),
D���-B (2 = 1, ⌘ = F = 128, : = 3),
H����� (2 = 3, ⌘ = F = 256, : = 2),
S����� (2 = 3, ⌘ = F = 256, : = 2)
and A����� (2 = 3, ⌘ = F = 256, : =
2) dataset.

Operation Tensor Size

input image (28, 28)
Conv2d, size (3, 3) (12, 28, 28)
BatchNorm2d (12, 28, 28)
ReLU (12, 28, 28)
Conv2d, size (3, 3) (12, 28, 28)
BatchNorm2d (12, 28, 28)
ReLU (12, 28, 28)
MaxPool2d, size (2, 2) (12, 14, 14)
Conv2d, size (3, 3) (24, 14, 14)
BatchNorm2d (24, 14, 14)
ReLU (24, 14, 14)
Conv2d, size (3, 3) (24, 14, 14)
BatchNorm2d (24, 14, 14)
ReLU (24, 14, 14)
MaxPool2d, size (2, 2) (24, 7, 7)
Conv2d, size (3, 3) (48, 7, 7)
BatchNorm2d (48, 7, 7)
ReLU (48, 7, 7)
Conv2d, size (3, 3) (48, 7, 7)
BatchNorm2d (48, 7, 7)
ReLU (48, 7, 7)
Conv2d, size (3, 3) (96, 7, 7)
BatchNorm2d (96, 7, 7)
ReLU (96, 7, 7)
Conv2d, size (3, 3) (96, 7, 7)
BatchNorm2d (96, 7, 7)
ReLU (96, 7, 7)
Linear (4096)
ReLU (4096)
Dropout (4096)
Linear (4096)
ReLU (4096)
Dropout (4096)
Linear (10)

(b) VGG architecture used for the M����
dataset.

Table 1: VGG classifier network architectures.
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Operation Tensor Size

input image (2,F, ⌘)
Conv2d, size (3, 3) (12,F, ⌘)
BatchNorm2d (12,F, ⌘)
ReLU (12,F, ⌘)
ResBlock, stride (2, 2) (12,F/2, ⌘/2)
ResBlock (12,F/2, ⌘/2)
ResBlock, stride (2, 2) (24,F/4, ⌘/4)
ResBlock (24,F/4, ⌘/4)
ResBlock, stride (2, 2) (48,F/8, ⌘/8)
ResBlock (48,F/8, ⌘/8)
ResBlock, stride (2, 2) (96,F/16, ⌘/16)
ResBlock (96,F/16, ⌘/16)
Linear (4096)
ReLU (4096)
Dropout (4096)
Linear (4096)
ReLU (4096)
Dropout (4096)
Linear (:)

(a) R��N�� architecture used for the
D���-A (2 = 1, ⌘ = F = 128, : = 2),
D���-B (2 = 1, ⌘ = F = 128, : = 3),
H����� (2 = 3, ⌘ = F = 256, : = 2),
S����� (2 = 3, ⌘ = F = 256, : = 2)
and A����� (2 = 3, ⌘ = F = 256, : =
2) dataset.

Operation Tensor Size

input image (28, 28)
Conv2d, size (3, 3) (12, 28, 28)
BatchNorm2d (12, 28, 28)
ReLU (12, 28, 28)
ResBlock, stride (2, 2) (12, 14, 14)
ResBlock (12, 14, 14)
ResBlock, stride (2, 2) (24, 7, 7)
ResBlock (24, 7, 7)
ResBlock, stride (2, 2) (48, 3, 3)
ResBlock (48, 3, 3)
ResBlock, stride (2, 2) (96, 1, 1)
ResBlock (96, 1, 1)
Linear (4096)
ReLU (4096)
Dropout (4096)
Linear (4096)
ReLU (4096)
Dropout (4096)
Linear (10)

(b) R��N�� architecture used for the
M���� dataset.

Table 2: R��N�� classifier network architectures.

Dataset D-IG D-DL D-INGR. D-GC D-GGC RES. IG DL INGR. GC GGC RND. GOYAL

M���� 0.82 0.8 0.81 0.44 0.6 0.83 0.68 0.66 0.66 0.42 0.23 0.46 0.41
D���-B 0.98 0.98 0.98 0.94 0.91 0.98 0.26 0.48 0.52 0.86 0.81 0.47 0.43
H����� 0.92 0.89 0.89 0.85 0.84 0.55 0.76 0.76 0.75 0.56 0.63 0.53 0.56
S����� 0.64 0.6 0.58 0.65 0.65 0.45 0.58 0.52 0.51 0.58 0.61 0.43 0.33
A����� 0.79 0.77 0.72 0.83 0.85 0.61 0.75 0.79 0.79 0.77 0.78 0.5 0.51

Table 3: Summary of DAPI scores for R��N�� architectures on D���, M����, H�����,
S����� and A����� corresponding to Fig. 2. Best results are highlighted.
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Dataset Total Feature Input

M���� 9004 1 (0.01%) 2706 (30%)
D���-B 4876 1 (0.02%) 1937 (39%)
S������� 1875 214 (11%) 888 (47%)

Table 4: Number of times [2] reaches the target class during optimization for the three
datasets M����, D���-B and S������� (non-binary classification tasks). Total shows the
total number of considered samples. Features shows how many of those did not reach
the target label at any point during the optimization when replacing spatial features.
Input shows how many of Total did not reach the target label at any point during the
optimization when replacing input pixels corresponding to the spatial feature edits found
during optimization. Failure cases increase significantly when replacing input pixels.
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