
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2025

PROCESS SUPERVISION-GUIDED POLICY OPTIMIZATION
FOR CODE GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) with unit test feedback has enhanced large language models’
(LLMs) code generation, but relies on sparse rewards provided only after complete code
evaluation, limiting learning efficiency and incremental improvements. When generated
code fails all unit tests, no learning signal is received, hindering progress on complex tasks.
To address this, we propose a Process Reward Model (PRM) that delivers dense, line-level
feedback on code correctness during generation, mimicking human code refinement and
providing immediate guidance. We explore various strategies for training PRMs and inte-
grating them into the RL framework, finding that using PRMs both as dense rewards and
for value function initialization significantly boosts performance. Our approach increases
our in-house LLM’s pass rate from 28.2% to 29.8% on LiveCodeBench and from 31.8%
to 35.8% on our internal benchmark. Our experimental results highlight the effectiveness
of PRMs in enhancing RL-driven code generation, especially for long-horizon scenarios.

1 INTRODUCTION

The rapid advancement of large language models (LLMs) has revolutionized code generation, enabling
models to achieve near-human performance on programming tasks (Chen et al., 2021a; Li et al., 2022;
OpenAI, 2023). These models have demonstrated remarkable abilities to generate syntactically correct and
functionally viable code snippets, significantly aiding software development processes. Building upon these
successes, recent research has explored the use of reinforcement learning (RL) from unit test feedback to
further enhance the code generation capabilities of LLMs (Le et al., 2022; Shojaee et al., 2023; Liu et al.,
2023; Dou et al., 2024). By incorporating unit tests as a reward mechanism, these methods aim to guide
LLMs toward generating code that not only compiles but also passes specified test cases, thereby improving
overall code reliability and quality.

However, a significant challenge arises from the nature of the reward signals derived from unit tests. These
signals are inherently sparse, as they are only received at the end of an episode after the entire code snippet
has been generated and evaluated. This delay in feedback impedes learning efficiency and limits the model’s
ability to make incremental improvements during code generation. When an LLM fails to generate code
that passes any unit tests, it receives no meaningful learning signal, making it difficult to learn to solve
more complex coding problems. In contrast, human programmers typically do not rewrite code from scratch
when their programs fail unit tests. Instead, they analyze the code to pinpoint and fix errors, leveraging
their understanding of programming logic and structure to iteratively improve upon the current version.
This process of step-by-step refinement, which involves receiving and acting upon fine-grained feedback, is
missing in the current RL training loop for code generation from unit test feedback.

To address this limitation, we propose integrating a Process Reward Model (PRM) (Lightman et al., 2023;
Wang et al., 2024a) into the RL training framework for code generation. A PRM provides dense signals by
offering line-level feedback that indicates the correctness of each generated line of code. This fine-grained
feedback mechanism mimics the human approach to code refinement and has the potential to enhance learn-

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2025

ing efficiency by providing immediate guidance during code generation. While the concept of using PRMs
is intuitive, training an effective PRM and integrating it into RL training is non-trivial. Challenges include
accurately modeling the correctness of partial code snippets and ensuring stable and effective training dy-
namics when combining PRM-generated signals with traditional RL methods. Although previous research
has attempted to incorporate PRMs into LLM RL training (Wang et al., 2024a), these efforts have been
limited to the mathematical domain and have not fully explored the complexities involved.

In this work, we conduct a comprehensive analysis of how PRMs can be integrated into RL training for code
generation. We explore various strategies for training a robust code PRM and investigate different methods of
utilizing PRMs to improve code generation performance. Based on our experiments, we provide a practical
recipe for successfully using PRMs and integrating them into RL training in the context of code generation
problems. Notably, one of our key findings is that using PRMs concurrently as both dense rewards and value
function initialization in RL training leads to a significant performance improvement. Our contributions can
be summarized as follows:

• We propose an effective approach that automatically generates process-level supervision data by iden-
tifying the first error line in generated code using binary search. We then train a PRM on this data to
generate dense signals during RL training. To the best of our knowledge, we are the first to demonstrate
that PRMs can benefit RL from unit test feedback in code generation.

• We conduct systematic experiments to determine how to properly and effectively integrate PRMs into
RL. Our analysis explores various strategies for training a high-quality code PRM and utilizing PRMs to
improve code generation. We summarize our findings into a practical recipe for successfully using PRMs
in the context of code generation.

• By following the recipe, we significantly improve our in-house proprietary LLM’s pass rate from 28.2%
to 29.8% on the LiveCodeBench dataset and from 31.8% to 35.8% on our in-house benchmark. Besides,
we find that integrating PRMs into RL training benefits code generation in long-horizon scenarios.

2 PROBLEM FORMALIZATION

In code generation tasks, we define a code generation problem as a sequence of tokens x = (x1, x2, . . . , xm),
where each xi denotes the i-th element or token of the input prompt, which may include problem de-
scriptions.The primary objective for the model in this context is to process the given input x and gen-
erate a coherent and syntactically correct sequence of code tokens. This sequence is denoted as y =
(y(1),y(2), . . . ,y(T)), where T represents the total number of code generation steps. Each individual code
generation step, y(t), t = 1, 2, . . . , T , is composed of a series of tokens y

(t)
1 , y

(t)
2 , . . . , y

(t)
nt , where y

(t)
i

corresponds to the i-th token within the t-th step, and nt denotes the number of tokens in this step.

Typically, a pre-trained language model (LM), denoted as pθ, is employed to model the conditional probabil-
ity distribution of the code generation steps y, given the code generation problem x, which is mathematically
represented as pθ(y | x), parameterized by θ. The model is optimized through training on a dataset Dxy

containing pairs of prompts and their corresponding code solutions. This training process, often referred to
as Supervised Fine-Tuning (SFT), involves maximizing the log-likelihood of the dataset.

2.1 BASELINE METHOD: REINFORCEMENT LEARNING FROM UNIT TEST FEEDBACK

Code generation tasks can be formulated within a Reinforcement Learning (RL) framework, where code
generation is treated as a sequence of decision-making steps. Once the model has undergone SFT, the RL
phase is employed to refine the model’s ability to generate functionally correct code using feedback from
unit tests (Liu et al., 2023). Unit test feedback is derived by executing the generated program on predefined
test cases. The feedback serves as a signal for learning and can be transformed into a reward. A simple

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2025

reward function based on the outcome of the unit tests could be defined as follows:

RUT(x,y) =

{
1, if the program y passes all unit test cases
0, otherwise

This binary reward formulation encourages the model to generate programs that can successfully pass all
unit test cases. Given a collection of unlabeled code generation prompts Dx, the model pθ is optimized to
maximize the expected reward over all possible code generation trajectories.

3 PROCESS SUPERVISION-GUIDED POLICY OPTIMIZATION

def quick_sort(input_list):\n…Please sort …

Please sort … 0

Training Data

Training PRMPlease sort …
x y

x

Implement …

Use Python… def bubble_sort(input_list): \n …

Value Initialization

Process Reward Predictions

Value
Function

Automatic Construct PRM labels by Binary Search

Process Supervision-Guided Policy Optimization

1 1

RUT

R̂ϕ

l0, l1, . . . , lT

x1

x2

x...

-1 -1 -1

0.9 -0.80.7 0.8 -0.9

yπ

1.3 1.1 1.2 -0.1 -0.5

PRM labels

Rϕ

Figure 1: Overview of our method. The approach consists of two main components: (1) A binary search-
based method to automate PRM training data labeling, which is used to train a code PRM; and (2) Integration
of the PRM into RL training as both dense rewards and value function initialization.

While the Reinforcement Learning from Unit Test Feedback (RLTF) offers a framework for improving
code generation models, it suffers from significant limitations due to the sparsity of its reward signal. The
binary nature of unit test feedback—indicating only whether the entire program passes or fails—provides
no guidance on which specific parts of the code contributed to the outcome. This lack of intermediate
feedback makes it challenging for the model to identify and correct errors during training, leading to slow
convergence and suboptimal performance. In contrast, human programmers iteratively develop and refine
their code. When a program fails to pass unit tests, they do not typically rewrite it from scratch. Instead,
they analyze the code to pinpoint and fix errors, leveraging their understanding of programming logic and
structure. This process of step-by-step refinement is crucial for efficient problem-solving.

Motivated by this observation, we propose Process Supervision-Guided Policy Optimization, a method
that integrates fine-grained feedback into the RL framework. Figure 1 illustrates the overview of our ap-
proach. By providing intermediate rewards that assess the correctness of partial code sequences, our ap-
proach guides the model more effectively toward generating functionally correct programs. This is achieved
through a Process Reward Model (PRM) (Lightman et al., 2023) that evaluates each code generation step,
offering dense reward signals that addresses the limitations of sparse end-of-trajectory rewards.

3.1 PROCESS SUPERVISION VIA PROCESS REWARD MODELS

Our method introduces a PRM to assess the correctness of each line of the code during the generation
process. The PRM serves as an oracle that provides intermediate rewards based on the potential of the
current code prefix to be extended into a correct program. By offering intermediate feedback, the PRM
helps the model identify and reinforce beneficial code generation patterns while discouraging those that
introduce errors. This fine-grained feedback mirrors the human approach to coding, where programmers
continuously evaluate and adjust their code.

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2025

3.1.1 DATA COLLECTION

y(1) y(2) y(3) y(4) y(5)

Initial Interval [1, 5]

m = 3

Accepted Prefix

New Interval [4, 5]
m = 4

Rejected Prefix

Figure 2: Binary search over code steps at line level
to label prefixes. The first midpoint at m = 3 is ac-
cepted, so the search interval moves to [4, 5]. The
next midpoint at m = 4 is rejected, indicating unre-
coverable errors occur after step 3.

Algorithm 1: Binary Search for Labeling Par-
tial Code Prefixes

Input: Prompt x, response
y = (y(1), . . . ,y(T)), policy pθ, unit
tests U , number of completions K

Output: Labels lt for each prefix y≤t

Initialize lower bound L← 1, upper bound
R← T , failure point F ← T + 1;

while L ≤ R do

Compute midpoint m←
⌊
L+R

2

⌋
;

Set success flag S ← False;
for k = 1 to K do

Generate completion ck ∼ pθ(· | y≤m);
Form full program Pk ← (y≤m, ck);
Execute Pk with unit tests U ;
if Pk passes all unit tests then

Set S ← True; break;

if S = True then L← m+ 1 ;
else F ← m, R← m− 1 ;

for t = 1 to T do
if t < F then lt ← +1;
else lt ← −1;

To effectively train the PRM, we require a dataset that
provides fine-grained annotations indicating the correct-
ness of partial code sequences. However, manually an-
notating the correctness of each line of code generated
by the model is costly and not scalable. Instead, we em-
ploy an automated approach inspired by techniques used
in recent works (Wang et al., 2024a;b; Luo et al., 2024).
Our method leverages the model’s own capabilities to
generate completions for partial code prefixes and uses
automated testing to assess their correctness. The key
idea is to determine whether a partial code prefix can be
extended—by any means—into a complete program that
passes all unit tests. If so, we consider the prefix as po-
tentially correct; otherwise, it is labeled as incorrect.

Given a prompt x, we generate a complete code response
y = (y(1),y(2), . . . ,y(T)) using the current policy pθ.
Our goal is to determine the correctness of each partial
code prefix y≤t for t = 1, 2, . . . , T . To achieve this, we
employ a best-of-K sampling strategy to approximate an
oracle capable of completing partial code prefixes. For
each partial code prefix y≤t, we generate K potential
completions {ck}Kk=1 using the current policy. We then
form full programs Pk = (y≤t, ck) and execute them
against the unit tests U . If any of these programs pass
all unit tests, we label the partial code prefix as correct;
otherwise, it is labeled as incorrect. To efficiently iden-
tify the transition point where errors occur, we employ a
binary search over the code generation steps (Luo et al.,
2024), which is formalized in Algorithm 1. For example,
consider a code response divided into five steps (T = 5),
as shown in Figure 2. The partial prefix up to y(3) can
be completed to pass all unit tests, so it is labeled as cor-
rect. The prefix up to y(4) cannot, meaning steps beyond
y(3) are labeled as incorrect. For each partial code prefix
y≤m, the label lm is assigned based on the outcome of
the completion attempts:

lm =

{
+1, if any Pk passes all unit tests
−1, otherwise

(1)

which indicate whether the prefix is potentially correct
(can be completed to a correct program) or incorrect (contains unrecoverable errors).

3.1.2 TRAINING

Using the collected data {(x,y≤m, lm)}, we train the PRM Rϕ to predict the correctness of partial code
prefixes. The PRM learns to assign higher rewards to prefixes labeled as correct and lower rewards to those
labeled as incorrect. The training objective, i.e., Mean Squared Error (MSE), minimizes the discrepancy

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2025

between the PRM’s predictions and the assigned labels:

min
ϕ

∑
(x,y≤m)

(
Rϕ(x,y

≤m)− lm
)2

(2)

This regression formulation allows the PRM to estimate the likelihood that a given prefix can be successfully
completed. Notably, aside from employing Mean Squared Error (MSE) loss, we also experimented with
Cross-Entropy Loss and empirically found that MSE loss yielded better performance in our case.

3.2 INTEGRATING PRM INTO RL TRAINING

Given a learned PRM, we aim to identify best practices for enhancing code generation during RL training.
While prior work has used PRMs to verify intermediate steps in mathematical tasks (Lightman et al., 2023;
Wang et al., 2024a; Jiao et al., 2024; Wang et al., 2024b; Luo et al., 2024), their potential for guiding code
generation remains largely unexplored. In mathematical domains, LLMs may generate correct answers
with faulty reasoning (Lightman et al., 2023), making intermediate verification essential. However, in code
generation, problems are typically accompanied by multiple unit tests, making it improbable for incorrect
code to pass all tests. As a result, the emphasis on intermediate verification is less applicable. Instead,
we propose leveraging PRMs as auxiliary sources of dense signals to facilitate better exploration during
RL training. While preliminary attempts have been made to incorporate PRMs into RL training (Wang
et al., 2024a), these efforts are limited and warrant a more thorough investigation. We explore the following
methods to integrate PRMs effectively:
PRM as Dense Rewards. Similar to Wang et al. (2024a), we use PRMs to provide step-level reward
signals that guide more efficient policy exploration during RL training. By rating the correctness of each
line in the code response, the PRM supplies “dense” rewards that encourage the policy to explore more
promising code paths, leading to improved performance.

PRM as Value Initialization. The PRM’s method of annotating code, by fixing a prefix y≤t and rolling
out the policy to sample correct responses, can be viewed as a “hard” value estimation of y≤t . We hy-
pothesize that the PRM’s capability to provide line-level feedback could serve as a useful inductive bias for
initializing the value function in RL algorithms, which can ease the credit assignment problem by offering a
more informed starting point.

PRM as Both Dense Rewards and Value Initialization. To fully capitalize on the advantages of PRMs,
we combine both approaches. By using PRMs for dense rewards and as an initialization for the value model,
we aim to enhance RL training through improved exploration and more effective credit assignment.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

Datasets and Evaluation. We utilize in-house datasets to train our model for code generation. Specif-
ically, the training set, Dtrain, is a comprehensive Reinforcement Learning with Human Feedback (RLHF)
dataset that includes, as a subset, approximately 30, 000 diverse coding problems. Each of these problems is
paired with unit tests designed to validate the functional correctness of the generated code. For evaluation,
we employ two benchmarks: the publicly available LiveCodeBench (Jain et al., 2024) and our proprietary
code generation benchmark (InHouseBench). LiveCodeBench is a comprehensive benchmark designed to
evaluate the code generation capabilities of LLMs. Among its various releases, we used LiveCodeBench v3,
which consists of 612 coding tasks collected between May 2023 and July 2024. InHouseBench comprises
245 challenging coding problems in Chinese, spanning both Python and C++. All test problems are novel
and unseen in public datasets, ensuring there is no risk of data contamination. The benchmark contains two
problem categories: (1) Contest, which includes 169 coding competition-style problems, and (2) NL2Alg,
which comprises 76 problems focused on translating natural language algorithm descriptions in Chinese into

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2025

executable code. For evaluation, we let each model generate 10 candidate responses for each problem, using
a temperature of 0.2, nucleus sampling with top-p=0.95, and top-k sampling with k=128, following common
practice. We adopt Pass@1 as the evaluation metric, in line with previous work (Kulal et al., 2019; Chen
et al., 2021a; Jain et al., 2024).

Base Models and RL Baseline. The base model used in our experiments is a small in-house model,
referred to as InHouse-Lite throughout the remainder of this paper. Initially, InHouse-Lite was
fine-tuned on our Supervised Fine-Tuning (SFT) dataset, resulting in InHouse-Lite-SFT, which then
served as the initialization for the subsequent RLHF training phase. We fine-tune InHouse-Lite-SFT
(πref) on the RLHF dataset Dtrain using Proximal Policy Optimization(PPO) (Schulman et al., 2017) to
obtain InHouse-Lite-RL (πθ). In our setup, two types of Outcome Reward Models (ORMs) are em-
ployed as the objective functions for RL training. For non-coding prompts, we use a general reward model,
Rgeneral(x,y), derived from preference learning on a human-annotated dataset (Ouyang et al., 2022). For
coding prompts, the ORM is defined as a binary indicator of whether the response passes all unit tests, RUT

(x, y). Following Ouyang et al. (2022), RLHF optimization objective is defined as:
max

θ

∑
x∈Dtrain

Ey∼πθ(y|x) [R(x,y)− βKL(πθ ∥ πref)] ,

with R(x,y) = Rgeneral(x,y) for non-coding prompts and R(x,y) = RUT(x,y) for coding prompts.

PRM Training. To ensure that the PRM training data effectively covers the state space the language model
may encounter during the next RL training phase, we sample policy models from various stages of the RL
baseline training. Specifically, we select 4 checkpoints evenly spaced throughout the RL baseline model’s
training process. For each checkpoint, we sample n responses for each coding prompt in the training dataset
Dtrain. For each sampled response, we apply the binary search labeling procedure described in Algorithm 1,
using K = 20 completions for each partial code prefix. The data collected from all checkpoints is then
aggregated into a PRM training set, denoted as DPRM. We initialize the PRM with the value model from the
RL baseline and fine-tune it on the aggregated dataset, DPRM, using the objective function defined in Eq. (2).

Integrating PRM into RL. As described in Section 3.2, we explore two methods for integrating the
Process Reward Model (PRM) into RL training: (1) using PRM as a source of dense reward signals
(DenseReward) and (2) initializing the value function in PPO with PRM (ValueInit). In the DenseRe-
ward approach, PRM assigns additional reward signals at each end-of-line token (\n) in the code response
for coding prompts. Thus, the RL optimization objective for coding prompts is modified to the weighted
sum of RUT and RPRM, as defined below:

max
θ

∑
x∈Dtrain

Ey∼πθ(y|x) [RUT(x,y) + λRPRM(x,y)− βKL(πθ ∥ πref)] , (3)

where λ controls the relative importance of PRM in shaping the reward. Specifically, we set λ = 0.25
when the code response does not pass all unit tests, i.e., RUT(x,y) = 0, and λ = 0.025 when the response
passes all unit tests, i.e., RUT(x,y) = 1. The intuition behind this reward shaping is to leverage PRM to
provide informative signals when the RL policy fails to generate a valid solution, while minimizing the risk
of PRM over-optimization (Rafailov et al., 2024; Skalse et al., 2022) once a correct solution is found. Our
empirical results indicate that this reward shaping strategy performs effectively in our experimental setting.
In the ValueInit setting, PRM is simply used to initialize of the value function in PPO. Notably, these two
approaches-DenseReward and ValueInit—are complementary and can be applied concurrently.

4.2 KEY CONSIDERATIONS FOR INTEGRATING PRM INTO RL TRAINING

While integrating PRM into RL training might seem straightforward, we found that achieving effective
results requires careful attention to several critical factors. In this section, we highlight key implementation
details essential for the successful application of PRM in RL training.

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2025

4.2.1 PRM TRAINING: MORE DATA OR BETTER DATA?

Recent research on LLMs highlights that data quality often outweighs quantity (Gunasekar et al., 2023; Li
et al., 2023b). We found the same holds true for PRM training data selection. Although automated data
annotation allows for the generation of large volumes of PRM training data through model sampling, our
experiments showed that increasing data volume can sometimes degrade PRM performance when integrated
into RL. In contrast, a smaller, carefully curated subset of the full dataset led to better supervision and
improved outcomes. For example, when all sampled responses to a given prompt either consistently pass (or
fail) unit tests, PRM gains little useful information. In such cases, the model can only learn to predict the
correct (or incorrect) label when it encounters the same prompt again, limiting its ability to generalize. We
explored various strategies for selecting and filtering data, as detailed in Section 4.3.

4.2.2 RL TRAINING: ALLEVIATING PRM HACKING

Reward model hacking (Skalse et al., 2022) is a well-known issue in RLHF training, where the policy learns
to exploit flaws in the reward model to achieve high rewards without genuinely improving the quality of
response. Similarly, we observed that PRM is also susceptible to such exploitation. Here we discuss two key
practical strategies to mitigate the risk of PRM hacking and ensure the reward signals remain aligned with
the intended task objectives.

PRM reward length normalization. As described in Section 4.1, when used to provide dense rewards,
PRM assigns line-level reward signals at the end-of-line tokens in the LLM-generated response. However,
if we directly use the predictions of the learned PRM, denoted as Rϕ, as the reward signal RPRM in 3, we
observed that this can be exploited. Specifically, the policy may generate numerous lines for which PRM
predicts positive rewards, thus inflating the overall reward. This occurs because writing more lines allows
the model to accumulate excessive intermediate rewards, effectively hacking the optimization objective. To
mitigate this issue, we apply length normalization to the PRM predictions. Given a prompt x and a response
y with T lines, y = (y(1), y(2), . . . , y(T)), we define the PRM dense reward signal at the m-th line as:

RPRM(y(m)) =
1

T
·Rϕ(x,y

≤m).

This normalization ensures that the policy does not gain higher cumulative rewards by generating trivial or
unnecessarily long responses, as the accumulated reward is bounded within the range of [−1, 1] regardless
of the response length.

Assigning additional neutral label into PRM training. While length normalization helps reduce PRM
exploitation, it is insufficient to fully prevent PRM hacking. Even with normalization, we empirically ob-
served that the model can still exploit PRM by generating excessive comment lines within the code. The
underlying issue is that writing a correct comment is often far easier than producing correct code. As a result,
the model can artificially inflate the PRM reward by including unnecessary comment lines. To address this
issue, we introduce an additional neutral label in the PRM annotation, as defined in Equation 1:

lm =

+1, if any Pk passes all unit tests
0, if the line is a comment
−1, otherwise

By assigning a neutral label (0) to comment lines, we remove the reward bias that encourages the model to
generate unnecessary comments. This adjustment ensures that only meaningful contributions to the code,
rather than extraneous comments, are rewarded by the PRM.

4.3 MAIN RESULTS AND ANALYSIS

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2025

Model
Setting Dataset

Dense Value LiveCodeBench InHouseBench
Reward Init. Easy Medium Hard Overall Contest NL2Alg Overall

GPT-4o-mini - - 81.9 27.2 3.6 40.7 43.8 68.4 51.4
Qwen2-72B - - 65.0 21.3 2.8 32.2 14.8 51.3 26.1
Gemini-Flash-1.5 - - 67.7 13.1 1.9 29.6 - - -
DeepseekCoder-33B - - 60.8 14.8 1.2 27.7 10.3 50.3 22.7

Ours-SFT - - 55.3 9.3 0.3 23.5 10.4 41.4 20.0

Ours-RL

× × 70.0 7.2 1.7 28.2 24.4 48.7 31.8
× ✓ 67.9 8.9 1.9 28.2 25.0 45.4 31.4
✓ × 68.5 9.9 2.5 28.9 25.2 48.1 32.3
✓ ✓ 69.3 12.0 1.6 29.8 27.9 53.5 35.8

Table 1: Comparison of model performance (Pass@1) across LiveCodeBench and InHouseBench with PRM
as DenseReward and ValueInit settings. The performance of our models (InHouse-Lite series) on both
LiveCodeBench and InHouseBench are averaged over 10 independent runs. We also report the performance
of other public models for comparative purpose. The performance of Gemini-Flash-1.5 on InHouseBench is
omitted due to legal considerations.

0-50 50-100100-150150-200200-250250-300300-350350-400400-450
Number of Tokens

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Pa

ss
@

1-
de

lta
 (R

L-
pr

m
 -

R
L)

Mean Pass@1-delta
Overall Improvement: 0.09

0-5
0

50
-10

0

10
0-1

50

15
0-2

00

20
0-2

50

25
0-3

00

30
0-3

50

35
0-4

00

40
0-4

50

Number of Tokens

0

500

1000

N
um

be
r o

f S
am

pl
es

Figure 3: Pass@1 difference between policies
trained with and without PRM across varying re-
sponse lengths. Policies trained with PRM ex-
hibit consistent improvements over those with-
out PRM for longer-horizon responses (greater
than 100 tokens). This demonstrates PRM’s ef-
fectiveness in providing intermediate feedback,
thereby enabling RL to do more explorations.

Comparing Different Strategies of Using PRM in RL
Training. We explore three strategies for integrating
the PRM into RL training, as described in Section 4.1:
DenseReward, ValueInit, and a combined approach of
DenseReward & ValueInit. The performance of RL mod-
els trained using these strategies on LiveCodeBench and
InHouseBench, in comparison to SFT and RL baselines,
is summarized in Table 1. For further comparison, we
also include results from several publicly available mod-
els OpenAI (2023); Bai et al. (2023); Reid et al. (2024);
Guo et al. (2024). Our experimental results reveal that
using PRM solely as dense rewards significantly out-
performs the RL baseline (Our-RL without DenseRe-
ward and ValueInit in Table 1), consistent with findings
from Wang et al. (2024a). This suggests that the granular
feedback provided by PRM helps the policy explore more
promising solutions by offering continuous corrections at
intermediate steps. Moreover, we observe that combin-
ing PRM as both dense rewards and value function ini-
tialization results in substantial performance gains, with a
relative increase of 5.7% on LiveCodeBench and 12.6%
on InHouseBench compared to the RL baseline.

Interestingly, using PRM solely for value function ini-
tialization does not provide notable benefits. We hypoth-
esize that while value function initialization can enhance
credit assignment and stabilize the learning process, it
does not address the underlying issue of sparse reward
signals. Without dense feedback, the policy may fail to
explore the solution space effectively, resulting in limited

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2025

improvement. In contrast, the combination of DenseReward and ValueInit offers a synergistic effect: dense
rewards enhance exploration by providing rich intermediate feedback, while value function initialization
improves stability and credit assignment. Together, these mechanisms enable the policy to converge more
efficiently toward optimal solutions, which explains the significant performance improvements we observed.

PRM enhances code generation in long-horizon scenarios. To better understand when PRM benefits
code generation most, we analyze its effect based on the length of the generated responses. Intuitively, the
dense nature of the reward signals provided by PRM is particularly advantageous for long-horizon tasks,
where intermediate feedback can guide policy exploration more effectively. To validate this, we quantita-
tively compared the pass rate (Pass@1) of models trained with and without PRM across different response
lengths. The results are visualized in Figure 3. Overall, the model trained with PRM demonstrates a 9%
improvement in Pass@1 compared to the baseline model trained without PRM. Notably, PRM consistently
improves Pass@1 for responses longer than 100 tokens. However, for responses shorter than 100 tokens,
PRM yields comparable or slightly inferior results. We hypothesize that in short-horizon scenarios, PRM
may function similarly to a biased ORM, which limits its ability to provide meaningful improvements.
Shorter responses inherently benefit less from the dense feedback signals PRM offers, as these tasks may
already be well-explored by the policy without needing extensive guidance. In contrast, for more complex,
long-horizon tasks, PRM offers valuable intermediate signals that effectively guide the policy to explore
better solutions. These signals provide a more nuanced understanding of the correctness of individual code
lines, helping the policy navigate the larger solution space with the same amount of optimization compute.

The Importance of PRM Training Data Selection PRM training data can be categorized at two levels: At
the response level, responses are classified as Correct (passes unit tests immediately), Revised (initially fails
but can find a correct prefix), and Wrong (cannot find any correct prefix by binary search within the given
budget). At the prompt level, prompts are categorized as Easy (all responses are Correct), Medium (mixed
response types), and Hard (all responses are Wrong). We tested the following data selection strategies: Full
(use all collected data), Remove Hard (exclude Hard prompts and their responses), Medium Only (include
only prompts with mixed response types), and Revised Only (use only Revised responses). We empirically
found that Revised Only, which includes the richest process-level correction signals, performs best in our
setting.

Strategy LCB IHB
Full 26.9 34.6
Remove Hard 27.8 33.8
Medium Only 26.9 32.5
Revised Only 29.8 35.8

Table 2: Comparison of different PRM
data selection strategies on two datasets:
LCB (LiveCodeBench) and IHB (In-
HouseBench).

2−2 2−1 20 21 22 23
28

28.4

28.8

29.2

29.6

30

Average Number of Collected Responses per Prompt

Pa
ss

@
1

(%
)

LiveCodeBench

Figure 4: Pass@1 on LiveCodeBench as the average num-
ber of responses per prompt for PRM data collection in-
creases (logarithmic scale).

How much data needed to train a PRM that benefits RL training? Given that automatic PRM data
collection is computationally expensive, we examine how the performance of policies trained with PRM
scales with the number of training samples. Figure 4 shows how the pass rate of models trained with varying
amounts of PRM data changes along the average number of responses collected per prompt for PRM data
collection, as described in Section 3.1.1. The key finding is that the performance of models trained with PRM
improves consistently as the number of PRM training samples increases, highlighting the effectiveness and
scalability of our approach.

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2025

5 RELATED WORKS

5.1 LLMS FOR CODE GENERATION

Recently, large language models (LLMs) have demonstrated impressive capabilities in code generation by
pre-training on vast text datasets that include code (Lu et al., 2021; Christopoulou et al., 2022; Allal et al.,
2023; Zheng et al., 2024; Li et al., 2023b). Additionally, models fine-tuned through supervised fine-tuning
(SFT) have achieved competitive results in code generation tasks (Chen et al., 2021a; Li et al., 2023a; Luo
et al., 2023; Rozière et al., 2024; Guo et al., 2024). Reinforcement Learning (RL) optimizes policies by
interacting with an environment and receiving rewards (Williams, 1992). Recently, RL has been incorporated
into LLMs to enhance code generation using unit test feedback (Shojaee et al., 2023; Liu et al., 2023; Le
et al., 2022). CodeRL (Le et al., 2022) applies unit test signals as rewards with an actor-critic method,
while PPOCoder (Shojaee et al., 2023) builds on this by using the PPO algorithm. RLTF (Liu et al., 2023)
improves precision by locating errors, though the reward space remains sparse. Despite progress, RL’s
potential to significantly boost code generation in sparse reward environments remains underexplored.

5.2 PROCESS REWARD MODELS

Process reward models (PRMs) have garnered significant attention in recent LLM developments, partic-
ularly in the mathematical reasoning domain, where they provide verification for intermediate reasoning
steps (Lightman et al., 2023; Wang et al., 2024a; Jiao et al., 2024; Wang et al., 2024b; Luo et al., 2024).
While some approaches rely on costly and resource-intensive human-annotated process data (Lightman
et al., 2023), recent research has focused on automating the collection of process supervision data Wang
et al. (2024a); Jiao et al. (2024); Wang et al. (2024b); Luo et al. (2024). Building on these efforts, we sim-
ilarly automate process supervision but differ in our primary objective. Rather than using PRMs solely as
enhanced verifiers compared to Outcome Reward Models (ORMs), we focus on their integration into RL
training for code generation. While Wang et al. (2024a) provides preliminary results on PRMs improving
RL training in the mathematical domain, their findings are limited. Our work offers a more thorough and
systematic investigation of how PRMs can be leveraged in RL for code generation tasks.

6 CONCLUSIONS AND LIMITATIONS

In this work, we addressed the challenge of sparse reward signals in reinforcement learning (RL) for code
generation by introducing a Process Reward Model (PRM) that provides dense, line-level feedback. This ap-
proach mirrors human-like code refinement and improves learning efficiency. Our experiments demonstrate
that integrating PRMs significantly enhances the pass rates of code generation models on both the Live-
CodeBench dataset and proprietary benchmarks. This method has the potential to improve long-horizon
code generation scenarios, advancing the state-of-the-art in LLM-based code generation.

Despite the promising results, our approach has several limitations that warrant further investigation. First,
the effectiveness of the PRM relies heavily on the quality of the collected data. While we automated data
collection using binary search and unit tests, this method may not capture all nuances of code correctness
and may introduce noise, especially in more complex or ambiguous programming tasks. Second, the com-
putational cost of collecting PRM training data is still substantial, even though we employed binary search
to mitigate it. Third, our automated PRM data collection method requires external verification (unit tests in
our case), which is not applicable to many other domains such as creative writing or open-ended generation
problems. This could limit the applicability of our approach in those areas.

10

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2025

REFERENCES

Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferran-
dis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane
Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov,
Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo Garcı́a del Rı́o, Qian Liu, Shamik Bose,
Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David
Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean
Hughes, Daniel Fried, Arjun Guha, Harm de Vries, and Leandro von Werra. Santacoder: don’t reach for
the stars!, 2023. URL https://arxiv.org/abs/2301.03988.

Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program synthesis with large lan-
guage models. CoRR, abs/2108.07732, 2021. URL https://arxiv.org/abs/2108.07732.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ry-
der, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe
Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel
Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin,
Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati,
Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Woj-
ciech Zaremba. Evaluating large language models trained on code. CoRR, abs/2107.03374, 2021a. URL
https://arxiv.org/abs/2107.03374.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ry-
der, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe
Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel
Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin,
Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati,
Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Woj-
ciech Zaremba. Evaluating large language models trained on code. CoRR, abs/2107.03374, 2021b. URL
https://arxiv.org/abs/2107.03374.

Fenia Christopoulou, Gerasimos Lampouras, Milan Gritta, Guchun Zhang, Yinpeng Guo, Zhongqi Li,
Qi Zhang, Meng Xiao, Bo Shen, Lin Li, Hao Yu, Li Yan, Pingyi Zhou, Xin Wang, Yuchi Ma, Igna-
cio Iacobacci, Yasheng Wang, Guangtai Liang, Jiansheng Wei, Xin Jiang, Qianxiang Wang, and Qun
Liu. Pangu-coder: Program synthesis with function-level language modeling, 2022. URL https:
//arxiv.org/abs/2207.11280.

Shihan Dou, Yan Liu, Haoxiang Jia, Limao Xiong, Enyu Zhou, Junjie Shan, Caishuang Huang, Wei Shen,
Xiaoran Fan, Zhiheng Xi, et al. Stepcoder: Improve code generation with reinforcement learning from
compiler feedback. arXiv preprint arXiv:2402.01391, 2024.

11

https://arxiv.org/abs/2301.03988
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2207.11280
https://arxiv.org/abs/2207.11280

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2025

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi,
Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harki-
rat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee, and
Yuanzhi Li. Textbooks are all you need. CoRR, abs/2306.11644, 2023. doi: 10.48550/ARXIV.2306.
11644. URL https://doi.org/10.48550/arXiv.2306.11644.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi, Y. Wu,
Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the large language model
meets programming – the rise of code intelligence, 2024. URL https://arxiv.org/abs/2401.
14196.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free evaluation of
large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Fangkai Jiao, Chengwei Qin, Zhengyuan Liu, Nancy F. Chen, and Shafiq Joty. Learning planning-based
reasoning by trajectories collection and process reward synthesizing. CoRR, abs/2402.00658, 2024. doi:
10.48550/ARXIV.2402.00658. URL https://doi.org/10.48550/arXiv.2402.00658.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, and Percy
Liang. Spoc: Search-based pseudocode to code. In Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Ad-
vances in Neural Information Processing Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pp. 11883–11894, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
7298332f04ac004a0ca44cc69ecf6f6b-Abstract.html.

Hung Le, William La Cava, and Jason H Moore. Coderl: Mastering code generation through pretrained
models and deep reinforcement learning. arXiv preprint arXiv:2207.01780, 2022.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,
Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko,
Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu, Ben-
jamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp Patel,
Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya,
Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel
Romero, Tony Lee, Nadav Timor, Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri
Dao, Mayank Mishra, Alex Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan-
ish Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis,
Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder: may the
source be with you!, 2023a. URL https://arxiv.org/abs/2305.06161.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee. Text-
books are all you need II: phi-1.5 technical report. CoRR, abs/2309.05463, 2023b. doi: 10.48550/ARXIV.
2309.05463. URL https://doi.org/10.48550/arXiv.2309.05463.

Yujia Li, David Choi, Junyoung Chung, Alan Guo, Tsung-Yen Yang, et al. Competition-level code genera-
tion with alphacode. Science, 378(6624):1092–1097, 2022.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. CoRR, abs/2305.20050, 2023.
doi: 10.48550/ARXIV.2305.20050. URL https://doi.org/10.48550/arXiv.2305.20050.

12

https://doi.org/10.48550/arXiv.2306.11644
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://doi.org/10.48550/arXiv.2402.00658
https://proceedings.neurips.cc/paper/2019/hash/7298332f04ac004a0ca44cc69ecf6f6b-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/7298332f04ac004a0ca44cc69ecf6f6b-Abstract.html
https://arxiv.org/abs/2305.06161
https://doi.org/10.48550/arXiv.2309.05463
https://doi.org/10.48550/arXiv.2305.20050

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2025

Jiate Liu, Yiqin Zhu, Kaiwen Xiao, Qiang Fu, Xiao Han, Wei Yang, and Deheng Ye. RLTF: reinforcement
learning from unit test feedback. Trans. Mach. Learn. Res., 2023, 2023. URL https://openreview.
net/forum?id=hjYmsV6nXZ.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou, Michele Tufano,
Ming Gong, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu.
Codexglue: A machine learning benchmark dataset for code understanding and generation, 2021. URL
https://arxiv.org/abs/2102.04664.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun Zhu,
Lei Meng, Jiao Sun, and Abhinav Rastogi. Improve mathematical reasoning in language models by
automated process supervision. CoRR, abs/2406.06592, 2024. doi: 10.48550/ARXIV.2406.06592. URL
https://doi.org/10.48550/arXiv.2406.06592.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, Qing-
wei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with evol-instruct,
2023. URL https://arxiv.org/abs/2306.08568.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774. URL
https://doi.org/10.48550/arXiv.2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan
Leike, and Ryan Lowe. Training language models to follow instructions with human feedback.
In NeurIPS, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
b1efde53be364a73914f58805a001731-Abstract-Conference.html.

QwenTeam. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Rafael Rafailov, Yaswanth Chittepu, Ryan Park, Harshit Sikchi, Joey Hejna, Bradley Knox, Chelsea Finn,
and Scott Niekum. Scaling laws for reward model overoptimization in direct alignment algorithms. arXiv
preprint arXiv:2406.02900, 2024.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini 1.5: Unlock-
ing multimodal understanding across millions of tokens of context. arXiv preprint arXiv:2403.05530,
2024.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez,
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. Code llama: Open foundation models for code, 2024. URL https://arxiv.org/abs/
2308.12950.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy opti-
mization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/1707.06347.

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and Chandan K Reddy. Execution-based code generation
using deep reinforcement learning. arXiv preprint arXiv:2301.13816, 2023.

13

https://openreview.net/forum?id=hjYmsV6nXZ
https://openreview.net/forum?id=hjYmsV6nXZ
https://arxiv.org/abs/2102.04664
https://doi.org/10.48550/arXiv.2406.06592
https://arxiv.org/abs/2306.08568
https://doi.org/10.48550/arXiv.2303.08774
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
http://arxiv.org/abs/1707.06347

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2025

Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and characterizing
reward gaming. Advances in Neural Information Processing Systems, 35:9460–9471, 2022.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In Lun-Wei Ku,
Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024,
pp. 9426–9439. Association for Computational Linguistics, 2024a. doi: 10.18653/V1/2024.ACL-LONG.
510. URL https://doi.org/10.18653/v1/2024.acl-long.510.

Zihan Wang, Yunxuan Li, Yuexin Wu, Liangchen Luo, Le Hou, Hongkun Yu, and Jingbo Shang. Multi-step
problem solving through a verifier: An empirical analysis on model-induced process supervision. CoRR,
abs/2402.02658, 2024b. doi: 10.48550/ARXIV.2402.02658. URL https://doi.org/10.48550/
arXiv.2402.02658.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learn-
ing. Machine learning, 8:229–256, 1992.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li,
Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian Yang,
Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin,
Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang,
Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao
Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei,
Xuancheng Ren, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui,
Zhenru Zhang, and Zhihao Fan. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. Codegeex: A pre-trained model for code generation with
multilingual benchmarking on humaneval-x, 2024. URL https://arxiv.org/abs/2303.17568.

14

https://doi.org/10.18653/v1/2024.acl-long.510
https://doi.org/10.48550/arXiv.2402.02658
https://doi.org/10.48550/arXiv.2402.02658
https://arxiv.org/abs/2303.17568

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2025

A IN-HOUSE LLM EXPERIMENT DETAILS: PRM TRAINING DATA STATISTICS

We provide detailed statistics for the PRM datasets used in the experiments to determine the best PRM data
selection strategy, as discussed in Section 4.3. Table 3 summarizes the following key metrics: the number of
prompt-response pairs (#Samples); the total number of tokens across all responses (#Tokens); the average
number of lines in all responses (Avg. #Lines); and the distribution of PRM labels (-1/0/+1).

In Figure 5, we present the distribution of error positions of all Revised responses (responses that initially fail
but have a correct prefix identified) as determined by the Binary Search procedure (Algorithm 1). The ab-
solute error position (i.e., the position of the first token rejected by Binary Search) is normalized as follows:
for a response y = (y1, y2, . . . , yL) with L tokens, if the Binary Search accepted the prefix (y1, y2, . . . , yp)
consisting of p tokens, the Relative Error Position is calculated as p

L .

Strategy #Samples #Tokens Avg. #Lines PRM Labels
-1 0 +1

Full 838K 179M 16.82 44.25% 17.87% 37.88%
Remove Hard 630K 119M 15.06 24.03% 19.18% 56.79%
Medium Only 485K 104M 16.57 27.66% 19.41% 52.93%
Revised Only 352K 76M 16.71 13.20% 19.42% 67.38%

Table 3: Statistics of PRM training data collected using different data selection strategies.

0.0 0.2 0.4 0.6 0.8 1.0

Relative Error Position

0

2

4

6

8

Pe
rc

en
ta

ge
 (%

)

Figure 5: Distribution of Relative Error Positions Identified by Binary Search.

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2025

B IN-HOUSE LLM EXPERIMENT DETAILS: RL TRAINING CURVES

In Figure 6, we present the smoothed RL training curves for all four settings (with and without DenseReward,
and with and without ValueInit) using a moving average to reduce noise and enhance readability. These
curves correspond to all four RL settings reported in Table 1. The smoothed trends clearly show that when
PRM is used as DenseReward, the model solves more problems compared to the baseline, demonstrating
PRM’s role in enabling more efficient exploration during RL training. Furthermore, when PRM is applied
as both DenseReward and ValueInit, our method achieves the best performance.

Figure 6: RL training curve of our method (DenseReward&ValueInit) compared to other settings. Using
PRM as both DenseReward and ValueInit yields the best result.

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2025

In addition, we evaluated the Best-of-K performance for all four settings on the training set. Specifically, we
used the checkpoint at 300 steps for each setting and evaluated their Best-of-K performance using a decoding
configuration with a temperature of 1.0, nucleus sampling with top-p=0.95, and top-k sampling with k=128.
For each K, we recorded the percentage of problems that the model solved within K generated responses,
which we refer to as the Pass Rate.

In Figure 7, we present the evaluation results for K ranging from 1 to 30. The plot shows that both DenseRe-
ward and ValueInit independently improve the Best-of-K performance compared to the baseline. When both
DenseReward and ValueInit are enabled, the model achieves the highest boost, with an improvement in pass
rate of nearly 4% at K=30 compared to the baseline.

0 5 10 15 20 25 30
K (The number of responses considered for each problem)

0.50

0.52

0.54

0.56

0.58

0.60

0.62

Pa
ss

 R
at

e

Setting
Baseline
DenseReward
ValueInit
DenseReward&ValueInit

Figure 7: Best-of-K performance curves for all RL training settings, showing the percentage of problems
solved within K generated responses for each configuration.

17

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2025

C IN-HOUSE LLM EXPERIMENT RESULTS ON HUMANEVAL AND MBPP

We evaluated our models on two additional coding benchmarks: HumanEval and MBPP. The descriptions of
these two datasets are provided below. For evaluation, we used the same settings as described in Section 4.1.
Specifically, we generated 10 candidate responses for each problem, using a temperature of 0.2, nucleus
sampling with top-p=0.95, and top-k sampling with k=128, following common practice. Pass@1 was used
as the evaluation metric. The results can be found in Table 4.

HumanEval (Chen et al., 2021b) This dataset comprises 164 hand-crafted programming problems that
are designed to evaluate the functional correctness of code generated by LLMs, rather than merely comparing
textual similarity to reference solutions. The problems in HumanEval cover a range of tasks, including
language comprehension, algorithms, and basic mathematics, and they are comparable to typical software
interview questions. Each problem is accompanied by a function signature, a docstring, a function body,
and multiple unit tests to rigorously test the generated solutions. We directly input the problem to the model
without using few-shot prompting.

MBPP (Austin et al., 2021) This dataset comprises 974 crowd-sourced Python programming tasks, specif-
ically crafted to be solvable by entry-level programmers. Each problem in the MBPP dataset consists of a
task description, a code solution, and three automated test cases, covering programming fundamentals and
standard library functionality. The dataset is particularly valuable for evaluating a model’s ability to synthe-
size short Python programs from natural language descriptions. For evaluation, we used the problems with
IDs 11–510, totaling 500 problems, as recommended by the original dataset authors. We directly input the
problem to the model without using few-shot prompting.

Model
Setting Dataset

Dense Value HumanEval MBPPReward Init.
Our-SFT - - 59.3 59.9

Our-RL

× × 65.1 61.9
× ✓ 69.8 63.3
✓ × 70.0 62.1
✓ ✓ 70.9 63.8

Table 4: Comparison of model performance (Pass@1) across HumanEval and MBPP with PRM as DenseRe-
ward and ValueInit settings when using our in-house model.

18

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2025

D ADDITIONAL OPEN-SOURCE LLM EXPERIMENTS

Base Model. We adopt Qwen2.5-7B as our base model (QwenTeam, 2024), a recently released causal
language model available at https://huggingface.co/Qwen/Qwen2.5-7B. Qwen2.5 belongs
to the Qwen series of large language models (Yang et al., 2024), known for their advanced capabilities
across a wide range of domains. The Qwen2.5-7B model has 7.61 billion total parameters (6.53 billion
excluding embeddings) and utilizes the Transformer architecture as its core. It incorporates state-of-the-
art enhancements, including Rotary Positional Embedding (RoPE), SwiGLU activation, RMSNorm, and
Attention QKV bias. The model consists of 28 layers and employs 28 attention heads for queries (Q) and 4
for keys and values (KV), making it highly efficient for tasks requiring robust attention mechanisms.

SFT Settings. We fine-tuned the Qwen2.5-7B model on the same supervised fine-tuning (SFT) dataset
described in Section 4.1. The model was trained for two epochs, starting with a learning rate of 1 × 10−7,
which linearly increased to 2 × 10−5 during the first 2% of the total training steps. After reaching the
peak learning rate, a cosine learning rate decay schedule was applied, gradually reducing the learning rate to
2×10−6 for the remainder of the training. Additionally, a constant weight decay of 0.01 was used throughout
the SFT training process to regularize the model and improve generalization. The model fine-tuned through
this process is referred to as Qwen2.5-7B-SFT.

RL Baseline. We adopted the same RL baseline training method and used the same RLHF dataset de-
scribed in Section 4.1 to further train the Qwen2.5-7B-SFT model. For PPO training, we configured the
following hyperparameters: a batch size of 4096, a linear warmup over the first 5 steps, followed by a
constant learning rate of 2 × 10−6 for both the actor and critic, and a KL penalty of 0.01. The training
utilized the AdamW optimizer and spanned approximately 300 steps, during which we empirically observed
performance convergence.

PRM Training. Following the approach outlined in Section 4.1, we selected four checkpoints at 50, 100,
150, and 200 steps during the training process of the RL baseline model. For each checkpoint, we sampled
n = 5 responses for every coding prompt in the training dataset Dtrain. Each sampled response was labeled
using the binary search procedure described in Algorithm 1, with K = 20 completions generated for each
partial code prefix. The data collected from all checkpoints was then aggregated to form a PRM training
set, employing the Revised Only strategy described in Section 4.3. This resulted in 165K samples and 28M
tokens. On average, each response contained 16.07 lines. The PRM label distribution was 25.88% for -1,
15.90% for 0, and 58.22% for +1. The PRM was initialized using the value model from the RL baseline and
fine-tuned on this PRM dataset using the objective function defined in Eq. (2).

Integrating PRM into RL. We used the same settings and hyperparameters as described in Section 4.1.
Additionally, we observed that due to the properties of the Qwen2.5-7B tokenizer, a newline token is not
always represented as a simple "\n" token. Instead, the tokenizer combines other non-space characters with
an ending "\n" to form new tokens (e.g., ":\n", "):\n", ")\n", "\n\n", "())\n", "]\n",
"()\n", "():\n", etc.). This makes it more challenging to accurately identify line separator tokens in
the model’s responses.

Empirically, we addressed this challenge by selecting the 50 most frequent tokens in the PRM dataset whose
corresponding token strings include "\n". The full list of token ids is shown below:
{198, 510, 982, 340, 271, 2398, 921, 741, 3932, 1171, 692, 1305, 4167, 2546, 1447, 10343, 1138, 19324,

341, 5563, 9957, 382, 3407, 3646, 624, 48443, 280, 456, 2533, 3989, 1248, 5613, 8389, 8997, 698,
24135, 317, 7368, 2440, 10907, 22165, 4432, 5929, 7129, 345, 11043, 532, 4660, 21686, 14288}.

During RL training, we only applied partial rewards from PRM to these tokens.

19

https://huggingface.co/Qwen/Qwen2.5-7B
https://huggingface.co/Qwen/Qwen2.5-7B

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2025

Main Results. Table 5 presents the performance of Qwen2.5-7B models with various configurations on
LiveCodeBench and InHouseBench. Table 6 shows the performance of these models on additional datasets,
HumanEval and MBPP, as introduced in Appendix C. Across all four datasets, models employing PRM
consistently outperformed the RL baseline without PRM, demonstrating the effectiveness of PRM.

Model
Setting Dataset

Dense Value LiveCodeBench InHouseBench
Reward Init. Easy Medium Hard Overall Contest NL2Alg Overall

Qwen2.5-7B-SFT - - 50.7 16.5 0.9 24.9 12.3 35.4 19.4

Qwen2.5-7B-RL

× × 60.9 13.7 1.4 27.5 26.0 45.6 32.0
× ✓ 62.8 17.1 1.7 29.6 30.6 46.1 33.6
✓ × 63.1 14.5 1.1 28.5 27.3 47.6 33.6
✓ ✓ 66.3 15.3 1.7 30.1 26.1 48.7 33.1

Table 5: Comparison of model performance (Pass@1) across LiveCodeBench and InHouseBench with PRM
as DenseReward and ValueInit settings when using Qwen2.5-7B model.

Model
Setting Dataset

Dense Value HumanEval MBPPReward Init.
Qwen2.5-7B-SFT - - 67.8 58.1

Qwen2.5-7B-RL

× × 73.8 62.4
× ✓ 75.4 63.1
✓ × 76.0 63.4
✓ ✓ 74.3 65.4

Table 6: Comparison of model performance (Pass@1) across HumanEval and MBPP with PRM as DenseRe-
ward and ValueInit settings when using Qwen2.5-7B model.

20

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2025

E A TYPICAL EXAMPLE OF THE LEARNED LINE-WISE REWARDS

In Figure 8, we present a typical example of the line-wise rewards identified by binary search and predicted
by a learned PRM to give readers a clearer understanding of our method. In this example, we first sampled a
problem from the training set and used our in-house model to generate a response for it. For this generated
response (which is not included in the PRM training data), we show the line-wise rewards derived from two
sources:

1. Line-wise Rewards Identified by Binary Search: We directly applied the model to perform Algo-
rithm 1, labeling the reward for each line.

2. Line-wise Rewards Predicted by a Learned PRM: We used the learned PRM to predict the rewards
for each line.

21

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Under review as a conference paper at ICLR 2025

Line-wise Rewards Identified by Binary Search Line-wise Rewards Predicted by a Learned PRM

Figure 8: Visualization of the learned line-wise rewards. The top gray block displays the problem descrip-
tion, while the bottom section shows a model-generated response with line-wise rewards from different
sources. The bottom-left block presents the line-wise rewards identified by binary search, and the bottom-
right block presents the line-wise rewards predicted by a learned PRM. The actual reward value is shown at
the beginning of each line, and each line is color-coded based on the reward value: lines with rewards closer
to -1 are shaded red, while those closer to +1 are shaded green.

22

	Introduction
	Problem Formalization
	Baseline Method: Reinforcement Learning from Unit Test Feedback

	Process Supervision-Guided Policy Optimization
	Process Supervision via Process Reward Models
	Data Collection
	Training

	Integrating PRM into RL Training

	Experimental Results
	Experimental Setup
	Key Considerations for Integrating PRM into RL Training
	PRM Training: More Data or Better Data?
	RL Training: Alleviating PRM Hacking

	Main Results and Analysis

	Related Works
	LLMs for Code Generation
	Process Reward Models

	Conclusions and Limitations
	In-house LLM Experiment Details: PRM Training Data Statistics
	In-house LLM Experiment Details: RL Training Curves
	In-house LLM Experiment Results on HumanEval and MBPP
	Additional Open-source LLM Experiments
	A Typical Example of the Learned Line-wise Rewards

