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ABSTRACT

Differential private (DP) synthetic datasets have been receiving significant atten-
tion from academia, industry, and government. However, little is known about
how to perform statistical inference using DP synthetic datasets. Naive approaches
that do not take into account the induced uncertainty due to the DP mechanism will
result in biased estimators and invalid inferences. In this paper, we present a class
of MLE-based easy-to-implement bias-corrected DP estimators with valid asymp-
totic confidence intervals (CI) for parameters in regression settings, by establish-
ing the connection between additive DP mechanisms and measurement error mod-
els. Our simulation shows that our estimator has comparable performance to the
widely used sufficient statistic perturbation (SSP) algorithm in some scenarios but
with the advantage of releasing a synthetic dataset and obtaining statistically valid
asymptotic CIs, which can achieve better coverage when compared to the naive
CIs obtained by ignoring the DP mechanism.

1 INTRODUCTION

Differential privacy (DP) is a mathematically rigorous definition that quantifies privacy risk. It
builds on the idea of releasing “privacy-protected” query results, such as summary statistics, using
randomized responses. In recent years, the use of differential privacy has quickly gathered popularity
as it promises that there will be no additional privacy harm for any individual whether the said
individual’s data belongs in a private dataset or not, and therefore encourage data sharing.

One important characteristic of DP is its composition property (Dwork & Roth, 2014). That is,
to avoid the scenario where the same analysis is rerun and averaging away the noises from the
randomized responses, the composition property indicates that running the same analysis twice will
have double the amount of privacy risk as running the analysis once. The data provider often set a
total amount of privacy risk/budget allowed, commonly referred to as the privacy budget, and each
analysis from researchers uses a portion of the privacy budget. Once the total privacy budget is
exhausted, any new analysis would not be possible unless the data provider decides to increase the
total privacy budget and thus take on more privacy risk. This could be problematic as it limits the
number of analyses that researchers can run, which can result in the dataset not being fully explored.
In consequence, it diminishes the probability of serendipitous discovery and amplifies the odds of
being tricked by unanticipated data problems (Evans et al., Working Paper).

To address the problem above, various methods of releasing differentially private synthetic datasets
(Liu (2016); Bowen & Liu (2020); Gambs et al. (2021)) have been proposed. Using the post-
processing property of DP, any analysis on the DP synthetic dataset will be differentially private
without the additional cost of privacy budget. Therefore, by releasing DP synthetic dataset, it cir-
cumvents the problem of running out of privacy budget. Here we will mention a few notable meth-
ods of generating DP synthetic datasets. In general, the methods of generating DP datasets can
be categorized into the non-parametric method and the parametric method. For the non-parametric
methods, the DP dataset is constructed based on the empirical distribution of the data. The simplest
approach would be directly adding Laplace or Gaussian noises to the confidential dataset. For the
parametric methods, the DP dataset is constructed based on a parametric distribution/model of the
data. Using the robust and flexible model of vine copula, Gambs et al. (2021) draw the DP synthetic
dataset from the DP trained vine copula model. From the Bayesian perspective, Liu (2016) proposes
generating DP synthetic dataset by drawing samples from the DP version of the posterior predictive
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distribution. For a more comprehensive overview of different DP dataset generation methods, refer
to Bowen & Liu (2020).

Dwork & Roth (2014) characterizes differential privacy as a definition of privacy tailored to the
problem of privacy-preserving data analysis. However, for a statistician, the goal of statistical infer-
ence is often as important as data analysis. Under the framework of differential privacy, the methods
for making statistical inferences are under-explored. Fortunately, the interest in statistical inference
under differential privacy has been rising recently including the works like Sheffet (2017) and Bar-
rientos et al. (2019). To make statistical inferences, statistical models need to be specified. With
different differential privacy algorithms, it comes different statistical models. It turns out that addi-
tive mechanisms, like the Laplace mechanism or Gaussian mechanism, give statistical models that
are naturally related to the measurement error models. In other words, each additive mechanism
can be viewed as some variation of the measurement error model, and therefore, the tools from the
measurement error models can be used to make inferences in the differential privacy setting.

In this paper, we generate DP synthetic dataset by adding DP noises directly to the confidential
dataset through the Gaussian mechanism. We choose this method due to its simplicity, and more
importantly, it allows us to establish the connection to the theory of measurement error as we will
see in section 3.1. Using the established tool in the theory of measurement error, we then derive
an MLE-based DP bias-corrected estimator and an asymptotic confidence interval for our param-
eter of interest. Therefore, by establishing a connection to measurement error, we will be able to
develop statistical inference under the differential privacy setting. To demonstrate the usefulness
of this connection, we study statistical inference under the linear regression setting while preserv-
ing differential privacy. In particular, we derive DP consistent estimator and asymptotic confidence
interval for the regression coefficient.

Related work As one of the most common statistical models, linear regression has been studied
before in differential privacy literature. One of the widely used methods for obtaining a DP estimator
for the regression coefficient is through the perturbation of sufficient statistics (Dwork et al., 2014;
Sheffet, 2017; Wang, 2018). It’s commonly used due to its simplicity and is closely related to the
classical ordinary least square method. Motivated by Dwork & Lei (2009), Alabi et al. (2022)
shows that algorithms based on a robust estimator, such as a median-based estimator, perform better
compared to the classical ordinary least square estimator on small sample cases. Similar to our work,
Charest & Nombo (2020) uses simulation extrapolation (SIMEX), a technique from the literature on
measurement error (Carroll et al. (2006)), to obtain a DP estimator for the regression coefficient.
However, what differs from our work is that there is no mention of constructing confidence intervals
in Charest & Nombo (2020). Agarwal et al. (2021); Agarwal & Singh (2021) also mentioned the
connection between the measurement error model and differentially private mechanism. Differing
from our work, Agarwal et al. (2021) focused on the setting where only covariates are perturbed
with differentially private noises and on the goal of learning a predictive linear model using principal
component regression. Similar to our work, Agarwal & Singh (2021) use the connection to make
inferences on the regression coefficient under a more general and less structured setting, but the
methodology is much more involved compared to our more simplistic approach. Lastly, Evans &
King (2022) also uses the connection to obtain a consistent estimator of the regression coefficient,
but without any mention of the confidence interval.

Using the Johnson-Lindenstrauss transform (Blocki et al., 2012), Sheffet (2017) studies DP ordinary
least square estimator and derived DP asymptotic confidence intervals for the regression coefficients.
Differing from the additive DP noises used in our work, a random projection could potentially limit
the usefulness of the synthetic dataset for other types of analysis. Instead of obtaining confidence
intervals for the regression coefficient, Barrientos et al. (2019) studies the DP hypothesis testing for
the regression coefficient by perturbing the t-statistic. However, since the approach achieves DP
through randomizing the t-statistics, each hypothesis testing will cost a portion of the total privacy
budget and the total privacy budget can be exhausted quickly.

Lastly, from the Bayesian perspective, Bernstein & Sheldon (2019) studies the DP Bayesian linear
regression, which requires a prior distribution for the regression coefficient, through releasing private
sufficient statistics and thus is imperilled to the problem of privacy budget running out as described
above.
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Structure of the paper In section 2, we state the necessary concepts related to differential privacy
and measurement error. In section 3, we establish the connection between differential privacy and
measurement error and working under regression setting, we derive DP consistent estimator and DP
asymptotic confidence interval for regression coefficient β using the tool from measurement error
framework. In section 4, we conduct a simulation to examine the performance of our DP estimator
against the widely used sufficient statistics perturbation method (SSP) and show that the performance
of our estimator is comparable to SSP estimator in some scenarios while being outperformed in
others. Furthermore, we look at the coverage of our DP confidence interval compared with the naive
CIs obtained from ignoring the DP noises, and demonstrate the issue with naive inference as not
only are the naive CIs centred at the wrong value, but they also have shorter length than would be
obtained with the true data (Carroll et al., 2006).

2 PRELIMINARIES

2.1 DIFFERENTIAL PRIVACY

We begin by going through some basics regarding differential privacy. The central idea around
differential privacy is that it gives the assurance that any sequence of query responses is “essentially”
equally likely to occur, independent of the presence or absence of any individual (Dwork & Roth
(2014)). Naturally, the most basic concept in differential privacy is the notion of neighbouring
datasets where two datasets differ by one individual record.

Definition 2.1 (Neighboring datasets). Two datasets of the same dimension (same numbers of
columns and rows) are called neighbouring datasets if they only differ in exactly one row/individual
record.

In this paper, we are only concerned with approximate differential privacy, which is a natural relax-
ation of the original definition of ε-differential privacy.

Definition 2.2 (Approximate differential privacy (Dwork et al., 2006a;b)). A randomized algorithm
M is (ε, δ)-differentially private if for all (measurable) set S and for all neighboring datasets X
and X′,

P(M(X) ∈ S) ≤ exp(ε)P(M(X′) ∈ S) + δ

One of the most important properties of differential privacy is its immunity to post-processing. That
is, without any additional information on the confidential dataset, it’s impossible to make a function
of the output of a differentially private algorithm M any less differentially private. More precisely,

Proposition 2.1 (Post-processing property (Dwork & Roth, 2014)). Let M be randomized algo-
rithm that is (ε, δ)-differentially private. Let f be an arbitrary randomized mapping with its domain
within the range of M. Then f ◦M is (ε, δ)-differentially private.

Another fundamental notion in differential privacy is the idea of a query. A query is a function to
be applied to the dataset (Dwork & Roth (2014)). Naturally, to achieve the same degree of privacy
protection, different queries will likely require a different amount of noise perturbation. To quantify
this, we need the concept of sensitivity:

Definition 2.3 (l2 sensitivity). The l2 sensitivity of a query function f is defined as ∆f =
maxX,X′ ∥f(X) − f(X′)∥2 where the max is taken over all possible pair of neighboring datasets
X and X′.

(ε, δ)-differential privacy can be achieved through the application of Gaussian mechanism,

Definition 2.4 (Analytic Gaussian Mechanism (Balle & Wang, 2018)). Let f : X → Rd be a
function with global L2 sensitivity ∆. For any ε ≥ 0 and δ ∈ [0, 1], the Gaussian output perturbation
mechanism M(x) = f(x) + Z with Z ∼ N

(
0, σ2I

)
is (ε, δ)-DP if and only if

Φ

(
∆

2σ
− εσ

∆

)
− eεΦ

(
− ∆

2σ
− εσ

∆

)
≤ δ

where Φ is the cumulative distribution function for a standard normal random variable.
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2.2 MEASUREMENT ERROR MODEL

In simplest terms, measurement error problems can be described as the problem of making infer-
ences about a statistical model in terms of a variable Z that is not directly observable. Instead,
a surrogate variable W of Z is observed, and inference must be made through W instead. The
statistical models and inference methods are called measurement error models (Stefanski, 2000).

A measurement error model consists of two parts, the first is the error structure relating the surrogate
W to the truth Z, and the second is data structure of true variable Z (Carroll et al., 2006). As an
example, consider the following measurement error model,

W = X + U (1a)
Y = g(X;β) + q (1b)

where the U is assumed to have mean zero, constant variance and is independent of X . Similarly, q
is assumed to have a Gaussian distribution with mean zero and constant variance and is independent
of X and U .

Model (1) above is referred to as error-in-variable model, where the covariates are measured with
error in a regression setting. Eq.(1a) describes the classical measurement error structure, in which
only the true (unobserved) covariate X is measured with additive error. Eq.(1b) describes the re-
gression structure of the data Z = {X,Y }. It reduces to the familiar linear regression structure for
g(X;β) = X⊤β.

Remark There are other types of error structures such as multiplicative error, but in this paper,
we will restrict ourselves to only additive measurement error.

Remark In measurement error literature, there is an important distinction between the functional
model where X is not modelled and the structural model where X is modelled with a parametric
distribution. For this paper, we will restrict our attention to structural modelling where X is assumed
to have a Gaussian distribution.

Under (1) with g(X;β) = X⊤β, one of the most well-known effects of the measurement error
is to bias the regression coefficient towards zero. This phenomenon is commonly referred to as
attenuation. More precisely, the OLS estimator obtained by regressing Y on the surrogate W is not
a consistent estimator of β but instead of β∗ = λβ where

λ =
σ2
x

σ2
x + σ2

u

< 1 (2)

The attenuation factor λ is referred to as the reliability ratio (Carroll et al., 2006). The larger the σ2
u,

the variance of the measurement error, the closer to zero the attenuation factor λ will be. Therefore,
when ignoring the measurement error, the naive method of regressing Y on W will result in severe
underestimation of β when the magnitude of measurement error is large.

Based on equation 2, we can obtain a consistent estimator of β as

β̃ = β̂ols/λ̂ = β̂ols
Sw

Sw − σ̂2
u

(3)

where Sw is the sample variance of the surrogate W and σ̂2
u is a consistent estimator of σ2

u.

So far we have only discussed the scenario where only the explanatory variable X is measured with
error, but the scenario where both explanatory and response variables are measured with error is
much more beneficial to the differential privacy framework. Although there is admittedly less lit-
erature on response measurement error, the extension is surprisingly easy in some cases. As noted
in Carroll et al. (2006), for unbiased and homoscedastic response measurement error in linear re-
gression, the response measurement error increases the variability of the fitted lines without causing
bias. Furthermore, all hypothesis tests, confidence intervals, etc. remain perfectly valid albeit they
are less powerful. These conclusions indicate that unbiased error in linear regression requires no
special adjustments when extending to response measurement error. However, for the binary re-
sponse, the measurement error becomes misclassification, which is no longer an unbiased error, and
therefore special considerations are required. As the first steps establish the connections between
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differential privacy and the measurement error model, we will focus on the linear regression mea-
surement error throughout this paper. Nonlinear regression such as logistic regression will be left
for future directions.

3 DIFFERENTIAL PRIVACY MECHANISM AS MEASUREMENT ERROR MODEL

3.1 GAUSSIAN MECHANISM AS MEASUREMENT ERROR MODEL

Let’s denote the private dataset by Z, then the analytic Gaussian mechanism (sec. 2.1) releases a
differentially private dataset Z̃ by adding a centred Gaussian noise U ∼ N

(
0, σ2

uIp
)
,

Z̃ = Z+U (4)
Note that ∆ denotes the sensitivity for the identity query function, that is, ∆ := maxZ,Z′ ∥Z− Z′∥F
where ∥ · ∥F denotes the Frobenius norm.

Refer back to section 2.2, it’s easy to observe that equation 4 can be viewed as the error structure
between the surrogate variable Z̃ and the true unobservable variable Z of a measurement error
model. A key difference here is that commonly in measurement error problems, the magnitude
of the measurement error σ2

u, the variance of U, is unknown and has to be estimated. Fortunately,
in the differential privacy setting, the variance of U is purely determined by the privacy budget ε, δ
and the sensitivity ∆, and therefore it can be publicized and is assumed to be known.

Remark For unbounded variables, like Gaussian random variables, ∆ will be ∞ and the Gaus-
sian mechanism will no longer work without additional procedures. To deal with unbounded pre-
dictors, we simply clip the variable within a fixed interval. To disclose ∆, the fixed interval must be
chosen before or without seeing the confidential dataset.

3.2 STATISTICAL INFERENCE FROM MEASUREMENT ERROR PERSPECTIVE

Now equipped with the perspective that the Gaussian mechanism can be viewed as the measurement
error structure of a measurement error model, we need the second component of the measurement
error model, the data structure, to make statistical inferences.

Let’s consider the regression where we partition the private dataset as Z = {X,y} where X is the
exploratory variable and y is the response variable. Furthermore, we assume a functional relation-
ship between X and the expected value of y,

y = g(X,β) + q (5)

where q ∼ N (0, σ2
qI), and it’s assumed to be independent of X.

Combined with equation 4, we can write our measurement error model as the following,

y = g(X;β) + q

Z̃ = Z+U
(6)

where Z̃ = (X̃, ỹ) and U = (Ux,uy). Note the variance of U is assumed to be known. When uy

has a zero variance, then it reduces to model (1), error-in-variable model, in section 2.2.

Under model (6), one of the classical methods for estimation is the maximum likelihood approach
(Wansbeek & Meijer, 2000) due to several nice properties such as consistency and asymptotic nor-
mality that the maximum likelihood estimator (MLE) enjoys. Since only Z̃ are observed, the likeli-
hood function to maximize comes from the marginal distribution of Z̃, which is simply a multivariate
normal distribution. For some function g, numerical analysis is required to maximize the likelihood
and a closed-form solution often does not exist. However, in this paper, we will focus on one such
scenario that a closed-form solution exists. That is, we will focus on the case that g(X;β) = X⊤β,
in which case eq. (6) reduces to the following,

y = Xβ + q

Z̃ = Z+U
(7)
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Denotes 1

β̃ =

(
1

n
X̃⊤X̃− σ2

uI

)−1
1

n
X̃⊤ỹ, σ̃q = Sv − σ2

u

(
1 +

∥∥∥β̃∥∥∥2
2

)
where Sv = 1

n−k

∥∥∥y −Xβ̃
∥∥∥2
2
. To obtain the limiting distribution of these estimators, we have the

following theorem.
Theorem 3.1 (Fuller (1987)). Let model (7) holds, that is, assume homoscedastic linear re-
gression model, additive measurement error structure and a normally distributed predictor. Let

θ =
(
β⊤, σqq

)⊤
and let θ̃ =

(
β̃⊤, σ̃qq

)⊤
. Then,

n1/2(θ̃ − θ)⇝ N(0,Γ),

where the submatrices of Γ are

Γββ =M−1
x σ2

v +M−1
x

[
σ2
uσ

2
vI+ σ4

uββ
⊤]M−1

x

Γqq =Var
(
1

n
∥v∥22

)
Γβq =2M−1

x σ2
uσ

2
vβ

with v = uy + q−Uxβ and Mx = µxµ
⊤
x +Σx. Furthermore, The variance of the approximate

distribution of β̃ can be estimated by

V̂ar{β̃} =n−1
[
M̃−1

x Sv + M̃−1
x

(
Svσ

2
uI+ σ4

uβ̃β̃
⊤
)
M̃−1

x

]
where M̃x = 1

nX̃
⊤X̃− σ2

uI.

Remark The theorem above is not valid if a clipping process is applied to Z to ensure finite
sensitivity. Therefore, the clipped interval needs to be sufficiently large to minimize the impact of the
clipping effect.

Directly following the theorem above, we can derive the result for the simple linear regression,
Y = β0 +Xβ1 + q, which will be used in the simulation in section 4.
Corollary 3.1.1 (Simply linear regression (Fuller, 1987)). Suppose σ2

u known, σ2
ε > 0, and σ2

ξ > 0.
Then, the vector

√
n

[
β̃0 − β0

β̃1 − β1

]
⇝ N (0,Γ)

where the covariance matrix Γ is,

Γ =

µ
2
x

σ2
x̃σ

2
v + Cov2(x̃, v)

σ4
x

+ σ2
v −µx

σ2
x̃σ

2
v + Cov2(x̃, v)

σ4
x

−µx
σ2
x̃σ

2
v + Cov2(x̃, v)

σ4
x

σ2
x̃σ

2
v + Cov2(x̃, v)

σ4
x


Furthermore, nV̂ar

{(
β̃0, β̃1

)⊤
}

is a consistent estimator of Γ where

V̂ar
{[

β̃0

β̃1

]}
=

mean(X̃)2 V̂ar
(
β̃1

)
+ 1

nSv −mean(X̃) V̂ar
(
β̃1

)
−mean(X̃) V̂ar

(
β̃1

)
V̂ar

(
β̃1

) 
V̂ar

(
β̃1

)
=

1

n− 1

Sx̃Sv + β̃2
1σ

4
u

(Sx − σ2
u)

2

where Sv = 1
(n−2)

∥∥∥ỹ − mean(ỹ)− β̃1 (x− mean (x̃))
∥∥∥2
2
.

1Note that β̃ is the MLE of β, but σ̃q is not the MLE of σq . σ̃q is used here because the limiting distribution
can be derived under less restrictive conditions than those used to obtain the maximum likelihood estimator
(Fuller, 1987).
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Immediately following from the corollary above, we can derive an asymptotic confidence interval
for β1 as follows,
Corollary 3.1.2 (Asymptotic confidence interval). The interval is defined as follows

β̃1 ± t1−α/2,n−2

√
V̂ar

(
β̃1

)
where t1−α/2,n−2 denotes the 1 − α/2 quantile of the student’s t distribution with df = n − 2, is a
1− α asymptotically correct confidence interval for the regression coefficient β1.

4 SIMULATION AND RESULTS

In this section, we perform simulations to evaluate the performance of our estimator against the
widely used SSP algorithm (Dwork et al., 2014; Sheffet, 2017; Wang, 2018; Alabi et al., 2022).
As the result will show that our estimator is comparable to the SSP algorithm in some scenarios.
Furthermore, we will obtain an asymptotic confidence interval for β1 without additional privacy
cost, which is one of the advantages of our approach. Compared to the naive CI obtained by ignoring
the DP noises, our CI does a much better job capturing the true value for β1.

4.1 METHOD

For this simulation, we assume the following simple linear regression model,

Yt = β0 + β1Xt + qt

Additionally, we assume qt ∼ N (0, 1) and Xt ∼ N (0, 1).

To conduct the simulation, we set the coefficients to be (β0, β1) = (1, 1), and then draw Xt, t =
1, 2, . . . , n from N (0, 1) and the regression noises qt, t = 1, 2, . . . , n from N (0, 1). Once Yt =
β0 + β1X + qt, t = 1, 2, . . . , n is obtained, we clip Yt within the interval [−3, 3] to ensure a finite
sensitivity ∆. The particular interval of [−3, 3] is chosen since the interval is relatively large so that
the effect of clipping will not have a big impact on the result.

First, we will obtain the point estimators for β0 and β1 using the SSP algorithm. To implement the
SSP algorithm, we follow the DPSuffStats algorithm in Alabi et al. (2022) with a few adjust-
ments 2. To obtain our estimator, we first construct our DP synthetic dataset described in section 3.1
with ∆ =

√
(1− 0)2 + (3− (−3))2 =

√
37, and then obtain the estimates as described in section

3.2. To compare the performance between these two estimators, we report their median absolute er-
ror (MAE) for each combination of sample size n ∈ {500, 1000, 2000, 5000, 104, 105} and privacy
budget ε ∈ {0.1, 0.5, 1, 5} while setting δ = 1/n.

Due to the post-processing property of DP, any statistics derived from the DP synthetic dataset will
remain differentially private and won’t incur any additional privacy risk. Therefore, the asymptotic
CI describes in corollary 3.1.2 is differentially private. Similarly, the naive CI obtained by ignoring
the DP noises is differentially private as well. To compare our asymptotic CI with the naive CI, we
report their relative frequencies of capturing the true value of β1 out of the 1000 trials.

Lastly, the normal distribution assumption of the covariates might not be realistic in practice. There-
fore, we rerun the simulation described above but with Xt drawn from Unif(0, 1) instead to evaluate
the performance of our method under a different setting.

4.2 RESULT

Table 1 shows the MAE results between our DP estimator (bottom value) and the SSP estimator (top
value). As we can observe from the table, as one might expect when privacy budget ε or sample size
n increases, the MAE for both estimator decrease. However, the SSP estimator outperforms our SSP
estimator except when both sample size and privacy budget are large, their performances are similar.
The lower performance of our estimator is due to the nature of the finite sample. In simulation,

2First, the Gaussian mechanism is used instead of the Laplace mechanism for a better comparison. Then,
we extend the algorithm to accommodate different clipping intervals for Xt and Yt.
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Table 1: MAE result for uniformly/normally distributed predictor. The top value within each cell
indicates the MAE for the SSP algorithm, and the bottom value within each cell indicates the MAE
for our estimator without applying the Gram-Schmidt process.

Gaussian Uniform
ε = 0.1 ε = 0.5 ε = 1 ε = 5 ε = 0.1 ε = 0.5 ε = 1 ε = 5

n = 500
2.139 0.592 0.342 0.148 6.497 1.884 1.040 0.301
7.105 2.871 2.029 1.117 5.400 2.504 2.039 1.757

n = 1000
1.218 0.334 0.205 0.132 3.938 1.001 0.568 0.183
5.929 2.476 1.862 1.018 4.557 2.310 1.889 1.735

n = 2000
0.699 0.200 0.140 0.127 2.212 0.557 0.307 0.121
5.026 2.185 1.652 0.838 3.963 2.114 1.837 1.652

n = 5000
0.324 0.131 0.127 0.128 0.984 0.244 0.147 0.090
3.976 1.876 1.508 0.681 3.218 1.893 1.801 1.596

n = 104
0.198 0.128 0.129 0.128 0.551 0.138 0.097 0.080
3.401 1.711 1.392 0.574 2.858 1.815 1.805 1.481

n = 105
0.128 0.128 0.128 0.128 0.088 0.075 0.074 0.074
2.048 1.339 1.111 0.276 1.978 1.803 1.726 1.151

the sample covariance between DP noises and data is often non-negligible when the sample size is
small relative to the amount of noises injected. This results in poor estimation of σx, which leads
to the poor performance of our estimator. Although our estimation performance is worse than the
SSP method, it’s still comparable in some scenarios (the combination of a small privacy budget and a
small sample size or the combination of a large privacy budget and a large sample size). Furthermore,
our approach allows the release of a synthetic dataset and more importantly, it provides the method
to obtain a confidence interval without additional privacy budget. We will discuss the performance
of our confidence interval next.

Figure 1 show the coverage probabilities and margin of error of our confidence intervals (DP) under
normally distributed and uniformly distributed covariate X . For comparison, the naive CIs derived
from the synthetic dataset (naive) and non-DP CIs (non-DP) derived from the confidential dataset are
also plotted. As shown in both figures, the coverage of our CIs is relatively close to the nominal level
(90%, indicated by the dotted lines). In comparison, the coverage of the naive CIs never captures the
true value of β1 even though they are much narrower in comparison. This highlights the importance
of considering DP noises when making statistically valid inferences. The reason behind the terrible
coverage of the naive CIs, as explained in Carroll et al. (2006), is because the variance of the naive
estimator can be smaller than the true data estimator when the privacy budget is small (or DP noises
are large), which results in a more precise, but biased estimator.

5 CONCLUSION

In this paper, we established a connection between DP mechanisms and measurement error mod-
els. Applying the tools from the measurement error framework, we developed statistical inference
under linear regression while preserving differential privacy. In particular, we derived DP consis-
tent estimator and DP asymptotic conference interval for the regression coefficients. To evaluate
the performance of the estimator, we compared it to the widely used SSP method and demonstrated
our estimator has comparable performance in some scenarios but has the advantage of obtaining
statistically valid asymptotic confidence intervals without additional privacy cost. Furthermore, by
comparing the coverage between our asymptotic CIs and naive CIs, we illustrated the importance of
incorporating the DP mechanism into the inference method to ensure a valid statistical inference.

For future directions, some theoretical works on the comparison between our estimator and the
SSP estimator could be an interesting direction. Similarly, the extension of the theorem 3.1 to
accommodate the clipping might be a fruitful path to pursue. Furthermore, there are still many tools
from the measurement error literature yet to be utilized. One of the obvious next steps would be
to extend the linear regression setting to the more general generalized linear model setting such as
logistic regression. We hope this paper will motivate future works to explore more the connection
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Figure 1: The coverage probabilities comparison between our DP confidence intervals, naive CIs
and non-DP CIs at various sample sizes. The top 4 plots are for the normally distributed covariate,
and the bottom 4 plots are for the uniformly distributed covariate. Note the horizontal axis is in
logarithmic scale with sample size n = 500, 1000, 2000, 5000, 104, 105. The dotted line indicates
the nominal CI level of 0.9.

between differential privacy and measurement error, and to develop statistical inference under the
differential privacy setting.
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