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ABSTRACT

Most works of interpretable neural networks strive for learning the semantics con-
cepts merely from single modal information such as images. However, humans
usually learn semantic concepts from multiple modalities and the semantics is
encoded by the brain from fused multi-modal information. Inspired by cognitive
science and vision-language learning, we propose a two-stream model for learning
visual semantic concepts under the guidance of natural language, where a CNN-
based vision stream encodes the input image and a Bert-based language stream
encodes corresponding text description. Therefore, visual and natural language
features reside on different but semantically highly correlated manifolds, i.e. fol-
low a multi-manifold distribution. We transform the multi-manifold distribution
alignment problem into updating the projection matrices by Cayley transform on
the Stiefel manifold and better joint representations are obtained by fusing the se-
mantically similar features from the aligned manifold. In addition, we propose a
Manifold Alignment based Prototypical Part Network (MA-ProtoPNet) to learn
the semantics concepts from the joint representations, and these concepts can cap-
ture more semantic information from multi-modality. We verified the effective-
ness of the manifold alignment method through experiments and the proposed
framework can provide better interpretability and classification results.

1 INTRODUCTION

Deep learning has demonstrated remarkable performance and has been extensively utilized in vari-
ous fields, such as image recognition (He et al., 2016; Huang et al., 2017) and object detection (Gir-
shick, 2015; Ren et al., 2015). However, despite its impressive performance, deep neural networks
are still perceived as a black-box model that lacks interpretability. This limitation restricts their
application in high-stakes areas such as finance, self-driving, and disease diagnosis. Therefore, in-
terpretability is crucial in these critical domains, and it is essential to understand precisely how the
model makes decisions.

Interpretability of neural networks has recently gained significant attention, and self-explaining con-
volutional neural networks (CNNs) based on prototype learning (Chen et al., 2019a; Wang et al.,
2021; Nauta et al., 2021b; Donnelly et al., 2022) have emerged as a major research direction for
interpretable computer vision. Rosch (Rosch, 1973; 1975), the main representative of prototype
theory in cognitive science, confirmed through a series of psychological experiments that semantic
concepts consist of two factors: the prototype or best instance, and the degree of category mem-
bership, which depends on the resemblance to the prototype. Inspired by the prototype theory, the
prototypical part network (ProtoPNet (Chen et al., 2019a)) and its extension works (Wang et al.,
2021; Nauta et al., 2021b) first learn the set of prototypes (semantic concepts) from the images in
the training set and then make predictions by comparing the similarity between the prototypes and
the parts of images. This approach generates an explanation of the form “the bird is an European
Goldfinch because the parts of the image look like the prototype parts of the European Goldfinch”.
However, most interpretable neural networks still focus on learning semantic concepts from a single
modality such as images, while abundant psychological evidence suggests that humans learn more
semantic information by combining language and its meaning in the physical world (Pulvermller,
2013; Giinther et al., 2020).

In this study, we propose a two-stream model inspired by prototype theory and vision-language
learning to jointly learn semantic concepts from visual and linguistic modalities. The two-stream
model includes a CNN-based vision stream and a Bert-based language stream that encode fine-
grained features from images and corresponding text descriptions. A major challenge is that features
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Common Subspace

Figure 1: The basic idea of Manifold alignment: corresponding data points are mapped from two
different manifolds to similar locations in a common subspace while preserving the local geometry
of each manifold.

from the vision and language streams reside on different, yet semantically highly correlated, mani-
folds, i.e. multi-manifold distribution. To align their underlying manifolds and provide knowledge
transfer across domains, manifold alignment methods (Wang & Mahadevan, 2009b; Cui et al., 2014;
Pei et al., 2011; Huo et al., 2021) are designed to establish relationships between disparate datasets.
Figure 1 illustrates the basic idea of manifold alignment, which aims to construct or strengthen rela-
tionships between different datasets and project data points to a common subspace while preserving
local geometry structures.

To align the visual and language features, we adopt the manifold alignment method by learning
two projection matrices that project them into a common subspace. In this subspace, we enforce
visual and language features that share similar semantic meanings to be close, i.e. feature matching,
while preserving their neighborhood relationships in the original feature spaces, i.e. local geometry
preserving. We convert the manifold alignment problem into an optimization problem with orthog-
onality constraints on the projection matrix, taking into account the criteria of feature matching and
geometry preserving. We then transform the optimization problem with Cayley transform and up-
date the two projection matrices using a curvilinear search on the Stiefel manifold. Through the
feature transformation of the projection matrix, semantically aligned visual and natural language
representations exhibit similar patterns, and we fuse them in a common subspace. Finally, we pro-
pose a Manifold Alignment based Prototypical Part Network (MA-ProtoPNet) to learn semantic
concepts from the fused representation and design an alternating optimization algorithm to optimize
the two objective functions in manifold alignment and concept learning.

We have conducted extensive experiments on two case studies, bird species identification and flower
species identification, to evaluate the performance of our model in terms of both interpretability
and accuracy. To measure interpretability, we compared the output region of semantic concepts
with annotated object parts, which provides a quantifiable metric that was previously missing from
ProtoPNet-based methods. Furthermore, we designed a baseline model that learns concepts directly
from features without manifold alignment to demonstrate the effectiveness of our proposed frame-
work. Our model outperformed classical interpretable models in both accuracy and interpretability.

The contributions of our work are summarized as follows: (1) A new framework of interpretable
image recognition guided by language is first proposed that can learn semantics concepts from both
visual and linguistic modality. (2) We design a manifold alignment method to optimize the pro-
jection matrices on the Stiefel manifold by the Cayley transform, which transforms the features of
multi-manifold distributions into a common subspace. (3) An alternating optimization algorithm is
proposed to optimize objectives of manifold alignment and concept learning. (4) We apply quan-
titative metrics of interpretability for the ProtoPNet-based methods. Extensive experiments have
demonstrated that reasonable utilization of natural language guidance can improve the accuracy and
interpretability of the self-explaining model.

2 RELATED WORK

Our work is related to interpretability in image recognition, vision-language learning, and manifold
alignment. In this section, we will give a brief overview of related works.

Interpretability in Image Recognition. Previous methods of interpreting deep neural networks
can be broadly classified into two types, one devoted to visualizing the underlying patterns of the
black-box model, and the other focusing on modeling clear semantic representations. There are a
lot of visualization methods to compute the relevance score at each pixel-level location of the im-
age, including the saliency-based methods (Dabkowski & Gal, 2017; Mahendran & Vedaldi, 2016;
Zeiler & Fergus, 2014; Zhou et al., 2016), perturbation-based forward propagation methods (Fong
& Vedaldi, 2017; Fong et al., 2019), and backpropagation-based methods (Simonyan et al., 2013;
Springenberg et al., 2014; Bach et al., 2015; Zhang et al., 2018a; Montavon et al., 2017; Sundarara-
jan et al., 2017; Shrikumar et al., 2017). But the collection of pixels cannot build the connection
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with semantics concepts of humans and lack of illustrating knowledge hidden behind all activations.
Therefore, some methods aim to learn semantics concepts to construct a self-explaining model dur-
ing the training process, such as Zhang et al. (2018b); Liang et al. (2020); Chen et al. (2020) focus
on learning interpretable filters by restricting each filter response to a specific concept. For grasping
the concepts, some researchers try to represent the semantics patterns as the prototype vectors (Chen
et al., 2019a; Wang et al., 2021; Kim et al., 2021; Nauta et al., 2021b; Donnelly et al., 2022; Nauta
et al., 2021a). Chen et al. (2019a) proposed a prototypical part network (ProtoPNet) to learn the
prototypes and can generate a part-level attention map as an explanation by calculating the distance
between an input image and learned prototypes. Further, the ProtoPNet has been extended many
times (Wang et al., 2021; Nauta et al., 2021a; Kim et al., 2021; Donnelly et al., 2022) and different
methods have added different properties to the prototypes. Wang et al. (2021) designed a plug-in
transparent embedding space, which is spanned by disentangled basis concepts on the Grassmann
manifold. Nauta et al. proposed a Neural Prototype Tree that combines prototype learning with
decision trees and can explain a prediction by outlining a decision path.

However, the above methods only learn semantic concepts from visual modality and lack other
modal information to guide concept learning. In contrast, our model is the first framework to learn
the semantics concepts from fused multi-modal information and a manifold alignment method is
proposed to align the multi-modal manifold distribution. In this way, the concepts can capture richer
semantic information and provide better interpretability.

Vision-Language Learning. Grounding language to vision is attracting increasing attention. Tra-
ditional strategies that have been used to fuse words and corresponding visual information are per-
ceptual norms (Silberer & Lapata, 2012), bags-of-visual-word (Bruni et al., 2014; Lazaridou et al.,
2014), and learnable visual features (Lazaridou et al., 2015; Chrupata et al., 2015; Kiros et al., 2018;
Ailem et al., 2018). These model used for vision-language fusion have evolved with natural lan-
guage processing (NLP) models, such as Latent Dirichlet Allocation (LDA) (Bruni et al., 2014),
log-bilinear model (Gupta et al., 2019), Skip-gram model (Zablocki et al., 2018; Lazaridou et al.,
2015), and recurrent neural network (Chrupata et al., 2015). Recently, with the development of
transformer (Devlin et al., 2018; Vaswani et al., 2017), the transformer-based models have started
to be used in vision-language learning and the demonstrated powerful performance (Tan & Bansal,
2019; Lu et al., 2019; Su et al., 2019; Chen et al., 2019b).

Our model relates closely to the methods (Jia et al., 2021; Radford et al., 2021; Zhang et al., 2021)
which build a two-stream model to learn vision and language representation from image-text de-
scription pairs. But, we operate on fine-grained visual and natural language features in our work
compared to (Jia et al., 2021; Radford et al., 2021) and capture the semantic concepts from the
fine-grained vision-language representation. In addition, compared to (Zhang et al., 2021), we con-
sider that original vision and language features come from two semantically highly correlated but
different manifolds, so we design a manifold alignment method to align the vision and language
manifolds.

Manifold Alignment. Manifold alignment has been widely used in many fields of machine learning
and data mining. The main objective of manifold alignment is to align the sets of data from different
manifold distributions by matching the corresponding instances of different manifold distributions
and preserving the local geometry of each manifold. Depending on whether the correspondence
information is available or not, manifold alignment can be classified into semi-supervised manifold
alignment (Wang & Mahadevan, 2011; Lin & Tang, 2006; Ham et al., 2005) and unsupervised man-
ifold alignment (Wang & Mahadevan, 2009b; Cui et al., 2014; Pei et al., 2011; Huo et al., 2021).
Generally, the manifold alignment problem is transformed into an optimization problem that finds
the projection matrices from the original spaces to a common subspace, and the projection ma-
trices are solved in closed form by eigenvalue decomposition like Canonical Correlation Analysis
(CCA) (Hardoon et al., 2004). Different from existing methods, we develop the optimization al-
gorithm of the projection matrices based on the Cayley transform for preserving the orthogonality
constraints, which can obtain the global optimal solution (Wen & Yin, 2013).

3 METHOD

In this section, we present our proposed Manifold Alignment-based Prototypical Part Network (MA-
ProtoPNet), whose overall architecture is depicted in Figure 2. Our work proposes a manifold align-
ment algorithm that projects visual and language features from their respective manifolds into a
vision-language aligned manifold. Section 3.1 provides a detailed description of the manifold align-
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Figure 2: The overall architecture of our proposed manifold alignment based prototypical part net-
work (MA-ProtoPNet). An input image and the corresponding text descriptions are extracted by the
vision encoder and the language encoder respectively. A manifold alignment layer is designed to
learn two projections for the output of encoders such that vision and language features can be aligned
in a common manifold. Then the two groups of aligned features are fused by an affine transforma-
tion and the fused features are fed into the prototype layer to learn the semantic concepts. Finally,
semantic concepts can be learned under the guidance of the language and the final classification is
inferred from these concepts.

ment method. In Section 3.2, we propose a language-guided part-level prototype learning framework
based on the manifold alignment algorithm. This framework learns part-level concepts from the se-
mantically aligned joint representation. Finally, Section 3.3 introduces the implementation details
of the two-step alternating optimization process in MA-ProtoPNet.

3.1 MANIFOLD ALIGNMENT METHOD

We denote the input image and its corresponding text description as Z,, and Z;, respectively. Their
features extracted by the vision encoder f,(-) and the language encoder f;(-) are denoted by X,, €
REXWXH and X; € RE*L, respectively. Here, C represents the number of channels of the feature
maps and word embeddings, while H and W denote the heights and widths of the feature maps, and
L represents the length of the description. The vision encoder f,(+) is composed of a convolutional
network backbone (e.g. VGG, ResNet, and DenseNet) and additional 1 x 1 convolutional layers.
Similarly the language encoder f;(-) is based on Bert (Devlin et al., 2018) with a fully connected
layer. Using extra 1 x 1 convolutional layers and a linear transformation, the output of vision
and language encoder can be projected to the same dimensional representational space. However,
without any processing, the two sets of features would be different but semantically highly correlated
manifold distributions. The goal of our manifold alignment algorithm is to learn two projections
P, € RE*C and P; € RE*Y to transfer the vision and language features to a common subspace
such that the two distributions can be aligned semantically. The transformed features of visual
feature X, is denoted as Z,, = P;r X, in the common subspace while the transformed features of

language feature X; is denoted as Z; = PZTXZ.

The objective of the classical manifold alignment algorithm is to learn a projection that maps fea-
tures from different spaces to a common subspace simultaneously matching the corresponding in-
stances and preserving the local geometry of each manifold. Matching the corresponding instance
implies that instances with comparable semantic meanings from distinct manifolds will be projected
onto neighboring regions following transformation, while preserving the local geometry implies that
the relationship of the neighborhood of the instances in each manifold will remain consistent after
transformation. However, obtaining fine-grained annotation relationships between visual features
and text descriptions is expensive and a more general manifold alignment algorithm is implemented
with no available correspondence information. Therefore, solving the alignment problem without
correspondence needs to find two unknown variables, i.e. the correspondence, and the projection
matrix.

Constructing the Correspondence. The connection between different manifolds is usually
constructed by some similarity measures (Cui et al., 2014; Huo et al., 2021) and the inner-
product (Zhang et al., 2021) has been adopted to calculate the similarity between the visual rep-
resentation and language representation, where potentially similar semantic meanings between vi-
sual features and language features have greater similarity scores. Therefore, we use the normal-
ized inter-product sim(z,y) = = "y/||z||||y|| as similarity measure and the correspondence matrix
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W,; € RIWXH)XL of the visual features and language features is defined as follows:

i) _ J1 0i(Xe) € Ni(9;(X0)) or ¢;(X1) € Ni(6:(Xo))
W) = . (1)
0 otherwise
where WEZJ ) is the element of the correspondence matrix W,;. ¢;(X,) denotes the operation of
taking the i-th location in the visual feature map X, and ¢,(X;) denotes the operation of taking the
j-th word in the language feature X;. Ny (¢;(X,)) and NV} (¢,(X;)) represent the k nearest neighbors
of i-th visual feature and j-th language feature in common space. If i-th visual feature ¢;(X,) is in
the top-k neighbors of ¢;(X;)), W' is set to 1 or vice versa.

Objective Function of Manifold Alignment. In our work, the manifold alignment is used to make
visual features and language features with similar semantics close after projected to the common
subspace. To achieve the above goals, the objective function can be defined as follows:

L WxH

min J (P, ) = Z S WODll6u() - 6;(2.)113 @

11]1

where N is the number of pairs of k nearest neighbors, i.e. the number of element Wﬁj ) equals
1 in correspondence matrix W,,;. If ¢;(X,) is one of the k nearest neighbors of ¢;(X;) in original
space, the distance between ¢;(Z;) and ¢;(Z,,) will be penalized in projected space.

In the common subspace unrolled by the manifolds, the nearest neighbor relationships of each mani-
fold are expected to be protected, i.e. the local geometry should not be destroyed. In many manifold
learning algorithms (Wang & Mahadevan, 2009a; Cui et al., 2014), the local geometry is charac-
terized by computing the local adjacency weight matrix, i.e. the similarity between instances in
the manifold. According to the previous work (Anisimov et al., 2011; Shechtman & Irani, 2007),
the image and sentence structure are encoded by the similarities of the visual features with dif-
ferent locations and language features with different words. In our work, for preserving the local
geometry, the orthogonal constraints are added on the projection matrix P, and Py, i.e. PIPU =1
and PlTPl = I. Under the constraint of projection matrix orthogonality, the local geometry can be
preserved and the proof is as follows:

d(9iy (Z0), 6i(Z0)) = [P diy (Xu) = Py ¢, (Xo) I3 =Py Py||6, (X0) — ¢4, (X)) [[3
= (164, (Xo) — 63 (X0)|13

The same proof exists for the projection matrix P; and the original structure of visual features and
language will be preserved with the orthogonal constraint in the projected common subspace.

3)

For matching the semantically similar features among manifolds and protecting the local geometry
of each manifold, we can combine the objective function Equation 2 with the orthogonal constraint.
Firstly, we convert the Equation 2 to the following form:

min J(Py, Py) = tr(P]X,D, X Py + P/ XiDiX Py — 2P X, Uy X, Py) )
vyl

where Uy, = W, /N, D, € RWXH)x(WxH) g 5 diagonal matrix with the element D, (i,7) =
Zle U,(i, 7). The similar with D; € RE*% is a diagonal matrix with the element D;(j,7) =
SV U, (i, §) and tr(-) is the trace.

However, considering the orthogonal constraint of projection matrices, the first and second terms
are irrelevant to P, and P;. The final manifold alignment problem can be transformed into solving
the following optimization problem with constraints:

min J(P,,P) = —tr(2P/ X, U, X'P)) st. PP, =1 PP, =1. (5)

vy l

Solving the above optimal solution is difficult directly since the orthogonal constraints can lead to
many local optimal solutions. Therefore, we solve the optimization problem based on the Cayley
transform and optimize the projection matrices on the Stiefel manifold in our work. In the Stiefel
manifold, the feasible set P = {P € RE*C : PTP = I} and projection matrices P, and P; are
updated by a curvilinear search (Wen & Yin, 2013) in the feasible set through the Cayley transform:

PUTD = (14 2A) T (1= DAPY P = (1 BA)T (- DAY )
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where ¢ is the present step, ¢ + 1 is the next step, A = G(P)) —P® G is a skew-symmetric matrix
obtained by Cayley transform, G is the gradient of the objective function and 7 is the learning rate.
We can derive the closed-form solution for the gradient of the objective function as follows:

G, = -2X,U,X/P, G, =-2X,U/X/P, (7

The stochastic gradient of a mini-batch is calculated to replace G in each step and momentum is
applied to accelerate and stabilize the stochastic gradient. Through manifold alignment, we can
obtain two projection matrices to project vision and language features with similar semantics onto
the aligned manifold closely.

3.2 MA-PROTOPNET FRAMEWORK

In this section, we will introduce the framework of manifold alignment based prototypical part net-
work (MA-ProtoPNet) and clarify how to learn semantics concepts from cross-modal features. As
shown in Figure 2, our proposed MA-ProtoPNet consists of three main parts: feature encoders in-
cluding vision encoder and language encoder, a manifold alignment layer, and a prototype layer
where encoders and the manifold alignment layer are introduced in the previous section. The input
image 7, and the corresponding text description Z; can be transformed into Z, and Z; through
encoders and the manifold alignment layer. Therefore the semantically similar representations
between visual and language features can be fused as a joint representation Z,; calculated by
Z, = aPI X, + (1 - a)PlTXlelT in the aligned manifold, where « is the coefficient to bal-
ance the two streams and the shape of joint representation is Z,; € RE*(WxH),

In the prototype layer, we adopt the standard prototypical part network (Chen et al., 2019a) to learn
m basis concepts B = {b, };”:1 with b; € R¢ based on the joint representation Z,; and every basis
concept can be pre-assigned to a category, i.e. class-specific concept. Each basis concept unit Sbj
first computes the squared Lo distance ||¢(Z,;) — b, ||3 between the basis concept b; and the all 1 x 1
patches of Z,,; and then convert to similarity by the function log((||¢(Z1) — b;]13 + 1)/ (||¢(Zwi) —
bi||3 + €)). If the patch ¢(Z,;) is closer to the basis concept b;, the function will produce a higher
similarity score. Given an input image, the similarity map with shape W x H of the j-basis concept
can be upsampled to the input image to illustrate how strongly the basis concept b; is activated
in the image and the similarity score of the basis concept can be obtained by performing a global
max pooling on the similarity map. Finally, the output logits can be produced by multiplying the
similarity score by the weight of the fully connected layer & and a softmax function is applied to
calculate the probability that the current image belongs to all categories.

We would like to learn a feature space that the patches of joint representation are clustered on at
least one semantically similar basis concept of the ground truth category and separated from basis
concepts of the other category. Therefore, the cluster and separation losses introduced in (Chen
et al., 2019a) are formalized as:

N N

1 2
Leost = — min min Zol — bj 2 Lsep = —— min min Zol — b ®)

‘ N ;j:bjel;(yi) 21 €EP(Zoyy) H JHZ P N ;j:bjeB('yi) 21 €EP(Zy1) || ]”2
where NN is the number of training set and y is the label of instance i. The final optimization
problem combined with the cross-entropy loss (CrsEnt) to penalize the misclassification can be

formed as follows:

‘Ctotal = ECrsEm + M Lest + >\2£sep 9

where A\; and \g is the hyper-parameter. A semantically meaningful concept space will be con-
structed under the constraints of these terms.

3.3 IMPLEMENTATION

Two optimization problems have been introduced in the above two sections. The first optimization
problem is to learn the projection matrices P, and P; to align cross-modal manifold and the second
optimization problem is the main objective to learn semantic basis concepts from the joint repre-
sentation in the aligned manifold. We optimize the framework by alternating optimization that two

objectives are optimized in turns. Algorithm 1 Frovidges details of alternating optimization.
In’the algorithm, w; denotes the parameters of the vision encoder and language encoder. wyq de-

notes the parameters of the additional convolutional layers for the vision stream and the additional
fully connected layer for the language stream. The training dataset contains the images, correspond-
ing text descriptions, and labels D = {Z,Z},y"}. Nepocr, denotes the number of training epochs;
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Algorithm 1: Alternating Optimization Algorithm

Input: the dataset D = {Z}, T}, y' } 7,
Optimization Variables: wy, waad, wn, Py, Pi, B
Parameters: (3, n
for nepoch = 1 t0 Nepocn do
fort =1to T do
Sample a mini-batch {Z?, Z}, y*}, from D
Wadd 4— Wadd — Nadd Vegg Lrotal (Lo, L1, Y*)
B+ B- 'f']BvB[«toml(Iz:Illv yl)
if nepoch > 5 then
wy = wf =NV, Low (Lo, L7, y")
Calculate the gradients of G by Eq. 7
Accumulate the gradients by exponential moving average G’ <+ 8G’ + (1 — 8)G
if ¢t mod 50 = 0 then
Calculate learning rates 7,,, 7; by curvilinear search refering to (Wen & Yin, 2013)
Update P,,, P; by Eq. 6

7f, Tadd> B denotes the learning rate. For a fair comparison, after alternating optimization, we
perform the same strategies named projection of prototypes and optimization of the last layer as
introduced in (Chen et al., 2019a).

4 EXPERIMENTS

In the experiments, two case studies are conducted to evaluate our modal with other interpretable
models in terms of accuracy and interpretability. The first case study is the bird species identification
with 200 bird species on the CUB-200-2011 datasets (Wah et al., 2011), which is popular on the
prototype-based concept learning (Chen et al., 2019a; Wang et al., 2021; Nauta et al., 2021b). The
second case study is the flower species identification with 102 flower species on the Oxford Flowers
datasets (Nilsback & Zisserman, 2008). Reed. et al. (Reed et al., 2016) collected the fine-grained
visual description of the two datasets, and each image in CUB and Flowers have ten corresponding
single-sentence visual descriptions. Some representative samples of these two datasets are shown in
appendix and the visual description can accurately describe the details in the image. In addition, we
adopt different CNN architectures as encoders of the vision stream and verify the generality of our
model for different visual encoders.

Evaluation Metric: We evaluate our model in terms of accuracy and interpretability for fine-grained
image recognition. For accuracy, we compare the predicted label with the ground truth category to
calculate the top-1 accuracy as considered in the previous interpretable image recognition tasks.
However, interpretability has not been quantified in the previous ProtoNet and the extension meth-
ods. Inspired by the previous part discovery for fine-grained recognition (Huang & Li, 2020), we
designed different quantitative metrics of interpretability schemes for datasets with different anno-
tations. In the CUB-200-2011 dataset, there are 15 part landmarks for each image and we measure
the object part localization error by comparing the response region of the learned semantic concept
with the annotated part landmarks. The part localization error has been adopted by (Hung et al.,
2019; Huang & Li, 2020). For the datasets without part annotations such as Flower-102, we adopt
the protocol of Pointing Game (Zhang et al., 2018a), which is a popular method to quantify inter-
pretability in visualization methods (Selvaraju et al., 2017; Zhang et al., 2018a), and calculate the
object localization error using the annotated segmentation. The detailed metrics are described in the
supplement.

Baseline: One of the baselines named baseline-CNN is the original black-box model that learns
only from images. To compare the effectiveness of manifold algorithms, we design another baseline
model denoted ProtoPNet-VL to learn semantic concepts directly from visual features and language
features in the original space without manifold alignment. The specific description of ProtoPNet-VL
such as the objective function is introduced in the supplement.

4.1 CASE STUDY1: BIRD SPECIES IDENTIFICATION

Dataset. Caltech-UCSD Birds-200-2011 (Wah et al., 2011) (CUB-200-2011) is a dataset of 200
bird species for bird species recognition and contains 5,994/5,794 images for training/testing from
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Figure 3: Interpretable Reasoning Process for Bird and Flower Species Identification.

200 different bird species. Each image contains a species label, 15 bird landmarks, and the bounding
box of the bird.

Table 1: Top: Results of accuracy comparison on cropped bird images of CUB-200-2011 with
different vision encoders; Bottom: Results of landmark localization on cropped bird images of
CUB-200-2011. Normalized L2 distance (%) is reported.

Method VGG16 | VGG19 | ResNet34 | ResNetl52 | Densel21 | Densel61
Baseline-CNN | 73.3% 74.6% 81.2% 80.8% 81.8% 82.1%
ProtoPNet 77.2% 77.6% 78.6% 79.2% 79.0% 80.8%
ProtoPNet-VL | 74.3% 75.1% 77.8% 78.1% 76.0% 77.2%
Ours 78.2% 79.2% 81.6% 81.7% 82.0% 83.1%
Method VGG16 | VGG19 | ResNet34 | ResNetl52 | Densel2l | Densel61
ProtoPNet 21.2 21.0 21.2 21.3 20.9 20.7
ProtoPNet-VL 21.8 21.7 21.9 22.2 21.9 21.9
Ours 18.8 18.7 18.6 18.8 18.6 18.5

Recognition Results (Accuracy). We present our results of recognition accuracy with different
CNN vision encoders on cropped bird images and compare them with two baselines and ProtoPNet
at the top of Table 1. We also compared with other ProtoPNet-based models providing the same
levels of interpretability in Table 2, where (f) means the models were trained and tested on full
images and (b) means on images cropped using bounding boxes. As shown in Table 1, our model
achieve higher accuracy in comparison to the ProtoPNet and ProtoPNet-VL. Learning concepts
directly from raw features (ProtoPNet-VL) reduces model accuracy because of the gap between
vision and natural language. Guided by natural language, the accuracy can be improved by up to
3% with the help of manifold alignment. Since each ProtPNet-based model can be understood as a
“scoring sheet” as shown in Fig. 3(a), we can improve the accuracy of the model by summing the
final logits values to ensemble the model, which is same with (Chen et al., 2019a). The ensemble
results under the same model combination are reported and our model can improve the accuracy by
2.3% on the full images.

Localization Results (Interpretability). The part localization error is evaluated on various CNN
vision encoders and we compare the results to ProtoPNet and ProtoPNet-VL at the bottom of Table 1.
ProtoPNet-VL increases localization error and our model greatly reduces the localization error of
ProtoPNet (2.4% on average). The results provide quantifiable evidence of the interpretability of
our model.

Reasoning Process. Figure 3(a) shows the reasoning process of our model. Through concept visu-
alization, we can find our model has learned the representative blue head, green wings, and black
throat of Green Jay by training with only label supervision. Given a test image, the activation maps
by calculating the distances between the patches of the image and the prototypes, and the similar-
ity score is the maximum value on each prototype activation map. Finally, this similarity score is
weighted by the fully connected weight and generates the final contribution to the category. The
reasoning process makes model decisions interpretable.

Ablation Study. An ablation study is conducted on CUB to evaluate components of the manifold
layer. We design a comparison model based on VGG-19 as a vision encoder that only uses the
correspondence matrix W,,; for feature fusion without updating the projection matrices. The model
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Table 2: Comparison of our model with other ProtoPNet-based models in terms of accuracy on the
CUB-200-2011 dataset.

Level Method Backbone Acc.
ProtoShare 74.77(b)
ProtoPNet 1 x ResNet34 78.6(b)
Ours 81.6(b)
Part-level ™ ProioShare 74.7(b)
attention ProtoPNet 1 x Densel21 [ 79.0(b)
learned Ours 82.0(b)
concepts ProtoPNet VGG19+Res34 84.8(b)
Ours + Densel21 85.8(b)
ProtoPNet VGG19+ Dense 80.8(f)
Ours 121 + Densel61 83.1(H)

Table 3: Top: Results of accuracy comparison on flower images of the Oxford Flowers-102 with dif-
ferent vision encoders; Bottom: Results of Pointing Game on flower images of the Oxford Flowers-
102. Hit rate (%) is reported.

Method VGG16 | VGG19 | ResNet34 | ResNetl52 | Densel2l | Densel61
Baseline-CNN | 89.3% 89.7 % 93.6% 94.3% 94.9% 95.1%
ProtoPNet 83.3% 85.4% 89.6% 89.9% 87.0% 90.4%
ProtoPNet-VL 82.0% 83.3% 88.5% 89.9% 90.1% 90.2%
Ours 83.7% 85.7% 90.3% 90.3% 90.4% 91.2%
Method VGG16 | VGGI9 | ResNet34 | ResNetl52 | Densel21 | Densel6l
ProtoPNet 78.4 78.8 85.8 84.4 78.3 78.4
ProtoPNet-VL 77.4 78.2 85.5 85.6 79.9 79.5
Ours 79.6 79.7 86.6 87.1 80.3 80.8

without the updated manifold gets a higher accuracy of 79.7 % compared to the model with the
updated manifold of 79.2%, but the part localization error increases to 20.2 compared to the original
model’s localization error of 18.7. Projection matrix update in the manifold layer slightly reduces
accuracy but improves interpretability.

4.2 CASE STUDY2: FLOWER SPECIES IDENTIF ICATION

Dataset. The Oxford Flowers-102 (Nilsback & Zisserman, 2008) is a dataset of 102 different cate-
gories for flower species identification. There are 10 images per class in the training and validation
set (totaling 1020 images each), and the remaining 6149 images (minimum 20 per class) in the test
set. Each image contains a species label and a segmentation of the flower.

Recognition Results (Accuracy). Our results on recognition are summarized at the top of Table 3.
Since flowers do not have obvious object parts, they are more judged based on shapes and colors,
thus, the ProtoPNet-based method, which is good at learning object parts, is not as good as the
baseline model. Our model can improve accuracy by 0.4%-3.4% for ProtoPNet and 0.3%-2.4% for
ProtoPNet-VL.

Localization Results (Interpretability). Further, the Pointing game results are reported at the
bottom of Table 3. Our model achieves a lower localization error compared to ProtoPNet and
ProtoPNet-VL. To a certain extent, our models can capture more foreground concepts.

Reasoning Process. Figure 3(b) shows the reasoning process to identify a flower. The model can
accurately learn bright purple petals and white pistil in the center. Since flowers lack sufficient object
parts and there are few images in the training set, there is some redundancy in concepts.

5 CONCLUSION

We introduce a novel interpretable image recognition framework that leverages natural language to
learn semantic concepts. To align visual and language features that are semantically relevant but ex-
ist in different manifold distributions, we propose a manifold alignment method that optimizes the
projection matrices using Cayley transform on the Stiefel manifold. We have designed an alternat-
ing optimization algorithm that addresses both concept learning and manifold alignment. Through
experiments, we demonstrate that language-guided interpretable image recognition models provide
better accuracy and interpretability. This is the first effort to use prototypical part networks to learn
semantics from multi-modal information, and we hope that our work will inspire new approaches to
semantic concept learning.
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A APPENDIX

A.1 THE BASELINE METHOD

To compare the effectiveness of manifold algorithms, we design a baseline model denoted
ProtoPNet-VL to learn semantic concepts directly from visual features and language features in
the original space without manifold alignment. In the supplementary, we will describe the frame-
work of ProtoPNet-VL and clarify how to learn semantics concepts from cross-modal features. The
overall architecture is shown in Figure 4. ProtoPNet-VL consists of Vision stream and Language
stream and each stream can provide a decision for the classification. The prototypes is shared by the
two stream and learned by the visual features and language features.

The same with MA-ProtoPNet, we denote the input image and its corresponding text description as
T, and 7, and their features extracted by the vision encoder f,(-) and the language encoder f;(-)
as Z, € REWxH and 7, € RE*E, where C is the number of channels of the feature maps and
word embeddings, H and W are the heights and widths of the feature maps, and L is the length
of the description. The vision encoder f,(-) consists of a backbone of the convolutional network
(e.g. VGG, ResNet and DenseNet) and extra 1 x 1 convolutional layers. Similarly the language
encoder f;(-) is based on Bert Devlin et al. (2018) with a fully connected layer. Using extra 1 x 1
convolutional layers and a linear transformation, the output of vision and language encoder can be
projected to the same dimensional representational space.

Take visual stream as an example. In the prototype layer, we adopt the standard prototypical part
network Chen et al. (2019a) to learn m basis concepts B = {b;}7", with b; € R based on the
visual representation Z, and every basis concept can be pre-assigned to a category, class-specific
concept. Each basis concept unit S, first computes the squared Ly distance ||¢(Z,,) — b;||3 between
the basis concept b; and the all 1 x 1 patches of Z, and then convert to similarity by the function
log((||¢(Zy) — bj||3 + 1)/(||¢(Zy) — bj||3 + €)). If the patch ¢(Z,) is closer to the basis concept
b;, the function will produce a higher similarity score. Given an input image, the similarity map
with shape W x H of the j-basis concept can be upsampled to the input image to illustrate how
strongly the basis concept b; is activated in the image and the similarity score of the basis concept
can be obtained by performing a global max pooling on the similarity map. Finally, the output logits
can be produced by multiplying the similarity score by the weight of the fully connected layer h
and a softmax function is applied to calculate the probability that the current image belongs to all
categories. There is a similar process in the language stream.

In the ProtoPNet-VL, we would like to learn a feature space that the patches of visual and lan-
guage representations are clustered on at least one semantically similar basis concept of the ground
truth category and separated from basis concepts of the other category. Therefore, the cluster and
separation losses introduced in Chen et al. (2019a) are formalized as:

N
1
L = — min min ||z, — b:]|2 + min ||z — b:||?
clst N;j;bjeg(yi>(zu€¢(lv)|| v ]H2 72l€¢(zl)|| 1 J||2))
N (10)
1 o 2 2
Loep = —— min min ||z, — b;l|5 + min ||z — b;
p = D i iyl = b8+ il = 1)

where N is the number of training set, 7 is a coefficient to balance the two stream, and 3 is the
label of instance . The final optimization problem combined with the cross-entropy loss (CrsEnt)
to penalize the misclassification can be formed as follows:

E[otal = ﬁCrsEm + /\1£clst + /\2£sep (1 1)

The above loss function (11) is designed to train a feature space that optimizes only the parameters
of the backbone and prototype layers. For a fair comparison, we perform the same strategies named
projection of prototypes and optimization of the last layer as introduced in Chen et al. (2019a).

A.2 EVALUATION METRIC OF INTERPRETABILITY
We evaluate our model by interpretability for fine-grained image recognition. It is worth mentioning

that interpretability has not been quantified in the previous ProtoNet and the extension methods. In-
spired by the previous part discovery for fine-grained recognition Huang & Li (2020), we designed
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Figure 4: The overall architecture of our proposed baseline model (ProtoPNet-VL). ProtoPNet-VL
consists of Vision stream and Language stream and each stream can provide a decision for the
classification. An input image and the corresponding text descriptions are extracted by the vision
encoder and the language encoder respectively. The vision and language features are fed into the
prototype layer to learn the semantic concepts and each basis concept can generate heat maps for the
inout image and text description. The similarity score for each concept is obtained by a maximum
pooling operation and fed through a weighting of the fully connected layers to obtain the final
classification logtis.

different quantitative metrics of interpretability schemes for datasets with different annotations. In
the CUB-200-2011 dataset, there are 15 part landmarks for each image and we measure the object
part localization error by comparing the response region of the learned semantic concept with the an-
notated part landmarks. The part localization error has been adopted by Hung et al. (2019); Huang
& Li (2020). For the datasets without part annotations such as Flower-102, we adopt the protocol of
Pointing Game Zhang et al. (2018a), which is a popular method to quantify interpretability in visu-
alization methods Selvaraju et al. (2017); Zhang et al. (2018a), and calculate the object localization
error using the annotated segmentation. The detailed metrics are described in the supplement.

Specifically for part localization error in the ProtoPNet-based model, we first convert the heatmap
of the semantic concepts of the ground-truth class to a set of landmark locations by learning a linear
regression model from training set, which is similar strategy in Hung et al. (2019); Huang & Li
(2020). This linear regression model can establish the mapping from the 2D geometric centers of
the concepts’ heatmaps to the 2D object part landmarks in the image. The part localization errors
are calculated by comparing the L2 distances between the predicted landmarks and the ground-truth
part landmarks in the testing sets. The smaller the part localization errors, the more accurate the
model discovers the part-level concepts. As for the pointing game in the Flower-102 dataset, we
calculate the hit rate by counting the peak region of the concept’s heatmaps inside the annotation
segmentation. Since the semantic concepts in the ProtoPNet-based model are learned from both the
foreground and background, the higher hit rate can only indicate that the model has learned less
background concepts.

A.3 ADDITIONAL EXPERIMENTS

Implementation details of MA-ProtoPNet. First, we resize input images into 224 x 224 and adopt
the offline data augmentation using random rotation, skew, shear, distortion, and left-right flip to
enlarge the tranining set. We adopt the Adam optimizer with learning rate 3e — 3 for add on layers
and basis concepts, and le — 4 for the vision and language encoder. The weight decay is le — 3.
The coefficients of A\q, A5 are set to 0.8 and -0.08 respectively.

For the hyper-parameter of manifold alignment, we set the nearest neighbors & as 5, and fusion ratio
« of visual features and language features is 0.5. In the alternating optimization algorithm, the scale
of exponential moving average is 0.9.
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Implementation details of ProtoPNet-VL. The data set and optimizer settings are the same as the
above method. We set the coefficient as 0.5 and A1, A2 as 0.8 and -0.08 respectively.

Training software and platform. We implemented our model using Pytorch and all experiments
were run on 8 NVIDIA Tesla V100 GPUs.

Our code is available in the supplementary.
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