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ABSTRACT

The goal of automated feature generation is to liberate machine learning experts
from the laborious task of manual feature generation, which is crucial for improv-
ing the learning performance of tabular data. The major challenge in automated
feature generation is to efficiently and accurately identify useful features from a
vast pool of candidate features. In this paper, we present OpenFE, an automated
feature generation tool that provides competitive results against machine learn-
ing experts. OpenFE achieves efficiency and accuracy with two components: 1)
a novel feature boosting method for accurately estimating the incremental per-
formance of candidate features. 2) a feature-scoring framework for retrieving
effective features from a large number of candidates through successive feature-
wise halving and feature importance attribution. Extensive experiments on seven
benchmark datasets show that OpenFE outperforms existing baseline methods.
We further evaluate OpenFE in two famous Kaggle competitions with thousands
of data science teams participating. In one of the competitions, features generated
by OpenFE with a simple baseline model can beat 99.3% data science teams. In
addition to the empirical results, we provide a theoretical perspective to show that
feature generation is beneficial in a simple yet representative setting. Codes and
datasets are in the supplementary materials.

1 INTRODUCTION

Feature generation is an important yet challenging task when applying machine learning methods
to tabular data. Tabular data, where each row represents an instance and each column corresponds
to a distinct feature, is ubiquitous in industrial applications and machine learning competitions. It
has been well recognized that the quality of features has a significant impact on the learning per-
formance of tabular data (Domingos, 2012). The goal of feature generation is to transform the base
features into more informative ones to better describe the data and enhance the learning performance.
For example, Price-to-Earnings ratio (P/E ratio), calculated as (share price)/(earnings per share), is
derived from the base features “share price” and “earnings per share” in financial statements and
informs investors about the value of a company. In practice, data scientists typically use their do-
main knowledge to find useful feature transformations in a trial-and-error manner, which requires
tremendous human labor and expertise.

Since manual feature generation is time-consuming and requires case-by-case domain knowledge,
automated feature generation emerges as an important topic in automated machine learning (Er-
ickson et al., 2020; Lu, 2019). Expand-and-reduce is arguably the most prevalent framework in
automated feature generation, in which we first expand the candidate features and then eliminate re-
dundant ones (Kanter & Veeramachaneni, 2015; Lam et al., 2021; Kaul et al., 2017; Shi et al., 2020;
Katz et al., 2016). There are two challenges in a typical expand-and-reduce practice. First, the num-
ber of candidate features is usually huge in many industrial applications. Calculating all candidate
features is not only computationally expensive but also infeasible due to the enormous amount of
memory required. The second challenge is how to efficiently and accurately estimate the incremen-
tal performance of a new feature, i.e., how much performance improvement a new candidate feature
can offer when added to the base feature set. The majority of existing methods rely on statistical
tests to determine if a new feature should be included (Kanter & Veeramachaneni, 2015; Lam et al.,
2021; Shi et al., 2020). However, statistically significant features do not always translate into good
predictors (Lo et al., 2015). Features may be significantly correlated with the target simply for a
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small group of instances in the population, thereby leading to poor prediction in the population (Lo
et al., 2015; Ward et al., 2010; Welch & Goyal, 2008). Besides, the effectiveness of a new feature
may be encompassed by the base feature set, even if the new feature is significantly correlated with
the target.

In this paper, we propose OpenFE, a powerful automated feature generation algorithm that can ef-
fectively generate useful features to enhance learning performance. First, motivated by the gap
between significant features and good predictors, we propose a feature boosting method that di-
rectly estimates the predictive power of new features in addition to the base feature set. Second,
inspired by the crucial fact that effective features are usually sparse in the huge number of candidate
features, we propose a two-stage evaluation framework. In the first stage, we propose a successive
featurewise pruning algorithm to quickly eliminate redundant candidate features by dynamically
allocating computing resources to promising ones. In the second stage, we propose a feature impor-
tance attribution method to rank the remaining candidate features based on their contributions to the
improvement in the learning performance and further eliminate redundant candidate features. We
validate OpenFE on various datasets and Kaggle competitions, where OpenFE outperforms existing
baseline methods. In a famous Kaggle competition with thousands of data science teams partici-
pating1, the baseline model with features generated by OpenFE beats 99.3% of 6351 data science
teams. More importantly, the features generated by OpenFE result in comparable or even larger
performance improvement than those provided by the competition’s top winners, demonstrating for
the first time that automated feature generation is competitive against machine learning experts.

In addition to proposing a novel method, this paper intends to address two important problems that
hinder the research process of automated feature generation. The first problem is that the majority of
existing methods are evaluated on different datasets, and these studies do not open-source their codes
and datasets, hindering new research from conducting fair comparisons. In order to facilitate fair
comparisons in future research, we reproduce the main methods for automated feature generation
and validate our reproduction by comparing the reproduced results with those in the corresponding
papers. We will open-source the codes and datasets (see supplementary materials).

The second problem is the lack of evidence regarding the necessity of feature generation in the era of
deep learning. Deep neural networks (DNNs) are widely recognized for their ability to extract fea-
ture representations. In recent years, a variety of DNNs have been carefully developed for modeling
tabular data (Arık & Pfister, 2021; Gorishniy et al., 2021), and several of them have demonstrated
their efficiency in feature interaction learning (Song et al., 2019; Wang et al., 2021). We exten-
sively evaluate the effect of OpenFE on a variety of DNNs. We demonstrate that generating new
transformed features with OpenFE can further enhance the learning performance of existing DNN
architectures. In addition to the empirical results, we provide a theoretical justification of our fea-
ture generation procedure by presenting a simple yet representative transductive learning setting in
which feature generation has provable benefits.

We summarize the contributions of our paper as follows:

• We propose a novel automated feature generation method that can effectively identify useful
new features to enhance learning performance. Extensive experiments show that OpenFE
achieves state-of-the-art on seven benchmark datasets. More importantly, we demonstrate
for the first time that OpenFE is competitive against human experts in feature generation.

• We facilitate future research in feature generation by: 1) reproducing main methods for au-
tomated feature generation and releasing the codes and datasets, 2) providing empirical and
theoretical evidence that feature generation is a crucial component in modeling tabular data,
even in the era of deep learning.

2 PROBLEM DEFINITION

For a given training dataset D, we split it into a sub-training set Dtr and a validation set Dvld.
Assume D consists of a feature set T + S, where T is the base feature set and S is the generated
feature set. We use a learning algorithm L to learn a model L(Dtr, T + S), and compute the
evaluation metric E(L(Dtr, T + S),Dvld, T + S) to measure the model performance, with a larger

1https://www.kaggle.com/competitions/ieee-fraud-detection/overview
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value indicating better performance. Now, we formally define the feature generation problem as:

max
S⊆A(T )

E(L(Dtr, T + S),Dvld, T + S) (1)

where A(T ) is the set of all possible candidate features generated from the base feature set. The
goal of feature generation is to find a feature set S from A(T ) that maximizes the evaluation metric.
We determine A(T ) by the set O of operators we use to transform the base features. The operators
O include unary operators, such as log, sigmoid, square, and binary operators, such as ×, ÷,
min, max, GroupByThenMean. Appendix D.2 contains the list of operators and how we use
them to transform numerical and categorical features. Our method can be extended to include other
operators, and users can also define their own operators.

3 OPENFE

3.1 OVERVIEW
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Figure 1: The overview of OpenFE.

We present an overview of OpenFE in
Figure 1. OpenFE follows the expand-
and-reduce framework for automated
feature generation. For expansion, first,
we classify all base features into numer-
ical features and categorical features.
Then we create a pool of candidate fea-
tures by using operators to enumerate
all the first-order transformations of base
features, where each transformation uses
one operator. The challenge of auto-
mated feature generation often lies in re-
duction after expansion, i.e., how to achieve both efficiency and effectiveness in eliminating redun-
dant candidate features, especially when the number of candidate features is huge. For reduction,
we propose a two-stage evaluation framework to quickly reduce the number of candidate features.
Finally, we include top-ranked candidate features in the base feature set. We employ a greedy ap-
proach and repeat the above procedure for high-order feature generation.

3.2 FEATURE BOOSTING

One of the key challenges in automated feature generation is to accurately estimate the incremental
performance of a new feature, i.e., how much performance improvement the new feature can offer
when added to the base feature set. A standard evaluation procedure involves including the new
feature in the base feature set, retraining the machine learning model, and observing the change
in validation loss (Katz et al., 2016). However, the standard evaluation procedure is prohibitively
expensive due to the substantial computing resources required for training a model from scratch
to convergence on the whole dataset. Therefore, many existing methods rely on statistical tests to
determine if a new feature is effective (Christ et al., 2018; Kanter & Veeramachaneni, 2015; Shi
et al., 2020). However, significant features do not always translate into good predictors (Lo et al.,
2015). The effectiveness of a new feature may be encompassed by the base feature set. Motivated
by this, we propose a feature boosting method to estimate the predictive power of new features in
addition to the base feature set.

The inputs of feature boosting are a dataset D, new features T ′, and base predictions ŷ (see the def-
initions below). Feature boosting outputs the reduction in loss ∆ as an estimate of the incremental
performance of new features. Feature boosting is motivated by gradient boosting algorithms (Fried-
man et al., 2000). Assume we have a dataset of n samples D = {(xi, yi), i = 1, 2, ..., n}. Let
F denote a set of models defined over the base features T . Assume we have a model f ∈ F that
has been trained to convergence on D. We call the predictions ŷi = f(xi) the base predictions,
and define the loss L(f) =

∑n
i=1 l(yi, f(xi)). Let F ′ denote a set of models defined over new

features T ′. We want to find a new model f ′ ∈ F ′ to boost the performance of f and minimize
L(f + f ′) =

∑n
i=1 l(yi, f(xi) + f ′(xi)). We can fix f and optimize f ′ by gradient descent (see

more details in Appendix D.3). The reduction in loss ∆ = L(f) − L(f + f ′) is an estimate of the
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incremental performance of new features. We call this method “feature boosting,” which uses new
features to boost the performance of base features. Initialized by base predictions, feature boosting
can estimate incremental performance by training on new features as opposed to the full feature set,
resulting in faster convergence for efficiency. We provide a case study in Appendix C.6 to illustrate
that feature boosting can efficiently estimate the incremental performance of new features.

Algorithm 1: OpenFE
input : D: dataset
input : T : base features, O: operators
output: New feature set.

Initialize order← 1;
while order < predefined max order do

Generate base predictions ŷ by T and D
using cross-validation;

Enumerate candidate features A(T ) by O
and T ;

# two-stage evaluation
A′(T ) = SuccessivePruning(A(T ),D, ŷ);
A

′′
(T ) = FeatureAttribution(A′(T ),D, ŷ);

T = T + top k(A
′′
(T ));

order = order + 1;
return T

Algorithm 2: Successive Pruning
input : D: dataset, ŷ: base predictions,

A(T ): candidate feature set,
2q: #data blocks

output: Pruned new feature set.

Divide D equally into 2q data blocks;
Initialize A0(T ) = A(T );
for i← 0 to q do

for new feature τ ∈ T do
Use a subsetDi with 2i data blocks

to calculate the values of τ ;
Calculate the score of τ as
∆ = FeatureBoosting(Di, τ, ŷ);

Ai(T ) = delete same(Ai(T ));
Ai+1(T ) = top half(Ai(T ));

return Aq+1(T )

3.3 A TWO-STAGE EVALUATION FRAMEWORK

Although feature boosting provides an efficient way to estimate the incremental performance of
candidate features (defined in Section 3.1), it is still computationally infeasible to calculate and
evaluate the huge number of candidate features. Inspired by a crucial fact that effective features are
usually sparse in the vast pool of candidate features, we propose a two-stage evaluation framework
based on feature boosting to efficiently eliminate redundant features and retrieve useful ones.

Before introducing the two-stage evaluation framework, we present the overall framework of
OpenFE in Algorithm 1. OpenFE starts with generating the base predictions by training a model
on the base features T for feature boosting. Then we create a pool of candidate features by applying
operators on the base features. Next, we propose a two-stage evaluation framework to deal with the
large number of candidate features. The first stage employs a successive featurewise pruning algo-
rithm. By using a bandit-based algorithm (Jamieson & Talwalkar, 2016) to dynamically allocate
computing resources to promising features, we quickly eliminate redundant features by examining
the effectiveness of each feature alone using feature boosting. In the second stage, we further take
interaction effects into account and propose a feature importance attribution algorithm to accredit
the remaining features in reducing the loss function.

3.3.1 STAGE I: SUCCESSIVE FEATUREWISE PRUNING

In OpenFE, first we use a successive featurewise pruning method to quickly reduce the number of
candidate features (see Algorithm 2). The method is motivated by the successive halving algorithm
in multi-armed bandit problems (Even-Dar et al., 2006; Zhou et al., 2014). Successive halving
dynamically allocates computing resources to promising arms. In our settings, first we split the
dataset into 2q data blocks, where each data block has both a training set and a validation set, with a
total of ⌊ n

2q ⌋ samples. Then we consider each candidate feature as an arm, and a pull of the arm is to
use feature boosting to evaluate the effectiveness of the single feature on the data blocks. The reward
of pulling an arm is the reduction in loss in feature boosting, which is calculated on the validation
set. We allocate more data blocks (resources) to more promising candidate features. After successive
featurewise pruning, only candidate features with a positive reduction in loss ∆ are returned.

Besides successive halving, we use a simple trick in our algorithm to eliminate redundant candidate
features. It is common in the candidate feature set for two features to have exactly the same values.
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For example, max(τ1, τ2) and max(τ1, τ3) are exactly the same if the minimum value of feature τ1
is larger than the maximum value of τ2 and τ3. Features with the same values have the same score
(i.e., reduction in loss ∆). Therefore, the delete same algorithm first ranks all the new features by
their scores, and then compares the scores of adjacent features to remove redundant ones.

3.3.2 STAGE II: FEATURE IMPORTANCE ATTRIBUTION

Algorithm 3: Feature Attribution
input : D: dataset, ŷ: base predictions,

T : base features,
A′(T ): candidate feature set

output: Sorted A′(T ).
∆ = FeatureBoosting(D, T +A′(T ), ŷ);
Attribute the reduction in loss ∆ to each
feature in A′(T ) as their importance;

Sort A′(T ) according to importance;
return sorted A′(T )

There are two problems unaddressed in stage I:
1) There are still many redundant features in the
candidate feature set after pruning. 2) Stage I
only evaluates the effectiveness of each feature
alone. Therefore, in stage II, we further con-
sider the interaction effects to evaluate the ef-
fectiveness of the remaining candidate features.
We select the top-ranked candidate features and
remove redundant ones to improve generaliza-
tion performance. Assume the remaining can-
didate features after pruning is A′(T ). We use
candidate features A′(T ) and base features T
together as the inputs to feature boosting. The
reduction in loss ∆ is an estimate of the incremental performance of the remaining candidate features
A′(T ), which considers the interaction effects between T and A′(T ). We attribute the reduction in
loss ∆ to each candidate feature as their importance. Popular methods for feature importance attri-
bution include mean decrease in impurity (MDI) (Breiman, 2001), permutation feature importance
(PFI) (Breiman, 2001), and SHAP (Lundberg et al., 2018). MDI is a popular method for feature
attribution in tree ensembles, which sums up the total reduction of loss in all splits for a given fea-
ture. PFI measures the increase in the loss function after we randomly permute the feature’s values.
SHAP is a game-theoretic method for feature attribution.

3.4 IMPLEMENTATION

In OpenFE, we use gradient boosting decision trees (GBDT) (Friedman, 2001) to model tabular data
for two reasons: 1) GBDT is usually the best performing model on tabular data where features are
individually meaningful (Gorishniy et al., 2021; Borisov et al., 2021). 2) GBDT can automatically
handle missing values and categorical features, which is convenient for automation (Ke et al., 2017).
We use the popular LightGBM implementation (Ke et al., 2017). We use MDI for feature impor-
tance attribution. We compare MDI, PFI, and SHAP in Appendix C.4. We show that MDI is fast to
compute and provides comparable performance to PFI and SHAP. Even though the feature genera-
tion method relies on GBDT, the generated features can also enhance the learning performance of a
variety of DNNs (see Section 5.4).

4 THEORETICAL ADVANTAGE OF FEATURE GENERATION

In this section, we study the advantage of feature generation from a theoretical perspective. We
present a simple yet representative setting in which the test loss of empirical risk minimization
augmented with feature generation converges to zero provably as the number of training samples
increases, while the test loss for any learning model without feature generation is at least a pos-
itive constant. In particular, we present a transductive learning setting, which captures important
characteristics of a class of datasets one may encounter frequently in data science applications, e.g.,
the IEEE-CIS Fraud Detection dataset (we also conduct experiments on this dataset in Section 5.5).
Due to space limit, a formal and detailed description of the model can be found in Appendix A. We
briefly introduce the high-level idea here.

Many tabular datasets contain both categorical and numerical attributes (i.e., features). A categorical
feature partitions the dataset into groups (each associated with a distinct category). For a data point
(X,Y ). the target Y is correlated with not only the feature X , but also certain statistics of the group
containing (X,Y ). Datasets with such characteristics are abundant in data science applications. As
a concrete example, one may think each training data as a transaction, and one categorical feature is
user id (each user may have many transactions in this table. These transactions form a group). The
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target Y we want to predict about the transaction (e.g., probability of fraudulence) may depend on
not only the features of this particular transaction, but also some statistics of this user (e.g., average
size of his/her transactions). Hence, one can see that operations such as GroupByThenMean (group
by the user id) can provide statistical information about the user by aggregating the information from
all data points associated to this user.

We present a theoretical data model, which is a two-phase data generation model, to capture
the above characteristics. Under fairly standard learning theoretic assumptions (i.e., bounded
Rademacher complexity), we prove that empirical risk minimization augmented with feature gen-
eration (such as the GroupByThenMean operation) can achieve vanishing test loss as the sample
size and group size increase.

Theorem 1. (informal) Assume the data set is generated according to the two-phase process de-
scribed in Appendix A. Denote the number of groups in the training set and test set by k1 and k2
respectively, and the number of data points in each group by h. There is a feature generation function
H , such that the test loss of the empirical risk minimizer f̂ can be bounded by

LDtest(H, f̂) ≤ O
(
Radk1

(F) +
√
ln(4δ−1)/k1 +

√
d ln(4d(k1 + k2)δ−1)/h

)
with probability at least 1− δ. In particular, assuming the Rademacher complexity Radk1

(F)→ 0
as k1 →∞, the test loss approaches to 0 when k1, h→∞.

On the other hand, if we do not use any feature generation, we prove that any predictor f ′ (no matter
how complicated f ′ is) incurs a non-vanishing constant test loss.

Theorem 2. (informal) In case that we do not use any feature generation, there exists a problem
instance such that, no matter how large k1, k2, and h are, for any predictor f ′ : X → Y , the test
loss LDtest(f

′) ≥ 3
64 .

5 EXPERIMENTS

5.1 DATASETS AND EVALUATION METRICS

Table 1: Properties of datasets used in our experiments. No-
tation: “RMSE” ∼ root-mean-square error, “AUC” ∼ area-
under-curve, “Acc.” ∼ accuracy.

CA MI DI NO VE JA CO

#objects 20640 1200192 101766 34465 98528 83733 581012
#num. features 7 111 3 34 100 54 9
#cat. features 0 0 34 29 0 0 0
#ord. features 1 25 10 55 0 0 45
metric RMSE RMSE. AUC AUC AUC Acc. Acc.
#classes – – 2 2 2 4 7

We use a diverse set of seven
public datasets with two regression
datasets, three binary classification
datasets, and two multi-class clas-
sification datasets. Each dataset
has exactly one train-validation-test
split, and all methods use the same
split. The datasets we collect in-
clude: California Housing (CA, real
estate data, (Pace & Barry, 1997)),
Microsoft (MI, search queries, (Qin & Liu, 2013)), Diabetes (DI, hospital records, (Strack et al.,
2014)), Nomao (NO, data deduplication, (Candillier & Lemaire, 2012)), Vehicle (VE, vehicle clas-
sification, (Siebert, 1987)), Jannis (JA, anonymized dataset, (Guyon et al., 2019)), Covertype (CO,
forest characteristics, (Blackard & Dean, 1999)). We summarize the dataset properties in Table
1. The features in each dataset are classified into numerical, categorical, and ordinal features. An
ordinal feature can be treated as both categorical or numerical when generating transformed features.

5.2 BASELINE METHODS FOR COMPARISONS

The baseline methods for comparisons include: Base (the base feature set without feature gen-
eration), FCTree (Fan et al., 2010), SAFE (Shi et al., 2020), AutoFeat (Horn et al., 2019), Au-
toCross (Luo et al., 2019). We provide another baseline that uses the last hidden layer of DCN-V2
as new features. DCV-V2 (Wang et al., 2021) is a DNN architecture developed for modeling tabular
data and claims to be able to capture feature interactions automatically. We denote this baseline
as NN. Most existing automated feature engineering methods do not open-source their codes. We
reproduce FCTree, SAFE, and AutoCross according to the descriptions in these paper. We vali-
date our reproduction by comparing the reproduced results with those in the corresponding papers
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(see Appendix C.2). Some other learning-based methods, such as LFE (Nargesian et al., 2017),
ExploreKit (Katz et al., 2016) (meta learning) and NFS (Chen et al., 2019), TransGraph (Khurana
et al., 2018) (reinforcement learning), lack critical details for reproduction. For example, the choice
of training datasets is crucial for generalization in learning-based methods, however previous re-
search did not describe which datasets were utilized for training (Nargesian et al., 2017; Khurana
et al., 2018). We run OpenFE on the test datasets they use and compare our results with the numbers
reported in their papers in Appendix C.1.

Table 2: Comparisons between OpenFE and baseline methods. We report the mean and standard
deviation of the evaluation metric on the test set over 10 random seeds. The top result for each
dataset is marked in bold. SAFE and AutoCross can only run on binary-classification datasets. See
Table 1 for the evaluation metric of different tasks.

Method CA ↓ MI ↓ DI ↑ NO ↑ VE ↑ JA ↑ CO ↑

LightGBM

Base 0.4323±3.7e-3 0.7439±3.0e-4 0.7313±1.2e-3 0.9958±2.0e-4 0.9250±3.0e-4 0.7212±1.9e-3 0.9685±1.1e-3

NN 0.4791±1.3e-3 0.7496±1.0e-4 0.7174±1.0e-3 0.9924±5.0e-4 0.9241±6.0e-4 0.7195±8.0e-4 0.9659±2.0e-4

FCTree 0.4324±2.7e-3 0.7440±1.0e-4 0.7313±1.0e-3 0.9956±2.0e-4 0.9255±2.0e-4 0.7190±1.3e-3 0.9710±7.0e-4

SAFE – – 0.7295±1.7e-3 0.9958±3.0e-4 0.9250±1.0e-3 – –
AutoFeat 0.4440±2.5e-3 0.7438±2.0e-4 0.7318±1.1e-3 0.9958±2.0e-4 0.9250±3.0e-4 0.7205±7.0e-4 0.9682±1.1e-3

AutoCross – – 0.7319±1.1e-3 0.9932±3.0e-4 0.9207±3.0e-4 – –

OpenFE 0.4206±1.6e-3 0.7382±3.0e-4 0.8878±2.5e-3 0.9967±2.0e-4 0.9281±4.0e-4 0.7286±1.4e-3 0.9737±5.0e-4

FT-Transformer

Base 0.4590±3.3e-3 0.7461±4.0e-4 0.7281±2.4e-3 0.9933±5.0e-4 0.9272±6.0e-4 0.7328±2.3e-3 0.9696±8.0e-4

NN 0.4797±9.0e-4 0.7503±2.0e-4 0.7112±4.0e-4 0.9921±4.0e-4 0.9246±2.0e-4 0.7165±1.5e-3 0.9663±9.0e-4

FCTree 0.4570±2.7e-3 0.7461±4.0e-4 0.7282±1.4e-3 0.9930±5.0e-4 0.9273±4.0e-4 0.7298±2.4e-3 0.9713±7.0e-4

SAFE – – 0.7281±1.1e-3 0.9933±4.0e-4 0.9276±3.0e-3 – –
AutoFeat 0.4574±3.0e-3 0.7463±3.0e-4 0.7281±2.6e-3 0.9931±4.0e-4 0.9271±5.0e-4 0.7337±1.2e-3 0.9704±7.0e-4

AutoCross – – 0.7292±9.0e-4 0.9905±3.0e-4 0.9205±3.0e-4 – –

OpenFE 0.4530±2.7e-3 0.7411±7.0e-4 0.8870±1.2e-3 0.9950±3.0e-4 0.9289±3.0e-4 0.7379±2.3e-3 0.9708±7.0e-4

5.3 COMPARISON RESULTS

In this section, we compare OpenFE with other baseline methods. We use two standard learning
algorithms to evaluate the effectiveness of the new features generated by different methods. For
GBDT, we choose the LightGBM implementation (Ke et al., 2017). For neural networks, we choose
FT-Transformer (Gorishniy et al., 2021). Hyperparameter tuning follows a standard benchmark
study (Gorishniy et al., 2021), and we tune the hyperparameters using the base feature set. For each
dataset, we generate first-order features and include the same number of new features for different
methods for a fair comparison. We discuss generating high-order features in Appendix E.2. We
present the comparison results in Table 2. We can observe that OpenFE has clear advantages over
baseline methods and achieves SOTA in most cases. The features generated by OpenFE greatly
enhance the performance of both LightGBM and FT-Transformer. When baseline methods fail to
generate effective new features, they include uninformative features in the base feature set, which
brings additional noise and does harm to the generalization of the learning model. We present the
running time of different methods in Appendix C.3.

5.4 FEATURE GENERATION FOR NEURAL NETWORKS

In this section, we show that new features generated by OpenFE can greatly improve the performance
of a variety of neural networks designed specifically for tabular data. The models include: Au-
toInt (Song et al., 2019), DCN-V2 (Wang et al., 2021), NODE (Popov et al., 2019), TabNet (Arık
& Pfister, 2021), FT-Transformer (Gorishniy et al., 2021). We follow the same implementations
and hyperparameter tuning of these networks in (Gorishniy et al., 2021). We present the results in
Table 3. The features generated by OpenFE greatly enhance the performance of different models in
most cases. For AutoInt and DCN-V2 which claim to be able to learn feature interactions, feature
generation can further improve the performance. Even though OpenFE relies on GBDT to measure
the performance of new features, the generated features are also effective for a variety of DNNs.
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Table 3: The effect of OpenFE on a variety of DNNs. We report the mean and standard deviations
of the evaluation metric on the test set over 10 random seeds. The top results are shown in bold.

Model Features CA ↓ MI ↓ NO ↑ VE ↑ JA ↑ CO ↑

AutoInt
Base 0.4741±3.7e-3 0.7501±5.0e-4 0.9927±3.0e-4 0.9270±9.0e-4 0.7207±2.3e-3 0.9342±4.2e-3

OpenFE 0.4618±5.1e-3 0.7447±4.0e-4 0.9943±4.0e-4 0.9287±7.0e-4 0.7243±2.7e-3 0.9415±4.1e-3

DCN-V2
Base 0.4832±2.1e-3 0.7486±7.0e-4 0.9926±4.0e-4 0.9236±1.5e-3 0.7158±1.6e-3 0.9653±1.3e-3

OpenFE 0.4722±4.0e-3 0.7431±4.0e-4 0.9944±1.0e-4 0.9260±4.0e-4 0.7163±1.6e-3 0.9633±7.0e-4

TabNet
Base 0.5096±4.9e-3 0.7508±1.1e-3 0.9932±3.0e-4 0.9236±1.0e-3 0.7237±4.3e-3 0.9594±4.3e-3

OpenFE 0.5011±9.0e-3 0.7464±8.0e-4 0.9948±2.0e-4 0.9258±7.0e-4 0.7237±4.3e-3 0.9592±1.4e-3

NODE
Base 0.4639±1.6e-3 0.7454±3.0e-4 0.9937±4.0e-4 0.9265±3.0e-4 0.7271±1.8e-3 0.9589±1.2e-3

OpenFE 0.4569±1.8e-3 0.7395±2.0e-4 0.9953±5.0e-4 0.9289±4.0e-4 0.7312±1.1e-3 0.9632±9.0e-4

FT-Transformer
Base 0.4590±3.3e-3 0.7461±4.0e-4 0.9933±5.0e-4 0.9272±6.0e-4 0.7328±2.3e-3 0.9696±8.0e-4

OpenFE 0.4530±2.7e-3 0.7411±7.0e-4 0.9950±3.0e-4 0.9289±3.0e-4 0.7379±2.3e-3 0.9708±7.0e-4

Table 4: Results of OpenFE and Expert (feature generation by experts) in two Kaggle competitions.
Notation: pub. ∼ public, pri. ∼ private. The final standing is determined according to the scores in
the private leaderboard.

IEEE-CIS Fraud Detection BNP Paribas Cardif Claims Management

feature order pub. score pub. rank pri. score pri. rank pub. score pub. rank pri. score pri. rank

Base - 0.9463±3.7e-4 2408/6351 0.9182±3.2e-4 2286/6351 0.4382±1.7e-4 38/2920 0.4359±2.0e-4 31/2920

Expert
first 0.9602±2.6e-4 52/6351 0.9327±3.0e-4 70/6351 0.4334±1.7e-4 14/2920 0.4308±1.0e-4 12/2920

high 0.9597±3.1e-4 54/6351 0.9320±3.3e-4 76/6351 0.4322±1.5e-4 13/2920 0.4301±2.2e-4 12/2920

OpenFE
first 0.9617±3.5e-4 38/6351 0.9360±4.0e-4 44/6351 0.4349±1.4e-4 22/2920 0.4324±2.9e-4 16/2920

high 0.9617±3.6e-4 38/6351 0.9363±2.8e-4 42/6351 0.4324±2.0e-4 14/2920 0.4302±3.2e-4 12/2920

5.5 CASE STUDIES: COMPARING OPENFE WITH MACHINE LEARNING EXPERTS

We present two Kaggle competitions to show that the features generated by OpenFE can result in
competitive performance improvement against those provided by the competition’s top winners.
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number of new features
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Figure 2: Comparison between Expert
and OpenFE.

The first Kaggle competition is IEEE-CIS Fraud Detec-
tion2, where the goal is to predict whether an online trans-
action is fraudulent. This competition is one of the largest
and most competitive tabular data competitions on Kag-
gle, with 6,351 data science teams participating. The
competition’s first place team made public the features
they generated after the competition ended3, which we
refer to as Expert. This competition heavily relies on
feature generation, where a baseline model of XGBoost
without feature generation ranks at 2286 among 6351
teams on the private leaderboard. However, the baseline model with features generated by the team
ranks at 76/6351. The same baseline model with features generated by OpenFE ranks at 42/6351,
which outperforms the features generated by the first-place team. We present the results in Table 4.
We investigate the influence of the number of new first-order features in Figure 2. The advantage of
OpenFE is that it can automatically explore and generate more useful feature transformations than
Expert. We explain the useful feature transformations generated by OpenFE in Appendix E.1.

The second competition is BNP Paribas Cardif Claims Management4, where the goal is to predict
whether an insurance claim should be approved. We present the details in Appendix C.5.

2https://www.kaggle.com/competitions/ieee-fraud-detection/overview
3https://www.kaggle.com/code/cdeotte/xgb-fraud-with-magic-0-9600
4https://www.kaggle.com/competitions/bnp-paribas-cardif-claims-management/
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Table 5: Results for ablation study. The model is LightGBM.

CA ↓ MI ↓ DI ↑ NO ↑ VE ↑ JA ↑ CO ↑

OpenFE 0.4206±1.6e-3 0.7382±3.0e-4 0.8878±2.5e-3 0.9967±2.0e-4 0.9281±4.0e-4 0.7286±1.4e-3 0.9737±5.0e-4

OpenFE\FB 0.4299±2.2e-3 0.7441±4.0e-3 0.8856±3.3e-3 0.9959±2.0e-4 0.9263±2.0e-4 0.7251±1.2e-3 0.9704±7.0e-4

OpenFE\SS 0.4282±2.3e-3 0.7439±5.0e-4 0.8846±2.2e-3 0.9952±3.0e-4 0.9267±3.0e-4 0.7316±1.1e-3 0.9649±7.0e-4

OpenFE-MI 0.4282±2.3e-3 0.7439±3.0e-4 0.8867±4.4e-3 0.9959±1.0e-4 0.9261±3.0e-4 0.7293±1.2e-3 0.9713±5.0e-4

5.6 ABLATION STUDY

We conduct an ablation study to justify the design choices of OpenFE. We name different variants
of OpenFE as follows:

• OpenFE\FB. OpenFE without feature boosting. We train GBDT from scratch without using
base predictions as the initial prediction. For example, in regression tasks the initial predic-
tion is the average of the targets in the training set.

• OpenFE\SS. OpenFE without successive featurewise pruning. We subsample the data so that
generating all the features can fit in the memory.

• OpenFE-MI. We use mutual information between the feature and the target as the scoring
criterion in successive featurewise pruning.

We present the results in Table 5. The results show that: 1) Feature boosting significantly improves
the results. 2) Directly subsampling the data usually hurts the performance. 3) Mutual information
does not provide desirable results in eliminating features.

6 RELATED WORK

Expand-and-reduce is arguably the most popular framework in automated feature generation. Most
existing automated feature generation approaches employ statistical methods to identify and re-
move redundant features. For example, Data Science Machine (DSM) (Kanter & Veeramachaneni,
2015) uses the f-value between the feature and the target, and One Button Machine (OneBM) (Lam
et al., 2021) uses the Chi-square test to remove redundant features. DSM and OneBM focus on
feature generation in relational databases, which is different from our setting in tabular data. FC-
Tree (Fan et al., 2010) uses information gain to select new features during the construction of de-
cision trees. SAFE (Shi et al., 2020) uses information value to exclude uninformative features.
AutoCross (Luo et al., 2019) and AutoFeat (Horn et al., 2019) uses the improvement on a linear
regression model to determine whether a new feature should be included. LFE (Nargesian et al.,
2017) and ExploreKit (Katz et al., 2016) design meta features based on statistical methods and use
a meta learning approach to determine the effectiveness of new features. LFE and ExploreKit are
confined to binary-classification tasks and a specific set of operators. How to search for high-order
feature transformations is challenging in automated feature generation due to the explosion in search
space (Chen et al., 2019). Some learning-based methods directly search for high-order feature trans-
formations (Xie et al., 2021). For example, Neural Feature Search (Chen et al., 2019) utilizes a
recurrent neural network controller to search for a series of transformations. Khurana et al. (2018)
uses reinforcement learning to traverse a transformation graph for high-order features.

7 CONCLUSION

We propose OpenFE, a powerful automated feature generation that can effectively generate useful
features to enhance the learning performance of tabular data. Extensive experiments show that
OpenFE achieves SOTA on seven benchmark datasets and is competitive against human experts in
feature generation. We facilitate future research by: 1) reproducing the main methods for automated
feature generation and releasing the codes and datasets for fair comparisons. 2) providing empirical
and theoretical evidence that feature generation is a crucial component in modeling tabular data.
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REPRODUCIBILITY STATEMENT

All the codes and datasets can be found in the supplementary materials, including the implementa-
tion of OpenFE and other baseline methods. We also provide scripts (detailed experiment parame-
ters) in the supplementary materials to reproduce the experiments. Readers can follow the “readme”
to download the datasets and reproduce the results. Our theoretical contributions are clearly stated
in Appendix A with definitions, assumptions, and complete proofs of all the theorems.
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A THEORETICAL RESULTS

PROBLEM SETTING

In this section, we study the advantage of feature generation from a theoretical perspective. In
particular, we present a simple yet representative setting in which empirical risk minimization aug-
mented with feature generation can achieve smaller test loss than any learning model without feature
generation.

Consider a regression problem with both numerical and categorical features in a transductive learn-
ing setting. Denote X num ⊆ Rd as the numerical feature space, X cat ⊆ N the categorical feature
space, and Y ⊆ [0, 1] as the target domain. We assume X num is d-dimensional and convex. The
training data Dtrain consists of n training data {(Xi, Yi)}i=1,...,n where Xi = (xi0, xi1, . . . , xid),
xi0 ∈ X cat is the categorical feature value, (xi1, . . . , xid) ∈ X num are d numerical feature values.
As a concrete example, one may think each training data as a transaction, where xi0 as the user id
and (xi1, . . . , xid) are some features about the user and the transaction, and Y is the target we want
to predict about the transaction (e.g., lateness of payment, probability of fraudulence). The test data
Dtest consists of m data points {(Xi, Yi)}i=n+1,...,m, but these Yi are the unknown targets that we
try to predict.

The data model: The training setDtrain and test setDtest are generated by a two-phase process. Let
∆(X cat) be the space all probability distributions defined over X cat, andQ be a probability distribu-
tion over ∆(X cat). Dtrain is generated by repeating the following k1 times: in the i-th iteration, we
first take a sample Pi ∈ ∆(X cat) fromQ (P is a distribution over X cat). Then, we sample a group of
h training data points, each with its categorical feature value being ci ∈ X cat and its d numerical fea-
ture values being an i.i.d., sample from P . Hence, all these h training data Xih+1, . . . , X(i+1)h have
the same categorical value ci ∈ X cat, and they form the i-th group Gi (e.g., the set of transactions of
the i-th user). Dtrain contains k1 groups G1, . . . , Gk1 . For the i-th data point (Xi, Yi), we use g(i)
to denote the index of the group that contains (Xi, Yi). Hence, (Xi, Yi) ∈ Gg(i). Let F be the hy-
pothesis class and the true hypothesis is f∗ : X num ×X cat → Y such that Yi = f∗(xi1, . . . , xid, Zi)
where Zi = EX∼Pg(i)

[X] (Zi is a d-dimensional vector) (e.g., the target depends not only on the
numerical feature values of this particular transaction, but also the mean of the statistics of the user).

The test dataset Dtest is generated in the same way and it contains k2 groups Gk1+1, . . . , Gk1+k2 .
We assume the categorical feature values c1, . . . , ck1 , ck1+1 . . . , ck1+k2 are all distinct (e.g., a user
id that appears in the test set does not appear in the training set).

Feature generation: Here we are interested in features generation using operations such as
GroupByThenMean. In our setting, the groupby operation is based on the categorical feature
X cat. So, for a data point Xi, we can generate a set of new features X̂i which can be computed from
all data points in the same group Gg(i). Formally, let H be the set of possible feature generation
function and the new feature X̂i is computed as follows:

X̂i = H(Gg(i)) for some H ∈ H.

For a feature generation function H and predictor f , the loss on the data point (Xi, Yi) is

L(H, f,Xi, Yi)] = ∥Yi − f(Xi, X̂i)∥2 = ∥Yi − f(Xi, H(Gg(i)))∥2.

Our goal is to find a feature generation function H ∈ H and a predictor f̂ ∈ F such that the test
loss is minimized

LDtest(H, f̂) = E
(Xi,Yi)∈Dtest

[L(H, f̂ ,Xi, Yi)] =
1

m

∑
(Xi,Yi)∈Dtest

∥Yi − f(Xi, H(Gg(i)))∥2.

If we do not use any feature generation, the loss of the predictor f ′ 5 is simply

LDtest(f
′) = E

(Xi,Yi)∈Dtest

[∥Yi − f ′(Xi)∥2]

5Note that the input dimension for the predictor f ′ here is different since there is no generated feature. But
this is not an issue for our following argument.
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In the following, we show that under nature conditions, we can achieve vanishing test loss by using
feature generation (as the number of training samples n and the minimum size of each group h
become larger). See Theorem 3. But if we only use the raw feature Xi for predicting Yi, the
expected test loss of any predictor is at least a positive constant. See Theorem 4.

LEARNABILITY WITH FEATURE GENERATION

For a particular feature generation function H , we use Radk(F) to denote the empirical Rademacher
complexity of F over k random samples:

Radk(F) = E
{(Xi,Yi)}k

i=1

1

k
E
σ

[
sup
f∈F

k∑
i=1

σiL(H, f,Xi, Yi)

]
where σ = (σ1, · · · , σk) are independent Rademacher variables and Xi is an i.i.d. sample from
Pi, which is an i.i.d. sample from Q, and Yi = f∗(Xi, Zi) where Zi = EX∼Pi [X]. We assume
that Radk1(F)→ 0 as k1 →∞ (for many hypothesis classes, Radk1 scales as O(

√
1/k1)) (Mohri

et al., 2018). We also assume any function f(·, ·) ∈ F is Lipschitz on z: There exists constant CF
such that |f(X,Z1) − f(X,Z2)| ≤ CF∥Z1 − Z2∥ for any z1, z2, x ∈ X and f ∈ F . We further
assume there exists constant BX such that supx∈X ∥x∥ ≤ BX .
Theorem 3. There is a feature generation function H , such that the test loss of the empirical risk
minimizer f̂ can be bounded by

LDtest(H, f̂) ≤ 2Radk1
(F) +

√
2 ln(4δ−1)/k1 + 6BXCF

√
2d ln(4d(k1 + k2)δ−1)/h

with probability at least 1− δ. In particular, the test loss approaches to 0 when k1, h→∞ .

Proof. We fix the feature generation function to be GroupByThenMean. In concrete, we have X̂i =
H(Gg(i)) =

1
|Gg(i)|

∑
j∈Gg(i)

Xj . The algorithm then find f that minimizes the emprical risk:

f̂ = argmin
f∈F

LDtrain(H, f).

According to Hoeffding’s inequality and union bound for each dimension, with probability at least
1− δ/(2(k1 + k2)), we have

∥X̂i − Zi∥ =
∥∥∥ 1

|Gg(i)|
∑

j∈Gg(i)

Xj − E
X∼Pg(i)

[X]
∥∥∥ ≤ BX

√
2d ln(4d(k1 + k2)δ−1)/h,

for some concrete g(i). By applying union bound on all groups, this statement holds for all i with
probability at least 1− δ/2.

In this case, for any function f ∈ F , we have∣∣∣(f(Xi, Zi)− Yi)
2 − (f(Xi, X̂i)− Yi)

2
∣∣∣

≤ |f(Xi, Zi)− f(Xi, X̂i)| ·
∣∣∣f(Xi, Zi)− Yi + f(Xi, X̂i)− Yi

∣∣∣
≤ 2BXCF

√
2d ln(4d(k1 + k2)δ−1)/h (2)

where the last inequality holds since |f(Xi, Zi) − f(Xi, X̂i)| ≤ CF∥ẑi − zi∥ and Y ⊆ [0, 1].
Define H∗ be the function H∗(Gg(i)) = Zi = EX∼Pg(i)

[X]. We note this statement further implies∣∣∣LDtrain(H
∗, f)−LDtrain(H, f)

∣∣∣ ≤√
2d ln(4d(k1 + k2)δ−1)/h and

∣∣∣LDtest(H
∗, f)−LDtest(H, f)

∣∣∣ ≤√
2d ln(4d(k1 + k2)δ−1)/h according to the definition of the loss function.

Note that each data point is not an i.i.d. sample (since two points in one group are correlated), we
need to define the following group Rademacher complexity to bound the generalization error. We
define group Rademacher complexity to be Rademacher complexity but defined over groups:

RadG
k1
(F) := E

Dtrain

1

k1
E
σ

[
sup
f∈F

k1∑
i=1

σi ·
1

h

∑
j∈Gi

L(H, f,Xj , Yj)

]
,
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where σ = (σ1, · · · , σk1
) are independent Rademacher variables. Note that if we view each group as

one random sample, these groups are i.i.d. samples. Hence, we can apply the classical generalization
bound via Rademacher complexity (Mohri et al., 2018), which asserts that with probability at least
1− δ/2 for any function f ∈ F the following holds∣∣∣LDtest(H, f)− LDtrain(H, f)

∣∣∣ ≤ 2RadG
k1
(F) +

√
2 ln(4δ−1)/k1. (3)

Moreover, one can see the group Rademacher complexity can be upper bounded by the ordinary
Rademacher complexity for i.i.d. samples:

RadG
k1
(F) ≤ 1

h

h∑
i=1

E
Dtrain

1

k1
E
σ

[
sup
f∈F

k1∑
j=1

σj · L(H, f,XGi,j , YGi,j )

]
= Radk1(F) (4)

where Gi,j is the j-th element in Gi.

According to union bound, both equation 2 and equation 3 are satisfied for all f ∈ F with probability
at least 1− δ. In this case, since f∗ is the ground truth, its empirical risks satisfies LDtrain(H

∗, f∗) =
0. In this case, we have

LDtrain(H, f̂) ≤ LDtrain(H, f∗)

≤
∣∣∣LDtrain(H, f∗)− LDtrain(H

∗, f∗)
∣∣∣+ LDtrain(H

∗, f∗)

≤ 2BXCF
√

2d ln(4d(k1 + k2)δ−1)/h (5)

where the first inequality dues to empirical risk minimization and the last inequality dues to equa-
tion 2. As a result, the population loss can then be bounded by

LDtest(H, f̂) ≤
∣∣∣LDtest(H, f̂)− LDtest(H

∗, f̂)
∣∣∣+ ∣∣∣LDtest(H

∗, f̂)− LDtrain(H
∗, f̂)

∣∣∣
+
∣∣∣LDtrain(H

∗, f̂)− LDtrain(H, f̂)
∣∣∣+ LDtrain(H, f̂)

≤ 2BXCF
√
2d ln(4d(k1 + k2)δ−1)/h+ 2RadG

k1
(F) +

√
2 ln(4δ−1)/k1

+ 2BXCF
√
2d ln(4d(k1 + k2)δ−1)/h+ 2BXCF

√
2d ln(4d(k1 + k2)δ−1)/h

≤ 2Radk1
(F) +

√
2 ln(4δ−1)/k1 + 6BXCF

√
2d ln(4d(k1 + k2)δ−1)/h

where the second inequality holds due to equation 3 and equation 5 while the last inequality follows
from equation 4. This proves the desired statement.

Remarks: We only consider the case where H only contain one particular operation
GroupByThenMean. In fact, it is possible to extend the above setting to one with multiple fea-
ture generation functions. Here we require that such feature generation functions be statistics of
the corresponding group and can be estimated using i.i.d. samples. In our two-phase generative
process, each group contains exactly h data points. We can easily extend our theorem to the setting
where the size of each group is also a random variable as long as it takes value at least h with high
probability. The main idea is the same but the notations would become very tedious. Since our goal
here is to illustrate the statistical advantage of feature generation, we choose to present a simplified
yet representative setting.

WITHOUT FEATURE GENERATION

Theorem 4. In case that we do not use any feature generation, there exists a problem instance such
that, no matter how large k1 (number of groups in the training set), k2 ((number of groups in the
test set)), and h (the size of each group) are, for any function f ′ : X → Y , the test loss is at least

LDtest(f
′) ≥ 3

64
.

Proof. Consider a problem instance with X = Y = [0, 1]. The data distribution is generated in
the following way: Each group contains h data points and is generated in the following way: The
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distribution of i-th group Pg(i) is random between B( 34 ) and B( 14 ) with equal probability where
B(p) is the Bernoulli distribution such that Pr[B(p) = 1] = p = 1 − Pr[B(p) = 0]. Thus,
Zi = EX∼Pg(i)

[X] is either 3
4 or 1

4 with equal probability for each group. Xi is 0/1 random variable,
generated i.i.d. from either B( 34 ) if Zi =

3
4 and from either B( 14 ) if Zi =

1
4 . We assume the target

of data point is given by Yi = f∗(Xi, Zi) = Zi.

When Xi = 1, the probability of Yi =
1
4 is given by

Pr
[
Yi =

1

4

∣∣∣Xi = 1
]
= Pr

[
Zi =

1

4

∣∣∣Xi = 1
]
=

Pr[Zi =
1
4 , Xi = 1]∑

z Pr[Zi = z] Pr[Xi = 1|Zi = z]
=

1

4
.

Similarly, the probability of Yi =
3
4 is Pr[Yi =

3
4 |Xi = 1] = 3

4 . So for any predictor f ′ : X → Y ,
we have

E
Xi=1

[∥Yi − f ′(Xi)∥2] =
1

4
·
(
f ′(Xi)−

1

4

)2

+
3

4
·
(
f ′(Xi)−

3

4

)2

≥ 3

64
.

The last inequality holds because the left hand side is a quadratic function. With the same reasoning,
we have EXi=0[∥Yi − f ′(Xi)∥2] ≥ 3

64 . As a result, the test loss of for any predictor f ′ is at least

LDtest(f
′) = E

(Xi,Yi)∈Dtest

[∥Yi − f ′(Xi)∥2] ≥
3

64
.

The above argument does not depend on how large k1, k2 and h are.

B DATA

Table 6: Datasets description

Name Abbr # Train # Validation # Test # Num # Cat # Ord Task type

California Housing CA 13209 3303 4128 7 0 1 Regression
Microsoft MI 723412 235259 241521 111 0 25 Regression
Diabetes DI 65129 16283 20354 3 34 10 Binclass
Nomao NO 22465 6000 6000 34 29 55 Binclass
Vehicle VE 60000 18528 20000 100 0 0 Binclass
Jannis JA 53588 13398 16747 54 0 0 Multiclass
Covertype CO 371847 92962 116203 9 0 45 Multiclass

We describe the details of the datasets in Table 6. All the datasets can be found in the supplementary
materials.

C ADDITIONAL RESULTS

Table 7: Comparison between OpenFE and other baselines. The results of baseline methods are
from the corresponding papers. Our results are averaged by 10 different random seeds.

Dataset Source C\ R Instances\Features Random TransGraph LFE NFS OpenFE

Airfoil UCIrvine R 1503\5 0.753 0.801 - 0.796 0.808

German Credit UCIrvine C 1000\24 0.655 0.724 - 0.805 0.815

Higgs Boson Subset UCIrvine C 50000\28 0.699 0.729 0.68 0.731 0.741

Ionosphere UCIrvine C 351\34 0.934 0.941 0.932 0.969 0.986

SpamBase UCIrvine C 4601\57 0.937 0.961 0.947 0.955 0.961

SpectF UCIrvine C 467\44 0.748 0.788 - 0.876 0.877

Sonar UCIrvine C 208\60 0.723 - 0.801 0.839 0.929
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C.1 COMPARISONS WITH OTHER BASELINES

We compare OpenFE with other baselines, including some learning-based methods that lack critical
details for code reproduction. These mehtods include:

• Random (Khurana et al., 2018). Randomly include features from candidate feature set mul-
tiple times and select new features with improvement according to CV scores.

• TransGraph (Khurana et al., 2018). TransGraph uses reinforcement learning to traverse a
transformation graph for feature transformations.

• LFE (Nargesian et al., 2017). LFE recommends feature transformations by meta learning
approaches.

• NFS (Chen et al., 2019). NFS uses a recurrent neural network controller to search for a series
of transformations.

Following previous studies (Chen et al., 2019), the metric for regression datasets is 1 −
(relative absolute error) and the metric for classification datasets is F1-score. We present the re-
sults in Table 7. OpenFE also surpasses other baseline methods in these datasets.

Table 8: Comparisons between the results of reproduced methods and results from the paper. The
results are averaged by 10 different random seeds.

Metric FCTree (from paper) FCTree (reproduced)

Transfusion Accuracy 0.752 0.793± 0.017
Nuclear(All) AUC 0.629 0.625± 0.009

(a) Comparison between the results of FCTree (from paper) and FCTree (repro-
duced).

Metric SAFE (from paper) SAFE (reproduced)

Magic AUC 0.9288 0.9370± 0.0009
Spambase AUC 0.9846 0.9837± 0.0012

(b) Comparison between the results of SAFE (from paper) and SAFE (re-
produced).

Metric AutoCross (from paper) AutoCross (reproduced)

Bank AUC 0.9455 0.9456± 0.0008
Adult AUC 0.9280 0.9251± 0.0003
Credit AUC 0.8567 0.8624± 0.0002

(c) Comparison between the results of AutoCross (from paper) and AutoCross
(reproduced).

C.2 REPRODUCTION

We reproduce FCTree, SAFE, and AutoCross according to the descriptions in their papers. In order
to make sure that we reproduce a reasonable version of these methods, we compare the results of our
reproduced methods with the ones in their paper. We present the results in Table 8. We can see that
most of the results of the reproduced methods closely match or even outperform the results from the
papers.

C.3 RUNNING TIME

We present the running time of different methods in Table 9. The experimental environment is
the same for all the methods. We can see that OpenFE is a fast method that terminates within a
reasonable amount of time even for large datasets.
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Table 9: The running time of different methods in minutes. IEEE: IEEE-CIS Fraud Detection, BNP:
BNP Paribas Cardif Claims Management.

CA MI DI NO VE JA CO IEEE BNP

FCTree 2.3 1978 6.8 11 74 40 160 - -
SAFE - - 0.9 1.3 10 - - - -
AutoFeat 0.2 23 37 49 535 354 1484 - -
AutoCross - - 169 148 146 - - - -

OpenFE 0.1 31 4 4.7 3.3 3.5 20 92 0.9

Table 10: Comparisons between MDI, permutation, and SHAP in feature importance attribution.

MDI permutation SHAP

Rank 2.07±0.93 1.79±0.91 2.14±0.69

Time 0s 25min 42s

C.4 COMPARING FEATURE IMPORTANCE ATTRIBUTION METHODS

In this section, we compare MDI, permutation, and SHAP in feature importance attribution in
OpenFE. We use the results of OpenFE on seven benchmarking datasets to rank these methods.
The training model is LightGBM. We present the results in Table 10. We also present the running
time of each method on the Microsoft dataset, the benchmarking dataset with largest number of
samples. Different feature attribution methods do not differ much on most of the datasets. MDI
can be obtained for free after the training process of LightGBM, while permutation and SHAP may
require longer running time, depending on the sizes of datasets.

C.5 KAGGLE COMPETITION

We present the details of the BNP Paribas Cardif Claims Management competition in this section.
The goal of the competition is to predict whether a personal insurance claim should be approved. The
competition’s 8th place team made public their generated features after the competition ended6 (the
winners with higher rankings did not share their codes). We evaluate the performance of OpenFE
in a similar way. A baseline model using Catboost (Prokhorenkova et al., 2018) without feature
generation ranks at 31 among 2920 teams. The baseline model with features generated by experts
ranks at 12/2920, while the baseline model with features generated by OpenFE ranks at 12/2920.
We present the results in Table 4. OpenFE generates 200 first-order features and 100 second-order
features, while Expert generates 156 first-order features and 132 high-order features.

Table 11: The results of validating feature boosting. The number is the reduction in RMSE on the
validation set. FB: feature boosting.

base feature bf (1) bf (2) bf (13) bf (4) bf (5) bf (6) bf (7) bf (8)

without FB 0.3256 0.0132 0.1008 0.0041 0.0011 0.0525 0.1441 0.1852

with FB -0.0002 -0.0000 -0.0002 -0.0002 -0.0002 -0.0000 -0.0001 -0.0000

synthetic feature sf (1) sf (2) sf (3) sf (4) sf (5) sf (6) sf (7) sf (8)

with FB 0.0037 0.0029 0.0053 0.0052 0.0026 0.0028 0.0026 0.0022

6https://www.kaggle.com/code/confirm/xfeat-cudf-lightgbm-catboost-wip
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C.6 VALIDATE FEATURE BOOSTING

We conduct experiments to validate that feature boosting can estimate the incremental performance
of new features. We show that:

• Features that are not effective in the presence of base features have zero or negative reduction
in loss ∆ when evaluated using feature boosting. For example, base features are not effective
in addition to themselves, and they should have zero or negative ∆.

• Features that are effective in the presence of base features have positive reduction in loss ∆
when evaluated using feature boosting. For example, a synthetic feature generated using the
information in the targets should have positive ∆.

We perform the experiment on the CA dataset (D) with 8 base features. We generate base predictions
ŷ by the 8 base features for feature boosting. The experiments include:

• For each base feature, we train a GBDT f ′ using the single base feature. We calculate ∆′ =
L(∅)−L(f ′) of each feature. We present the results in the second row of Table 11. We show
through this experiment that each base feature can indeed explain the targets.

• For each base feature bf , we calculate ∆ = FeatureBoosting(D, bf, ŷ). We present the
results in the fourth row of Table 11. We can see that all of the base features have a zero or
negative ∆.

• We generate 8 synthetic features using the information in the targets. The formula is f =
0.3 × y + ϵ, where ϵ follows the normal distribution with the mean and standard deviation
the same as y. For each synthetic feature sf , we calculate ∆ = FeatureBoosting(D, sf, ŷ).
We present the results in the fifth row of Table 11. The 8 synthetic features are effective in
the presence of base features, and they have positive ∆ in feature boosting.

D IMPLEMENTATION DETAILS

D.1 EXPERIMENTAL ENVIRONMENT

For all the experiments, feature generation is carried out on a workstation with Intel(R) Xeon(R)
Gold 6230 CPU @ 2.10GHz, 40 cores, 512G memory. Model tuning and model training are per-
formed on one or more NVidia Tesla V100 16Gb.

Table 12: Unary operators.

Numerical Categorical

Freq,Abs,Log,

Sqrt,Sigmoid,

Round,Residual

Freq

Table 13: Binary operators. (N refers to Numerical, C refers to Categorical)

N × N N × C C × C

Min,Max,

+,−,×,÷

GroupByThenMin,GroupByThenMax,

GroupByThenMean,GroupByThenMedian,

GroupByThenStd,GroupByThenRank

Combine,

CombineThenFreq,

GroupByThenNUnique

D.2 OPERATORS AND FEATURE TRANSFORMATIONS

All the operators are classified into unary operators (Table 12) and binary operators (Table 13), where
unary operators act on one feature and binary operators act on two features. Then the operators are
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further classified according to the type of features they act on. For example, GroupByThenMean
requires a categorical feature and a numerical feature, while Max requires two numerical features.
All the features in a dataset are classified into numerical features, categorical features, and ordi-
nal features. The difference between ordinal features and categorical features is that an ordinal
feature has a clear ordering of categories (such as “age”). Ordinal features are treated as both nu-
merical and categorical when generating features transformations. For example, we can calculate
GroupByThenMean(age, gender), which is the average age of each gender. We can also calculate
GroupByThenMean(income, age), which is the average income of people of different ages. For
anonymized datasets where the meanings of features are unknown, features with string values are
treated as categorical features. Features with discrete values (the number of unique values is less
than 100) are treated as ordinal features. Features with continuous values are treated as numerical
features.

We enumerate all the first-order transformations to form the candidate feature set. A first-order
transformation uses one operator once to transform base features. For example, weight/height is a
first-order transformation of base features weight and height. BMI = weight/height2 is a second-
order transformation.

We list the details of all the operators below. f stands for a numerical feature and c stands for a
categorical feature.

• Freq(f). The frequency of feature f .

• Freq(c). The frequency of feature c.

• Abs(f). Element-wise absolute value.

• Log(f). Element-wise logarithm.

• Sqrt(f). Element-wise square root.

• Sigmoid(f). Element-wisely apply function x 7→ 1
1+e−x .

• Round(f). Element-wise rounding.

• Residual(f). Element-wisely take decimal part.

• Min(f1, f2). Element-wise minimum.

• Max(f1, f2). Element-wise maximum.

• f1 + f2. Element-wise addition.

• f1 − f2. Element-wise subtraction.

• f1 × f2. Element-wise multiplication.

• f1 ÷ f2. Element-wise division.

• GroupByThenMin(f, c). The minimum value of f in each category of feature c.

• GroupByThenMax(f, c). The maximum value of f in each category of feature c.

• GroupByThenMean(f, c). The average value of f in each category of feature c.

• GroupByThenMedian(f, c). The median of f in each category of feature c.

• GroupByThenStd(f, c). The standard deviation of f in each category of feature c.

• GroupByThenRank(f, c). The ranking of f in each category of feature c. The rankings are
normalized between 0 and 1.

• Combine(c1, c2). Comebine the categories in feature c1 and c2 to be new categories. For
example, for a data point, “vocation” is “doctor” and “hobby” is “football”, then the value
for Combine(vocation, hobby) of this data point is a category of “doctor-football”.

• CombineThenFreq(c1, c2). Same as freq (Combine(c1, c2)).

• GroupByThenNUnique(c1, c2). The number of unique values of c1 in each category of
feature c2.
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D.3 FEATURE BOOSTING

We describe the main idea of feature boosting in Section 3.2. Here, we present the details of the
implementation in this section. The first step in feature boosting is to generate base predictions.
In this paper, we use LightGBM to model tabular data and use 5-fold cross-validation to generate
base predictions. For each fold, we first train a LightGBM on the train set till early stopping on
the validation set. Then we generate predictions on the validation set. The predictions on each
fold are concatenated to yield the base predictions. The LightGBM is trained using a set of default
parameters for all the datasets. The default parameter has 10,000 estimators, 0.1 learning rate, 31
leaves, and 200 early stopping rounds. Other parameters follow the default settings in LightGBM.

The second step in feature boosting is to find a new model f ′ ∈ F ′ to boost the performance of
base predictions and minimize L(f + f ′) =

∑n
i=1 l(yi, f(xi) + f ′(xi)). In the implementation,

we use the base predictions {f(xi), i = 1, 2, ..., n} as the initial predictions in LightGBM. The
implementation of LightGBM can use new features T ′ as the inputs to continue training from the
base prediction. The new model f ′ is the new LightGBM model after training. Feature boosting
can also be extended to using neural networks. If f ′ is a neural network parameterized by θ, we can
calculate ∂L(f+f ′)

∂θ and optimize θ by back-propagation.

Table 14: The parameters of OpenFE for each dataset. IEEE: IEEE-CIS Fraud Detection. BNP:
BNP Paribas Cardif Claims Management.

CA MI DI NO VE JA CO IEEE BNP
# data blocks 1 64 8 32 16 1 8 32 8

# new features 10 10 10 10 10 50 50 600 200
# candidate features 275 78k 8k 81k 31k 9k 27k 456k 1753

D.4 PARAMETERS

We present the hyperparameters of OpenFE for each dataset in Table 14. For datasets whose sam-
ples or the number of candidate features are not large, the number of data blocks for successive
featurewise pruning is set to be small. When the number of data blocks is one, we use all the data
to calculate and evaluate new features in successive featurewise pruning, and eliminate new features
with negative reduction in loss. For most datasets, the number of new features is set to be 10. The
effective new features are usually sparse in the vast pool of candidate new features. For two multi-
classification datasets, the number of new features is set to be 50. For a fair comparison, all the
baseline methods include the same number of new features, except for the NN baseline. For the NN
baseline, the number of new features is the number of hidden units in the last hidden layer, which is
determined by hyperparameter tuning.

In OpenFE, the default parameter of LightGBM in successive featurewise pruning has 1000 number
of estimators, 0.1 learning rate, 16 leaves, and 3 early stopping rounds. The default parameter in
feature importance attribution is the same except for 50 early stopping rounds.

D.5 FEATURE IMPORTANCE ATTRIBUTION METHODS

MDI is the gain importance embedded in LightGBM. For permutation feature importance, we ran-
domly shuffle the values of features on the validation set, and observe the change in validation loss.
For SHAP feature importance, we average the SHAP values of each sample for each feature.

E DISCUSSION

E.1 DISCOVERED FEATURE TRANSFORMATIONS

In this section, we present and explain the useful transformations discovered by OpenFE for the
IEEE-CIS Fraud Detection competition and the DI (Diabetes) dataset. The goal of the IEEE com-
petition is to predict whether an online transaction is fraudulent. The top-1 feature discovered by
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Figure 3: The SHAP values of discovered feature transformations. The x-axis is the feature values,
and the y-axis is the SHAP values. Larger SHAP values indicate higher probability of fraudulent
transactions.

OpenFE is CombineThenFreq(user id,month), which indicates how many transactions a user
makes in a month. We present the SHAP values of the feature in the trained XGBoost in Figure 3.
The SHAP values tell us that when the user makes few transactions in a month, the transactions are
more likely to be fraudulent. The top-2 feature is GroupByThenStd(day delta,user id), which
is the standard deviation of the days between the current transaction and the first transaction. The
SHAP values imply that when many transactions happen in a short period (which corresponds to
a small standard deviation), the transactions are more likely to be fraudulent. The top-4 feature
is CombineThenFreq(DeviceInfo,user id), which indicates how frequently the user switches de-
vices to make transactions. The actual meanings are masked for most of the features to protect the
privacy of users. One of the advantages of OpenFE is the ability to generate useful features without
knowing their actual meanings.

The DI (diabetes) dataset collects 10 years (1999-2008) of clinical care at 130 US hospitals, where
the goal is to predict the readmission (Strack et al., 2014). One can see from Table 2 that OpenFE
outperforms other baseline methods and improves the learning performance by a great margin. The
top-1 feature discovered by OpenFE is freq(patient id), which is the number of times the patient has
been admitted to the hospital and is highly predictive of whether the patient will be readmitted to
the hospital. However, other methods may fail to find this new feature since the feature patient id
itself is not useful. For example, SAFE (Shi et al., 2020) only generates candidate features based on
the base features that are used as splits in XGBoost. However, since patient id itself is not useful, it
will not be used for splits in XGBoost. This example also demonstrates that, reducing the number
of candidate features by heuristic assumptions may risk missing useful candidate features.

E.2 HIGH-ORDER FEATURES

How to search for high-order feature transformations is challenging in automated feature generation
due to the explosion in search space (Chen et al., 2019). Some previous methods argue that high-
order features are useful by directly searching for high-order features (Chen et al., 2019; Khurana
et al., 2018). However, the effectiveness of high-order feature transformations should be evaluated
in light of all its low-order components. For example, a second-order feature transformation f1 ×
f2 × f3 is effective only if it has additional effectiveness to all their first-order components f1 × f2,
f1 × f3, and f2 × f3. In addition, because high-order feature transformations are typically more
difficult to interpret than low-order ones, low-order feature transformations are favoured in industrial
applications where interpretability is important. In a word, searching for high-order features in
a hierarchical manner is more appropriate than directly searching for high-order features in two
aspects: 1) evaluating the effectiveness of high-order features in a more accurate way. 2) generating
low-order features with better interpretability.

Whether it is necessary to generate high-order features is case-by-case. Because the search space
of high-order features is usually incredibly huge (even if we limit the order), none of the existing
methods can enumerate all the high-order features within reasonable computational resources. We
can hardly claim that high-order features are not useful for a dataset. However, we do not find that
generating high-order features is useful for all the benchmarking datasets in our experiments. In the
IEEE competition, generating high-order features does not seem to be useful for neither Expert nor
OpenFE. In the BNP competition, generating high-order features provides a small improvement in
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the test score. We may conclude that first-order features are usually more important than high-order
ones in feature generation.

F COMPLEXITY ANALYSIS

Complexity of Generating Base Predictions. Let n be the number of samples, m be the number
of base features of dataset, and k be the number of folds. Complexity of generating base predictions
is k times of GBDT7 training,

O (kTdnm)

where each GBDT contains T trees with a maximum depth d.

Complexity of STAGE I. Suppose we split the dataset into 2q data blocks, the number of candidate
features is m2. There are 2−qm2 features remaining after successive featurewise halving. The
complexity is

∑q
i=0 2

(i−q) ·m2 · C(2−in, 1), where C(n,m) is the complexity of GBDT training
with data shape n ×m. If the GBDT contains T1 trees with a maximum depth of d1, we have the
time complexity

O
(
2−qqT1d1nm

2
)

Complexity of STAGE II. The complexity of stage II is dominated by a single GBDT training.
Suppose the GBDT has T2 trees with a maximum depth of d2, then the time complexity of stage II
is

O
(
2−qT2d2nm

2
)

Overall Complexity. In the implementation of OpenFE, the number of trees and the maximum
depth of GBDT are predefined fixed constant. If we regard T and d as constant, the overall com-
plexity of OpenFE is

O(2−qqnm2)

7In complexity analysis, we refer to the implementation of LightGBM. The dominant term in complexity is
building histogram, i.e., O(nm) per depth per tree.
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