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Abstract

Unpaired exemplar-based image-to-image (UEI2I) translation aims to translate a source
image to a target image domain with the style of a target image exemplar, without ground-
truth input-translation pairs. Existing UEI2I methods represent style using one vector per
image or rely on semantic supervision to define one style vector per object. Here, in contrast,
we propose to represent style as a dense feature map, allowing for a finer-grained transfer
to the source image without requiring any external semantic information. We then rely on
perceptual and adversarial losses to disentangle our dense style and content representations.
To stylize the source content with the exemplar style, we extract unsupervised cross-domain
semantic correspondences and warp the exemplar style to the source content. We demon-
strate the effectiveness of our method on four datasets using standard metrics together with
a localized style metric we propose, which measures style similarity in a class-wise man-
ner. Our results show that the translations produced by our approach are more diverse,
preserve the source content better, and are closer to the exemplars when compared to the
state-of-the-art methods.

1 Introduction

Source Baseline DSI21 Exemplar

Figure 1: Global style vs dense style representations. The baseline method (MUNIT)
represents the exemplar style with a single feature vector per image. As such, some appearance
information from the exemplar bleeds into semantically-incorrect regions, giving, for example, an unnatural
bluish taint to the road and the buildings in the second row, first image. By modeling style densely, our
approach better respects the semantics when applying the style from the exemplar to the source content.
Our method also has finer-grained control over style. The color of the road and center line in the third row
reflect the exemplar appearance more accurately.

Unpaired image-to-image (UI2I) translation aims to translate a source image to a target image domain
by training a deep network using images from the source and target domains without ground-truth input-
translation pairs. In the exemplar-based scenario (UEI2I), an additional target image exemplar is provided
as input so as to further guide the style translation. Ultimately, the resulting translation should 1) preserve
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the content/semantics of the source image; 2) convincingly seem to belong to the target domain; and 3)
adopt the specific style of the target exemplar image.

Some existing UEI2T strategies Huang et al.| (2018); [Lee et al.[(2018]) encode the style of the exemplar using a
global, image-level feature vector. While this has proven to be effective for relatively simple scenes, it leads to
undesirable artifacts for complex, multi-object ones, as illustrated in Fig.[I] where appearance information of
the dominating semantic regions, such as sky, unnaturally bleeds into other semantic areas, such as the road,
trees and buildings. Other UEI2I methods|Bhattacharjee et al.[(2020)); Jeong et al.| (2021)); Kim et al.| (2022);
Shen et al.| (2019) address this by computing instance-wise or class-wise style representations. However, they
require knowledge of the scene semantics, e.g., segmentation masks or bounding boxes during training, which
limits their applicability.

By contrast, we propose to model style densely. That is, we represent the style of an image with a feature
tensor that has the same spatial resolution as the content one. The difficulty of having spatial information
in style is that style information can more easily pollute the content one, and vice versa. To prevent this
and encourage the disentanglement of style and content, we utilize perceptual and adversarial losses, which
encourages the model to preserve the source content and semantics.

A dense style representation alone is not beneficial for UEI2I as the spatial arrangement of each dense style
component is only applicable for its own image. Hence, we propose a cross-domain semantic correspondence
module to spatially arrange/warp the dense style of the target image to the source content. To that end, we
utilize the CLIP |[Radford et al.|(2021]) vision backbone as feature extractor and establish correspondences
between the features of the source and target images using Optimal Transport |Cuturi| (2013)); Liu et al.
(2020)).

As a consequence, and as shown in Fig. [I} our approach transfers the local style of the exemplar to the source
content in a more natural manner than the global-style techniques. Yet, in contrast to [Bhattacharjee et al.
(2020); |Jeong et al.| (2021)); Kim et al.| (2022)); [Shen et al.| (2019)), we do not require semantic supervision
during training, thanks to our dense modeling of style. To quantitatively evaluate the benefits of our
approach, we introduce a metric that better reflects the stylistic similarity between the translations and the
exemplars than the image-level metrics used in the literature such as FID [Heusel et al.| (2017), IS [Salimans
et al.| (2016]), and CIS [Huang et al.| (2018).

Our contributions can be summarized as follows:

e We propose a dense style representation for UEI2I. Our method retains the source content in the
translation while providing finer-grain stylistic control.

o We show that adversarial and perceptual losses encourage the disentanglement of our dense style
and content representations.

e We develop a cross-domain semantic correspondence module to warp the exemplar style to the source
content.

e We propose a localized style metric to measure the stylistic accuracy of the translation.

Our experiments show both qualitatively and quantitatively the benefits of our method over global, image-
level style representations. We will make our code publicly available upon acceptance.

2 Related Work

Our method primarily relates to three lines of research: Image-to-image (I2I) translation, Style Transfer, and
Semantic Correspondence. Our main source of inspiration is 121 research as it deals with content preservation
and domain fidelity. However, we borrow concepts from Style Transfer when it comes to adopting exemplar
style and evaluating stylistic accuracy. Furthermore, our approach to swapping styles across semantically
relevant parts of different images is related to semantic correspondences.
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Label Multi Exemplar Local

Method Unpaired Free -modal guided style

MUNIT |Huang et al. (2018)

DRIT |Lee et al. 2018{

CUT |Park et al| (2020

FSeSim [Zheng et al.| (2021)

INIT Shen et al.| (2019)

DUNIT |Bhattacharjee et al.| q2020[)
MGUIT Jeong et al.| (2021)
CoCosNet [Zhang et al.[(2020)
MCLNet |Zhan et al (2022b)

MATEBIT Jiang et al.[(2023)
DSI2I

AT I NENE NN N NN
W X X X X X NN NN
A NANENENE NN NN
AT YANANENE NN NN
AN NN

Table 1: Comparison of I2I methods. Unpaired methods do not require ground-truth translation pairs.
Label free methods do not require object or segmentation annotations. Multimodal methods can produce
multiple translations for one content. Exemplar guided methods can stylize the translations based on an
exemplar image. The methods that represent style object-wise or densely have local style control.

2.1 Image-to-image Translation

We focus the discussion of I2I methods on the unpaired scenario, as our method does not utilize paired data.
CycleGAN [Zhu et al|(2017) was the first work to address this by utilizing cycle consistency. Recent works
let al.| (2022); Jung et al.|(2022); [Park et al. (2020); Zheng et al.|(2021) lift the cycle consistency requirement
and perform one-sided translation using contrastive losses and/or self-similarity between the source and the
translation. Many I2I methods, however, are unimodal, in that they produce a single translation per input
image, thus not reflecting the diversity of the target domain, especially in the presence of high within-domain
variance. Although some works |Jung et al.| (2022); Zheng et al.| (2021)) extend this to multimodal outputs,
they cannot adopt the style of a specific target exemplar, which is what we address.

Some effort has nonetheless been made to develop exemplar-guided 121 methods. For example,
(2018)); [Lee et al, (2018) decompose the images into content and style components, and generate exemplar-
based translations by merging the exemplar style with the content of the source image. However, these models
define a single style representation for the whole image, which does not reflect the complexity of multi-object
scenes. By contrast, Bhattacharjee et al|(2020); Jeong et al.| (2021)); Kim et al.| (2022); Mo et al.| (2018); Shen|
reason about object instances for 121 translation. Their goal is thus similar to ours, but their
style representations focus on foreground objects only, and they require object-level (pseudo) annotations
during training. Moreover, these methods do not report how stylistically close their translations are to the
exemplars. Here, we achieve dense style transfer for more categories without requiring annotations and show
that our method generates translations closer to the exemplar style while having comparable domain fidelity
with that of the state-of-the-art methods.

2.2 Style Transfer

Style transfer aims to bring the appearance of a content image closer to a target image. The seminal work
of Gatys et al. |Gatys et al. (2016) achieves so by matching the Gram matrices of the two images via image-
based optimization. |Li et al.| (2017b) provides an analytical solution to Gram matrix alignment, enabling
arbitrary style transfer without image based optimization. Huang & Belongie| (2017) only matches the
diagonal of the Gram matrices by adjusting the channel means and standard deviations.
shows that matching the Gram matrices minimizes the Maximum Mean Discrepancy between the two feature
distributions. Inspired by this distribution interpretation, Kolkin et al.|(2019) proposes to minimize a relaxed
Earth Movers Distance between the two distributions, showing the effectiveness of Optimal Transport in style
transfer. Zhang et al.| (2019) defines multiple styles per image via GrabCut and exchanges styles between
the local regions in two images. [Kolkin et al| (2019); [Zhang et al| (2019)) are particularly relevant to our
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work as they account for the spatial aspect of style. |(Chiu & Gurari (2022); |Li et al.| (2018]); Yoo et al.[(2019)
aim to achieve photorealistic stylization using a pre-trained VGG based autoencoder. Kim et al.[ (2020)); |Liu
et al.| (2021); [Yang et al.|(2022) model texture- and geometry-based style separately and learn to warp the
texture-based style to the geometry of another image. However, the geometric warping module they rely on
makes their methods only applicable to images depicting single objects. Our dense style representation and
our evaluation metric are inspired by this research on style transfer. Unlike these works, our image-to-image
translation method operates on complex scenes, deals with domain transfer and does not require image based
optimization.

2.3 Semantic Correspondence

Semantic correspondence methods aim to find semantically related regions across two different images. This
involves the challenging task of matching object parts and fine-grained keypoints. Early approaches [Barnes
et al.| (2009)); Liu et al.| (2010) used hand-crafted features. These features, however, are not invariant to
changes in illumination, appearance, and other low-level factors that do not affect semantics. Hence, they
have limited ability to generalize across different scenes. |Aberman et al.| (2018); |Liu et al| (2020)); Min
et al.| (2019) use ImageNet [Simonyan & Zisserman| (2014) pre-trained features to address this issue and find
correspondences between images containing similar objects. However, these methods do not generalize to
finding accurate correspondences across images from different modalities/domains.

Semantic correspondences have been explored in the context of image to image translation as well. In
particular, |Zhan et al|(2021; 2022b); |Zhang et al.| (2020); |Zhou et al. (2021)); Zhan et al.| (2022a) use cross-
domain correspondences to guide paired exemplar-based I2I translation. These methods are applicable to
a single dataset where the two paired domains consist of segmentation labels and corresponding images.
Specifically, they aim to translate segmentation labels to real images. In this case, both the I12I and semantic
correspondence tasks benefit from the paired data, i.e., semantic supervision. We also use cross-domain
correspondences, but unlike these works, our method is 1) unpaired and unsupervised, i.e., the ground-truth
translation is unknown; 2) unsupervised in terms of semantics, i.e., we do not use segmentation labels during
training; 3) applicable to translation between two datasets from different domains.

3 Method

Let us now introduce our UEI2I approach using dense style representations. To this end, we first define the
main architectural components of our model. It largely follows the architecture of [Huang et al.| (2018)) and
is depicted in Fig[2l Given two image domains X, Y C R3*H "W’ our model consists of two style encoders
E%, E5 - R3*H'W" _y RSXHW 36 content encoders E%, ES - R3*H'W' _y ROXHW w6 generators Gy,
Gy : ROXHW  RSXHW _y R3xH'W’ 41 two patch discriminators Dy, Dy : R3*HW' _, RSxH"W"

The content and style representations are then defined as follows. The content of image x is computed as
C. = E%(x), and its dense style as S"¢ := E%(x). Note that the latter departs from the definition of
style in [Huang et al| (2018]); here, instead of a global style vector, we use a dense style map with spatial
dimensions, which will let us transfer style in a finer-grained manner. Nevertheless, we also compute a global
style for image x as S/l ;= Avg(SZens¢), where Avg denotes spatial averaging and repeating a vector
across spatial dimensions. Furthermore, we define a mixed style S := 0.589/be! 1 (.58%"s¢  As will be
shown later, this mixed style will allow us to preserve the content without sacrificing stylistic control.

In the remainder of this section, we first introduce our approach to learning meaningful dense style repre-
sentations during training, shown in the top portion of Fig. 2] We then discuss how dense style is injected
architecturally, and finally how to exchange the dense styles of the source and exemplar images at inference
time, illustrated in the bottom portion of Fig. [2]

3.1 Learning Dense Style

We define style as low level attributes that do not affect the semantics of the image. These low level attributes
can include lighting, color, appearance, and texture. We also believe that a change in style should not lead
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Figure 2: Overview of method. We represent style as a feature map with spatial dimensions and constrain
it via adversarial and perceptual losses for disentanglement. Our method does not require any labels or paired
images during training. In test time, we warp the style of the exemplar for the source content using semantic
correspondence. At test time, we utilize the CLIP [Radford et al. (2021) vision backbone to build semantic
correspondences. See Section El for definitions and explanations.

to an unrealistic image and should not modify the semantics of the scene. In this work, we argue that, based
on this definition, style should be 1) represented densely to reflect finer grained stylistic attributes (stylistic
accuracy); 2) constrained by an adversarial loss to encourage fidelity to the target domain (domain fidelity);
3) constrained by a perceptual loss to preserve semantics (content preservation).

To learn a dense style representation that accurately reflects the stylistic attributes of the exemplar, we
utilize the L; reconstruction loss with Szense to enable the flow of fine-grained dense information into the

style representation. This is expressed as
L'recon = LI(GY(Cy7 Sgense)’ Y) . (1)

Such an image reconstruction loss encourages the content and dense style representation to contain all the
information in the input image. However, on its own, it does not prevent style from modeling content
and leading to unrealistic or semantic changes when edited. To encourage a rich content representation that
preserves semantics, we use adversarial and perceptual losses with a random style vector r ~ A/(0,1) € RS*!

Lad'u_random = LGAN(GY(CZ7 I'), DY) 5 (2)
LpeTf’r‘andom = Ll(V(x)7 V(GY (sz I'))) ) (3)

These losses prevent our model from relying too much on dense style for reconstruction and translation by
leading to a richer content representation.
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Having a rich content does not prevent dense style from polluting it. To prevent style from modeling content,
we constrain the dense style using the adversarial and perceptual losses

Lad'uiglobal = LGAN(GY(CCE7 SZIObal)7 -DY) 5 (4)
Lperiglobal = L1<V(X); V(GY(C:M Sglobal))) 5 (5)

where Lgan denotes a standard adversarial loss, and V' represents the VGG16 backbone up to but excluding
the Global Average Pooling layer. The adversarial loss above encourages the fidelity of the translations to
the target domain |Goodfellow et al. (2014); |Zhu et al.| (2017)) whereas the perceptual losses help preserve
the semantics [Huang et al.| (2018); [Johnson et al.| (2016); |Zhu et al.| (2017). While the global losses in
Eqgs. constrain dense style via the spatial averaging operation, there is no loss that involves Smse,
Involving S%"¢ in the adversarial and perceptual losses tends to make the model learn to ignore the style
representation, referred to as style collapse. Also, note that all the constraints in Egs. use a spatially
constant style representation. Hence, to involve a spatially varying style during the training and to avoid
style collapse, we introduce two losses computed on the mixed style S;””, given by

Ladv_miz = Laan(Gy (Cy, 8)"), Dy) , (6)
Lper_miz = L1(V(y), V(Gy (Cy, S57))) (7)

3.2 Injecting Dense Style

Let us now describe how we inject a dense style map, S%"5¢_ in our framework to produce an image. Accurate
stylization requires the removal of the existing style as an initial step [Li et al.| (2017bza)). Thus, for our dense
style to be effective, we incorporate a dense normalization that first removes the style of each region. To this
end, inspired by [Li et al.| (2019)); Park et al.| (2019)); |Zhu et al.| (2020)), we utilize a Positional Normalization
Layer [Li et al.| (2019)) followed by dense modulation. These operations are performed on the generator
activations that produce the images.

Formally, let P € RS *H#W denote the generator activations, with €’ the number of channels. We compute
the position-wise means and standard deviations of P, j,0 € R¥W . We then replace the existing style by
our dense one via the Dense Normalization (DNorm) function

FDNorm(P;aaﬁ) = ?ﬁ +a, (8)

where the arithmetic operations are performed in an element-wise manner and by replicating x4 and o C’
times to match the channel dimension of P. The tensors a, 3 € R *#W are obtained by applying 1 x 1
convolutions to the dense style S9emse,

Up to now, we have discussed how to inject dense style in an image and how to learn a meaningful dense
style representation in the training stage. However, one problem remains unaddressed in the test stage: The
dense style extracted from an image is only applicable to that same image because its spatial arrangement
corresponds to that image. In this section, we therefore propose an approach to swapping dense style maps
across two images from different domains.

Our approach is motivated by the intuition that style should be exchanged between semantically similar
regions in both images. To achieve this, we leverage an auxiliary pre-trained network that generalizes
well across various image modalities Radford et al.| (2021)). Specifically, we extract middle layer features
F,,F, € REXHW by passing the source and exemplar images through the CLIP-RN50 backbone [Radford
et al. (2021). We then compute the cosine similarity between these features, clipping the negative similarity
values to zero. We denote this matrix as Z,, € RAWXHW and use it to solve an optimal transport problem
as described in [Liu et al.|(2020); [Zhang et al.| (2020]). We construct our cost matrix C as

C=1-2%, , with 9)
Z,,, = max(cos(F,,F,),0). (10)
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We then use Sinkhorn’s algorithm |Cuturi (2013) to compute a doubly stochastic optimal transportation

matrix A, € RAWXHW " which corresponds to solving
Ay, =arg n}in(A, C)r — Mh(A) (11)
st Algw = Py AT]_HW = Pz (12)

where h(A) denotes the entropy of A and A is the entropy regularization parameter. p,, p, € RAWX1

constrain the row and column sums of A, which are chosen as uniform distributions (see the supplementary
material for other choices). Optimal Transport returns a transportation plan A, to warp Sze”se as

Sy—az =Si" Ay, (13)

so that S,_,, is semantically aligned with x instead of with y. This plan transports style across semantically
similar regions with the constraint that each region receives an equal mass. With this operation, each spatial
element S,_,,[h, w] can be seen as a weighted sum of spatial elements of S‘yie”se[h’,w’] with the weights

being proportional to the semantic similarity between F/* and FZ/“’/. Hence, we can trade the style across
semantically similar regions.

Our semantic correspondence module can also be thought of as a cross attention mechanism across two
images with the queries being F,, the keys F, and the values Szense. Note also that global style transfer,
as done in MUNIT Huang et al.| (2018), is actually a special case of this formalism where A, is a constant
uniform matrix.

4 Experiments

4.1 Evaluation Metrics

In this UEI2I work, we have three goals and we evaluate these three goals with different metrics. To
evaluate stylistic accuracy, we propose a novel metric to assess classwise stylistic distance that takes semantic
information into account. To evaluate domain fidelity and how well the translations seem to belong to
the target domain, we report the standard FID Heusel et al| (2017) between the translations and the
targets. Lastly, to evaluate content preservation, we report segmentation accuracy with a segmentation
model, DRN [Yu et al.| (2017)), trained on the target domain and tested on the translations.

4.2 Classwise Stylistic Distance

Our local style metric, Classwise Stylistic Distance (CSD), computes the stylistic distance between the
corresponding semantic classes in two images. We use VGG until its first pooling layer, denoted as V, to
extract features of size RY*#W from the input image x, exemplar y, and translation x — y. Our metric
uses binary segmentation masks M, € REXHW to compute the style similarity across corresponding classes.
Using the mask for class k, M? € R™>HW  we compute the Gram matrix Q¥ of the VGG features for class
k in image x as

(V(x) o Mp)(V(x) o My)" . (14)

1
Qf’ = kil
> My

This operation is equivalent to treating each class as a separate image and computing their Gram matrices.

We then compute the distance between the Gram matrices of corresponding classes in two images, i.e.,
k k
L(x,y,k) = 11Q; — Qyl% - (15)

Note that L(x,y, k) denotes the Maximum Mean Discrepancy (MMD) between the features of the masked
regions with a degree 2 polynomial kernel |Li et al.| (2017a)). Since this distance is computed based on VGG
features from an early layer, it implies a stylistic distance between the two images |Gatys et al.| (2016).
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Figure 3: Effect of the exemplar. Our method can change the appearance of each semantic region
differently, yet has realistic output. The colors of the road and car in the translations match the exemplar
road and car styles better than the baseline (MUNIT) [Huang et al.| (2018)) does. Content image can be seen

in Figure

However, L(x,y, k) is not very informative as its scale is arbitrary and depends on the stylistic distance
between the input image pair x,y. Hence, we propose a metric that takes x, y, and x — y at the same time
for better interpretability. We express Classwise Stylistic Distance (CSD) as

Lx—y,y k)
H(x,y,x =y, k) = WH{M’;M}H{M’;W} ; (16)

where 1y, is the indicator function and MF = > ML

Unlike L, H is more interpretable because its value would be equal to one if the translation outputs the
content image. In an ideal translation scenario, we would expect the feature distributions of the translation
and exemplar to be close to each other [Kolkin et al.| (2019). Hence, we expect small values for more successful
translations.

Note that [Zhang et al. (2020) also proposes a metric to assess classwise stylistic similarity. Instead of the L2
distance between the classwise Gram matrices, it computes the cosine distance between the average features of
corresponding regions in the exemplars and the translations. However, exemplar guided translation involves
three images; the source, the exemplar, and the translation. We believe that evaluating UEI2I should take
all three images into account because stylistic distance between the source and exemplar affects the stylistic
distance between the translation and exemplar, i.e. they are positively correlated. Our metric normalizes
the stylistic distance between the exemplar and translation by the stylistic distance between the source and
exemplar. By doing so, we obtain an interpretable value that shows which portion of the stylistic gap is
closed for each translation, regardless of the initial style gap.

4.3 Implementation Details

We evaluate our method on real-to-synthetic and synthetic-to-real translations using the GTA
(2016), Cityscapes|Cordts et al|(2016), and KITTI Geiger et al| (2012) datasets. We use the code published
by the baseline works [Huang et al.| (2018]); |[Jeong et al| (2021); [Lee et al. (2018]); [Park et al. (2020); |Zheng
@ . Images are resized to have a short side of 256. We borrow the hyperparameters from Huang
et al. but we scale the adversarial losses by half since our method receives gradients from three
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adversarial losses for one source image. We do not change the hyperparameters for the perceptual losses.
The entropy regularization term in Sinkhorn’s algorithm in Eq. is set to 0.05. During training, we crop
the center 224x224 pixels of the images. During test time, we report single scale evaluation with the same
resolution for all the metrics. We use a pre-trained DRNYu et al to report the segmentation results.

We also evaluate our method on real-to-real translation using the sunny and night splits of the INIT
(2019) dataset. We use the same setup as previous works and the results of the baselines are taken
from the respective papers.

4.4 Results
buil-  side- buil-  side-
GTA — CS car  sky oo road Avg  KITTI — GTA car  sky oo road  Avg
tation .. tation ..
ding  walk ding  walk
043 078 021 028 013 006 032  MUNIT Huang 2018) 046 017 059 039 064 053 046
041 121 027 027 012 008 039  DRITLee et al (2018 052 022 061 044 085 055 0.53
044 092 024 036 016 013 038  CUT 053 021 063 047 087 0.76 0.57

040 096 025 038 015 013 038  FSeSiniZheng ot aL[(2021) 050 0.25 076 049 088 083 0.6l
045 142 029 039 018 019 049  MGUT 20 040 021 074 047 084 055 053
0.29 0.22 0.6 0.26 0.08 0.03 0.17 DSI2I 0.29 0.08 0.42 0.34 0.59 0.23 0.32

Table 2: Stylistic Accuracy. Classwise Stylistic Distance between translation-exemplar pairs. Our trans-
lations match the classwise style of the exemplars better (lower is better).

Stylistic Accuracy. Firstly, we evaluate the stylistic distance between the exemplars and the translations
using our metric CSD. We report this metric for the most frequent six classes of GTA Richter et al.| (2016]) and
Cityscapes|Cordts et al|(2016]). The trend with other classes is similar and can be seen in our supplementary
material. As shown in Table [2] our method outperforms the baselines in the synthetic-to-real and real-to-
synthetic scenarios. Note that in the synthetic domains, stylistic diversity is overall higher because the images
are more saturated. The results for translations in the opposite directions can be seen in our supplementary
material. Our dense style and semantic correspondence modules bring style of corresponding classes closer
to each other.

GTA — CS KITTI — GTA sunny — night night — sunny
Method FID | SegAcct FID | Seg Acc?t Method CcIst ISt CISt ISt
MUNIT |Huang et al.|(2018) ~ 47.76 0.79 53.48 0.73 MUNIT (2018 1159 1278 1.036  1.051
DRIT [Lee et al.[(2018 42.93 0.70 52.12 0.62 DRIT (2018] 1.058 1.224 1.024 1.099
CUT [Park et al.| (2020] 49.82 0.65 62.30 0.59 INIT [Shen et al.| (2019 1.060 1.118 1.045 1.080
FSeSim [Zheng et al.[(2021)  48.77 0.71 63.04 0.60 DUNIT [Bhattacharjee et al.|(2020) 1.166 1.259 1.083  1.108
MGUIT [Jeong et al.|(2021)  44.36 0.65 57.00 0.57 MGUIT (2021 1176 1271 1115 1.130
DSI21 ' 42.61  0.82 4830  0.75 DSI21 1.204 1.283 1.138 1.149

Table 3: Content preservation and domain fi- Table 4: Diversity. The translations produced by
delity. Our method generates translations with high our method have higher diversity than those of the
fidelity and preserves the content. baselines.

Domain Fidelity. We then evaluate the domain fidelity of the translations using FID Heusel et al.| (2017) in
Table[II] Our method generates translations with high fidelity in the synthetic-to-real and real-to-synthetic
scenarios, which pose large domain gaps.

Content preservation. We also evaluate how well our model preserves the content via segmentation
accuracy in Table Our method preserves content better than other 12I methods.

Diversity. Although our main goal is not diversity but stylistic accuracy, having a finer-grained dense
style representation brings about diversity as a by product. We evaluate the diversity and quality of our
translations using the IS Salimans et al.|(2016) and CIS Huang et al|(2018) metrics in real-to-real translation
in Table Our results are better than those reported in the baseline papers. Even though the baselines
[Bhattacharjee et al.| (2020); \Jeong et al.|(2021); |Shen et al.| (2019) use object detection labels during training
to guide style, we outperform them without using labels. Note that we do not use semantic correspondences,
i.e., CLIP Radford et al| (2021), during training either. Hence, the performance increase is not due to
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Figure 4: Qualitative comparison with other methods. CS — GTA translations. In the first column,
our method disentangles the road from the sky and preserves the dark color for the road. In the second
column, the appearance of the road and roadlines in our translation are closest to those in the exemplar.
In the last two columns, our model preserves the content semantics better, especially for tree and building
classes.

dense semantic correspondences or the use of CLIP Radford et al| (2021) during training. Our dense style
representation leads to greater stylistic control and diversity.

Comparison to exemplar guided semantic image synthesis. Several works use semantic correspon-
dence in 12 |Zhan et al. (2021} 2022b)); |Zhang et al| (2020); Zhou et al.| (2021)); |Zhan et al.| (2022a); Jiang
to synthesize an image based on a given exemplar. As mentioned in Table our method differs
from this line of research in terms of training resources in three ways; 1) we do not require any semantic

10
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Method Test time label FID |  Styl. Dist. | Method FID | Styl. Dist. |
CoCosNetv2 GT Label 46.32 0.34 CoCosNetv2 |Zhou et al. (20‘21) 51.32 0.37
CoCosNetv2 Pred Label 51.32 0.37 MCLNet [Zhan et al.|(2022b) 50.42 0.38
008 ‘ : MATEBIT [Jiang et al.| (2023) 49.25 0.36
DSI21 No Label 45.12 0.32 DSI21 45.12 0.32

Table 5: Quantitative Comparison with Co- Table 6: Quantitative Comparison with Seman-
CosNetv2 Zhou et al.| (2021). Even though our tic Image Synthesis Methods Our method out-
method does not require any labels neither during performs the image synthesis baselines that use pre-
test nor training time, we outperform CoCosNetv2, dicted labels.

which needs labels both during training and test time.

When the ground truth labels are replaced with the

predicted labels (%95 accurate) CoCosNetv2 perfor-

mance drops drastically.

labels during training (Label Free), 2) our image translation task is not guided by ground truth translations
during training (Unpaired), and additionally, 3) our method does not rely on highly similar exemplar-target
pairs within the same domain.

To demonstrate the effectiveness of the unsupervised aspect of our method, we provide comparisons with the
exemplar based image synthesis works. To that end, we train CoCosNetv2 [Zhou et al.| (2021 on the GTA
dataset using the GTA labels. We test them with GTA images as the exemplars by giving 1) ground-truth
labels of a CS image, 2) segmentation predictions of a CS image (%95 accurate) as inputs. Our method
outperforms CoCosnetv2 |Zhou et al.| (2021) that use labels both during training and test time. Our method
also outperforms more recent works [Zhan et al.| (2022b)); |Jiang et al.| (2023) even though we do not use any
labels or pretrained segmentation models neither during training nor during test time as seen in Table [f]

User study. We conduct a user study on Amazon Mechanical Turk and ask the users which translation is
closer to the exemplar in terms of classwise style, color and appearance. We show the users one target image,
and translations (CS — GTA) from the six methods in Fig. 4} Out of 3003 votes, our method received the
most votes (1062), see Table [7] MUNIT [Huang et al| (2018) is the second best model with 860 votes. Our
method brings the style of semantically relevant regions closer to each other and is preferred by humans.

4.5 Ablation Study

Our ablations in Table [§]show that the losses on $™# and $9* encourage our model to preserve content and
generate high-quality translations. The effects of adversarial and perceptual losses are shown in Table [T4]

GTA — CS FID | Seg Acc 1 GTA — CS FID | Seg Acc T
DSI21 42.61 0.82 DSI21 42.61 0.82
DSI2I w/o S9% 43.52 0.80 DSI21 w/0 Ladus 48.30 0.82
DSI2I w/o S™® 45.64 0.78 DSI2I w/0 Lperes 42.96 0.73
DSI21 w/o S™iw g9ib 50.63 0.72 DSI2I w/0 Ladvss Lperes 50.63 0.72

Table 8: Ablation study on S™* and S9®. Our Table 9: Ablation study on adversarial and perceptual

method benefits from both. losses with S™* and S9%. Adversarial loss encourages
domain fidelity whereas perceptual loss helps preserve
the content.

5 Limitations

The main advantage of our method compared to the baselines is the dense modeling of style. Hence, our
method loses its advantage for simple scenes with fewer objects where dense style is not necessary.

11
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Source Ours CoCosNetv2

Exemplar

Figure 5: Qualitative results from Table |5, CS — GTA. CoCosNetv2 fails when Source and Exemplar
images are from different domains and have uncommon classes. The human in the 2nd row, the car in the
1st and 3rd rows and the buildings in all rows are preserved better with our method. Our translations are
more realistic and better represent the source content.

Method DSI2I MUNIT DRIT CUT FSeSim MGUIT
Ratio 35% 28% 18% 5% ™% 5%

Table 7: User study on similarity of translations with
exemplars.

6 Conclusion

We present a framework for UEI2I that densely represents style and show how such a dense style repre-
sentation can be learned and exchanged across images. This formalism allows local stylistic changes across
semantic regions, while not requiring any labels. We demonstrate the effectiveness of our dense style repre-
sentation in the synthetic-to-real, real-to-synthetic and real-to-real scenarios by showing that our translations
match the style of the exemplar better, are more diverse, better preserve the content, and have high fidelity.
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A Appendix

B Technical Details

In this section, we describe the technical details of the 12 methods that we used in our comparisons. For
each method, we adopt the default hyperparameters of the method. All the models are trained for 800K
iterations with 224x224 images. We use linear learning rate decay after 400K iterations as suggested in these
works.

For training, we resize the input images to have the shorter side of size 256 without changing the aspect
ratio and then crop a random 224x224 region. At test time, we generate translations without cropping the
images. We use the evaluation code of FSeSim [Zheng et al.| (2021)) for computing the FID. We resize the
images to have a shorter side of size 299 without changing the aspect ratio when computing the FID. We
borrow the code for IS/CIS from MUNIT [Huang et al.| (2018]). We report the exponential of IS and CIS as
done in [Huang et al.| (2018). The images are resized to have the shorter side of size 299 followed by taking
a center crop of size 299x299 as done in |Huang et al|(2018). In FID, IS and CIS computations, we sample
100 random source images and 19 target images for each source image. We generate 1900 exemplar based
translations as done in [Huang et al.| (2018).

We use two pre-trained DRN models [Yu et al|(2017)) for segmentation. We use the pre-trained models for
GTA and CS from [Hoffman et al.| (2018) and Yu et al.| (2017)), respectively. The former is a DRN-C 26 model
whereas the latter is a DRN-D 22.

C Results
buil-  side-
CS - GTA car sky vege- road Avg
tation .
ding  walk
MUNIT Huang et al.|(2018) 0.57 0.44 0.59 0.53 0.47 0.35 0.49
DRIT |Lee et al.|(2018) 0.66 0.63 053 0.56 0.51 039 0.55
CUT |Park et al.|(2020) 0.88 0.58 0.75 0.67 0.72 0.74 0.72

FSeSimZheng et al.|(2021) 0.77 068 075 0.75 0.70 0.63 0.71
MGUIT |Jeong et al.|(2021) 0.76 0.69 0.69 0.65 068 0.57 0.67
DSI2I 0.35 0.17 0.44 0.41 050 0.29 0.36

Table 10: Classwise stylistic distance

D Semantic Correspondence

D.1 Marginal Distributions in Optimal Transport

As mentioned in line 497 in the main paper, we discuss a better choice for the marginal distributions for
Sinkhorn’s Algorithm (Cuturi| (2013). The most straightforward choice for transportation masses p, and p,
is the uniform distribution. However, doing so transports equal mass from every location in the images.
This is problematic for us because we can see in Fig. [I| that when translation pairs have unbalanced classes,
the largest semantic region can dominate the style representation and lead to undesired artifacts. In our
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CS — GTA
FID | Seg Acc 1
MUNIT Huang et al.| (IZOlSD 48.91 0.79
DRIT [Lee et al.| (2018 48.18 0.72
CUT [Park et al.| (2020 65.68 0.61
FSeSim |Zheng et al.| (2021 64.81 0.74
MGUIT |Jeong et al.| (2021 55.72 0.68
DSI21 45.12 0.81

Table 11: Fidelity and diversity of the translations. Our method outperforms all others on all metrics.

Source image Exemplar image Cosine Similarity

Figure 6: Visualization of Cosine Similarity across domains. We choose a region centered at the
red point from the source image in the first column and display the cosine similarity between the chosen
source region with all the other target regions. Our correspondence module is able to relate the object parts
that are not labeled in semantic segmentation annotations which is demonstrated by the correspondence of
roadlines in the second row and wheel in the third row.

example in Fig. [I} the content image expects to receive style vectors for roads, buildings, and tree but the
exemplar image provides style for sky and road. This results in building and tree regions being stylized by
sky attributes.

To solve the unbalanced class problem, we first assume that segmentation labels M, M, € {0, 1}*#W for
K classes are available. We define MP” as the binary mask for the k-th class. The number of pixels in class k
is defined as M* := > MP"! where [ indexes the spatial dimension. We, then, define M, ,M,, € REXHW
as

M,, = MM, and M,, = MIM, (17)

where M € RE*1 ig the concatenation of MF. We propose dividing the transportation mass py of each
semantic region in y by the area of that semantic region to normalize the style based on class distribution
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of y. We also multiply the mass of each semantic region in y by the area of the same semantic class in x to
match the expectations of x. We set px to be the uniform distribution and compute

f’y = Myx © Myy (18)

where @ denotes Hadamard (element-wise) division. However, we perform correspondence only during test
time and we cannot rely on labels. Hence, we do not know the area of any of the classes. To that end, we
propose estimating M, and My, based on features F, and F,. As such, we define Z, as self-similarity of

x similarly to Z,, and estimate Myy and l\A/IygC with R, and R, respectively.
Ry, =Y Z., and Ry, = > Z!, (19)
1 1

where Z! € RFW>1 and [ indexes to the second dimension of Z. We then compute py as

Ryw

R, (20)

f)y:

which is linearly scaled to obtain a probability distribution p,. Lastly, we compute A, as to warp Sge"“
as

Sy—z = Reshape(Sze"SEAyx) . (21)
Corr Acc GTA — CS CS — GTA
Ours 0.59 0.59
Ours w/o py 0.57 0.56

Table 12: Accuracy of semantic correspondence. Our unsupervised p, increases the accuracy of correspon-
dence.

D.2 Effect of the Backbones

We use CLIP Radford et al.| (2021)) to build semantic correspondences between the two images. CLIP |Radford
et al.| (2021) is trained with image-caption pairs from the internet, to match the global representation of the
image with the language representation of the corresponding caption. Hence, it has never received pixel-level
supervision or segmentation masks.

We also experiment with a pre-trained DenseCL [Wang et al.| (2021)) model. DenseCL Wang et al.| (2021)) is
trained in a self supervised way to predict the intersection of two crops from two augmentations of the same
image. We measure the accuracy of correspondence by warping the segmentation labels of the exemplar
via My, Ay and then dividing the correctly classified pixels by the total number of pixels. We observe that
semantic correspondence with DenseCL Wang et al.| (2021)) is less accurate, hence we stick to using CLIP.

We use pre-trained weights for the ResNet50 architecture. Specifically, we extract features from the end of
the ’layer]l’ and ’layer3’ stages of ResNet50 architecture.

Corr Acc GTA - CS CS — GTA
Ours w/ CLIP Radford et al. (2021) 0.59 0.59
Ours w/ DenseCL |Wang et al.| (2021) 0.55 0.54

Table 13: Accuracy of semantic correspondence with different backbones. Our method uses CLIP |[Radford
et al.| (2021]) unless otherwise mentioned
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Exemplar Source

DSI21

w/o S9tb

W/O Sglb7 Smiw W/O Smi:c

Figure 7: Effect of S"* and S9%. The adversarial and perceptual losses on S™% and S9° constrain
the dense style representation and, thus, encourage the preservation of content, semantics, and details of
the source image. As mentioned in the main paper, the labels are used to swap style across classes in our
ablation study instead of the semantic correspondence module. (CS |Cordts et al|(2016) to GTA

et ] @016)

E Qualitative Results

E.1 Ablation Study

We show the qualitative effect of S™ and S9* in Fig. [l Without using $"# or S with perceptual and
adversarial losses, the content component encodes less information about the image, which leads to unrealistic
translations with the exemplar style. In our ablations in the supplementary, we use the segmentation
labels and exchange average style across corresponding classes, instead of using our semantic correspondence

module, in order to observe the effect of our style representation independently. We also provide ablation
for the loss terms and OT in Table [[4]

E.2 User Study

We conduct a user study on Amazon Mechanical Turk. We use GTA Richter et al| (2016) images that as
the exemplars because they have greater variety in style and appearance. Cityscapes |Cordts et al| (2016)
images are used as source images. We removed samples which do not contain road and sky. We tried to
include complex scenes with multiple objects in the exemplar so that it contains style for many classes. We
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Lyand Lgy Lmiz OT Styl Dis. | FID | Seg. 1

X X X v 0.36 59.72 0.73
X 4 v v 0.38 52.82 0.75
4 4 4 4 0.32 45.12 0.81
4 v v/ X 0.35 45.72 0.77

Table 14: Ablation studies for loss terms and OT.

form 90 source-exemplar pairs. The users are shown one exemplar image and translations from six models,
ours and five other baselines Huang et al.| (2018)); [Jeong et al.| (2021); [Lee et al.| (2018); [Park et al.| (2020);
Zheng et al.| (2021}, as shown in Fig. [8] They are asked to choose the image that looks the most similar to
the exemplar image. The question they received was: "Which image is more similar to the target image (T)?
Similar images would have closer road and sky colors and would reflect the same time of the day” We did
not provide the users with the source image S because most users were choosing the translations that were
closest to the content. We randomized the order of the choices (six methods) in our user study. We also
filtered the responses with a mock question in which users are shown the translation of one content image
to the style of six exemplars using MUNIT Huang et al| (2018]). Only one of the six exemplars is provided
in the question as the exemplar. We ask users the same question and accept the answers of those who pick
the translation that matches the exemplar displayed in the question. We received answers from 77 users and
each user answered 39 questions (+1 mock question). Out of 3003 answers, 1082 picked our method as the
best, followed by MUNIT Huang et al.| (2018) with 860 votes.

E.3 Comparison with Other Methods

We provide qualitative examples for our model in the end of our supplementary material.
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Figure 8: Screenshot from our user study The users are asked to pick the translation (from CS |Cordts
et al| (2016) to GTA Richter et al.| (2016)) that looks the most similar to the exemplar image T. We do not
provide the users with the source image S and we randomized the order of the choices in our user study.
Here, (1): DSI2I, (2): MUNIT Huang et al.[(2018), (3): DRIT |[Lee et al.| (2018]), (5): CUT [Park et al.| (2020]),
(5): FSeSim |Zheng et al.| (2021)), (6): MGUIT |Jeong et al.| (2021)
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LSeSim CUT DRIT MUNIT DSI21 Exemplar  Source

MGUIT

Figure 9: Qualitative comparison with other methods. CS — GTA. The road and sky appearance in
all the columns are closer to the exemplar road and sky with our method. In the second column, our method
is more accurate in the appearance of cars. In the second and third columns, the roadlines are yellow in our
translations, which is closer to the exemplar appearance.
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LSeSim CcuT DRIT MUNIT DSI21 Exemplar  Source

MGUIT

Figure 10: Qualitative comparison with other methods. CS — GTA. Our method brings sky and road
appearances closer to those of the exemplar in all cases. In the second column, our method preserves the
tree whereas the other methods remove it and display sky.
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LSeSim CUT DRIT MUNIT DSI21 Exemplar  Source

MGUIT

Figure 11: Qualitative comparison with other methods. CS — GTA. Our method changes the roadlines
based on the exemplar. In the first and second columns, the appearance of the roadlines is adjusted based
on the exemplar whereas the other methods either leave them as white or change them to yellow for all the
exemplars. In columns three and four, we can see that our method preserves the tree better than the other
methods do.
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Figure 12: Qualitative comparison with other methods. CS — GTA. Our method preserves the
building pixels in the first two columns. In the last two columns tree and sky are better preserved with our
method and reflect closer appearance to the exemplar.
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Figure 13: Qualitative comparison with other methods. CS — GTA. Our method yields a high output
diversity, yet preserves the trees in the first, second, and third columns. The road has the closest appearance
to the exemplar with our method in the last column.
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Figure 14: Qualitative comparison with other methods. GTA — CS. In this figure, and in the following
ones, we show translations in the opposite direction, namely from GTA to CS. Even though stylistic diversity
is less in the real image domain, the advantage of our method is still visible. Our method is better at matching
the road and sky colors. In the second column, our method does not introduce trees instead of sky, which is
common in translations of GTA images.
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Figure 15: Qualitative comparison with other methods. GTA — CS. Aside from road and sky colors,
our method is better at preserving the sky regions whereas other methods introduce trees.
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Figure 16: Qualitative comparison with other methods. GTA — CS. In all the columns, sky is flipped
to tree with other methods. Our method is better at preserving the semantics, yet has diverse outputs.
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Figure 17: Qualitative comparison with other methods. GTA — CS. Our method has much less
artifacts in sky in the first three columns. In the last column, the road has closer appearance to the
exemplar with our method.
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Figure 18: Qualitative comparison with other methods. KITTI — GTA. The road and sky appearance
in all the columns are closer to the exemplar road and sky with our method. In the second column, red
colors from the truck pollute the style of the other areas with MUNIT.
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