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Abstract

Foundation models promise to transform neuroscience and brain—computer in-
terfaces (BCIs), but their evaluation remains fragmented and often misleading.
Standard benchmarks that emphasize in-distribution accuracy fail to capture what
truly matters in dynamical domains: the ability to generalize across conditions that
differ from those seen during training. In this perspective, we propose a unified
framework for evaluating brain foundation models through the lens of dynamical
systems theory. We introduce a generalization spectrum—a hierarchy of distribu-
tion shifts spanning system identity, parameter regimes, attractor structure, initial
conditions, and observation noise—that clarifies what kinds of robustness should
be expected from models claiming to be “foundational.” We then map this spectrum
onto a brain-specific taxonomy of distribution shifts—surface (hardware and noise),
functional (state and task), and structural (subject and species)—to ground the
framework in neuroscientific practice. Building on this foundation, we outline suc-
cess criteria for brain foundation models: strong out-of-distribution generalization
with minimal data, benchmark-validated performance across diverse tasks, and
scalable power-law improvements with model and dataset size. This framework
provides a common language for machine learning, neuroscience, and clinical
research, and offers a roadmap for building evaluation cultures that distinguish
narrow task solvers from truly foundational models.

1 Introduction

Foundation models [[1]] have begun to reshape research in neuroscience and brain—computer interfaces
(BCls). By training at scale across diverse datasets [3]], they promise reusable representations that
can accelerate clinical translation, enable more robust neural decoding, and provide a scientific
lens onto brain dynamics. Yet, despite rapid progress, the evaluation of brain foundation models
(BFMs) remains fragmented and inconsistent. Most current studies rely on narrow downstream
benchmarks—such as classification accuracy on specific EEG datasets—that reward interpolation
within the training distribution. Such metrics obscure a central scientific and practical question: can
these models generalize across the distribution shifts that inevitably arise in neural systems and their
measurement?

Traditional evaluation frameworks in machine learning, which emphasize performance on held-out
i.i.d. test sets, are ill-suited for dynamical systems [8]]. Brains, like other complex dynamical systems,
exhibit multiple operating regimes, attractors, and sensitivities to initial conditions. Perturbations
in hardware, subject state, or physiology generate test conditions that differ qualitatively from
training data. Evaluating BFMs therefore requires moving beyond binary distinctions between “in-
distribution” and “out-of-distribution.” Instead, it demands a structured understanding of the spectrum
of generalization challenges that models must confront.
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In this paper, we propose a framework for evaluating BFMs that unifies theory, neuroscience practice,
and benchmarking protocols. At its core is a generalization spectrum derived from dynamical
systems theory, which organizes distribution shifts into a principled hierarchy. From highest-to-lowest
level of abstraction, they are: system identity, parameter regime, attractor structure, initial conditions,
and observational noise. We map this spectrum onto a brain-specific taxonomy of shifts—surface
(hardware and noise), functional (state and task), and structural (subject and species)—to clarify
how evaluation should reflect neuroscientific realities. Finally, we outline concrete success criteria
and benchmarking platforms that can instantiate these ideas, providing a roadmap for community
standards. Our aim is to move evaluation from an ad hoc collection of tasks toward a rigorous
scientific probe that distinguishes narrow solutions from truly foundational models.

2 The Generalization Spectrum for Dynamical Systems

At the heart of evaluating brain foundation models lies the question of how well a model generalizes
to conditions beyond those represented in its training data. In static machine learning settings,
this is often framed as a binary distinction: a model either performs well on a held-out i.i.d. test
set (“in-distribution”) or fails on qualitatively different data (“out-of-distribution”). However, this
dichotomy collapses in the context of dynamical systems such as the brain. Here, distribution shifts
occur along a continuum, ranging from mild perturbations to fundamental changes in the underlying
system. Capturing this continuum requires a framework that recognizes multiple, nested levels of
generalization.

We propose a generalization spectrum, which organizes distribution shifts in dynamical systems into
five levels of increasing granularity (see Appendix A for a more rigorous mathematical formulation):

1. System-level generalization. Models are trained on one class of dynamical system but
tested on a fundamentally different class. For example, a model trained on Lorenz dynamics
but tested on Rossler dynamics, or in neuroscience, a model trained on human EEG but
applied to rodent electrophysiology. This represents the most extreme form of generalization
[27].

2. Regime-level generalization. The governing equations remain the same, but system pa-
rameters change, potentially crossing bifurcation points that alter qualitative behavior. In
neuroscience, this corresponds to parameter shifts induced by pharmacological manipula-
tions or long-term plasticity [26].

3. Attractor-level generalization. Within a fixed system and parameter setting, the dynamics
may admit multiple attractors or operating modes. Generalization here requires predicting
trajectories that lie in a different basin of attraction than those seen during training. For
neural data, this is analogous to capturing transitions between resting state, task-engaged
state, or pathological rhythms [9} [12].

4. Initial-condition generalization. Even within a single attractor, trajectories initialized at
different states can evolve in ways unseen during training, especially in chaotic systems
where small perturbations can amplify over time. For brain data, this includes variability
across trials within the same subject and task [18}112].

5. Noise-level generalization. The system dynamics remain fixed, but the observation channel
is perturbed—for example, changes in sensor noise, hardware differences, or preprocessing
pipelines. This is the minimal but most practically pervasive form of distribution shift in
EEG and other neural recording modalities [[13}[10].

This spectrum reframes generalization as a structured hierarchy rather than a binary label. It highlights
that failures at different levels carry different implications: a model that fails at the noise level may
be unsuitable for deployment, while one that succeeds up to attractor-level generalization but not at
system-level still has strong scientific value. By explicitly situating evaluation within this hierarchy,
we can diagnose the strengths and limits of brain foundation models with greater precision, and align
expectations with both scientific and practical goals.
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3 Mapping the Spectrum to Brain-Specific Shifts

While the generalization spectrum provides a theoretical backbone grounded in dynamical systems, its
value lies in how it maps onto the practical distribution shifts encountered in neuroscience and brain—
computer interface (BCI) research. To bridge theory and practice, we introduce a complementary
taxonomy of shifts that arise in neural data: surface, functional, and structural. Each corresponds to
a subset of levels in the generalization spectrum, anchoring abstract categories of dynamical change
in concrete neuroscientific settings.

3.1 Surface Shifts: Noise and Hardware Variability

Surface shifts are the most immediate and practically pervasive. They occur when the observation
channel changes while the underlying neural dynamics remain fixed. Examples include variation
across EEG caps, differences in amplifier quality, electrode impedance changes, or the presence of
movement artifacts. Such shifts map primarily onto the noise-level and, in some cases, the initial-
condition levels of the spectrum. Success at this level indicates robustness to the day-to-day realities
of neural data collection, and is a minimal requirement for BFMs intended for deployment [17} 10, 4].

3.2 Functional Shifts: Brain State and Task Dynamics

Functional shifts reflect changes in the operating mode of the brain without altering its structural
identity. They include transitions between alertness and drowsiness, resting state and task-engaged
state, or healthy and pathological rhythms. These correspond to attractor-level and regime-level
generalization: the system identity is preserved, but parameters or initial conditions shift the brain
into qualitatively different modes of operation. Evaluating generalization at this level probes whether
a model captures the global structure of neural dynamics beyond the specific states represented in
training data [[19, [20].

3.3 Structural Shifts: Subject and Species Differences

Structural shifts are the most demanding, arising when the identity of the system itself changes.
This includes variation across subjects, recording modalities, or species. Such shifts map directly
to system-level generalization in the spectrum. For example, a model trained on human EEG that
transfers to nonhuman primate recordings must abstract beyond superficial statistics to capture
dynamical principles shared across brains. Success at this level is critical for building BFMs that
support cross-subject BCIs or comparative neuroscience [25].

3.4 Unifying View

Together, the surface—functional—structural taxonomy provides an interpretable bridge between
the abstract dynamical systems spectrum and the practical realities of brain research. It clarifies
which generalization challenges a given benchmark actually tests, and highlights where progress
is most urgently needed. Surface robustness ensures reliability, functional generalization supports
adaptability, and structural generalization enables scalability across individuals and contexts. By
situating evaluation within this taxonomy, the neuroscience and ML communities can converge on a
common language for diagnosing and comparing the capabilities of brain foundation models.

4 Success Criteria for Brain/EEG Foundation Models

If foundation models are to fulfill their promise for neuroscience and BCls, their evaluation must
go beyond narrow task accuracy. We propose three ranked criteria that define what it means for a
brain foundation model (BFM) to be truly foundational. Each criterion isolates a distinct property:
transferability, breadth, and scaling potential. Together, they offer a principled way to assess whether
models capture reusable structure in neural dynamics.
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1. Out-of-Distribution Generalization with Data Efficiency (Transferability)

The first and most fundamental requirement is that BFMs enable rapid transfer to new tasks with
minimal labeled data. This criterion probes whether a model’s internal representations encode
reusable neural structure, rather than task-specific correlations. Success means that, when faced with
an unfamiliar decoding or forecasting problem, the BFM can be adapted with orders-of-magnitude
less supervision than a model trained from scratch [27]]. Transferability directly reduces the cost of
deploying models across subjects, tasks, and clinical settings.

2. Benchmark-Validated Performance (Breadth)

The second requirement is breadth: a BFM must demonstrate consistent superiority across diverse
and standardized evaluation suites. While transferability measures how well the model adapts to new
situations, benchmark breadth measures how reliably it performs across a spectrum of existing tasks,
brain states, modalities, and noise conditions. Strong results on established baselines [21} [15} 20]
indicate that the benefits of large-scale pretraining are realized not just in isolated cases, but across
the field. Breadth ensures that a model is not a niche tool, but a robust platform others can trust and
build upon.

3. Scalable Power-Law Behavior (Scaling Potential)

The third requirement concerns the trajectory of progress: foundational models must improve
predictably as more data and parameters are added. The criterion of power-law scaling is the hallmark
of foundation models in other domains [[14}11]]. Scaling potential provides the strategic justification
for long-term investment: if gains follow a reliable scaling curve, then expanding datasets and
architectures will continue to pay off. It also offers a common yardstick to compare very different
modeling approaches, since scaling laws expose whether progress is driven by structure learning or
by brittle overfitting.

4.1 Interpreting Scaling Failures

Consider the case of building an EEG foundation model. When scaling behavior departs from
power-law trends, the implications differ depending on context:

* Plateau below threshold: Performance saturates before reaching levels required for prac-
tical applications, suggesting that EEG alone may be insufficient unless paired with other
modalities.

* Plateau above threshold: Performance saturates at levels well above application require-
ments, implying that the task may be too simple to justify large-scale foundation modeling.

* Model underperforming, data valuable: If power-law scaling exists but is weak (small
exponent), it’s possible that the data contain reusable structure, but current architectures fail
to unlock it. Investment and efforts should shift toward advancing ML techniques. Signals
of architectural underfitting can be corroborated by intrinsic-dimension estimates of the
objective landscape [16].

* No power law (noise-dominated regime): If model/data scaling yields no performance
improvements, this suggests that the signal-to-noise ratio of EEG may be too low to support
general-purpose foundation models, restricting utility to narrow, task-specific applications.

Together, these success criteria establish a rigorous checklist for BEMs. A model that demonstrates
strong OOD transfer, validates across diverse benchmarks, and scales predictably with resources can
legitimately be called foundational. Conversely, models that fail to meet these criteria should be
recognized as narrow tools, valuable in context but not general platforms for neuroscience.

5 Benchmarking Protocols and Platforms

Establishing rigorous success criteria requires equally rigorous protocols for measurement. In natural
language processing and computer vision, shared benchmarks such as GLUE [24} 23] and ImageNet
[6] accelerated progress by standardizing evaluation and making comparisons transparent. Analogous
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platforms in control and RL (e.g., OpenAl Gym [2], DeepMind Control Suite [22], D4RL [7])
demonstrate how shared tasks and standard metrics shape progress. For brain foundation models
(BFMs), we argue that the community must similarly converge on shared evaluation protocols that
probe robustness, efficiency, and scaling across the generalization spectrum. Again, taking EEG
foundation models as a case study, we offer EEG-specific diagnostics.

5.1 EEG-Specific Diagnostics

Electroencephalography provides a practical testbed for BFM evaluation due to its accessibility,
prevalence, and inherent challenges of noise and variability. We propose a suite of diagnostic tasks
that capture distinct dimensions of robustness and generalization:

1. Task-specific benchmarking: Compare foundation models to baselines trained from scratch
with matched data.

2. 00D task generalization: Evaluate zero- or few-shot transfer to tasks not included in
pretraining.

3. Scaling law validation: Plot loss against dataset and model sizes to test for power-law
behavior.

4. Embedding richness: Compare learned embeddings to raw time-series and handcrafted
EEG features using a fixed decoder.

5. Decoder vs. embedding contribution: Vary decoder complexity while freezing embeddings
to separate representational power from decoding capacity.

6. Channel degradation: Measure performance as EEG channels are progressively removed
to simulate hardware constraints.

7. Real-world signal robustness: Quantify performance under common noise sources such as
blinks, muscle artifacts, and impedance variability [13}5]].

8. Cross-hardware generalization: Evaluate transfer across medical-grade and consumer
EEG systems.

This diagnostic suite provides a multi-dimensional profile of a BFM, making it possible to identify
strengths, weaknesses, and suitability for practical use cases.

6 Outlook and Call to Action

Brain foundation models promise to accelerate discovery, translation, and application across neuro-
science and brain—computer interfaces. Yet without principled evaluation, it is impossible to know
whether these models capture reusable structure in brain dynamics or merely interpolate within narrow
datasets. We have outlined a framework for rigorous evaluation built on three pillars: a dynamical-
systems-inspired generalization spectrum, a neuroscience-grounded surface—functional—structural
taxonomy, and concrete benchmarking protocols.

Progress in this area requires not only better models but also better evaluation cultures. Community
benchmark suites—analogous to ImageNet for vision [6] and GLUE for language [24, 23[—are
needed to anchor claims of generality, ensure reproducibility, and accelerate progress through shared
goals. By organizing evaluation around structured distribution shifts, researchers can identify both
the strengths and limitations of a model and draw clearer implications for scientific and clinical use.

Looking ahead, we call for collaboration across machine learning, neuroscience, and clinical com-
munities to adopt such frameworks. Surface robustness ensures reliability, functional generalization
supports adaptability, and structural generalization enables cross-subject and cross-species transfer.
Together, these capabilities would make brain foundation models genuinely foundational.

In short, foundation models will only be as transformative as the standards by which they are judged.
By uniting theory, taxonomy, and practice, evaluation itself can become a scientific probe that
distinguishes narrow tools from models capturing the deeper principles of brain dynamics.
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A Rigorous Definitions of the Generalization Spectrum

Setup and notation. Let (X, || - ||) be a smooth n-dimensional state space and let a (possibly
parameterized) dynamical system be given by a smooth vector field fx g : X — R", where £ € S
indexes the system identity (e.g., family of governing equations) and # € © C RP collects continuous
parameters. Denote by ¢% , : X — X the associated flow (or time-¢ map for discrete time). Let
A(fs,0) be the set of attractors of fs g, and for A € A(fx ) let pa be an invariant probability
measure supported on A (e.g., an SRB measure in chaotic regimes). Let B(4) C X" denote the basin
of attraction of A.

We assume an observation channel given by a measurable map h : X — ) (deterministic sensing)
and a family of noise laws {K, (- |y)},en on Y (stochastic sensing), so that observed data Y; is
generated from

Xi = % 9(X0), Y ~ Ky (- [ h(X)).

A training configuration is a tuple
Mtrain = (27 9, Aa pP,1, h)a

where p is a distribution of initial conditions supported on B(A) (often p = u 4 for on-attractor
sampling). A test configuration Mg, is defined analogously, possibly with altered components.

A learning algorithm produces a predictor g (e.g., a forecaster, decoder, or controller). Let ¢ :
YN x Y — R>( be a bounded loss comparing a prediction (which may depend on a context window)
to the next observation. For a configuration M, define the asymptotic pathwise loss

T
. 1
L(g:M) = limsup E T;ag(yowq), )|, (M

T—00

where the expectation is over Xy ~ p and the observation noise. Under ergodicity of p4 and
stationarity of the observation channel, (I)) coincides with the p 4-expectation of a one-step loss by
Birkhoff’s theorem.

We measure generalization by comparing the same learned g across configurations via the general-
ization gap
F(ga Mtrain — Mtest) = ‘C(g7 Mtest) - £(g7 Mtrain)~

Below we define five nested families of allowable test configurations; moving outward increases
dynamical novelty.

Level 1: System generalization (new governing equations). Here the test system may belong
to a different identity class. Formally, let ¥* € S satisfy * ¢ supp(D;,; ), where D . is
the distribution over system identities used to generate training data. Allow arbitrary 6* € O,
A* € A(fs9+), p* < B(A*), while keeping the observation family (h, n) fixed (unless otherwise
specified). A Level 1 test admits any Mgy = (X%, 0%, A*, p*, n, h) with X* disjoint from the training
support. Success at Level 1 requires small I' uniformly over such Mg (€.g., in expectation over a

held-out D;.,).

Level 2: Regime generalization (parameter/bifurcation shift). Fix the identity X but shift
parameters beyond the training support. Let Oyyain, Otest C © be disjoint (up to negligible overlap).
A Level 2 test fixes ¥ and admits any Mieqy = (X, 0%, A*, p*, 1, h) with 0* € Oest, A* € A(fx 0+),
p* < B(A*). Note this explicitly includes bifurcation events: qualitative changes in A(fx ¢) as 0
crosses critical sets.

Level 3: Attractor generalization (new invariant set, same system/regime). Fix (X, ). Let
A # A* be distinct attractors of fx, g with basins B(A) and B(A*). A Level 3 test keeps (X, 6) fixed
and admits any Msy = (X, 6, A*, p*, 1, h) with p* < B(A*). This probes whether g captures
global structure beyond the specific invariant set seen in training.

Level 4: Initial-condition generalization (local within-basin shifts). Fix (2,0, A) and its basin
B(A). Let p be the training initial distribution (often 114 or a neighborhood thereof). A Level 4
fest perturbs initial conditions within B(A) while keeping all other components fixed: M;es; =
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(3,0, A, p*,n, h) with supp(p*) C B(A) and p* not absolutely continuous w.r.t. p in general (to
allow targeted shifts).

For fine-grained control, decompose local perturbations using the Oseledets splitting (or, locally,
the eigenspaces of the Jacobian J¢(z)): for x € A, let &(x) and £, (x) denote stable and unstable
subspaces. Define stable-direction tests by pushing p via maps © — x + d with § € Es(x) and small
I6]]; and unstable-direction tests analogously with § € &£,(x). Unstable-direction tests typically
induce rapid divergence in trajectory prefixes while remaining within B(A).

Level 5: Observation/noise generalization (surface/channel shift). Fix (2,60, A, p). Let the
observation channel vary within a specified family. Write the stochastic sensing as a Markov
kernel K, (- | h(z)) on Y. A Level 5 test admits any My = (2,0, A, p,n*, h*) with (h*,n*) in a
prescribed perturbation class. For example, one may constrain observation shifts by

Sup D(Kps (- [ h* (@) [| Kn (- [ () < e,

for a divergence D (e.g., total variation, Wasserstein, or KL where defined), or by structural constraints
(e.g., channel dropouts, downsampling, additive noise with altered covariance). This level formalizes
hardware changes, artifacts, and measurement noise mismatches.

Partial order and severity. The spectrum induces a natural partial order of novelty:
Level 5 < Level4 < Level3 < Level2 < Level 1,

since each outer level relaxes constraints of the inner ones. A severity index can be attached to a test
by metrizing each coordinate: (i) a discrete metric on identities ¥; (ii) a parameter metric dg (6, 6*);
(iil) an invariant-set distance dp (114, pa+) (e.g., Wasserstein on invariant measures); (iv) a local shift
size ||§|| and alignment with &, /, (e.g., via local Lyapunov exponents); (v) an observation-channel
distance sup,, D (K« (:|h*(2))||Ky (:|h(z))). These compose into a vector-valued difficulty label for
each Mot .

Evaluation primitives. Given a trained predictor g from My, »;,, We report: (i) the asymptotic loss
L(g; Mest ) at each level; (ii) the generalization gap I'(g; Miyain — Miest ); and (iii) valid prediction
time T, (the largest horizon for which mean error stays below €) to separate short-horizon tracking
from long-horizon invariant adherence. For Level 3, invariant-set fidelity can be scored by comparing
empirical measures of forecasts to 4+ (e.g., via dp) to capture attractor-shape preservation even
when pointwise errors grow.

Remarks. (1) The framework extends to random or controlled dynamical systems by letting fx 4
define a cocycle over a driving process and by augmenting the configuration with control policies; def-
initions are unchanged with flows replaced by skew-product flows. (2) In neuroscience applications,
the Surface—Functional-Structural taxonomy is captured by: Level 5 (surface: sensing/noise), Lev-
els 4-3 (functional: state/mode within fixed (X, #)), and Levels 21 (structural: parameter or identity
changes across subjects/species). (3) The dynamical viewpoint avoids i.i.d. assumptions: losses are
time averages under invariant measures, OOD is expressed as explicit changes in (2,0, A, p, h,n),
and “difficulty” is measured by dynamical distances rather than solely by sample-distribution diver-
gences.
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