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Abstract

Foundation models promise to transform neuroscience and brain–computer in-1

terfaces (BCIs), but their evaluation remains fragmented and often misleading.2

Standard benchmarks that emphasize in-distribution accuracy fail to capture what3

truly matters in dynamical domains: the ability to generalize across conditions that4

differ from those seen during training. In this perspective, we propose a unified5

framework for evaluating brain foundation models through the lens of dynamical6

systems theory. We introduce a generalization spectrum—a hierarchy of distribu-7

tion shifts spanning system identity, parameter regimes, attractor structure, initial8

conditions, and observation noise—that clarifies what kinds of robustness should9

be expected from models claiming to be “foundational.” We then map this spectrum10

onto a brain-specific taxonomy of distribution shifts—surface (hardware and noise),11

functional (state and task), and structural (subject and species)—to ground the12

framework in neuroscientific practice. Building on this foundation, we outline suc-13

cess criteria for brain foundation models: strong out-of-distribution generalization14

with minimal data, benchmark-validated performance across diverse tasks, and15

scalable power-law improvements with model and dataset size. This framework16

provides a common language for machine learning, neuroscience, and clinical17

research, and offers a roadmap for building evaluation cultures that distinguish18

narrow task solvers from truly foundational models.19

1 Introduction20

Foundation models [1] have begun to reshape research in neuroscience and brain–computer interfaces21

(BCIs). By training at scale across diverse datasets [3], they promise reusable representations that22

can accelerate clinical translation, enable more robust neural decoding, and provide a scientific23

lens onto brain dynamics. Yet, despite rapid progress, the evaluation of brain foundation models24

(BFMs) remains fragmented and inconsistent. Most current studies rely on narrow downstream25

benchmarks—such as classification accuracy on specific EEG datasets—that reward interpolation26

within the training distribution. Such metrics obscure a central scientific and practical question: can27

these models generalize across the distribution shifts that inevitably arise in neural systems and their28

measurement?29

Traditional evaluation frameworks in machine learning, which emphasize performance on held-out30

i.i.d. test sets, are ill-suited for dynamical systems [8]. Brains, like other complex dynamical systems,31

exhibit multiple operating regimes, attractors, and sensitivities to initial conditions. Perturbations32

in hardware, subject state, or physiology generate test conditions that differ qualitatively from33

training data. Evaluating BFMs therefore requires moving beyond binary distinctions between “in-34

distribution” and “out-of-distribution.” Instead, it demands a structured understanding of the spectrum35

of generalization challenges that models must confront.36
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In this paper, we propose a framework for evaluating BFMs that unifies theory, neuroscience practice,37

and benchmarking protocols. At its core is a generalization spectrum derived from dynamical38

systems theory, which organizes distribution shifts into a principled hierarchy. From highest-to-lowest39

level of abstraction, they are: system identity, parameter regime, attractor structure, initial conditions,40

and observational noise. We map this spectrum onto a brain-specific taxonomy of shifts—surface41

(hardware and noise), functional (state and task), and structural (subject and species)—to clarify42

how evaluation should reflect neuroscientific realities. Finally, we outline concrete success criteria43

and benchmarking platforms that can instantiate these ideas, providing a roadmap for community44

standards. Our aim is to move evaluation from an ad hoc collection of tasks toward a rigorous45

scientific probe that distinguishes narrow solutions from truly foundational models.46

2 The Generalization Spectrum for Dynamical Systems47

At the heart of evaluating brain foundation models lies the question of how well a model generalizes48

to conditions beyond those represented in its training data. In static machine learning settings,49

this is often framed as a binary distinction: a model either performs well on a held-out i.i.d. test50

set (“in-distribution”) or fails on qualitatively different data (“out-of-distribution”). However, this51

dichotomy collapses in the context of dynamical systems such as the brain. Here, distribution shifts52

occur along a continuum, ranging from mild perturbations to fundamental changes in the underlying53

system. Capturing this continuum requires a framework that recognizes multiple, nested levels of54

generalization.55

We propose a generalization spectrum, which organizes distribution shifts in dynamical systems into56

five levels of increasing granularity (see Appendix A for a more rigorous mathematical formulation):57

1. System-level generalization. Models are trained on one class of dynamical system but58

tested on a fundamentally different class. For example, a model trained on Lorenz dynamics59

but tested on Rössler dynamics, or in neuroscience, a model trained on human EEG but60

applied to rodent electrophysiology. This represents the most extreme form of generalization61

[27].62

2. Regime-level generalization. The governing equations remain the same, but system pa-63

rameters change, potentially crossing bifurcation points that alter qualitative behavior. In64

neuroscience, this corresponds to parameter shifts induced by pharmacological manipula-65

tions or long-term plasticity [26].66

3. Attractor-level generalization. Within a fixed system and parameter setting, the dynamics67

may admit multiple attractors or operating modes. Generalization here requires predicting68

trajectories that lie in a different basin of attraction than those seen during training. For69

neural data, this is analogous to capturing transitions between resting state, task-engaged70

state, or pathological rhythms [9, 12].71

4. Initial-condition generalization. Even within a single attractor, trajectories initialized at72

different states can evolve in ways unseen during training, especially in chaotic systems73

where small perturbations can amplify over time. For brain data, this includes variability74

across trials within the same subject and task [18, 12].75

5. Noise-level generalization. The system dynamics remain fixed, but the observation channel76

is perturbed—for example, changes in sensor noise, hardware differences, or preprocessing77

pipelines. This is the minimal but most practically pervasive form of distribution shift in78

EEG and other neural recording modalities [13, 10].79

This spectrum reframes generalization as a structured hierarchy rather than a binary label. It highlights80

that failures at different levels carry different implications: a model that fails at the noise level may81

be unsuitable for deployment, while one that succeeds up to attractor-level generalization but not at82

system-level still has strong scientific value. By explicitly situating evaluation within this hierarchy,83

we can diagnose the strengths and limits of brain foundation models with greater precision, and align84

expectations with both scientific and practical goals.85
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3 Mapping the Spectrum to Brain-Specific Shifts86

While the generalization spectrum provides a theoretical backbone grounded in dynamical systems, its87

value lies in how it maps onto the practical distribution shifts encountered in neuroscience and brain–88

computer interface (BCI) research. To bridge theory and practice, we introduce a complementary89

taxonomy of shifts that arise in neural data: surface, functional, and structural. Each corresponds to90

a subset of levels in the generalization spectrum, anchoring abstract categories of dynamical change91

in concrete neuroscientific settings.92

3.1 Surface Shifts: Noise and Hardware Variability93

Surface shifts are the most immediate and practically pervasive. They occur when the observation94

channel changes while the underlying neural dynamics remain fixed. Examples include variation95

across EEG caps, differences in amplifier quality, electrode impedance changes, or the presence of96

movement artifacts. Such shifts map primarily onto the noise-level and, in some cases, the initial-97

condition levels of the spectrum. Success at this level indicates robustness to the day-to-day realities98

of neural data collection, and is a minimal requirement for BFMs intended for deployment [17, 10, 4].99

3.2 Functional Shifts: Brain State and Task Dynamics100

Functional shifts reflect changes in the operating mode of the brain without altering its structural101

identity. They include transitions between alertness and drowsiness, resting state and task-engaged102

state, or healthy and pathological rhythms. These correspond to attractor-level and regime-level103

generalization: the system identity is preserved, but parameters or initial conditions shift the brain104

into qualitatively different modes of operation. Evaluating generalization at this level probes whether105

a model captures the global structure of neural dynamics beyond the specific states represented in106

training data [19, 20].107

3.3 Structural Shifts: Subject and Species Differences108

Structural shifts are the most demanding, arising when the identity of the system itself changes.109

This includes variation across subjects, recording modalities, or species. Such shifts map directly110

to system-level generalization in the spectrum. For example, a model trained on human EEG that111

transfers to nonhuman primate recordings must abstract beyond superficial statistics to capture112

dynamical principles shared across brains. Success at this level is critical for building BFMs that113

support cross-subject BCIs or comparative neuroscience [25].114

3.4 Unifying View115

Together, the surface–functional–structural taxonomy provides an interpretable bridge between116

the abstract dynamical systems spectrum and the practical realities of brain research. It clarifies117

which generalization challenges a given benchmark actually tests, and highlights where progress118

is most urgently needed. Surface robustness ensures reliability, functional generalization supports119

adaptability, and structural generalization enables scalability across individuals and contexts. By120

situating evaluation within this taxonomy, the neuroscience and ML communities can converge on a121

common language for diagnosing and comparing the capabilities of brain foundation models.122

4 Success Criteria for Brain/EEG Foundation Models123

If foundation models are to fulfill their promise for neuroscience and BCIs, their evaluation must124

go beyond narrow task accuracy. We propose three ranked criteria that define what it means for a125

brain foundation model (BFM) to be truly foundational. Each criterion isolates a distinct property:126

transferability, breadth, and scaling potential. Together, they offer a principled way to assess whether127

models capture reusable structure in neural dynamics.128
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1. Out-of-Distribution Generalization with Data Efficiency (Transferability)129

The first and most fundamental requirement is that BFMs enable rapid transfer to new tasks with130

minimal labeled data. This criterion probes whether a model’s internal representations encode131

reusable neural structure, rather than task-specific correlations. Success means that, when faced with132

an unfamiliar decoding or forecasting problem, the BFM can be adapted with orders-of-magnitude133

less supervision than a model trained from scratch [27]. Transferability directly reduces the cost of134

deploying models across subjects, tasks, and clinical settings.135

2. Benchmark-Validated Performance (Breadth)136

The second requirement is breadth: a BFM must demonstrate consistent superiority across diverse137

and standardized evaluation suites. While transferability measures how well the model adapts to new138

situations, benchmark breadth measures how reliably it performs across a spectrum of existing tasks,139

brain states, modalities, and noise conditions. Strong results on established baselines [21, 15, 20]140

indicate that the benefits of large-scale pretraining are realized not just in isolated cases, but across141

the field. Breadth ensures that a model is not a niche tool, but a robust platform others can trust and142

build upon.143

3. Scalable Power-Law Behavior (Scaling Potential)144

The third requirement concerns the trajectory of progress: foundational models must improve145

predictably as more data and parameters are added. The criterion of power-law scaling is the hallmark146

of foundation models in other domains [14, 11]. Scaling potential provides the strategic justification147

for long-term investment: if gains follow a reliable scaling curve, then expanding datasets and148

architectures will continue to pay off. It also offers a common yardstick to compare very different149

modeling approaches, since scaling laws expose whether progress is driven by structure learning or150

by brittle overfitting.151

4.1 Interpreting Scaling Failures152

Consider the case of building an EEG foundation model. When scaling behavior departs from153

power-law trends, the implications differ depending on context:154

• Plateau below threshold: Performance saturates before reaching levels required for prac-155

tical applications, suggesting that EEG alone may be insufficient unless paired with other156

modalities.157

• Plateau above threshold: Performance saturates at levels well above application require-158

ments, implying that the task may be too simple to justify large-scale foundation modeling.159

• Model underperforming, data valuable: If power-law scaling exists but is weak (small160

exponent), it’s possible that the data contain reusable structure, but current architectures fail161

to unlock it. Investment and efforts should shift toward advancing ML techniques. Signals162

of architectural underfitting can be corroborated by intrinsic-dimension estimates of the163

objective landscape [16].164

• No power law (noise-dominated regime): If model/data scaling yields no performance165

improvements, this suggests that the signal-to-noise ratio of EEG may be too low to support166

general-purpose foundation models, restricting utility to narrow, task-specific applications.167

Together, these success criteria establish a rigorous checklist for BFMs. A model that demonstrates168

strong OOD transfer, validates across diverse benchmarks, and scales predictably with resources can169

legitimately be called foundational. Conversely, models that fail to meet these criteria should be170

recognized as narrow tools, valuable in context but not general platforms for neuroscience.171

5 Benchmarking Protocols and Platforms172

Establishing rigorous success criteria requires equally rigorous protocols for measurement. In natural173

language processing and computer vision, shared benchmarks such as GLUE [24, 23] and ImageNet174

[6] accelerated progress by standardizing evaluation and making comparisons transparent. Analogous175
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platforms in control and RL (e.g., OpenAI Gym [2], DeepMind Control Suite [22], D4RL [7])176

demonstrate how shared tasks and standard metrics shape progress. For brain foundation models177

(BFMs), we argue that the community must similarly converge on shared evaluation protocols that178

probe robustness, efficiency, and scaling across the generalization spectrum. Again, taking EEG179

foundation models as a case study, we offer EEG-specific diagnostics.180

5.1 EEG-Specific Diagnostics181

Electroencephalography provides a practical testbed for BFM evaluation due to its accessibility,182

prevalence, and inherent challenges of noise and variability. We propose a suite of diagnostic tasks183

that capture distinct dimensions of robustness and generalization:184

1. Task-specific benchmarking: Compare foundation models to baselines trained from scratch185

with matched data.186

2. OOD task generalization: Evaluate zero- or few-shot transfer to tasks not included in187

pretraining.188

3. Scaling law validation: Plot loss against dataset and model sizes to test for power-law189

behavior.190

4. Embedding richness: Compare learned embeddings to raw time-series and handcrafted191

EEG features using a fixed decoder.192

5. Decoder vs. embedding contribution: Vary decoder complexity while freezing embeddings193

to separate representational power from decoding capacity.194

6. Channel degradation: Measure performance as EEG channels are progressively removed195

to simulate hardware constraints.196

7. Real-world signal robustness: Quantify performance under common noise sources such as197

blinks, muscle artifacts, and impedance variability [13, 5].198

8. Cross-hardware generalization: Evaluate transfer across medical-grade and consumer199

EEG systems.200

This diagnostic suite provides a multi-dimensional profile of a BFM, making it possible to identify201

strengths, weaknesses, and suitability for practical use cases.202

6 Outlook and Call to Action203

Brain foundation models promise to accelerate discovery, translation, and application across neuro-204

science and brain–computer interfaces. Yet without principled evaluation, it is impossible to know205

whether these models capture reusable structure in brain dynamics or merely interpolate within narrow206

datasets. We have outlined a framework for rigorous evaluation built on three pillars: a dynamical-207

systems-inspired generalization spectrum, a neuroscience-grounded surface–functional–structural208

taxonomy, and concrete benchmarking protocols.209

Progress in this area requires not only better models but also better evaluation cultures. Community210

benchmark suites—analogous to ImageNet for vision [6] and GLUE for language [24, 23]—are211

needed to anchor claims of generality, ensure reproducibility, and accelerate progress through shared212

goals. By organizing evaluation around structured distribution shifts, researchers can identify both213

the strengths and limitations of a model and draw clearer implications for scientific and clinical use.214

Looking ahead, we call for collaboration across machine learning, neuroscience, and clinical com-215

munities to adopt such frameworks. Surface robustness ensures reliability, functional generalization216

supports adaptability, and structural generalization enables cross-subject and cross-species transfer.217

Together, these capabilities would make brain foundation models genuinely foundational.218

In short, foundation models will only be as transformative as the standards by which they are judged.219

By uniting theory, taxonomy, and practice, evaluation itself can become a scientific probe that220

distinguishes narrow tools from models capturing the deeper principles of brain dynamics.221
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A Rigorous Definitions of the Generalization Spectrum291

Setup and notation. Let (X , ∥ · ∥) be a smooth n-dimensional state space and let a (possibly292

parameterized) dynamical system be given by a smooth vector field fΣ,θ : X → Rn, where Σ ∈ S293

indexes the system identity (e.g., family of governing equations) and θ ∈ Θ ⊂ Rp collects continuous294

parameters. Denote by ϕt
Σ,θ : X → X the associated flow (or time-t map for discrete time). Let295

A(fΣ,θ) be the set of attractors of fΣ,θ, and for A ∈ A(fΣ,θ) let µA be an invariant probability296

measure supported on A (e.g., an SRB measure in chaotic regimes). Let B(A) ⊂ X denote the basin297

of attraction of A.298

We assume an observation channel given by a measurable map h : X → Y (deterministic sensing)299

and a family of noise laws {Kη(· | y)}η∈H on Y (stochastic sensing), so that observed data Yt is300

generated from301

Xt = ϕt
Σ,θ(X0), Yt ∼ Kη(· |h(Xt)).

A training configuration is a tuple302

Mtrain = (Σ, θ, A, ρ, η, h),

where ρ is a distribution of initial conditions supported on B(A) (often ρ = µA for on-attractor303

sampling). A test configuration Mtest is defined analogously, possibly with altered components.304

A learning algorithm produces a predictor g (e.g., a forecaster, decoder, or controller). Let ℓ :305

YN ×Y → R≥0 be a bounded loss comparing a prediction (which may depend on a context window)306

to the next observation. For a configuration M, define the asymptotic pathwise loss307

L(g;M) = lim sup
T→∞

E

[
1

T

T∑
t=1

ℓ
(
g(Y0:t−1), Yt

)]
, (1)

where the expectation is over X0 ∼ ρ and the observation noise. Under ergodicity of µA and308

stationarity of the observation channel, (1) coincides with the µA-expectation of a one-step loss by309

Birkhoff’s theorem.310

We measure generalization by comparing the same learned g across configurations via the general-311

ization gap312

Γ(g;Mtrain→Mtest) = L(g;Mtest)− L(g;Mtrain).

Below we define five nested families of allowable test configurations; moving outward increases313

dynamical novelty.314

Level 1: System generalization (new governing equations). Here the test system may belong315

to a different identity class. Formally, let Σ⋆ ∈ S satisfy Σ⋆ /∈ supp(DΣ
train), where DΣ

train is316

the distribution over system identities used to generate training data. Allow arbitrary θ⋆ ∈ Θ,317

A⋆ ∈ A(fΣ⋆,θ⋆), ρ⋆ ≪ B(A⋆), while keeping the observation family (h, η) fixed (unless otherwise318

specified). A Level 1 test admits any Mtest = (Σ⋆, θ⋆, A⋆, ρ⋆, η, h) with Σ⋆ disjoint from the training319

support. Success at Level 1 requires small Γ uniformly over such Mtest (e.g., in expectation over a320

held-out DΣ
test).321

Level 2: Regime generalization (parameter/bifurcation shift). Fix the identity Σ but shift322

parameters beyond the training support. Let Θtrain,Θtest ⊂ Θ be disjoint (up to negligible overlap).323

A Level 2 test fixes Σ and admits any Mtest = (Σ, θ⋆, A⋆, ρ⋆, η, h) with θ⋆ ∈ Θtest, A⋆ ∈ A(fΣ,θ⋆),324

ρ⋆ ≪ B(A⋆). Note this explicitly includes bifurcation events: qualitative changes in A(fΣ,θ) as θ325

crosses critical sets.326

Level 3: Attractor generalization (new invariant set, same system/regime). Fix (Σ, θ). Let327

A ̸= A⋆ be distinct attractors of fΣ,θ with basins B(A) and B(A⋆). A Level 3 test keeps (Σ, θ) fixed328

and admits any Mtest = (Σ, θ, A⋆, ρ⋆, η, h) with ρ⋆ ≪ B(A⋆). This probes whether g captures329

global structure beyond the specific invariant set seen in training.330

Level 4: Initial-condition generalization (local within-basin shifts). Fix (Σ, θ, A) and its basin331

B(A). Let ρ be the training initial distribution (often µA or a neighborhood thereof). A Level 4332

test perturbs initial conditions within B(A) while keeping all other components fixed: Mtest =333
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(Σ, θ, A, ρ⋆, η, h) with supp(ρ⋆) ⊂ B(A) and ρ⋆ not absolutely continuous w.r.t. ρ in general (to334

allow targeted shifts).335

For fine-grained control, decompose local perturbations using the Oseledets splitting (or, locally,336

the eigenspaces of the Jacobian Jf (x)): for x ∈ A, let Es(x) and Eu(x) denote stable and unstable337

subspaces. Define stable-direction tests by pushing ρ via maps x 7→ x+ δ with δ ∈ Es(x) and small338

∥δ∥; and unstable-direction tests analogously with δ ∈ Eu(x). Unstable-direction tests typically339

induce rapid divergence in trajectory prefixes while remaining within B(A).340

Level 5: Observation/noise generalization (surface/channel shift). Fix (Σ, θ, A, ρ). Let the341

observation channel vary within a specified family. Write the stochastic sensing as a Markov342

kernel Kη(· |h(x)) on Y . A Level 5 test admits any Mtest = (Σ, θ, A, ρ, η⋆, h⋆) with (h⋆, η⋆) in a343

prescribed perturbation class. For example, one may constrain observation shifts by344

sup
x∈X

D
(
Kη⋆(· |h⋆(x)) ∥Kη(· |h(x))

)
≤ ε,

for a divergence D (e.g., total variation, Wasserstein, or KL where defined), or by structural constraints345

(e.g., channel dropouts, downsampling, additive noise with altered covariance). This level formalizes346

hardware changes, artifacts, and measurement noise mismatches.347

Partial order and severity. The spectrum induces a natural partial order of novelty:348

Level 5 ⪯ Level 4 ⪯ Level 3 ⪯ Level 2 ⪯ Level 1,

since each outer level relaxes constraints of the inner ones. A severity index can be attached to a test349

by metrizing each coordinate: (i) a discrete metric on identities Σ; (ii) a parameter metric dΘ(θ, θ
⋆);350

(iii) an invariant-set distance dP(µA, µA⋆) (e.g., Wasserstein on invariant measures); (iv) a local shift351

size ∥δ∥ and alignment with Eu/s (e.g., via local Lyapunov exponents); (v) an observation-channel352

distance supx D(Kη⋆(·|h⋆(x))∥Kη(·|h(x))). These compose into a vector-valued difficulty label for353

each Mtest.354

Evaluation primitives. Given a trained predictor g from Mtrain, we report: (i) the asymptotic loss355

L(g;Mtest) at each level; (ii) the generalization gap Γ(g;Mtrain→Mtest); and (iii) valid prediction356

time τϵ (the largest horizon for which mean error stays below ϵ) to separate short-horizon tracking357

from long-horizon invariant adherence. For Level 3, invariant-set fidelity can be scored by comparing358

empirical measures of forecasts to µA⋆ (e.g., via dP ) to capture attractor-shape preservation even359

when pointwise errors grow.360

Remarks. (1) The framework extends to random or controlled dynamical systems by letting fΣ,θ361

define a cocycle over a driving process and by augmenting the configuration with control policies; def-362

initions are unchanged with flows replaced by skew-product flows. (2) In neuroscience applications,363

the Surface–Functional–Structural taxonomy is captured by: Level 5 (surface: sensing/noise), Lev-364

els 4–3 (functional: state/mode within fixed (Σ, θ)), and Levels 2–1 (structural: parameter or identity365

changes across subjects/species). (3) The dynamical viewpoint avoids i.i.d. assumptions: losses are366

time averages under invariant measures, OOD is expressed as explicit changes in (Σ, θ, A, ρ, h, η),367

and “difficulty” is measured by dynamical distances rather than solely by sample-distribution diver-368

gences.369
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