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Combining AI-based Biomarkers for PDAC Survival
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Abstract

Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers due to
late detection and limited treatment response. This study investigates the prognostic
value of combining multiple AI-based image biomarkers—tumor-stroma ratio (TSR), mi-
tosis density, stromal cell density (via HoVer-Net), tumor-to-tissue ratio from histopatho-
logical whole-slide images (WSIs) for survival prediction in resected PDAC patients. A
multi-tissue segmentation model was developed to generate tissue masks for downstream
biomarker extraction. Using logistic and Cox regression models, both univariate and mul-
tivariate survival analyses were performed across four datasets. Results show that while
combining biomarkers did not outperform single-biomarker models (notably TSR), mitosis
density showed consistent statistical significance and may serve as a valuable prognostic
feature.

Keywords: Segmentation, Deep learning, Pancreatic ductal adenocarcinoma, AI-based
biomarkers, survival analysis

1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with the lowest
5-year survival rate among major cancers (Siegel et al. (2023)). Its poor prognosis is largely
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due to late-stage diagnosis and limited treatment efficacy (Latenstein et al. (2020)). Ad-
vances in digital pathology and artificial intelligence (AI) have enabled the extraction of
image-based biomarkers directly from histopathological whole-slide images (WSIs), offering
new potential for prognostication.

Several individual biomarkers, such as the tumor-stroma ratio (TSR) (Li et al. (2020);
Vendittelli et al. (2024)), tumor-to-tissue ratio (TTR), mitotic figure density (Tellez et al.
(2018)), and stromal cell density Graham et al. (2019); Sántha et al. (2021), have demon-
strated prognostic value in isolation. However, the combined impact of these features on
overall survival in PDAC patients remains unclear. While multiple-instance learning (MIL)
and other weakly supervised deep learning methods have recently become the dominant
paradigm for WSI-based prognosis prediction, these end-to-end models typically operate as
“black boxes” and provide limited insight into the morphological features driving their pre-
dictions. In contrast, this study deliberately adopts an interpretable, multi-step approach
that quantifies human-understandable image biomarkers, allowing for biological interpreta-
tion and clinical validation. Specifically, we investigate whether combining AI-quantified
biomarkers—tumor-stroma ratio (TSR), tumor-to-tissue ratio (TTR), mitotic cell density,
and stromal cell density—can improve survival prediction in PDAC. These biomarkers were
extracted from WSIs using dedicated deep learning pipelines for tissue segmentation, nu-
cleus classification, and mitosis detection, and their prognostic value was evaluated through
univariate and multivariate survival analyses using both logistic and Cox regression models.

2 Data

Table 1: Overview of the datasets used in this study.

Source Patients Slides

Radboudumc 122 2500
TCGA 161 187
CPTAC 128 128

pain PanGenEU 75 75

Four independent datasets were considered in this study (Table 1): Radboudumc,
TCGA-PAAD, CPTAC-PDA, and PanGenEU. Data were anonymized, and informed con-
sent was waived where applicable. For patients with multiple slides, the most representative
slide, typically the one containing the most amount of tumor, was selected.

We collected clinical variables including vital status and survival time (days between
diagnosis and death or last follow-up).

3 Methods

Our pipeline consists of: (1) tumor microenvironment segmentation, (2) nuclear segmenta-
tion/classification, (3) mitosis detection, and (4) image-based biomarker extraction.

Tumor microenvironment segmentation A U-Net Ronneberger et al. (2015) was
trained to perform multi-tissue segmentation of H&E-stained pancreatic histopathology
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slides. The network was trained on a multicentric private dataset comprising 162 resected
PDAC cases. Patches of size 512 × 512 pixels were extracted at a resolution of 1.0 mi-
cron/pixel. Model training was conducted using five-fold cross-validation, ensuring that
cases were split at the patient level to prevent data leakage across folds.

Ground-truth annotations were derived in a semi-automated fashion. An epithelium
segmentation network previously trained on PDAC cases Vendittelli et al. (2024) was used
to generate annotations for both tumor and healthy epithelium. The remaining tissue
components, stroma, fat, mucus, muscle, and granulocytes, were annotated using a multi-
tissue segmentation model pretrained on colorectal cancer tissue Bokhorst et al. (2021).

Based on the network’s predictions, we defined the tumor bulk as a composite region
encompassing both the tumor epithelium and the surrounding stroma. This region was
essential for the computation of all downstream biomarkers, including TSR, mitosis density,
and TTR. To approximate the spatial extent of the tumor bulk, we generated a convex hull
around the segmented tumor epithelium using the alphahull algorithm, with an empirically
determined alpha parameter of 0.038.

Segmentation evaluation: Model performance was assessed using the Dice coefficient.
On internal five-fold cross-validation, the network achieved the following median Dice scores
(interquartile range, IQR): 0.67 (0.19) for tumor epithelium, 0.58 (0.40) for healthy epithe-
lium, 0.85 (0.08) for stroma, 0.90 (0.15) for fat, 0.61 (0.17) for mucus, 0.67 (0.16) for muscle,
and 0.80 (0.18) for granulocytes. The convex-hull-based tumor bulk segmentation achieved
a median Dice score of 0.7 (with a standard deviation of 0.27).

To assess generalization, the model was evaluated on a subset of 33 TCGA-PAAD cases
that an expert pathologist independently annotated. On this external test set, the model
achieved Dice scores of 0.72 (0.17) for tumor epithelium and 0.81 (0.20) for tumor bulk,
confirming good generalization performances.

A visual example of multi-tissue segmentation is shown in Figure 2.

Table 2: Segmentation performance on TCGA-PAAD dataset.

Structure Dice (External)

Tumor epithelium 0.72
Tumor bulk 0.81

Nuclear Segmentation and Classification Inside the segmented tumor, HoVer-Net
(Graham et al. (2019)) was used to segment and classify nuclei into epithelial, inflammatory,
stromal, or miscellaneous. The model was applied on 256× 256 pixel tumor patches at 40×
magnification.

Mitotic Figure Detection A mitosis detector (Tellez et al. (2018)) was applied to the
slides and then masked with the tumor bulk region. We computed mitotic density as the
number of mitoses per mm2 of tumor area, retaining only high-confidence predictions. A
visual example of the mitosis algorithm can be seen in Figure 3.
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Figure 1: Example of Multi tissue segmentation output and convex hull. First is the output
of the network, middle is the ground truth, and right represents the output of the alpha
hull algorithm. Key components are tumor epithelium (in dark) and stroma (in blue).

Figure 2: Overview of Hovernet as described by the authors.The different colors represent
different types of nuclei.

3.1 Image-Based Biomarkers

From the output of the tumor microenvironment segmentation network, a tumor bulk region
and its internal tissue structures were derived, as described in the section above. Based on
these segmentations, four independent biomarkers were extracted: the TSR, defined as the
ratio of tumor epithelium to surrounding stroma; the mitosis density, calculated as the
number of mitotic figures per mm2 of tumor bulk area; the nuclear features, quantified as
the cell-type-specific nuclear density (cells per mm2) within the tumor region; and the TTR,
defined as the ratio of tumor bulk area to total tissue area.

4 Results

A correlation analysis was performed between these features and overall survival in both uni-
variate and multivariate settings. Additionally, when multivariate analysis was performed,
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Figure 3: Example of mitosis algorithm on a TCGA-PAAD case.The detected mitotic figures
are first computed inside the slide, then masked with the tumor bulk mask.

several clinical features were also taken into account. Selected clinical features included
age and gender. As a clinical endpoint, vital status and the days to survival were also
considered.

4.1 Univariate Survival Analysis

Table 3: Univariate Cox regression (n=368). Bold p-values are significant (p < 0.05).
*Normalized features.

Biomarker C-index HR (95% CI) p-value

TTR 0.54 1.79 (1.14–2.79) 0.01
Mitosis density* 0.51 1.14 (1.00–1.31) 0.05
Stromal cell density* 0.52 0.96 (0.84–1.08) 0.47

The univariate Cox regression analysis (Table 3) identified Tumor-to-Tissue Ratio (TTR)
as a significant prognostic factor for overall survival (HR=1.79, 95% CI: 1.14–2.79, p=0.01),
with a concordance index (C-index) of 0.54. This suggests that higher TTR values are asso-
ciated with an increased hazard of death, although the relatively modest C-index indicates
limited discriminative ability when used in isolation. Mitosis density also reached statisti-
cal significance at the threshold level (p=0.05), with an HR of 1.14 (95% CI: 1.00–1.31),
indicating a weak yet potentially relevant association with poorer survival. In contrast, stro-
mal cell density did not show a significant relationship with survival (HR = 0.96, p=0.47),
and its C-index (0.52) was close to random prediction. The univariate logistic regression
analysis (Table 4) examined the predictive performance of individual biomarkers for binary
survival outcomes at 6, 12, and 18 months. TSR consistently showed the highest AUC
values across all time points, peaking at 12 months (AUC =0.63 ± 0.06), suggesting mod-
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Table 4: Univariate logistic regression (5-fold CV), AUC ± std. *Normalized features.

Biomarker 6 mo 12 mo 18 mo

TTR 0.57 ± 0.12 0.56 ± 0.04 0.54 ± 0.05
TSR 0.61 ± 0.11 0.63 ± 0.06 0.57 ± 0.07
Mitosis density* 0.54 ± 0.06 0.52 ± 0.08 0.53 ± 0.07
Stromal cell density* 0.61 ± 0.06 0.51 ± 0.07 0.56 ± 0.07

erate discriminative ability. TTR achieved slightly lower AUCs, ranging from 0.54 ± 0.05
to 0.57 ± 0.12, consistent with its limited performance observed in the Cox analysis. Mi-
tosis density and stromal cell density exhibited poor discrimination (AUCs generally close
to 0.5), indicating limited utility as standalone classifiers of short-term survival. Overall,
these findings underscore the limited predictive power of individual biomarkers and suggest
that multivariate or integrative approaches may be required to achieve clinically meaningful
prognostic performance.

4.2 Multivariate Survival Analysis

Table 5: Multivariate Cox regression with/without clinical features (n=368).

Model HR (95% CI) p-value C-index

TTR 1.84 (1.08–2.95) 0.01
0.54

Mitosis density 1.18 (1.03–1.35) 0.02

TTR 1.83 (1.14–2.94) 0.01

0.55
Mitosis density 1.17 (1.03–1.34) 0.02
Age 1.94 (0.56–6.65) 0.29
Gender 0.97 (0.75–1.24) 0.79

The multivariate Cox regression models (Table 5) assessed the independent prognostic
value of TTR and mitosis density, both with and without the inclusion of clinical covariates.
The stromal cell density biomarker was not included in the multivariate analysis as its HR
was very close to 1, representing poor correlation with survival. In the model excluding
clinical variables, both TTR (HR = 1.84, 95% CI: 1.08–2.95, p=0.01) and mitosis density
(HR = 1.18, 95% CI: 1.03–1.35, p=0.02) were significantly associated with overall survival.
When adjusted for clinical factors, the prognostic significance of both biomarkers was re-
tained, with nearly identical hazard ratios and slightly attenuated p-values (TTR: HR =
1.83, p=0.01; mitosis density: HR = 1.17, p=0.02).

The addition of clinical features only marginally improved the model’s discriminative
performance, increasing the C-index from 0.54 to 0.55. This indicates that while TTR and
mitosis density are statistically significant independent predictors of survival, their overall
contribution to risk stratification remains modest when considered within a multivariate
framework.
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(a) Logistic regression without clinical variable
(n=368)

(b) Logistic regression with clinical variable
(n=368)

Table 6: AUC (95% CI) for training set.

Model 6 mo 12 mo 18 mo

With clinical 0.55 ± 0.16 0.62 ± 0.06 0.57 ± 0.06
Without clinical 0.54 ± 0.18 0.62 ± 0.06 0.59 ± 0.06

4.3 External Validation

The final models were validated on an independent test set from the PanGenEU cohort
(n=74). Logistic regression models trained on the combined training dataset were evaluated
at three clinically relevant timepoints. AUC scores were calculated for each model, with
and without clinical covariates.

Table 7: AUC (95% CI) for external test set (PanGenEU).

Model 6 mo 12 mo 18 mo

With clinical 0.58 (0.39–0.78) 0.46 (0.31–0.61) 0.43 (0.30–0.56)
Without clinical 0.58 (0.37–0.81) 0.43 (0.29–0.57) 0.43 (0.29–0.56)

External evaluation showed moderate predictive performance for short-term survival,
while the ability to discriminate longer-term outcomes was limited, with AUC values near-
ing baseline and no statistically significant differences observed. Nonetheless, mitotic den-
sity and TTR remained the most consistent predictors across datasets, highlighting their
potential relevance as generalizable image-based biomarkers for PDAC prognosis.

5 Discussion and Conclusion

This study evaluated the prognostic value of AI-derived image biomarkers from WSIs in
PDAC. Among all features, mitotic density and TTR were the most consistent and statis-
tically significant predictors of survival. The linear models used here offer interpretability,
although their predictive performance remained modest.

7



Hensens, Vendittelli

A key prerequisite for biomarker reliability is accurate tissue segmentation. Our multi-
tissue segmentation model achieved solid performance on a held-out test set, with Dice
scores of 0.79 for tumor epithelium and 0.81 for tumor bulk. These results support the
robustness of our pipeline and suggest that the extracted features are based on reliable
spatial annotations. The visual segmentation results further confirm the network’s ability
to delineate complex tumor microenvironments.

Although combining features in multivariate models did not outperform single-biomarker
models, integrated models may still be useful for interpretability and risk stratification.
Notably, adding clinical features provided only marginal gains in discriminative power,
highlighting the independent prognostic relevance of mitosis density and TTR. The modest
predictive performance observed in this work reflects both the biological complexity of
PDAC and potential technical limitations. In particular domain shifts between cohorts
likely contributed to reduced generalization in the external validation.

Limitations of this study include moderate cohort sizes, class imbalance, and reliance on
linear models. Additionally, external validation showed reduced generalization, likely due
to cohort heterogeneity and domain shifts. Future work should explore non-linear modeling
approaches (e.g., deep survival networks), spatial modeling of biomarker patterns, and the
integration of molecular or genomic data with image-based features. Future studies would
include direct comparisons with MIL-based survival models would also help contextualize
the trade-off between interpretability and raw predictive performance.

In conclusion, mitotic density and TTR are promising, generalizable biomarkers for
PDAC prognosis. Our findings support the integration of AI-based segmentation and feature
extraction pipelines into computational pathology frameworks for survival modeling and
clinical research.
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