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Abstract

Recently, sharpness-aware minimization (SAM) has emerged as a promising method to im-
prove generalization by minimizing sharpness, which is known to correlate well with gen-
eralization ability. Since the original proposal of SAM by Foret et al. (2021), many vari-
ants of SAM have been proposed to improve its accuracy and efficiency, but comparisons
have mainly been restricted to the i.i.d. setting. In this paper we study SAM for out-of-
distribution (OOD) generalization. First, we perform a comprehensive comparison of eight
SAM variants on zero-shot OOD generalization, finding that the original SAM outperforms
the Adam baseline by 4.76% and the strongest SAM variants outperform the Adam baseline
by 8.01% on average. We then provide an OOD generalization bound in terms of sharpness
for this setting. Next, we extend our study of SAM to the related setting of gradual do-
main adaptation (GDA), another form of OOD generalization where intermediate domains
are constructed between the source and target domains, and iterative self-training is done
on intermediate domains, to improve the overall target domain error. In this setting, our
experimental results demonstrate that the original SAM outperforms the baseline of Adam
on each of the experimental datasets by 0.82% on average and the strongest SAM variants
outperform Adam by 1.52% on average. We then provide a generalization bound for SAM
in the GDA setting. Asymptotically, this generalization bound is no better than the one for
self-training in the literature of GDA. This highlights a further disconnection between the
theoretical justification for SAM versus its empirical performance, as noted in Wen et al.
(2023), which found that low sharpness alone does not account for all of SAM’s generaliza-
tion benefits. For future work, we provide several potential avenues for obtaining a tighter
analysis for SAM in the OOD setting. In summary, our theoretical results provide a solid
starting point for analyzing SAM in OOD settings, and our experimental results demon-
strate that SAM can be applied to OOD settings to significantly improve accuracy, and that
newer variants of SAM can be leveraged for further improvements in accuracy.

1 Introduction

A promising new optimization algorithm called Sharpness-Aware Minimization (SAM) exploits a known
relationship between the “flatness” of a minimum and its i.i.d. generalization (Jiang et al., 2020; Dinh et al.,
2017; Keskar et al., 2017; Hochreiter & Schmidhuber, 1997), proposing a robust optimization procedure
that leads to significant performance gains in the i.i.d. setting (Foret et al., 2021). However, SAM remains
understudied in the out-of-distribution (OOD) generalization setting, which is central topic of interest at
this time, both theoretically and empirically (Kumar et al., 2020; Cha et al., 2021; Arjovsky et al., 2020;
He et al., 2024; Ye et al., 2021; Zhao et al., 2022; 2019; Ben-David et al., 2010). Furthermore, a number
of SAM variants have been proposed to improve the accuracy and efficiency of the original SAM algorithm,
with comparisons mainly restricted to the i.i.d. setting (Kim et al., 2022; Li et al., 2024; Du et al., 2022;
Kwon et al., 2021; Mueller et al., 2024; Liu et al., 2022; Ni et al., 2022).

Inspired by the practical success of SAM and its variants in the i.i.d. setting and interested in its potential
to enhance OOD generalization, we perform an empirical and theoretical study of OOD generalization with
SAM and its variants. Our work makes the following contributions:
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1. In Section 2, we provide an introduction to eight SAM variants, including the original SAM. Then,
in Section 3, we perform a comprehensive comparison of the zero-shot OOD generalization capabil-
ities for these eight SAM variants. We find over four empirical benchmarks that SAM outperforms
the Adam baseline by 4.76% on average and that strongest SAM variants outperform the Adam
baseline by 8.01%. This suggests that SAM can be used to improve zero-shot OOD generalization,
and that the strongest SAM variants can be used for an even further improvement.

2. To understand these performance gains, in Section 3.3 we provide a theoretical analysis of SAM under
the distribution shift setting, with an OOD generalization bound based on sharpness in Lemma 1
derived in Section 3.3.

3. Next, in Section 4.2, we extend the setting considered above to gradual domain adaptation, where
we have a sequence of unlabeled intermediate domains leading from the source to target domain.
Our experiments across all four benchmarks demonstrate that SAM outperforms the Adam base-
line by 0.82% on average and the strongest SAM variants achieve an even greater 1.52% average
improvement over Adam, suggesting that SAM and the strongest SAM variants can be used for
consistent performance gains in GDA as well.

4. Finally, in Section 4.4, we provide a bound extending Lemma 1 to the GDA setting and compare
it to the prior bound in Wang et al. (2022) in Section 4.5. Although it is asymptotically the same
as prior work in the GDA literature (Wang et al., 2022), we present several potential avenues for
tightening this bound in future work in Section 4.6.

2 Preliminaries

Classifier and Loss We consider a parametric model family Θ ⊂ Rk with each model defined with
respect to a specific choice of parameter θ ∈ Θ. The classifier induced from a model θ is denoted fθ : X → Y.
We consider bounded loss functions ℓ : Y × X × Θ → [0, 1]1 and define the population and empirical
risk with respect to (w.r.t.) parameters θ ∈ Θ as E(θ) := E(x,y)∼µ[ℓ(y, x, θ)], for some µ ∈ ∆(X × Y) and
Ê(θ) := 1

n

∑n
i=1 ℓ(yi, xi, θ), respectively. We further define the sharpness of θ and the corresponding ρ-robust

empirical loss following the standard definitions given in Foret et al. (2021).
Definition 1 (ρ-Robust Risk). The ρ-robust risk of parameters θ ∈ Θ is the maximum loss obtained by
perturbing θ in the worst possible direction with ℓ2-norm2 bounded by ρ:

Eρ(θ) := max
β:∥β∥2≤ρ

E(θ + β) (1)

Similarly, the empirical version of the ρ-robust risk is denoted Êρ(θ).
Definition 2 (ρ-Sharpness). The ρ-sharpness3 of parameters θ ∈ Θ measures how much the loss increases
when we perturb them in the worst possible direction with ℓ2-norm bounded by ρ:

Sρ(θ) := Eρ(θ)− E(θ)

Sharpness-Aware Minimization Introduced by Foret et al. (2021), sharpness-aware minimization
(SAM) proposes minimizing the ρ-robust empirical loss rather than the standard loss. Thus, SAM’s ob-
jective is to find a minimizer θ⋆ of the form:

θ⋆ = argminθ∈Θ max
β:∥β∥2≤ρ

E(θ + β) (2)

To solve the inner maximization argmaxβ:∥β∥2≤ρE(θ + β), two approximations are made:
1Our results can be easily extended to the case where the loss is bounded in range [0, M ] for M > 0 instead.
2Our results can be extended to any ℓp-norm, but we have chosen ℓ2 since Foret et al. (2021) found ℓ2 sharpness to lead to

the best results.
3This should not be confused with m-sharpness from Foret et al. (2021), where m is the batch size used for training.
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Algorithm 1 Sharpness-Aware Minimization (SAM) with Variant-Specific Oracles
1: Inputs: Training set S = {(xi, yi)}n

i=1, Model parameter space Θ ⊂ Rk, Classifier fθ : X → Y, Loss
function ℓ : Y × X × Θ → [0, 1], Learning rate η > 0, Perturbation radius ρ > 0, Batch size b, Variant-
Specific gradient oracle g, Variant-Specific perturbation oracle p, Variant-Specific descent step oracle
a

2: Outputs: Optimized model parameters θt

3: Initialize θ0, t← 0
4: while not converged do
5: Sample mini-batch B = {(x1, y1), . . . , (xb, yb)}
6: Compute the gradient ∇θÊ(θ) using the variant-specific gradient oracle:

∇θÊ(θ) = g(B, θ)

7: Compute the perturbation β⋆(θ) using the variant-specific perturbation oracle:

β⋆(θ) = p(∇θÊ(θ), ρ)

8: Use the variant-specific descent step oracle to update the parameters according to

θt+1 ← θt − η · a(B, θ, β⋆(θt))

9: Increment t← t + 1
10: end while
11: return θt

1. A first-order Taylor expansion of the loss is used to approximate this max:

arg max
β:∥β∥2≤ρ

E(θ + β)
(i)
≈ arg max

β:∥β∥2≤ρ

E(θ) + β⊤∇θE(θ) (3)

= arg max
β:∥β∥2≤ρ

β⊤∇θE(θ) (4)

= ρ∇θE(θ)
∥∇θE(θ)∥ =: β⋆(θ) (5)

2. Then, the SAM gradient drops a second-order term arising from chain rule:

∇θE (θ + β⋆(θ)) = d(θ + β⋆(θ))
dθ

∇θE(θ)|θ+β⋆(θ) (6)

= ∇θE(θ)|θ+β⋆(θ)+
dβ⋆(θ)

dθ
∇θE(θ)|θ+β⋆(θ) (7)

(ii)
≈ ∇θE (θ) |θ+β⋆(θ) (8)

2.1 Background on SAM Variants

In Algorithm 1, we provide flexible algorithmic psuedocode for SAM with variant-specific oracles to account
for the fact that the SAM variants compute the gradients, perturbations, and final descent steps in different
ways. Below, we provide a brief explanation of the modifications each of the SAM variants makes to the
gradients, perturbations, and final descent steps.

1. SAM (Foret et al., 2021): This is the original version of SAM, which uses the first-order approxi-
mation for the perturbation, as detailed below.

βSAM(θ) := ρ∇θE(θ)
∥∇θE(θ)∥ (9)
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2. Adaptive SAM (ASAM) (Kwon et al., 2021): This is a version of SAM that uses a scale-invariant
version of the first-order approximation:

βASAM(θ) := ρ
T 2

θ∇θE(θ)
∥Tθ∇θE(θ)∥ (10)

The term Tθ refers to a normalization operator adaptive to each parameter’s scale. Following the
original paper and implementation provided by Samuel (2020), we set Tθ to be a diagonal matrix
with T i

θ = |θi| for weight parameters and T i
θ = 1 for bias parameters for i ∈ [k]. Like SAM, Adaptive

SAM has one hyperparameter ρ.

3. FisherSAM (Kim et al., 2022): FisherSAM computes the perturbation in the following way:

βFisherSAM(θ) := ρ
f(θ)−1∇θE(θ)√

∇θE(θ)f(θ)−1∇θE(θ)
(11)

This can be thought of as a special case of ASAM (Kwon et al., 2021) with the normalization
operator Tθ set to be a diagonal matrix with entires T i

θ = 1/
√

1 + ηf(θ)i, where, for i ∈ [k],
f(θ)i := (∂θi

Ê(θ))2 is the square of the batch gradient sum, a common and efficient approximation
of the Fisher information matrix (Bottou et al., 2018; Khan et al., 2018). FisherSAM has two
hyperparameters: the perturbation radius ρ and the fisher coefficient η.

4. K-SAM (Ni et al., 2022): This is a variant of SAM that only uses the top K data samples with
the highest loss for both its gradient evaluations: both the perturbation gradient and the descent
step gradient. K-SAM has two hyperparameters: the perturbation radius ρ and the number of data
points to use for gradient evaluations K.

5. LookSAM (Liu et al., 2022): This is a variant of SAM that only computes the gradient at the
perturbed location every L steps. For all time steps T such that T%L = 0 it performs the standard
SAM update, i.e., θ′ ← θ − η∇θE(θ)|θ+β⋆ , and computes the following:

gv := ∇θE(θ)|θ+β⋆ −∇θE(θ)
(
⟨∇θE(θ),∇θE(θ)|θ+β⋆⟩

∥∇θE(θ)∥2

)
(12)

For all other time steps T such that T%L ̸= 0, LookSAM calculates

gs := ∇θE(θ) + α
∥∇θE(θ)∥
∥gv∥

gv (13)

and uses gs for the descent step, i.e., θ′ ← θ − ηgs. The idea behind Equation (12) is to remove
the component of the descent gradient ∇θE(θ)|θ+β⋆ lying along the ascent gradient ∇θE(θ), which
is used to approximate β⋆ in Equation (9), so that for all time steps that reuse the previous descent
gradient, the reused term gv disregards the component of the previous descent gradient lying along
the previous ascent gradient. The term ∥∇θE(θ)∥

∥gv∥ in Equation (13) is used to adaptively scale α so
that gv is similar in magnitude to ∇θE(θ).

6. FriendlySAM (Kim et al., 2022): This is a variant of SAM that uses a perturbation projected
along the orthogonal complement of the full-batch gradient, following the observation that using
only the full-batch direction of the ascent-step gradient impairs performance. The projection can be
computed according to

Proj⊤∇θE(θ)∇θÊ(θ) = ∇θÊ(θ)− s∇θE(θ) (14)

where s = cos(∇θE(θ),∇θÊ(θ)). However, since computing the full-batch gradient ∇θE(θ) is com-
putationally prohibitive, an exponentially moving average (EMA) is used in practice. Therefore,
FriendlySAM uses the following perturbation:

βFriendlySAM(θ) := ρ
∇θÊ(θ)− σ(ϕm + (1− ϕ)∇θÊ(θ))
∥∇θÊ(θ)− σ(ϕm + (1− ϕ)∇θÊ(θ))∥

(15)
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Table 1: A comparison of the computational costs for each SAM variant. We assume each optimizer is run
for T epochs on a dataset with N batches of batch size B. The computational cost is compared across 1)
the total number of gradient evaluations throughout the trajectory, 2) the total number of data points used
for gradient evaluations throughout the trajectory, and 3) the network layers the perturbation is applied to.

Optimizer Total Number Number Data Points Network Layers Perturbation
Gradient Evals Evaluated On is Applied to

SAM 2T B × TN All
ASAM 2T B × TN All
FisherSAM 2T B × TN All
K-SAM 2T K × TN All
LookSAM T + T/L B × TN All
FriendlySAM 2T B × TN All
NoSAM 2T B × TN Only normalization layers
ESAM 2T S × TN, for S = f(γ) < B Each layer w.p. ξ

where m is the value of the EMA from the previous iteration. FriendlySAM has three hyperparam-
eters: the perturbation radius ρ, the EMA momentum factor ϕ, and the projection cosine similarity
value σ.

7. NoSAM (Mueller et al., 2024): This is a variant of SAM that only performs the SAM perturbation
on normalization layers.

8. EfficientSAM (ESAM) (Du et al., 2022): This is a variant of SAM intended to make SAM more
efficient by applying two techniques to SAM. First, it performs stochastic weight perturbation, only
performing the SAM perturbation on ξ ∈ (0, 1) percent of the weights. Second, it performs sharpness-
sensitive data selection, only computing gradients over data samples with the highest increase in loss
after applying the perturbation. Thus, ESAM has three hyperparameters: the perturbation radius
ρ, the sharpness sensitive data selection hyperparameter γ, and the stochastic weight parameter ξ.

In Table 1, we provide a comparison of the computational costs for each of the eight SAM variants defined
above.

3 A Study of SAM for Zero-Shot OOD Generalization

In this section, we perform experiments comparing all eight of the previous SAM variants for zero-shot OOD
generalization in Section 3.1, discuss the key takeaways from the experiments in Section 3.2, and perform a
theoretical analysis of SAM for OOD generalization in Section 3.3.

Zero-Shot OOD Generalization In zero-shot OOD generalization, a model θS is trained on a source
domain S ∈ ∆(X ×Y) with a training set {(xi, yi)}n

i=1 drawn i.i.d. from S. Then, θS is evaluated on a test
set drawn i.i.d. from a target domain T ∈ ∆(X × Y). The zero-shot OOD generalization error is given by
ET (θS).

3.1 Experiments Comparing SAM Variants for Zero-Shot OOD Generalization

Datasets We use the same datasets as Wang et al. (2022), with a brief description of each given below.

a) Color Shifted MNIST: A dataset based on the original MNIST dataset (LeCun & Cortes, 1998).
The source domain contains 50K images, whose pixels are normalized to be within [0, 1]. The pixel
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Table 2: A comparison of zero-shot OOD accuracy for each of the SAM variants. In each column, the variant
with the best performance is bolded. SAM outperforms the Adam baseline by 4.76% on average, while the
strongest SAM variants outperform the baseline by 8.01% on average.

Optimizer Rotated MNIST Color MNIST Covertype Portraits
Adam 25.26±1.79 84.97±4.87 69.75±2.30 86.43±1.25

SAM 26.10±0.90 93.88±1.53 72.31±1.06 87.77±0.82

ASAM 26.09±0.07 93.65±1.18 72.70±1.64 87.23±0.81

FisherSAM 27.23±1.47 96.53±0.36 73.09±3.33 88.67±0.68

K-SAM 26.01±1.98 95.36±0.11 70.07±2.04 87.73±0.53

LookSAM 25.82±2.00 96.34±0.37 72.79±2.06 88.07±0.77

FriendlySAM 26.80±0.73 95.61±0.96 73.64±0.08 90.80±1.35

ESAM 25.80±1.13 95.67±1.30 72.37±2.62 88.33±1.30

NoSAM 24.81±2.39 95.27±0.56 72.53±0.37 87.73±0.68

values of each image are then increased by 1 to shift the range to [1, 2] in the target domain. The
intermediate domains are evenly distributed between source and target.

b) Rotated MNIST: A dataset of 50K images also based on LeCun & Cortes (1998). The source
domain contains 50K images, each of which is rotated 60 degrees, to form the target domain. The
intermediate domains are also evenly distributed between source and target.

c) Cover Type: This tabular dataset from Blackard & Dean (1999) contains 54 features used to
predict the forest cover type at various locations. The data is sorted by distance to water body in
ascending order, with the first 50K data points as the source domain, 10 intermediate domains with
40K data points each, and the target domain containing the final 50K data points.

d) Portraits: This dataset from Ginosar et al. (2017) contains photos of high school seniors from 1905
to 2013 with the goal of classifying the gender. The portraits are sorted chronologically, with the
source domain as the first 2000 images, seven intermediate domains containing 2000 images each,
and a target domain with the final 2000 images.

Model Setup For the computer vision tasks (Color Shifted MNIST, Rotated MNIST, and Portraits),
we use a convolutional neural network (CNN) with 4 convolutional layers of 32 channels, followed by a
fully-connected network (FCN) with 3 layers of 1024 neurons each and ReLU activation. For the tabular
dataset (Cover Type), we use a multi-layer perceptron (MLP) with 3 layers of 256 neurons each. Models are
trained using BatchNorm (Ioffe & Szegedy, 2015), DropOut(0.5) (Srivastava et al., 2014) and cross-entropy
loss. When applying the SAM optimizer, we use Adam with the PyTorch default choices of learning rate
of 10−2 and weight decay of 10−4 as a base optimizer. We also use a batch size of 128. When applying
Adam, we use the PyTorch default choices of a learning rate of 10−3 and weight decay of 10−4, with a
batch size of 128 as well. On Rotated MNIST, Color MNIST, and Portraits, we train for 100 epochs in the
source and intermediate domains for both SAM and Adam. On Covertype, due to a larger dataset size and
limited compute, we train for 25 epochs in the source and intermediate domains for all optimizers. Our full
hyperparameter specification is given in Appendix B.

3.2 Discussion of Results

In Table 2, we report the zero-shot OOD accuracy on the 1− ET (θS) for each of the optimizers. Across all
four datasets, the original SAM outperforms the Adam baseline by 4.76% on average, while the strongest
SAM variants outperform the baseline by 8.01% on average. Variants such as LookSAM, F-SAM, and
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FisherSAM offer the strongest and most consistent improvement over SAM. Among the variants with reduced
computational cost (ESAM, LookSAM, K-SAM, and NoSAM), LookSAM and NoSAM perform the best,
often outperforming original SAM in addition to being more efficient.

Understanding the FisherSAM Performance Gains To recall, FisherSAM computes the perturbation
according to:

βFisherSAM(θ) := ρ
f(θ)−1∇θE(θ)√

∇θE(θ)f(θ)−1∇θE(θ)
(16)

In contrast to the original SAM objective, FisherSAM takes the information geometry of the data into
account, using an approximation f(θ) of the Fisher information matrix of parameters θ to find the maximum
perturbation. Under the cross-entropy loss used specifically in the experiments in Table 2, the Fisher
information matrix is directly equivalent to the Hessian matrix of the cross-entropy loss (Martens, 2020).
Therefore, unlike SAM variants using first-order approximations, FisherSAM could be understood as a
second-order approximation of the loss perturbation, hence leading to better generalization.

Understanding the FriendlySAM Performance Gains Unlike FisherSAM, the connection between
the FriendlySAM objective and OOD performance is not as explicit. To recall, FriendlySAM computes the
perturbation according to

βFriendlySAM(θ) := ρ
∇θÊ(θ)− σ(ϕm + (1− ϕ)∇θÊ(θ))
∥∇θÊ(θ)− σ(ϕm + (1− ϕ)∇θÊ(θ))∥

(17)

where m is the value of the EMA from the previous iteration, ϕ is the EMA momentum factor, σ is the cosine
similarity value, and ρ is the perturbation radius. In Li et al. (2024), the authors note that this modified
perturbation makes FriendlySAM significantly more robust to the choice of the ρ hyperparameter because it
allows for penalizing the sharpness of the current mini-batch more directly, while disregarding the sharpness
of the full-batch gradient. Since the optimal value of ρ depends intricately on the choice of dataset and since
we only tested ρ ∈ {0.01, 0.02, 0.05, 0.1, 0.2}, we conjecture that the performance gains from FriendlySAM
in our experiments are due to penalizing sharpness in a more adaptive and stable way.

3.3 Theoretical Analysis of SAM for OOD Generalization

To start, we define the Wasserstein distance, which we use to capture the distance between probability
distributions.
Definition 3 (Wasserstein Distance). The Wasserstein distance between two distributions µ and ν over
S ⊂ Rd is the smallest cost, as measured by some distance metric d(·, ·) : S×S → R, of moving mass between
distributions µ and ν, obtained by taking the infimum over the set of all joint distributions γ ∈ Γ(µ, ν) with
marginals µ and ν:

Wp(µ, ν) := inf
γ∈Γ(µ,ν)

(∫
S×S

d(x, y)pdγ(x, y)
)1/p

(18)

Furthermore, we assume that the loss function is Lipschitz in its arguments, which holds under many
commonly used loss functions, including the logistic loss, hinge loss, and squared loss when the input space
is bounded.
Assumption 1 (Lipschitz Loss). For loss functions considered in this paper ℓ : Y × X × Θ → [0, 1], we
assume there exist constants ρ1, ρ2, ρ3 > 0 satisfying:

|ℓ(y1, ·, ·)− ℓ(y2, ·, ·)| ≤ ρ1|y1 − y2|, ∀y1, y2 ∈ Y (19)
|ℓ(·, x1, ·)− ℓ(·, x2, ·)| ≤ ρ2∥x1 − x2∥, ∀x1, x2 ∈ X
|ℓ(·, ·, θ1)− ℓ(·, ·, θ2)| ≤ ρ3∥θ1 − θ2∥, ∀ θ1, θ2 ∈ Θ
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Now, we provide a lemma bounding the error difference over shifted domains for SAM, which is a “sharpness-
aware” version of Lemma 1 in Wang et al. (2022). Our result bounds the absolute difference between the
ρ-robust error of a model θµ in domain µ and the error of a model θν in domain ν as function of the
sharpness of the model in domain µ, the distance between the models, and the Wasserstein distance between
the domains µ and ν. This result holds for any choice of µ, ν on Y × X .
Lemma 1 (Sharpness-Aware Error Difference Over Shifted Domains). Given an error function Eµ(θ) :=
E(x,y)∼µ[ℓ(y, x, θ)] with loss satisfying Assumption 1 and any distributions µ, ν on Y × X , we have that

|Eρ
µ(θµ)− Eν(θν)| ≤ Sρ(θµ) +O(∥θµ − θν∥+ Wp(µ, ν)) (20)

Before stating our main result of this section in Theorem 1, we state the PAC-Bayesian generalization bound
introduced in Foret et al. (2021) which bounds the population error of a model θ in terms of its empirical
sharpness.
Lemma 2 (Sharpness-Aware Generalization Bound). For any model θ ∈ Θ ⊂ Rk satisfying E(θ) ≤
Eϵ∼N (0,ρ2I)[E(θ + ϵ)] for some ρ > 0, then w.p. ≥ 1− δ,

E(θ) ≤ Êρ(θ) + O

(√
k ln(∥θ∥2

2/ρ2) + ln(n/δ)
n

)
(21)

Finally, using the error difference lemma from Lemma 1 and the PAC-Bayesian bound from Lemma 2, we
are able to state an OOD generalization bound for SAM for any choice of distributions µ, ν on Y ×X . This
result upper bounds the error of the empirically obtained SAM solution θ̂µ on domain µ by the error of the
population robust risk minimizer θν over domain ν, the sample complexity term from the PAC Bayesian
analysis in Lemma 2, the sharpness of θµ in domain µ, the distance between θµ and θν , and the Wasserstein
distance between distributions µ and ν.
Theorem 1 (Sharpness-Aware Domain Adaptation Error). Given distributions µ, ν over X × Y, an error
function E with loss satisfying Assumption 1, the empirical SAM solution θ̂µ in domain µ satisfying Eµ(θ̂µ) ≤
Eϵ∼N (0,ρ2I)[Eµ(θ̂µ + ϵ)] for some ρ > 0 4, the population robust risk minimizer θν = arg minθ∈Θ Eρ

ν (θ) in
domain ν, and the population robust risk minimizer θµ = arg minθ∈Θ Eρ

µ(θ) in domain µ, then w.p. ≥ 1− δ,

Eµ(θ̂µ) ≤ Eν(θν) +O
(√

k ln(∥θµ∥2
2/ρ2) + ln(n/δ)√

n
+ ∥θµ − θν∥+ Wp(µ, ν)

)
+ Sρ(θµ)

4 A Study of SAM for Gradual Domain Adaptation

In this section, we study SAM applied to a related OOD generalization setting called gradual domain
adaptation (GDA), where self-training is performed on intermediate domains between the source and target
domain to improve the target domain accuracy (Kumar et al., 2020; Wang et al., 2022; Zhuang et al.,
2024; He et al., 2024). We provide an introduction to GDA in Section 4.1, describe our experimental
setup in Section 4.2, discuss our experimental results in Section 4.3, provide a generalization bound based
on sharpness for GDA in Section 4.4, compare our bound to that of the prior work Wang et al. (2022)
in Section 4.5, and discuss several potential avenues for obtaining a tighter bound in Section 4.6.

4.1 Gradual Domain Adaptation (GDA)

Gradually Shifting Distributions We adopt the settings of Wang et al. (2022) and Kumar et al. (2020),
where we have T + 1 gradually shifting distributions indexed by {0, 1, ..., T}, with 0 corresponding to the
source domain. Each domain t ∈ [T ] is a distribution µt over X ×Y and we start with a training distribution
{(xi, yi)}n0

i=1 drawn i.i.d. from the source domain µ0. To ease the presentation, we assume that each
subsequent domain has n unlabeled training examples. We measure distribution shifts according to the
Wasserstein distance and define the following shorthand notation.

4This assumption means that adding Gaussian perturbation around θ̂µ increases the expected loss, which should hold for
local minima (Foret et al., 2021).
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Algorithm 2 Gradual Self Training (GST) with SAM

1: Inputs: Labeled source data S0 := {(xi, yi)}n0
i=1 and unlabeled data (St)T

t=1 := ({x(t)
i }n

i=1)T
t=1 from

intermediate domains; perturbation radius ρ; weight decay parameter λ.
2: Train model on labeled data from the source domain according to the SAM objective:

θ0 := argminθ′∈Θ max
∥β∥≤ρ

n0∑
i=1

ℓ(yi, xi, θ′ + β) + λ∥θ′∥

3: for t = 1 to T do
4: Generate psuedo-labels ŷi := fθt−1(x(t)

i ).
5: Self-train the model using psuedo-labels according to the SAM objective:

θt = argminθ′∈Θ max
∥β∥≤ρ

n∑
i=1

ℓ(ŷi, x
(t)
i , θ′ + β) + λ∥θ′∥

6: end for
7: return θT

Definition 4 (Distribution Shifts). The distribution shift between successive pair of gradually shifted dis-
tributions and the average distribution shift of all pairs are, respectively, defined as ∀t ∈ [T − 1]:

∆t := Wp(µt+1, µt), and ∆ := 1
T

T −1∑
t=0

∆t (22)

Gradual Domain Adaptation In gradual domain adaptation (GDA), a learner is given n0 labeled ex-
amples from a source domain with index t = 0, and then given sequential access to n unlabeled examples
from domains t = {1, 2, ..., T}:

St := {(x(t)
i )}n

i=1, t ∈ {1, 2, . . . , T}

The goal is to gradually train a classifier on the intermediate domains using psuedo-labels to minimize the
generalization error in the target domain ET (θT ), as specified in Algorithm 2.

4.2 Experiments Comparing SAM Variants for GDA

In this section, we perform an empirical study of SAM for GDA using the same four datasets as in Section 3.

Datasets and Model Setup We use the same datasets and model setup as our earlier experiment, as
detailed in Section 3.1. As in the experiments from Section 3, on Rotated MNIST, Color MNIST, and
Portraits, we train for 100 epochs in the source domain for all optimizers, and on Covertype, we train for 25
epochs in the source domain. The results of this experiment are presented in Figure 1.

SAM Variant Setup We use the same hyperparameter setup for the SAM variants as given in Appendix B.
Due to limited compute, we do not perform the entire ablation of intermediate domains for all of the SAM
variants. Instead, we choose the optimal number of intermediate domains T ⋆ for SAM from Figure 1 and
obtain the results for this choice of T ⋆.

4.3 Discussion of Results

In Figure 1, we report the target domain accuracy 1− ET (θT ) for each of the optimizers. Our results reveal
that SAM outperforms Adam (SAM with ρ = 0) on all datasets: by 1.03% on Covertype, by 0.96% on
Portraits, by 0.75% on Rotated MNIST, and by 0.53% on Color MNIST. This suggests that SAM can be
applied to GDA to consistently achieve stronger performance. For most of the experimental datasets, any
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Figure 1: A comparison of SAM with varying levels of perturbation strength ρ ∈ {0, 0.01, 0.02, 0.05, 0.1, 0.2},
with ρ = 0 corresponding to Adam, on GDA datasets with varying levels of intermediate domains T . SAM
outperforms Adam on all datasets: by 1.03% on Covertype, by 0.96% on Portraits, by 0.75% on Rotated
MNIST, and by 0.53% on Color MNIST.

value of ρ ∈ {0.01, 0.02, 0.05, 0.1, 0.2} tends to outperform Adam, suggesting that SAM is not too sensitive
to the perturbation radius hyperparameter. On Rotated MNIST, Portraits, and Color MNIST, SAM with
ρ = 0.2 leads to the strongest performance and the improvement is relatively monotonic in ρ, while on
Covertype, SAM with ρ = 0.05 leads to the strongest performance.

In our study of SAM variants for GDA in Table 3, we find that the strongest SAM variants lead to an
average improvement of 1.42% compared to using Adam, in comparison to SAM, which only offers a 0.82%
improvement. In contrast to the zero-shot OOD generalization results from Section 3 in Table 2 where
the SAM variants with reduced computational cost generally outperformed Adam, the SAM variants with
reduced computational cost (K-SAM, LookSAM, NoSAM, and ESAM) tend to underperform Adam on
GDA. Once again, FriendlySAM performs well, outperforming SAM by 0.40% on average across all datasets;
however, FisherSAM slightly underperforms SAM by 0.01% this time.

In general, these results suggest that SAM can be used to consistently improve target domain error for GDA,
and the strongest variant Friendly SAM can lead to even further improvements compared to SAM.

4.4 Generalization Bound for SAM for GDA

In this section, we provide an extension of Theorem 1 to the related setting of gradual domain adaptation
(GDA), a technique which improves target domain error by performing gradual self-training (GST) on
unlabeled intermediate domains between the source and target domain, for which the average distribution
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Table 3: A comparison of GDA accuracy for each of the SAM variants. For reference, the top accuracy
obtained by Adam and SAM is also provided. In each column, the variant with the best performance is
bolded.

Optimizer Rotated MNIST Color MNIST Covertype Portraits
(T=50) (T=10) (T=25) (T=10)

Adam 93.84±1.64 96.67±1.87 73.99±0.30 93.30±1.17

SAM 94.54±0.60 97.18±1.53 74.75±0.06 94.20±0.44

ASAM 93.69±0.51 97.15±0.24 74.40±1.35 93.73±0.66

FisherSAM 93.69±2.37 97.40±0.07 75.16±1.14 94.40±0.75

K-SAM 85.12±5.72 97.76±0.13 72.29±1.51 93.23±0.13

LookSAM 89.57±2.28 97.79±0.13 73.15±2.67 94.23±0.34

FriendlySAM 94.81±0.05 97.35±0.07 75.64±1.09 94.47±0.17

ESAM 93.23±0.24 97.38±0.40 72.39±2.64 94.23±0.39

NoSAM 94.60±0.83 97.06±0.07 72.85±1.61 94.27±0.19

shift is small (Kumar et al., 2020; Wang et al., 2022). The algorithm that performs GDA by GST using
SAM is presented in Algorithm 2.

GDA as Online Learning For completeness, we briefly describe the online learning framework from
Wang et al. (2022) we will use to obtain this bound.
Definition 5 (Discrepancy Measure). Given a model family Θ, input space X , output space Y, corresponding
loss function ℓ : Y × X × Θ → [0, 1], and a (t + 1)-dimensional probability vector qt := (q0, q1, . . . , qt), the
discrepancy measure is given by

disc(qt) := sup
θ∈Θ

(
Et(θ)−

t−1∑
k=0

qkEk(θ)
)

(23)

Intuitively, the discrepancy measure captures the non-stationarity of the gradually shifting data, as measured
by the expressivity of the model class and corresponding loss function (Kuznetsov & Mohri, 2020a). Next,
we define the sequential Rademacher complexity, which generalizes the standard Rademacher complexity to
the online learning setting (Rakhlin et al., 2015).
Definition 6 (Complete Binary Trees and Tree Path). We define complete binary trees X and Y of depth
T + 1 and a corresponding path in either X or Y , respectively, as:

X := (X0, . . . , XT ), with Xt : {±1}t →X , t ∈ [T ]
Y := (Y0, . . . , YT ), with Yt : {±1}t → Y , t ∈ [T ]
σ := (σ0, . . . , σT ) ∈ {±1}t in either X or Y (24)

Definition 7 (Sequential Rademacher Complexity). Given a model family Θ, input space X , output space Y,
corresponding loss function ℓ : Y×X ×Θ→ [0, 1], (t+1)-dimensional probability vector qt := (q0, q1, . . . , qt),
and a binary tree path σ, we define the sequential Rademacher complexity as:

Rseq
t (Θ) := sup

X ,Y
Eσ

[
sup
θ∈Θ

t−1∑
k=0

σkqkℓ(fθ(Xk(σ)), Y (σ))
]

Reduction View of GDA Moreover, we adopt the same reduction approach in Wang et al. (2022), where
each of the nT samples is viewed as the smallest element of the adaptation process, enabling generalization
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bounds with an effective sample size of nT rather than T . For further explanation on this view, see Wang
et al. (2022). With this reduction, online-learning view, we can now state our generalization bound for GDA
performed using SAM.
Theorem 2 (Total Sharpness-Aware Error Under GDA). For any δ ∈ (0, 1), w.p. ≥ 1 − δ, the population
risk of the gradually adapted model θT constructed from intermediate models θ0, . . . , θT −1 according to Al-
gorithm 2, and satisfying ∀t ∈ [T ], E(θ) ≤ Eϵ∼N (0,ρ2

t I)[E(θt + ϵ)] for some ρt > 05, can be bounded according
to:

ET (θT ) ≤ E0(θ0) +O
(

T (∆ + θavg + Savg) +
T (Wavg +

√
ln(n/δ))√

n
+
√

ln(1/δ)
nT

+
√

ln(nT ) Rseq
nT (Θ)

)

where θavg := 1
T

∑T
t=1 ∥θt − θt−1∥2 is the average weight shift, Savg := 1

T

∑T
t=1 Sρt(θt) is the average sharp-

ness, and Wavg := 1
T

∑T
t=1O

(√
k ln(∥θt∥2

2/ρ2)
)

is the average weight norm.

Proof Sketch Our proof of Theorem 2 proceeds similarly to Wang et al. (2022). By applying Corollary
2 of Kuznetsov & Mohri (2020a), a preliminary bound on the error in the target domain ET (θT ) can be
obtained:

ET (θT ) ≤
T∑

t=0
Et(θT ) + disc(qn(T +1)) + ∥qn(T +1)∥2 · O

(
1 +

√
ln 1

δ

)
+O(

√
ln(nT ) Rseq

nT (Θ)) (25)

Then, term one,
∑T

t=0 Et(θT ), can be bounded by applying Theorem 1 successively for all t ∈ [T − 1]. We
defer discussion of the bounds on terms two and three and the full algebraic manipulations to Appendix A.

4.5 Comparison of Sharpness-Aware Bound With Standard Bound

The bound we obtain in Theorem 2 is of the form

E0(θ0) +O
(

T (∆ + θavg + Savg) +
T (Wavg +

√
ln(n/δ))√

n
+ 1√

nT
+
√

ln(1/δ)
nT

+
√

ln(nT ) Rseq
nT (Θ)

)

whereas in Wang et al. (2022), the generalization upper bound obtained is of the form

E0(θ0) +O
(

T∆ + T

√
ln 1/δ

n
+ 1√

nT
+
√

ln(1/δ)
nT

+
√

ln(nT ) Rseq
nT (Θ)

)
(26)

Our analysis uses the original PAC Bayes generalization bound from Foret et al. (2021) in Lemma 2, which
specifies a prior and posterior over the parameter space to bound the error directly as a function of the
parameters. This is in contrast to the generalization bound applied in Wang et al. (2022), which uses only
the Rademacher complexity of the predictor.

Since our analysis applies Lemma 2 successively to bound the sharpness-aware error difference over shifted
domains with different optimal parameters, Theorem 1 must relate the parameters of the successive domains
separately, which introduces the weight shift θavg. In addition to capturing the average sharpness Savg term,
the PAC Bayes bound introduces an additional weight norm term Wavg. Moreover, the PAC Bayesian bound
yields a O

(
T
√

ln(n/δ)/
√

n
)

sample complexity term, versus the O
(

T
√

ln(1/δ)/
√

n
)

original analysis using
the Rademacher complexity from Wang et al. (2022). While this discrepancy gets absorbed in the final
asymptotic rate in terms of n and T (both ours and Wang et al. (2022) are E0(θ0) + Õ(T/

√
n + 1/

√
nT )),

our analysis is looser non-asymptotically due to the three constants and the slightly worse poly-logarithmic
sample complexity term. In light of this, we pose a conjecture for how this analysis can be tightened in
future work.

5This assumption means that adding Gaussian perturbation to each solution θt increases the expected loss, which should
hold for all θt obtained from executing SAM in Algorithm 2 (Foret et al., 2021)

12



Under review as submission to TMLR

4.6 Obtaining a Tighter Sharpness-Aware Error Analysis

In the proof of Theorem 2 in Appendix A, the only term that depends on the error difference between shifted
domains is 1

T +1
∑T

t=0 Et(θT ), which is bounded by repeatedly applying Lemma 1 to domain pairs (µt, µt+1)
for t ∈ {0, 1, . . . , T − 1}. Thus, we can expect the overall sample complexity to remain the same between
our Theorem 2 and the main result in Wang et al. (2022). Assuming one continues to use the discrepancy
based framework and the Sequential Rademacher Complexity from Kuznetsov & Mohri (2020b); Rakhlin
et al. (2015), the only way to improve the analysis would be to provide a tighter error difference between
shifted domains, as in Lemma 1, where we obtained

|Eρ
µ(θµ)− Eν(θν)| ≤ Sρ(θµ) +O(∥θµ − θν∥+ Wp(µ, ν))

We conjecture that one may be able to get a tighter bound for SAM through a localized analysis that analyzes
the error difference between shifted domains specifically for the sharpness-aware minimization classifier, in
contrast to the current uniform analysis which applies to every classifier in the model class Θ. A localized
analysis could exploit implicit properties of SAM, such as denoised features (Chen et al., 2024), lower-rank
features (Andriushchenko et al., 2023), or balanced feature learning (Springer et al., 2024), to get a tighter
bound. However, we leave development of a localized analysis framework for future work.

5 Related Works

Sharpness and Generalization The study of the relationship between sharpness and generalization dates
back to at least Hochreiter & Schmidhuber (1997), which motivates flat minima by a minimum description
length argument. Since then, Keskar et al. (2017) have explored how various hyperparameter choices affect
sharpness and Jiang et al. (2020) have found that sharpness is among the empirical measures most strongly
correlated with generalization. However, Dinh et al. (2017) demonstrated that sharp minima can indeed
generalize under reparameterizations which cause flat minima to become arbitrarily sharp. A follow-up work
of this proposes a measure of sharpness tied to the information geometry of the data that is invariant under
reparameterizations (Liang et al., 2019). Many other works have continued to explore algorithms that lead
to flatter solutions (Foret et al., 2021; Wortsman et al., 2022; Chaudhari et al., 2019) – notably, SAM (Foret
et al., 2021) – and empirical settings in which these algorithms work (Kaddour et al., 2022).

Sharpness and OOD Generalization In the context of domain generalization (DG), Cha et al. (2021)
propose a modified version of stochastic weight averaging (Izmailov et al., 2018) which leads to flatter minima
with improved DG. They also provide generalization bounds that depend on the empirical robust loss in
the source domain. Zhang et al. (2023) later introduce a flatness-aware minimization algorithm for DG
which leads to improved performance, with theoretical results showing that their algorithm controls the
maximum eigenvalue of the Hessian and indeed leads to flatter minima. Zou et al. (2024) present out-of-
distribution (OOD) generalization bounds based on sharpness by using algorithmic robustness, refining the
bounds presented in Cha et al. (2021). Finally, in a study of SAM’s role in improving generalization for large
language models, Bahri et al. (2022) has found that SAM can improve cross-lingual transfer and multi-task
generalization, with significant gains in the limited training data regime.

Sharpness-Aware Minimization Sharpness-Aware Minimization (SAM) was originally proposed in Foret
et al. (2021), motivated by a PAC Bayesian analysis giving a generalization bound in terms of the ex-
pected sharpness over an isotropic Gaussian perturbation, i.e., Eβ∼N (0,ρ2I)[E(θ + β)]. The authors then
upper bound this by the maximum and estimate the maximum using a first-order Taylor approximation:
Eβ∼N (0,ρ2I)[E(θ + β)] < max∥β∥≤ρ[E(θ + β)] ≈ ρ ∇θE(θ)

∥∇θE(θ)∥ . The practical implementation of SAM uses this
first-order approximation. Despite the original bound in terms of sharpness, Wen et al. (2023) have recently
demonstrated that the flatness of the final solution does not sufficiently capture the generalization benefit
from SAM alone, suggesting a more thorough study into implicit biases of SAM. Notably, SAM has been
found to lead to lower rank features with fewer active ReLU units (Andriushchenko et al., 2023), to enhance
feature quality by selecting more balanced features (Springer et al., 2024), to enhance robustness to label
noise through implicitly regularizing the model Jacobian (Baek et al., 2024), and to have an implicit de-
noising mechanism which prevents harmful overfitting in settings when SGD would harmfully overfit (Chen
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et al., 2024). Finally, many variants of SAM have been proposed to improve the efficiency and accuracy
of the original SAM (Kwon et al., 2021; Kim et al., 2022; Mueller et al., 2024; Liu et al., 2022; Ni et al.,
2022; Du et al., 2022; Li et al., 2024). In Section 2.1, we provide a detailed explanation of each, including a
comparison of their computational costs in Table 1.

Gradual Self-Training for GDA Kumar et al. (2020) first introduce gradual self-training (GST) in
GDA, which outperforms standard self-training without intermediate domains. They also provide the first
generalization bounds for GST in GDA; however, their bounds have an exponential dependence on the
number of intermediate domains T , only hold for the ramp loss, and only hold for the Wasserstein distance
of order∞. Following this, Wang et al. (2022) remove this exponential dependence on T with generalization
bounds that depend on T only linearly and additively. Wang et al. (2022) also generalize the analysis to
any ρ-Lipschitz losses and Wasserstein distances of any order p ≥ 1. These refined bounds also suggest
the existence of an optimal choice of intermediate domains T , which Wang et al. (2022) derive as well.
Subsequently, He et al. (2024) propose a new method of generating intermediate domains in an encoded
feature space that are closer to the Wasserstein geodesic, leading to improved performance. Zhuang et al.
(2024) later provide a continuous-time extension of He et al. (2024) using Wasserstein gradient flow.

6 Limitations and Future Work

The main limitation of this work is the discrepancy between our theoretical analysis based off sharpness, which
is the same asymptotic rate as the prior work Wang et al. (2022), and our empirical results demonstrating
consistent performance gains for SAM. At the end of Section 4.6, we posed a conjecture for how the analysis
for SAM can be tightened. Future work can perform a more detailed theoretical analysis of SAM in order
to explain the empirical benefits of using SAM for OOD generalization. Additionally, future work can
attempt to theoretically explain the strong performance benefits of using SAM variants like FisherSAM and
FriendlySAM for OOD generalization.

7 Conclusion

In this paper, we performed a theoretical and empirical study of SAM for OOD generalization. First, we
experimentally compared eight SAM variants on zero-shot OOD generalization, finding that, across our four
benchmarks, the original SAM achieved a 4.76% average improvement over the Adam baseline, while the
strongest SAM variants achieved a 8.01% average improvement over the Adam baseline. Next, we derived an
OOD generalization bound based on sharpness. Then, we experimentally compared the eight SAM variants
on gradual domain adaptation (GDA), where intermediate domains are constructed between the source
and target domain and iterative self-training is done on these intermediate domains to improve the target
domain error. Our experiments found that, across our four benchmarks, the original SAM achieved a 0.82%
average improvement over the Adam baseline, while the strongest SAM variants achieve a 1.42% average
improvement over the Adam baseline. We provided an extension of our OOD generalization bound to get a
generalization bound based on sharpness for GDA, which had the same asymptotic rate as the prior bound
in Wang et al. (2022). This discrepancy between the theoretical and empirical results sheds light on the
broader issue of giving tighter generalization bounds for SAM, especially in the OOD setting, to reconcile
its consistent performance gains in practice. Our theoretical results provide a starting point for doing this,
and our empirical results suggest that SAM can be used empirically to achieve significant gains for OOD
generalization.
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A Full Proofs

A.1 Sharpness-Aware Error Difference Over Shifted Domains

Lemma 1 (Sharpness-Aware Error Difference Over Shifted Domains). Given an error function Eµ(θ) :=
E(x,y)∼µ[ℓ(y, x, θ)] with loss satisfying Assumption 1 and any distributions µ, ν on Y × X , we have that

|Eρ
µ(θµ)− Eν(θν)| ≤ Sρ(θµ) +O(∥θµ − θν∥+ Wp(µ, ν)) (20)

Proof. Letting γ(µ, ν) be any coupling of µ× ν and defining ρ := max{ρ1, ρ2, ρ3} with ρ1, ρ2, ρ3 in Assump-
tion 1, we have that

|Eρ
µ(θµ)− Eν(θν)| =

∣∣Eρ
µ(θµ)− Eµ(θµ) + Eµ(θµ)− Eν(θν)

∣∣ (27)
≤ Sρ(θµ) + |Eµ(θµ)− Eν(θν)| (28)
= Sρ(θµ) + |E(x,y)∼µ[ℓ(y, x, θµ)]− E(x,y)∼ν [ℓ(y, x, θν)]| (29)

= Sρ(θµ) +
∣∣∣∣∫ ℓ(y, x, θµ)dµ−

∫
ℓ(y′, x′, θν)dν

∣∣∣∣ (30)

≤ Sρ(θµ) +
∫
|ℓ(y, x, θµ)− ℓ(y′, x′, θν)|dγ(µ, ν) (31)

≤ Sρ(θµ) + ρ

(∫
(|y − y′|+ ∥x− x′∥+ ∥θµ − θν∥) dγ(µ, ν)

)
(32)

= Sρ(θµ) + ρ

(
∥θµ − θν∥+

∫
(|y − y′|+ ∥x− x′∥) dγ(µ, ν)

)
(33)

Therefore, since the above holds for any coupling γ(µ, ν) of µ× ν, we must have that

|Eρ
µ(θµ)− Eν(θν)| ≤ Sρ(θµ) + ρ

(
∥θµ − θν∥+ inf

γ(µ,ν)∈Γ(µ,ν)

∫
(|y − y′|+ ∥x− x′∥) dγ(µ, ν)

)
(34)

= Sρ(θµ) + ρ (∥θµ − θν∥+ Wp(µ, ν)) (35)

Thus, |Eρ
µ(θµ)− Eν(θν)| ≤ Sρ(θµ) +O(∥θµ − θν∥+ Wp(µ, ν)), which concludes the proof.

A.2 Sharpness-Aware Domain Adaptation Error

Theorem 1 (Sharpness-Aware Domain Adaptation Error). Given distributions µ, ν over X × Y, an error
function E with loss satisfying Assumption 1, the empirical SAM solution θ̂µ in domain µ satisfying Eµ(θ̂µ) ≤
Eϵ∼N (0,ρ2I)[Eµ(θ̂µ + ϵ)] for some ρ > 0 6, the population robust risk minimizer θν = arg minθ∈Θ Eρ

ν (θ) in
domain ν, and the population robust risk minimizer θµ = arg minθ∈Θ Eρ

µ(θ) in domain µ, then w.p. ≥ 1− δ,

Eµ(θ̂µ) ≤ Eν(θν) +O
(√

k ln(∥θµ∥2
2/ρ2) + ln(n/δ)√

n
+ ∥θµ − θν∥+ Wp(µ, ν)

)
+ Sρ(θµ)

Proof. Let θµ = arg minθ∈Θ Eρ
µ(θ) be the population robust risk minimizer for domain µ and let θ̂µ =

arg minθ∈Θ Êρ
µ(θ) be the empirical SAM solution for domain µ. We are able to obtain the desired result by

applying the sharpness-aware generalization bound in Lemma 2, leveraging the fact that θ̂ is the empirical
SAM solution for domain µ, applying the Rademacher complexity generalization bound in Lemma 4, re-

6This assumption means that adding Gaussian perturbation around θ̂µ increases the expected loss, which should hold for
local minima (Foret et al., 2021).
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organizing terms, and then applying the robust error difference in Lemma 1:

Eµ(θ̂µ) ≤ Êρ
µ(θ̂µ) +O

√k ln(∥θ̂µ∥2
2/ρ2) + ln(n/δ)

n

 (Lemma 2)

≤ Êρ
µ(θµ) +O

(√
k ln(∥θµ∥2

2/ρ2) + ln(n/δ)
n

)
(θ̂ is the empirical SAM solution for domain µ)

≤ Eρ
µ(θµ) +O

(√
k ln(∥θµ∥2

2/ρ2) + ln(n/δ)
n

)
+O

(√
ln(1/δ)√

n

)
(Lemma 4)

= Eρ
µ(θµ) +O

(√
k ln(∥θµ∥2

2/ρ2) + ln(n/δ)√
n

)

≤ Eν(θν) +O
(√

k ln(∥θµ∥2
2/ρ2) + ln(n/δ)√

n
+ ∥θµ − θν∥+ Wp(µ, ν)

)
+ Sρ(θµ) (Lemma 1)

A.3 Sharpness-Aware Generalization Bound

Lemma 2 (Sharpness-Aware Generalization Bound). For any model θ ∈ Θ ⊂ Rk satisfying E(θ) ≤
Eϵ∼N (0,ρ2I)[E(θ + ϵ)] for some ρ > 0, then w.p. ≥ 1− δ,

E(θ) ≤ Êρ(θ) + O

(√
k ln(∥θ∥2

2/ρ2) + ln(n/δ)
n

)
(21)

Proof. The proof can be found in the appendix of Foret et al. (2021).

A.4 Total Sharpness-Aware Error Under GDA

Theorem 2 (Total Sharpness-Aware Error Under GDA). For any δ ∈ (0, 1), w.p. ≥ 1 − δ, the population
risk of the gradually adapted model θT constructed from intermediate models θ0, . . . , θT −1 according to Al-
gorithm 2, and satisfying ∀t ∈ [T ], E(θ) ≤ Eϵ∼N (0,ρ2

t I)[E(θt + ϵ)] for some ρt > 07, can be bounded according
to:

ET (θT ) ≤ E0(θ0) +O
(

T (∆ + θavg + Savg) +
T (Wavg +

√
ln(n/δ))√

n
+
√

ln(1/δ)
nT

+
√

ln(nT ) Rseq
nT (Θ)

)

where θavg := 1
T

∑T
t=1 ∥θt − θt−1∥2 is the average weight shift, Savg := 1

T

∑T
t=1 Sρt(θt) is the average sharp-

ness, and Wavg := 1
T

∑T
t=1O

(√
k ln(∥θt∥2

2/ρ2)
)

is the average weight norm.

7This assumption means that adding Gaussian perturbation to each solution θt increases the expected loss, which should
hold for all θt obtained from executing SAM in Algorithm 2 (Foret et al., 2021)
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Proof. Following the same first two steps as Theorem 1 of Wang et al. (2022), we have:

ET (θT ) ≤
T∑

t=0

n−1∑
i=0

qnt+iEt(θT ) + disc(qn(T +1)) + ∥qn(T +1)∥2 · O

(
1 +

√
ln 1

δ

)
+O

(√
ln(nT ) Rseq

nT (Θ
)

(36)

≤ 1
T + 1

T∑
t=0
Et(θT )︸ ︷︷ ︸

(i)

+ disc(qn(T +1))︸ ︷︷ ︸
(ii)

+O
(

1√
nT

+
√

ln(1/δ)
nT

)
+O(

√
ln(nT ) Rseq

nT (Θ)) (37)

≤ E0(θ0) +O
(

T (∆ + θavg + Savg) + 1√
nT

+
√

ln(1/δ)
nT

+
√

ln(nT ) Rseq
nT (Θ)

)

+O
(

T (Wavg +
√

ln(n/δ))√
n

)
(38)

Then, the last inequality follows from bounding the terms on the second line in the following way:

(i.) To bound term (i.), we can first bound ET (θT ) by repeatedly applying Theorem 1 in the following
way:

ET (θT ) ≤ ET −1(θT −1) +O
(√

p ln(∥θT ∥2
2/ρ2

T ) + ln(n/δ)√
n

+ ∥θT − θT −1∥+ Wp(µT , µT −1)
)

+ SρT (θT ) (39)

≤ ET −2(θT −2) +O
(√

p ln(∥θT ∥2
2/ρ2

T ) + ln(n/δ)√
n

+ ∥θT − θT −1∥+ Wp(µT , µT −1)
)

+ SρT (θT )

+O


√

p ln(∥θT −1∥2
2/ρ2

T −1) + ln(n/δ)
√

n
+ ∥θT −1 − θT −2∥+ Wp(µT −1, µT −2)


+ SρT −1(θT −1) (40)

≤ . . .

≤ E0(θ0) +
T∑

t=1
(O
(√

p ln(∥θt∥2
2/ρ2

t ) + ln(n/δ)√
n

)
+ Sρt(θt)

+O (∥θt − θt−1∥+ Wp(µt, µt−1))) (41)

Then, the term ET −1(θT ) can be bounded by first applying Lemma 3 and then applying the above
bound on ET (θT ):

ET −1(θT ) ≤ ET (θT ) +O(Wp(µT , µT −1)) (42)

≤ E0(θ0) +
T∑

t=1

(
O

(√
p ln(∥θt∥2

2/ρ2
t ) + ln(n/δ)√

n

)
+ Sρt(θt) +O(∥θt − θt−1∥

)
+O (Wp(µt, µt−1) + Wp(µT , µT −1)) (43)

All the successive terms ET −2(θT ), ET −3(θT ), . . . , E0(θT ) can be bounded the same way. Com-
bining these bounds; defining θavg := 1

T

∑T
t=1 ∥θt − θt−1∥2 as the average weight shift, Savg :=

1
T

∑T
t=1 Sρt(θt) as the average sharpness, and Wavg := 1

T

∑T
t=1O

(√
p ln(∥θt∥2

2/ρ2)
)

as the average
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weight norm; and refining the upper bound of
∑T

t=1O
(√

p ln(∥θt∥2
2/ρ2

t )+ln(n/δ)
√

n

)
in the following way

T∑
t=1
O

(√
p ln(∥θt∥2

2/ρ2
t ) + ln(n/δ)√

n

)
=

T∑
t=1
O
(√

p ln(∥θt∥2
2/ρ2

t ) + ln(n/δ)
)

+O
(

T√
n

)
(44)

≤
T∑

t=1
O
(√

p ln(∥θt∥2
2/ρ2

t ) +
√

ln(n/δ)
)

+O
(

T√
n

)
(45)

≤
T∑

t=1
O
(√

p ln(∥θt∥2
2/ρ2

t )
)

+O
(

T (
√

ln(n/δ))√
n

)
(46)

= O
(

T (Wavg +
√

ln(n/δ))√
n

)
(47)

yields the following bound:

1
T + 1

T∑
t=0
ET (θT ) ≤ E0(θ0) +O

(
T (Savg + θavg + ∆) +

T (Wavg +
√

ln(n/δ))√
n

)
(48)

(ii.) To bound term (ii.), we apply Proposition 1 with

qn(T +1) = q⋆
n(T +1) :=

(
1

(n(T + 1) , . . . ,
1

(n(T + 1)

)
(49)

A.5 Helper Lemmas

Lemma 3 (Standard Error Between Shifted Domains - Lemma 1 of Wang et al. (2022)). Given an error
function Eµ(θ) := E(x,y)∼µ[ℓ(y, x, θ)] with loss satisfying Assumption 1 and any measures µ, ν on Y ×X , we
have that

|Eµ(θ)− Eν(θ)| ≤ O(Wp(µ, ν)) (50)

Proof. The proof can be found in the appendix of Wang et al. (2022).

Proposition 1 (Discrepancy Bound - Lemma 2 of Wang et al. (2022)).

disc(qt) ≤ O
(

t−1∑
k=0

qk(t− k − 1)Wp(µk, µk+1)
)

(51)

Furthermore, if we let qt = q⋆
t := (1/t, . . . , 1/t), then

disc(qt) ≤ O(t∆) (52)

Proof. The proof can be found in the appendix of Wang et al. (2022).

Definition 8 (Rademacher Complexity). The empirical Rademacher complexity of a model class Θ ⊂ Rd

with induced classifiers fθ, θ ∈ Θ on a set of i.i.d. samples S := {xi, . . . , xn} ∼ µ, where µ ∈ ∆(Rd), is given
by

Rµ(Θ) := 1
n
Eϵ∼{±1}n

[
sup
θ∈Θ

n∑
i=1

ϵifθ(xi)
]

(53)
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Following Wang et al. (2022), we assume the Rademacher Complexity of our model family is bounded for
all distributions µ ∈ ∆(Rd).
Assumption 2 (Bounded Rademacher Complexity). There exists some B > 0 so that for any set of n
samples drawn i.i.d. from µ ∈ ∆(Rd), we have that Rµ(Θ) ≤ B√

n
.

Lemma 4 (Rademacher Complexity Generalization Bound). If Assumption 2 holds, then for any θ ∈ Θ,
the absolute difference between its empirical and population error can be upper bounded according to:

|E(θ)− Ê(θ)| ≤ O
(√

ln(1/δ)√
n

)
(54)

Proof. See Lemma A.1 of Kumar et al. (2020).

B SAM Variant Hyperparameters

Our experiments and hyperparameter search are performed over three random seeds for varying values of
ρ ∈ {0.01, 0.02, 0.05, 0.1, 0.2}, with the exception of ASAM. For ASAM, the authors suggest using a value
of ρ that is roughly 10 times larger than the value for SAM, so we test ρ ∈ {0.1, 0.2, 0.5, 1, 2}. For K-
SAM, we follow the guidance from the original paper and set K = B/2, where B is the batch size. For
LookSAM, following the recommendations of the authors, we set k = 5 and test α ∈ {0.5, 0.7, 0.1}. For
FriendlySAM, following the original experiments, we set σ = 1 and test ϕ ∈ {0.6, 0.9, 0.95}. For ESAM,
following the original experiments, we set γ = 0.5 and we test ξ ∈ {0.5, 0.6}. Finally, for FisherSAM, we
test η ∈ {0.01, 0.2, 0.5, 1}. In Table 1, we report the best accuracy values obtained over all hyperparameter
settings for each SAM variant on each of the four datasets.
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