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Abstract

Effective epidemic forecasting is critical for pub-
lic health strategies and efficient medical re-
source allocation, especially in the face of rapidly
spreading infectious diseases. However, exist-
ing deep-learning methods often overlook the dy-
namic nature of epidemics and fail to account
for the specific mechanisms of disease transmis-
sion. In response to these challenges, we intro-
duce an innovative end-to-end framework called
Epidemiology-Aware Neural ODE with Continu-
ous Disease Transmission Graph (EARTH) in this
paper. To learn continuous and regional disease
transmission patterns, we first propose EANO,
which seamlessly integrates the neural ODE ap-
proach with the epidemic mechanism, consider-
ing the complex spatial spread process during
epidemic evolution. We also introduce GLTG
to model global infection trends and leverage
these signals to guide local transmission dynam-
ically. To accommodate both the global coher-
ence of epidemic trends and the local nuances
of epidemic transmission patterns, we build a
cross-attention approach to fuse the most mean-
ingful information for forecasting. EARTH offers a
more robust and flexible approach to understand-
ing and predicting the spread of infectious dis-
eases. Extensive experiments show EARTH su-
perior performance in forecasting real-world epi-
demics compared to state-of-the-art methods. The
code is available at https://github.com/
GuanchengWan/EARTH.
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Figure 1. Problem illustration. Considering both evolution of re-
gional correlation signals and irregular sampling observation
intervals facts, we focus on the continuous-time epidemics. But
existing solutions fail to I) learn disease transmission patterns with
epidemic mechanism and II) address missing states. Additionally,
they omit to III) learn global trends caused by external factors (e.g.,
lockdowns) while developing dynamic regional transmission.

1. Introduction

The COVID-19 pandemic has resulted in millions of deaths
and significant economic losses worldwide, severely disrupt-
ing social and economic systems (Martin et al., 2023; Pak
et al., 2020). To address these challenges, there is a grow-
ing interest in epidemiological models, which are crucial
for effective public health strategies and efficient medical
resource allocation (Liu et al., 2024; Cm, 2020). Traditional
models, such as the SIR model and its variants (Dehning
et al., 2020), rely on mathematical differential equations to
simulate disease spread but often depend on oversimplified
assumptions (Funk et al., 2018; Kondratyev, 2013; Yang
et al., 2023). To enhance performance, deep learning mod-
els like Neural Networks (Madden et al., 2024; Rodriguez
et al., 2023) or Graph Neural Networks (GNNs) (Zhang
et al., 2024e;b) have been explored. These models effec-
tively represent interactions between entities (e.g., regions)
as graphs, capturing the spatial spread of disease through
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message-passing mechanisms.

Nevertheless, given the dynamic nature of epidemic sys-
tems, existing work often neglects the dynamic evolution of
regional interactions. For example, changes in people’s be-
havior (e.g., lockdowns) at a specific time step of one region,
will greatly reduce the spread to surrounding regions in the
following period. Existing efforts generally predict future
epidemic profiles by modeling regional interactions from
the whole series while overlooking these dynamic changes
during the evolution. Furthermore, irregular sampling ob-
servation intervals are not considered. For instance, some
regions may be unable to conduct routine reporting in the
early stages of an epidemic due to limited resources. Cur-
rent work simplifies this scenario by learning only regular
intervals which is impractical in the real world. The problem
illustration is detailed in Figure 1.

To tackle the aforementioned issues, neural ordinary differ-
ential equation (NODE) (Chen et al., 2018; Poli et al., 2021;
Liu et al., 2025) stands out as a powerful approach to model-
ing the continuous-time system. Therefore, in this work, we
take inspiration from NODE and focus on the continuous-
time epidemic system, capturing the intricate dynamics more
accurately. However, directly incorporating the neural ODE
with the epidemic system faces nontrivial challenges. Firstly,
it does not explicitly learn epidemic mechanisms and fails
to provide insights to decision-makers. This motivates us to
think: I) How can we generally combine the neural ODE
approaches with epidemic mechanism? Some work (Arik
et al., 2020; Meznar et al., 2021) proposes hybrid models
trying to combine the epidemic mechanism and deep learn-
ing methods. However, due to the limited observations of
all disease states (e.g., lacking data on susceptible individ-
uals) in the real world, these models are not flexible and
are unable to learn inherent epidemic mechanisms. In the
meanwhile, some existing neural ODE approaches from
other fields (Luo et al., 2023) fail in addressing this problem
either. Thus, the following question naturally emerges: II)
How can we learn continuous disease transmission under
limited observations more flexibly? Apart from the afore-
mentioned locally subtle spreading patterns, epidemics also
exhibit a global infection trend. From a more macroscopic
perspective, the infection trend can be seen as a longer-range
and often multi-regional overall direction. This global sig-
nal impacts and changes the disease propagation, resulting
in different spatial transmission patterns at different times.
For instance, global political vaccination trends significantly
alter local spatial transmission patterns. In regions with high
vaccination rates, the spread of the epidemic slows down,
and a “herd immunity” effect may even occur (Chauhan
et al., 2023). However, previous work usually considers
static geographic graphs or only learns the graph without ac-
counting for the continuous evolution of global signals. This
raises another intriguing question: III) How can we model

the global infection trend and learn dynamic regional
transmission patterns during continuous evolution?

To address the identified questions, we propose an inno-
vative and end-to-end framework for continuous-time epi-
demic modeling: Epidemiology-AwaRe ODE with Continu-
ous Disease Transmission GrapH (EARTH). To address ques-
tion I) and facilitate epidemiology-informed transparency,
we revisit the classic compartmental models (i.e., SIR). In
order to surpass previous efforts (Rodriguez et al., 2023) and
fully leverage the expressive ability of neural networks, we
propose a neural ODE-based Network SIR (Brede, 2012)
to implicitly capture the continuous evolution of the re-
gional propagation graph. To overcome the challenge II)
we propose to initialize disease state features and feed them
into a proposed Epidemic-Aware Neural ODE (EANO)
module to learn inherent epidemic transmission pattern.
Moreover, we attempt to achieve the target IIT). We first
obtain a long-range view of epidemic progression and estab-
lish a relationship with regions that share similar develop-
ment patterns. To further consider dynamic regional trans-
mission, we develop an innovative Global-guided Local
Transmission Graph (GLTG). Specifically, we fuse global
trend indicative features for different regions with GNN.
Then they are utilized to generate more fine-grained locally
dynamic transmission graphs, which guide our EANO dis-
ease spreading during the evolution. Finally, we develop a
cross-attention mechanism to accommodate both the global
coherence of epidemic trends and the local nuances of dis-
ease transmission patterns. We conjecture that these two
components together make EARTH a competitive method for
epidemic forecasting.

Our principal contributions are summarized as follows:

©® We are the first to harmonize the neural ODE with the epi-
demic mechanism, developing an innovative framework
considering the time-continuous nature of epidemic dy-
namics while learning inherent disease spreading patterns.

@ We further consider global epidemic trends and learn dy-
namic regional transmission patterns during continuous
evolution within the end-to-end model.

® By integrating global coherence and local dynamics via a
cross-attention mechanism, we achieve superior results on
multiple epidemic forecasting datasets including COVID-
19 and influenza-like illness.

2. Related Work

2.1. Epidemic Forecasting

Epidemic forecasting plays a crucial role in predicting the
spread and impact of infectious diseases, enabling timely
and effective public health interventions (Emanuel et al.,
2020; Fine, 2015; Terris, 1993). Traditional models like the
SIR (Susceptible-Infectious-Recovered) model (Hethcote,
2000) use differential equations to describe disease dynam-
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ics but often rely on oversimplified assumptions (Dehning
et al., 2020; Caals et al., 2017). Recent advances incorpo-
rate deep learning methods like Graph Neural Networks
(GNN5s) (Dai et al., 2022; Wan et al., 2024b), which better
capture the complex interactions and spatial dependencies
in disease spread from data-driven perspectives (Deng et al.,
2020; Yu et al., 2023). However, these deep learning meth-
ods neglect the dynamic nature of the epidemic system. The
issues of regional correlation signals and irregular sampling
observation intervals remain unresolved, hindering the ac-
curate capture of real-world epidemics. Therefore, in this
work, we propose a general framework by seamlessly inte-
grating epidemic mechanisms into Neural ODE, capturing
the complex evolution of continuous-time epidemics.

2.2. Graph Neural Networks

Graph Neural Networks (GNNs) (Hamilton et al., 2017;
Velickovic et al., 2017; Huang et al., 2023; Wan et al., 2024a;
Zhang et al., 2024a;d; Wan et al., 2025b) are widely recog-
nized for processing non-Euclidean data structures, such as
traffic networks (Wu et al., 2019). They update node repre-
sentations by aggregating information from neighbors via
message-passing (Zhang et al., 2024c; Zhang et al.; Chen
et al., 2024a; 2023). Many studies have used GNNs for
epidemic modeling (Sha et al., 2021; Wang et al., 2023),
focusing on the spatial relationships in disease spread (Jhun,
2021; La Gatta et al., 2021), but often overlook dynamic
transmission patterns. Our approach addresses this by con-
centrating on continuous-time epidemic modeling, using
GNNSs to integrate multi-region global trends and create
disease transmission graphs for regional propagation.

2.3. Neural Ordinary Differential Equation

Neural ODEs extend discrete neural networks to continuous-
time scenarios, offering superior performance and flexibil-
ity (Chen et al., 2018). They have been widely adopted
in various fields such as traffic flow forecasting (Fang
et al., 2021; Choi et al., 2021), continuous dynamical sys-
tems (Chen et al., 2024b; Huang et al.), and recommen-
dations (Qin et al., 2024). Recent advancements have in-
tegrated GNNs with Neural ODEs, enhancing the model-
ing of complex dependencies in graph-structured data (Luo
et al., 2023; Wan et al., 2025a). Some works have started
to apply Neural ODEs to model classic epidemic spread-
ing processes like SIR (Kosma et al., 2023). For a more
comprehensive overview, readers are referred to the sur-
vey in (Liu et al., 2025). However, these approaches often
rely on pre-defined epidemic models and do not fully cap-
ture the dynamic nature of regional interactions or global
trends. In contrast to prior work, we extend this concept to
investigate important continuous-time epidemic modeling
by developing a framework that harmonizes the neural ODE
with epidemic mechanisms while dynamically learning the

disease transmission graph. Since the epidemic system is
time-varying, we first attempt to associate each region with
the time-corresponding latent variable Z, (¢) by a parameter-

ized ODE Z, (1) := dZ,(t)/dt = b, (ot; t: Zv(t)>, which
depicts the region-specific dynamic trajectory for series.

Thus we can derive temporal dynamics at 7" for all regions
Z(T) € RN*4 as follows:

2(1) - 20)+ [ " (0620t M

Here ¢, denotes the time manipulation function parame-
terized by 6;. In our framework, we leverage multi-layer
perceptrons (MLP) for the time modeling module ; by
default. Furthermore, for different regions, diverse and
complex processes of infectious disease transmission ex-
ist. Inspired by Neural Controlled Differential Equations
(NCDE) (Kidger et al., 2020), we exploit a continuous path
Q, for each region v, which reformulates Equation (1) as:
T (o7 190
Z(T) = Z(0) + /0 ve (05 2()) =5
Equation (2) transforms the integral problem from a Rie-
mann integral to a Riemann-Stieltjes integral. Q(¢) is cre-
ated from {(t;,x;)}¥, by an interpolation algorithm.

dt. 2)

3. Preliminaries

We approach the epidemic forecasting challenge by em-
ploying a graph-based prediction model. Let G = (V, &)
represent the graph, where V denotes a set of nodes com-
prising |V| = N regions (e.g., cities or states). The edge
set £ C V x V represents the geographic links between
these regions. The adjacency matrix A € R™*"™ is defined
such that A;; = lif thereis anedgee; ; € Eand A;; =0
otherwise. The normalized adjacency matrix is given by
A =D '/2AD /2, where the degree matrix D is a diago-
nal matrix with D;; = Y ; Ayj.

Problem Formulation. Each node corresponds to a region
with an associated time series input over a window 7, such
as infection counts for 7" weeks. We represent the train-
ing data over this period as X = [xq,...,xp] € RV*XT,
The goal is to construct a model capable of predicting an
epidemiological profile x7 . at a future time point T" + h,
where h denotes the prediction horizon.

4. Methodology

4.1. Overview

In Epidemic-Aware Neural ODE, we initialize disease states
as region-specific features and build them upon time vari-
ables, which are then fed into proposed Network SIR-
inspired neural ODE functions to capture local subtle dis-
ease transmission patterns. Furthermore, in Global-guided
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Local Transmission Graph we leverage the GNN to ob-
tain global trends and evolutionary graphs. Then dynamic
graphs are learned during the evolution of epidemics to
guide EANO propagation. Ultimately, we proposed a cross-
attention mechanism to accommodate both local nuances
and global coherence for final forecasting. The illustration
of the overall framework is detailed in Figure 2.

4.2. Epidemic-Aware Neural ODE

Motivation. Existing deep learning methods neglect the
continuous evolution of epidemic systems and do not explic-
itly learn about epidemic development. Traditional mech-
anistic models attempt to understand spreading patterns
through ODEs but fail to utilize available data sources and
model more complex epidemics fully. Therefore, we aim
to combine the advantages of both approaches to enable an
Epidemic-Aware Neural ODE framework.

SIR-inspired Neural ODE. In epidemiology, the standard
SIR model (Hethcote, 2000) categorizes the population into
three distinct groups based on their disease states: suscepti-
ble (S) to infection population, currently infectious popula-
tion (I), and recovered population (R), with the latter group
being immune to both contraction and transmission of the
disease. The SIR model, formulated using ODEs (Grassly &
Fraser, 2008), describes the epidemic dynamics as follows:

as S,
@~ G)
ﬂ _ ﬂst[’f —~T @ —~T
di p e g T

These equations distribute the total population P across
the aforementioned categories. Here, susceptible individ-
uals become infectious upon contact with infectious ones,
driven by the transmission rate 8 (S — I). In the mean-
while, infectious individuals recover and gain immunity at
the recovery rate v (I — R). However, due to resource
restrictions and observation limitations, these explicit cases
may not always be available in real-world scenarios. To
address this issue, we propose to utilize neural ODEs to
automatically infer these ODE functions in Equation (3)
via neural networks in a data-driven manner. Specifically,
we treat these disease states (S, I, and R) as latent high-
dimensional variables. Each state is represented by a matrix
S(t),1(t), and R(t) in RNV* with d denoting the hidden
dimension. In a continuous epidemic system, these states
are intrinsically linked with the time variables. Thus, we
utilize the NCDE approach in Equation (2) and model the
specific epidemic state C as:

dZ(t)
Cdt

=C(0) + /OT b (0:C(1) ) v (03 2(1)) det(t) di

Here Q(t) are controlling paths for regions given by the

cm) =co+ [ "o (6.:00) Al g,

interpolation algorithm. They are resilient against irregular
cases (e.g., unpredictable outbreaks) when implemented
in real-life epidemics, providing a more responsive model
for predicting disease spread. Through the NCDE, we can
model these disease states in continuous-time epidemics.

Nevertheless, it directly learns these states independently
while considering the high-level spatial spreading pattern
within diseases. Therefore, we move beyond and designate
the ODE function for each state. With well-crafted proce-
dures ¢, ¢;, and ¢, functions, we can learn not only intra-
state development but also inter-state interactions within
regions. Taking SIR process Equation (3) into considera-
tion, ¢ should be associated as input S(¢) and I(t), given

that ¢ (05; S(t), I(t)). Similarly, we then have other two

functions ¢; (01-; S(t), I(t)) and ¢, (GT; I(t)). Inspired by
Network SIR applications (Balcan et al., 2009; Sha et al.,
2021), we further incorporate regional correlations in dis-
ease transmission into the state’s updating process. Specifi-
cally, these functions are rewritten by:

_dSu(t) _
¢s = T = —Wins [Sv(t)H UEZM e““I“(t)]’
dl,
Qbi = d;t) = trans [Sv(t)” Z eUUIu(t)] - Wrecovlv(t)’
uEN Y
¢r = dRU (t) = WrecovIv (t)v

dt
®)

here NV, denotes the neighboring nodes for node v in the set
V, with e,,, representing the weight of disease transmission
intensity between regions v and u. The symbol || signifies
the concatenation operation. By substituting the traditional
SIR’s two simple rates from Equation (3) with the more
flexible parameters Wyans € R24X% and Wieeoy € R4¥9,
our model can derive more detailed representations of the
disease spread and recovery processes. This adaptability
enables the model to adjust to diverse epidemic conditions,
reflecting the intricate mechanisms of disease transmission.

Additionally, incorporating regional correlations through
e, allows the model to account for spatial dependencies,
thereby improving its ability to mirror real-world interac-
tions. However, the approach still depends on static neigh-
borhood relationships and fail to capture the dynamic nature
of disease transmission as epidemics evolve.

4.3. Global-guided Local Transmission Graph

Motivation. As previously noted, EANO solely accounts
for the pre-defined neighborhood connections, neglecting
the evolutionary disease interactions. This observation
drives us to explore more effective approaches to represent
local spatial transmission patterns during the evolution.

Global Infection Trend. In addition to local transmission
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Figure 2. Architecture illustration of Epidemiology-Aware Neural ODE with Continuous Disease Transmission Graph. EARTH is a general
and end-to-end framework that can flexibly capture the time-continuous epidemic mechanism. Best viewed in color.

dynamics, epidemic systems also exhibit a global signal that
represents the overall infection trend. This trend encapsu-
lates the broader patterns of infection spread, influenced by
factors such as international travel, global health policies,
and widespread behavioral changes. For example, during a
pandemic, international travel restrictions and lockdowns
can significantly curtail cross-border disease transmission,
resulting in differing regional infection rates and modify-
ing the epidemic’s overall trajectory (Demey et al., 2020;
Russell et al., 2021). To address this, we propose creating a
global infection indicator feature for each region, correlated
with the corresponding temporal features:
T
HT) =10+ [0 (0 100) v (052(0)) .
(6)
Since global here refers to the multi-regional overall di-
rection, we employ Dynamic Time Warping (Please see
details in Appendix C) to assess the similarity of historical
case trends across different regions, thereby extending the
original geographic connections:
1, ifAu, =1,
Ao =<1, ifu#vandu e Topy(v),
0, otherwise.

@)

In this context, T'opy,(v) denotes the indices of the k most
similar nodes to node v. By doing this, we establish an
epidemic-semantic spatial relationship that emphasizes re-
gions with analogous epidemic progression patterns. To pro-
mote interactions between regions, we implement a residual
GNN layer to update the global infection trend:

~—1/

ps = o (DA H(W, ) + H(t) ®)

Here, D represents the degree matrix corresponding to A,
‘W, is the learnable weight matrix, and o denotes the activa-
tion function. The GNN layer ¢, facilitates the aggregation

and propagation of information across a broader regional
scope, resulting in the fused global trend features H(t).

Dynamic Regional Transmission. Having established the
global infection trends, we leverage this signal to guide local
spatial transmission patterns by impacting the regional con-
texts in which local transmission occurs. For instance, high
global vaccination rates can decrease the pool of susceptible
individuals across regions, reducing local transmission op-
portunities. We employ a module to learn these dynamically
evolving patterns based on H(t):

M (#) = tanh (H(H W + by ),

Ms(t) = tanh (H() W2 + bs ), ©)

Alt) = U(tanh(Ml(t)Mg(t)T ~ M, (t)Ml(t)T)).

The concurrent local transmission relationship A(t) is
guided by the global trend, while Equation (9) ensures that
the learned pattern does not form a completely bidirectional
graph. This highlights that inter-regional dissemination is
not perfectly symmetrical, capturing the asymmetric nature
of spatial interactions in epidemic spread. Additionally, we
utilize a masking technique to balance the weights of static
and dynamic transmission patterns:

M(¢) = U(WBA(t) + ng),
~ (10)
E(t) = M(t) © A + (J - M(t)) ® A(t).

In Equation (10), M(¢) is a continuous mask matrix, and
J = 151}, represents the all-ones matrix. The matrix E(t)
integrates the mask matrix M(¢), the original adjacency
matrix A, and the globally guided pattern A(t) through
element-wise Hadamard products, aiming to capture prop-
agation patterns between regions in this dynamic system.
Once the fused spatial transmission pattern E(t) is obtained,
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Australia-COVID

US-Region US-States

Methods h=5 h =10 h =15

h =5

h =10 h =15 h=5 h =10 h =15

R P R P R P R

P

R P R P R P R P R P

VAR
SARIMA
SIR
LSTM

665.3 83.47
233.7 38.45
235.0 4250
228.0 39.78

5752 9241
4284 95.20
445.2 104.5
433.6 108.4

502.9 95.39
445.1 93.60
425.6 102.8
432.6 98.09

1151
1142
1235
1173

572.3
525.8
575.0
538.6

1396 701.6
1428 715.3
1480 745.0
1475 736.5

1418 688.3
1460 675.4
1565 760.0
1509 757.6

339.2 90.38
335.6 92.80
338.0 121.5
331.8 93.45

371.3 103.2
368.2 106.4
388.0 112.0
370.0 109.8

402.4
406.5
428.0
411.3

150.7
149.2
168.0
154.9

DCRNN
STGCN
ASTGCN
STGODE
STG-NCDE

514.8 166.5
833.7 232.6
821.5 2219
310.5 66.32
287.2 49.21

853.7 286.4
787.8 227.7
765.9 201.3
3922 91.05
3413 77.92

1186 404.6
802.1 248.3
804.1 254.8
571.3 159.2
479.2 111.2

1488
1335
1252
1304
1284

760.9
678.1
545.2
668.2
643.1

1443 7327
1522 819.2
1478 801.1
1403 732.1
1399 691.2

1412 710.3
1638 925.4
1576 821.3
1577 804.3
1421 732.1

329.4 93.15
304.7 89.32
310.2 93.44
3452 107.8
319.2 94.39

3347 96.90
293.7 85.33
290.5 80.99
402.4 1204
377.6 101.5

372.8
312.5
344.6
4713
4213

142.6
116.3
123.4
199.4
176.7

CNNRNN-Res
EpiGNN
CAMul

EINN
ColaGNN
EpiColaGNN

1802 624.7
210.3 40.12
2314 44.32
206.2 38.19
224.2 5523
2043 36.86

612.6 151.4
467.3 120.1
398.2 76.62
312.4 6421
544.8 161.6
3454 68.39

622.1 153.1
764.2 233.7
634.1 164.7
4569 98.72
795.8 258.0
886.0 296.5

1190
1136
1145
1178
1148
1185

588.3
534.2
557.3
571.6
333.6
575.7

1332 6428
1454 7289
1434 703.2
1432 729.1
1524 846.6
1341 648.1

1374 652.1
1444 7642
1402 699.2
1489 7923
1552 8563
1371 666.9

3033 86.78
288.5 84.32
294.6 88.16
3212 9791
299.1 81.53
286.1 83.38

292.1 79.33
297.6 8432
312.8 86.71
342.1 100.1
2834 79.12
3009 90.65

333.6
391.6
325.2
402.7
339.4
375.1

105.4
157.4
107.5
162.9
120.6
132.5

EARTH || 156.8 30.12 | 177.6 38.62 | 225.3 56.32 | 1080

Table 1. Comparison with the state-of-the-art methods on three epidemic forecasting datasets.

Region 4

Region 8

- Ground Truth

- EARTH
ColaGNN
EpICOlaGNN

EpiColaGNN

Epidemic Cases
g
Epidemic Cases

10 20 30 40 50 60 70 80 90

Time Step

6 10 20 30 40 50 60 70 8 9 [
Time Step

(a) Visualization of Region 4 (b) Visualization of Region 8

Figure 3. Visualization of predicted cases. We randomly pick two
regions in the Australia-COVID dataset with horizon 10. It shows
that EARTH fits the ground truth well and follows the developing
trend of epidemics. Better view in enlarged.

we use it to update the weights e,,,, in Equation (5), resulting
in:

61 = ~Waan[So (0]l Y e (OL.(1)],
uE/\Tu
61 = Wans [Su(0)]] D evu(OL(D)] = Weeen Lo (1), (1D
uE/\h/'ru
¢r = Weeeonlo (t)

The continuous and regional correlation intensity is denoted
by ey, (t). The set N, represents the neighborhood nodes
with nonzero weights in fl(t) for the dynamic regional trans-
mission of region v. This approach enables GLTG to lever-
age the global infection trend signal to guide local spatial
transmission patterns, considering diverse external factors
in epidemics and extending beyond simple partial transfer.

Global and Local Epidemic Fusion. With the differential
and integral processes of epidemics established, we deter-
mine the global infection trend H(t) for continuous time ¢

522.4

1244 605.3 | 1301 647.1 | 243.2 67.43 | 277.8 80.43 | 300.1 104.2

Best in bold and second with underline.
using a designated ODE solver, such as Runge—Kutta:
H(t) = ODESolver (dH(t) ,Ho, t> .

dt

Given the overall historical time window 7', we ultimately
derive the global infection trend H(7') and local disease
states M(T) = {S(t),I(¢),R(¢)}. To integrate both the
global coherence of epidemic trends and the local intricacies
of disease states, we design a multi-headed cross-attention
mechanism to merge the global and local transmission in-
formation. Specifically, we use H(T') to guide the fusion
of M(T'). Given three common sets of inputs: query set @,
key set K, and value set V', we define H as follows:

H(Q7K7 V) = (Ql @ QQ D--- @QNT)W,

12)

QKT
S(Q, K, V) = softmax < v, 13
7n (13)
Q, = S(QWu?, KWk, kuV)|f;.

The pi-th head is represented by €2,,, and the attention func-
tion is denoted as S. The learnable linear mappings include
W, W WX and WV The formulation for the global-
local fusion is given by:

F(T) = H(Z(T), M(T),M(T)). (14)

In Equation (14), F(T') represents the fused feature. Con-
ceptually, the global trend feature serves as a query, calcu-
lating the similarity with each detailed disease state. This
method aids in recognizing the semantic epidemic condi-
tions and attentively integrating the disease features.
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L. Australia-COVID US-Region
Missing
R h=5 h =10 h=5 h =10
ate
R P R P R P R P

40%|173.1 38.02]190.2 45.68|1129 541.9(1267 629.9
30%(|168.5 36.42|187.2 44.50( 1115 535.4|1265 631.8
20%(|162.4 33.44|184.7 42.97(1110 536.2|1262 618.4
10% || 158.4 30.95|180.4 40.77(1089 529.6|1259 613.1
0% || 156.8 30.12|177.6 38.62(1080 522.4|1244 605.3

Table 2. Analysis under irregular conditions on two datasets.
4.4. Overall Objective

Ultimately, we derive the fused features F(7'), which har-
monize the global consistency of epidemic trends with the
particularities of local health conditions. We then concate-
nate these features with the time-corresponding features
Z(T') and employ an MLP parameterized by 6 to pool the
final prediction for region v:

Yo = f(05; [Fo(D)]|Zo(T))]). (15)

Following previous methods (Deng et al., 2020; Xie et al.,
2022), we use the MSE loss to compare the predicted values
with the ground truth:

B N
Lose = Z Z |yi,'u - :&i,v|7 (16)
i=1 v=1

where B denotes the sample size, and ¢ is the sample index.
1Ji,» Tepresents the true value for sample 4 of region v.

5. Experiment

In this section, we comprehensively evaluate our proposed
EARTH by answering the main questions:

* Q1: Performance. Does EARTH outperforms the existing
state-of-the-art epidemic forecasting methods?

* Q2: Resilience. Is EARTH stable on different settings?

* Q3: Effectiveness. Are proposed two key components:
EANO and GLTG both effective?

* Q4: Sensitivity. What is the performance of the proposed
method with different hyper-parameters?

The answers of Q1-Q4 are illustrated as follows.

5.1. Experimental Setup

Real-world Datasets. We leverage three datasets to exam-
ine the validity of our EARTH, to ensure fair and consistent
comparisons with prior work (Liu et al., 2023; Kamarthi &
Prakash), including COVID-19 and influenza-like illness:
Australia-COVID, US-Regions, and US-States. Please see
Appendix A for dataset details.

Implemention Details. We use two metrics following (Liu

etal.,2023): R represents RMSE (Root Mean Square Error),
while P stands for Peak Time Error, which calculates the
MAE (Mean Absolute Error) focusing only on significant
peaks in the epidemics using a specified threshold. For more
details please refer to Appendix B.

Counterparts. We compare ours against several SOTA
epidemic forecasting methods: VAR (Song et al., 2020),
SARIMA (Valipour, 2015), SIR (Grassly & Fraser, 2008),
LSTM (Sesti et al., 2021), DCRNN (Li et al., 2018),
STGCN (Yu et al,, 2017), ASTGCN (Guo et al., 2019),
STGODE (Fang et al., 2021), STG-NCDE (Choi et al.,
2021), CNNRNN-Res (Wu et al., 2018), CAMul (Ka-
marthi et al., 2021), EINN (Rodriguez et al., 2023), Co-
1aGNN (Deng et al., 2020), EpiGNN (Xie et al., 2022) and
EpiColaGNN (Liu et al., 2023).

5.2. Performance

This section addresses Q1. To demonstrate the excellent per-
formance of our proposed EARTH, we conducted comprehen-
sive experiments on various epidemic datasets. We consid-
ered multiple baselines, including general spatio-temporal
and epidemic forecasting methods, as detailed in Tab. 1. Key
observations include: 1) VAR and LSTM are inadequate at
capturing complex spatial dependencies, making them less
effective. 2) General spatio-temporal methods like STGCN
or ASTGCN can capture some regional dependencies but
struggle with time development and long-term predictions.
3) ODE-based methods like STGODE can learn complex
dynamic systems but do not sufficiently consider epidemic
mechanisms. 4) Some epidemic-specific methods achieve
excellent results but still struggle to model the evolution
of epidemics. 5) Mechanistic methods like EINN do not
succeed in capturing high-level spatial interaction between
diseases from different regions. 6) EARTH demonstrates
competitive performance across various real-world datasets
due to its ability to learn complex epidemic evolution and
dynamic regional propagation patterns.

Additionally, to visually underscore the superiority of
EARTH, we compared predicted cases in the Australia-
COVID dataset with a horizon of 10 against different base-
lines. The results, shown in Figure 3, indicate that our
method more accurately fits the ground truth and follows the
trend of epidemic development. We also show the learned
graph in our GLTG component in Figure 4, which demon-
strates that our method goes beyond geographical connec-
tions and obtains global horizons during evolution.

5.3. Resilience

This section addresses the question Q2. We conducted two
key experiments to evaluate this aspect: 1) We examine
the robustness of the method under different irregular condi-
tions with a range of missing rates, as detailed in Tab. 2. The
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Figure 4. Learned Regional Graph in GLTG. We visualize top-3
weighted edges for each region in the US-States dataset, excluding
states with no available data.

outcomes show that EARTH remains robust across different
datasets with diverse intervals. Our proposed method consis-
tently outperforms other baseline methods, demonstrating
its resilience to variable intervals and missing data. 2) We
also test the performance of EARTH across different predic-
tion horizons as shown in Figure 6. The results indicate that
our method can make stable predictions over various hori-
zons while learning epidemic mechanisms enables superior
long-term prediction compared to other methods.

5.4. Effectiveness

The explanation for Q3 is presented in this section. Tab. 3
firstly discusses two key design elements in our method:
EANO effectively enhances performance by leveraging the
powerful capabilities of Neural ODEs while specifically
considering the disease propagation mechanism. Addition-
ally, GLTG yields promising results by learning the dynamic
regional patterns during the evolution of epidemics.

In addition, we dive into GLTG deeper by considering it
without dynamic graphs (w/o Dyna. Graph) or global trends
(w/o Glo. Trend). The results show that dynamic graphs
play a crucial role in modeling disease spatial interactions,
while global trends help to capture long-distance informa-
tion. Additionally, We provide two variants: one using
concatenation (w Concat) and another using addition (w
Add) instead of cross-attention. These variants show the
effectiveness and necessity of cross-attention, as it outper-
forms both by selectively emphasizing relevant global and
local information. We also examine EARTH under a fully
connected regional graph, declaring this will lead to infor-
mation redundancy. The variant considering adding a sparse
penalty loss to the learned graph for encouraging sparsity,
will not impact the final performance significantly.

5.5. Sensitivity

This section provides an answer to Q4. As shown in Fig-
ure 5, we first investigate the effect of varying the number
of attention heads N7 in Equation (13). The results demon-
strate overall stability with different numbers of heads, al-

Australia-COVID US-Region
Variants h=5 h =10 h=5 h =10
R P R P R P | R P

w/o Both |[267.4 43.65|322.7 63.04|1235 637.4|1367 675.3

w EANO||178.6 36.99|184.5 44.62|1120 538.3|1282 639.2

w GLTG||232.4 40.44|301.2 57.42|1204 579.3|1321 654.3

w/o Dyna. Graph ||227.6 38.44/290.0 53.89|1184 572.5|1302 647.0

w/o Glo. Trend || 172.4 33.75|182.0 44.39(1102 541.2|1267 621.3

w Concat || 167.9 33.441190.4 45.71 (1132 544.3|1304 612.4

w Add||175.2 33.01|194.8 43.29| 1149 535.7|1291 603.7

Fully Connected || 192.1 39.62|194.7 40.22|1192 564.3|1347 666.0
Sparse Penalty || 160.9 32.60|182.4 59.37|1075 519.2|1271 635.4 height

EARTH|| 156.8 30.12|177.6 38.62|1080 522.4|1244 605.3

Table 3. Ablation Study of different variants on two datasets.
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Figure 5. Analysis on hyper-parameter. Performance with hyper-
parameter N7 and k, where red, yellow, and green represent the
Australia-COVID, US-States, and US-Region respectively.

though too few heads can impair the method’s ability to
capture diverse information. We also test our method with
different values of k in Equation (7). More connections can
lead to redundancy in message passing for datasets with
fewer regions (e.g., Australia-COVID). In contrast, larger
datasets (e.g., US-States) can tolerate more connections. In
all cases, global connections are essential for learning global
infection trends.

6. Conclusion

In this paper, we propose a novel framework, EARTH, to
improve epidemic forecasting performance. By integrat-
ing neural ODEs with traditional compartmental models,
EANO captures the underlying disease propagation mech-
anisms. We also identify global infection trends and intro-
duce GLTG to dynamically adjust local transmission pat-
terns. Using a global-local cross-attention fusion approach,
we extract representative features that account for both sub-
tle disease states and broader trends. Extensive experiments
on real-world epidemic datasets highlight the effectiveness
of EARTH, offering valuable insights into combining mecha-
nistic models with deep learning for future applications in
epidemiology and data science.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
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Figure 6. Analysis on different horizon with four methods.

specifically highlighted here.
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A. Datasets Details

Following previous epidemic forecasting work (Deng et al., 2020; Liu et al., 2023), we exploit three widely-used datasets
including COVID-19 and influenza-like illness:

+ Australia-COVID. Provided by JHU-CSSE!, this dataset records daily new COVID-19 cases, including 6 states and 2
territories, from January 2020 to August 2021.

» US-Regions. This dataset comprises weekly influenza activity levels for 10 Health and Human Services (HHS) regions,
spanning from 2002 to 2017, and offers data on regional influenza patterns over time.

» US-States. The US-States dataset contains weekly counts of patient visits for influenza-like illness (ILI) across 49 states
in the United States from 2010 to 2017, excluding Florida, capturing influenza trends.

B. Implemention Details

In all experimental setups, we set the learning rate to le — 3 and use SGD (Robbins & Monro, 1951) as the optimizer with a
momentum of 0.9 and weight decay of 1e — 5 (Bi et al., 2025a;b). The default hidden size is 64, and the window size T' is
20. Considering that decision-makers need time to allocate prevention resources in epidemic modeling, we set the horizon h
to 5, 10, and 15. We repeat each experiment five times for each dataset and record the average results.

C. Details about Dynamic Time Warping

In our method, we use Dynamic Time Warping (DTW) to measure similarity between nodes based on historical case trends.
The DTW distance between two time series X = {x1,22,...,2,} and Y = {y1,y2, ..., Ym } is computed by constructing
an n X m cumulative distance matrix D, where each element D(i, j) represents the minimum cumulative distance between
the first ¢ elements of X and the first j elements of Y, with d(x;, y;) = ||z; — y;|| as the Euclidean distance. The recursive
relation is:

D(i,j) = d(xi,y;) + min{D(i — 1, ), D(i,j — 1), D(i — 1,j — 1)}. (17)

Finally, D(n,m) gives the DTW distance between X and Y. Using this DTW metric, we define the k-most similar nodes to
node v as:
Top, (v) = {u | u € V, D(X,, X,) is among the k smallest values}. (18)

This approach captures alignment in epidemic patterns across regions, even with temporal shifts. By identifying the

k-most similar nodes using DTW, we create a flexible, semantically meaningful connection structure that enhances model
performance.

"https://github.com/CSSEGISandData/COVID-19
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