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ABSTRACT

Continual learning (CL) focuses on learning non-stationary data distribution with-
out forgetting previous knowledge. However, the most widely used memory-replay
approach often suffers from memory overfitting. To mitigate the memory over-
fitting, we propose a continuous and reversible memory transformation method
so that the memory data is hard to overfit, thus improving generalization. The
transformation is achieved by optimizing a bi-level optimization objective that
jointly learns the CL model and memory transformer. Specifically, we propose a
deterministic continuous memory transformer (DCMT) modeled by an ordinary
differential equation, allowing for infinite memory transformation and generating
diverse and hard memory data. Furthermore, we inject uncertainty into the transfor-
mation function and propose a stochastic continuous memory transformer (SCMT)
modeled by a stochastic differential equation, which substantially enhances the
diversity of the transformed memory buffer. The proposed neural transformation ap-
proaches have significant advantages over existing ones: (1) we can obtain infinite
many transformed data, thus significantly increasing the memory buffer diversity;
(2) the proposed continuous transformations are reversible, i.e., the original raw
memory data could be restored from the transformed memory data without the need
to make a replica of the memory data. Extensive experiments on both task-aware
and task-free CL show significant improvement with our approach compared to
strong baselines.

1 INTRODUCTION

Continual learning (CL) aims to learn non-stationary data distribution without forgetting previous
knowledge. Depending on whether there are explicit task definitions (partitions) during training, CL
can be categorized into task-aware and task-free CL. For task-aware CL, there are explicit tasks and
class splits during training; according to whether the task identities are known or not during testing, it
can be further categorized into task/domain/class-incremental CL (van de Ven & Tolias, 2019). For
task-free CL (Aljundi et al., 2019b), there is no explicit task definition, and data distribution shift
could happen at any time.

Memory replay is an effective way to mitigate forgetting and has been widely used in CL. One
major problem of the memory-based methods is that the effectiveness of memory buffer data could
gradually decay during training (Delange et al., 2021; Jin et al., 2021), i.e., the CL model may overfit
the limited memory data and could not generalize well to the previous tasks. Recently, gradient-based
memory editing (GMED) (Jin et al., 2021) has been proposed to mitigate memory overfitting by
editing memory data with hard examples in a way similar to adversarial data augmentation (ADA)
(Madry et al., 2018). Specifically, it creates hard examples that increase model losses at each gradient
step but restricts to a few (less than three) discrete gradient-based editing steps. With more editing
steps, similar to ADA, GMED would make the memory even harder but cause less data diversity
since the adversarial force will drive the feature space of different classes overlap and cluster together
(Madry et al., 2018; Wang et al., 2021). However, as studied in previous work (Gontijo-Lopes et al.,
2021), improving the diversity of training data is crucial to improving model generalization. An
illustration of this phenomenon is shown in Figure 1 (b) and (c). This naturally leads to a new
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(a) experience replay (ER) (b) GMED (3 edit steps) (c) GMED (10 edit steps) (d) DCMT(Ours)

Figure 1: T-SNE visualization of existing memory-replay and proposed methods on CIFAR10. We
use features extracted from the last layer output of ResNet18 as the input to T-SNE. We use four
classes of memory data to illustrate the difference. T-SNE embeds each data point, and each color
denotes one class of memory buffer data. (a): ER is very easy to overfit and easy to classify; (b):
GMED with smaller editing steps has limited effectiveness due to the limited hardness; (c): GMED
with larger editing steps creates memory examples harder to classify but lack of diversity; (d): DCMT
(our method) with better diversity and transformed memory data is hard to classify and overfit.

problem: how can we increase the diversity of the edited memory data and maintain its hardness at
the same time?

To address this problem, we present a continuous, expressive, and flexible memory transformation
method to obtain a diverse set of memory data and make the memory buffer harder to memorize at
the same time. We first model the gradual and continuous memory transformation as a deterministic
neural ordinary differential equation in the time interval [0, T ], named Deterministic Continuous
Memory Transformer (DCMT). There are several advantages compared to existing methods. First,
we can obtain infinite time steps of transformed memory data for any t ∈ [0, T ] and thus significantly
improve the diversity in the transformed memory data. Second, we do not need to make a replica
of the raw memory data since the transformation process is reversible. We can restore original
raw memory data from the transformed memory data. As shown in Figure 1(d), DCMT diversifies
memory data while maintaining hardness.

The proposed DCMT considers a single transformation function. However, there are infinite pos-
sible transformation functions for transforming the memory data, and it is beneficial to model the
uncertainty in the transformation function to further avoid overfitting (Lu et al.; Liu et al., 2019).
To model the underlying various transformation functions and further improve the data diversity,
we thus generalize the methods in a probabilistic manner to model the memory transformation as a
stochastic process with neural stochastic differential equations, named Stochastic Continuous Mem-
ory Transformer (SCMT). This enables us to model infinite transformation functions and significantly
improves the diversity of the transformed data with some increased computation cost compared to
DCMT. The overview of the proposed methods is presented in Figure 2.

Figure 2: Overview of the proposed approach for memory transformation. DCMT and SCMT
continuously and gradually transform the memory data to be diverse and hard to memorize. Note
that the transformed data could be obtained at any continuous time step, thus providing significantly
larger diversity.

We propose a bi-level optimization to jointly learn the memory transformer and CL model. The
memory transformer can generate diversified memory data that is hard to memorize. Concretely,
after continuous interval [0, T ] transformation, we optimize the loss increase before (t = 0) and after
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(t = T ) the transformation to ensure the hardness of the transformed data. To ensure that the network
embeds similarly for both the original raw memory data and the transformed memory data, we adopt
a Jensen-Shannon divergence consistency loss to regularize the network output to ensure smoother
neural network responses for both data. Furthermore, our proposed method is general, versatile,
and can be seamlessly applied to both task-aware and task-free CL. Extensive experiments on both
task-aware and task-free CL demonstrate the effectiveness of the proposed methods. We summarize
our contributions as three-fold:

• We propose a bi-level optimization framework with a continuous memory transformer to address
memory overfitting issues. The continuous memory transformer can make the transformed memory
data substantially more diverse and harder to memorize.

• We instantiate the continuous memory transformation with deterministic and stochastic memory
transformation, which can be seamlessly applied to both task-aware and task-free CL.

• We perform extensive experiments on both task-aware and task-free CL, showing significant
improvements compared to strong baselines. Furthermore, we provide detailed ablation studies.

2 PRELIMINARY AND RELATED WORK

2.1 TASK-AWARE CL

Problem setup. Task-aware CL focuses on the case where there are explicit task definitions dur-
ing CL. Task/domain/class-incremental learning (van de Ven & Tolias, 2019) are the three most
representative CL scenarios. We consider the problem of learning a sequence of tasks denoted as
Dtr = {Dtr

1 ,Dtr
2 , · · · ,Dtr

N}, where N is the number of training tasks. The k-th task training data
Dtr

k consists of a set of triplets {(xk
i , y

k
i , Tk)

nk
i=1}, where xk

i is the i-th data example in the task,
yki is the corresponding data label, and Tk is the task identifier. The goal is to learn a model fθ
on the training task sequence Dtr so that it performs well on the test set of all the learned tasks
Dte = {Dte

1 ,Dte
2 , · · · ,Dte

N} without forgetting previously learned knowledge.

Existing work. The proposed approaches for task-aware CL can be categorized into: 1) maintaining
a memory buffer that stores previous examples for future replay (Lopez-Paz & Ranzato, 2017; Shin
et al., 2017; Chaudhry et al., 2019a; Riemer et al., 2019; Chaudhry et al., 2019b; Aljundi et al., 2019a;
PourKeshavarzi et al., 2022; Arani et al., 2022); 2) using dynamic network architectures (Rusu et al.,
2016; Fernando et al., 2017; Yoon et al., 2018; Qin et al., 2021; Miao et al., 2022) and remembering
past knowledge by dynamically updated architectures; 3) enforcing regularization to slow down
forgetting (Kirkpatrick et al., 2017; Zenke et al., 2017b; von Oswald et al., 2020; Liu & Liu, 2022;
Raghavan & Balaprakash, 2021); and 4) modeling the parameter update uncertainty with Bayesian
methods (Nguyen et al., 2018; Ebrahimi et al., 2020; Henning et al., 2021). In this paper, we focus on
memory-replay-based methods since they often achieve SOTA performance.

2.2 TASK-FREE CL

Problem setup. Task-free CL (He et al., 2019; Zeno et al., 2019; Aljundi et al., 2019b; Chrysakis &
Moens, 2020; Lee et al., 2020) is a recent generalization of CL to the more complex cases, where
data distribution shift could happen at any time during CL without explicit definition of tasks.

Existing work. Most existing works in task-free CL are memory-replay-based methods (Chaudhry
et al., 2019b;a). Our works share a similar goal with GMED (Jin et al., 2021) which edits the
memory buffer based on ADA, making the memory data harder but lacks diversity (Madry et al.,
2018; Wang et al., 2021). There are several significant differences. First, GMED is a gradient-based
discrete step memory editing method. Our memory transformer can obtain infinite continuous time
steps transformation of memory data, which improves the memory diversity significantly. Second,
GMED overwrites the memory data with the edited ones making the memory buffer data distribution
significantly deviate from the original raw memory data distribution after many epochs of editing,
especially in task-aware CL, which would decrease the performance. In contrast, our transformation
process is reversible, i.e., the original raw data can be recovered from the transformed data. Thus, we
do not need to overwrite the memory buffer data or keep an additional mini-batch transformed data.

We provide more detailed discussions of related work in Appendix C due to space limitations.
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3 METHODOLOGY

In this section, we first present standard memory replay of CL in Section 3.1, our proposed deter-
ministic continuous memory transformer (DCMT) in Section 3.3 and stochastic continuous memory
transformer (SCMT) in Section 3.4. Then, we present the training objectives in Section 3.5. The
overall description of the proposed method is shown in Figure 2.

3.1 CONVENTIONAL MEMORY REPLAY

Standard memory replay for CL (Chaudhry et al., 2019b) is to optimize a risk of data from both
memory buffer M and current mini-batch. Formally speaking, the optimization can be formulated as:

min
∀θ∈Θ

[
L(θ,xk, yk) + E

(x,y)∼M
L(θ,x, y)

]
, (1)

where k is the CL timestamp (kth CL step), θ are model parameters, and L(θ,x, y) is the loss
function associated with the data (x, y). Conventional memory replay would make the memory
buffer data gradually become less effective for mitigating forgetting when training for a long time,
as it is easy to overfit the limited memory buffer data (Delange et al., 2021; Jin et al., 2021). Thus,
the previously learned knowledge would get lost, and the CL model may not generalize well to the
previous tasks. We thus propose a continuous memory transformation method to generate diversified
memory buffer data that is hard to memorize in the following sections.

3.2 A PRELIMINARY APPROACH TO INCREASE MEMORY DIVERSITY

A preliminary way to increase the memory diversity is to transform the memory data with a neural
network function g parameterized by ϕ. A sequence of transformations can be applied on the original
raw memory data xm(t) by :

xm(t+ (i+ 1)∆t) = xm(t+ i∆t) + g(xm(t+ i∆t), t,ϕ)∆t, i = 0, 1, · · · , n (2)

where ∆t is the step size. By repeating this discrete transformation process, we can obtain a
diverse collection of transformed memory data. However, when we updating the function g by
backpropagation, we need to store all the intermediate transformations, i.e., {xm(t + i∆t), i =
0, · · · , n− 1}. Thus, the memory cost scales linearly with the number of memory transformation
steps, i.e., O(n). This would bring a lot of memory cost especially if we transform the memory data
by a large number of transformation steps. Furthermore, the neural network function g is generally
not invertible. We thus also need to store both the raw memory data and the transformed data. In
the following, we simultaneously addressed the above issues by viewing the memory transformation
process as a continuous dynamic system. This brings several benefits: (1) we do not need to store any
intermediate transformation results, i.e., the memory cost is constant, i.e., O(1); (2) we do not need
to store both the raw memory data and transformed data since the entire transformation is invertible
even if the function g is not invertible (More elaboration on this is provided in Appendix B.13). But
the above discrete transformation needs to do so since g is generaly not invertible; (3) our method
brings infinite amount of transformed memory data vs. the discrete steps of transformations. We
name this our proposed preliminary method as Discrete Transformation (DT).

3.3 MEMORY TRANSFORMER AS A DETERMINISTIC CONTINUOUS DYNAMIC SYSTEM

In this section, we first view the memory transformation as a deterministic dynamic system. We
transform the raw memory data into a continuous system in the time interval [0, T ]. Suppose at each
CL timestamp k, and we sample a mini-batch data (xm,ym) from the memory buffer M. Since
we perform similar continuous mini-batch memory transformation operations at each CL timestamp
k, we thus omit k for presentation clarity. We model the gradual and continuous memory data
transformation by the following differential equation:

dxm(t)

dt
= g(xm(t), t,ϕ), xm(0) = xm (3)

where the memory transformer is parametrized by function g with parameters ϕ and g represents the
instant time transformation rate of memory data. By integrating both parts of the Eq. (3) over the
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time interval [0, T ], we can obtain the solution to Eq. (3) for the transformed memory data at time T :

xm(T ) = xm(0) +

∫ T

0

g(xm(t), t,ϕ)dt (4)

where the transformed memory data at any time T , i.e., xm(T ) is a continuous function of T . For
any t ∈ [0, T ], xm(t) is a transformation of original memory data, thus we can obtain a set of infinite
transformed memory data, i.e., {xm(t) : t ∈ [0, T ]}. This is in contrast to GMED (Jin et al., 2021),
which works with a small number (less than three) of discrete-time steps of memory editing. With
longer editing steps, similar to ADA, the edited data examples by GMED become harder but decrease
the data diversity; thus, performance drops (Wang et al., 2021). Therefore, the design principle
restricts the expressiveness and effectiveness of GMED. However, our memory transformation is
significantly more expressive and provides substantially more diverse transformed memory data than
GMED. We name our method as Deterministic Continuous Memory Transformer (DCMT). In
practice, we can use a numerical integration scheme, such as the Runge-Kutta method (Schober et al.,
2014), similar to the implementation in (Chen et al., 2018) to solve the Eq. (4). We provide the
algorithm details in Algorithm 3 in Appendix B.12. The above transformation process is reversible
because we can obtain the raw memory data by the following reverse integration:

xm(0) = xm(T ) +

∫ 0

T

g(xm(t), t,ϕ)dt. (5)

Eq .5 transforms from xm(T ) into raw memory data xm(0) by integrating over the reverse time
interval [T, 0]. We can thus discard the raw memory data and only keep the transformed memory data.
After the replay, we can invert the transformed memory data into original data. The transformation
function g does not need to be reversible and only needs to be uniformly Lipschitz continuous in
xm(t) and continuous in t (This condition is to make sure the solution to Eq. (3) exits and is unique),
thus providing great flexibility for the transformation function design (More elaboration on this is
provided in Appendix B.13). Thus, our method has no extra memory cost to store additional raw
memory data.

3.4 MEMORY TRANSFORMER AS A STOCHASTIC CONTINUOUS DYNAMIC SYSTEM

The DCMT method in Section 3.3, i.e., Eq. (3), only considers a single deterministic transformation
function g, but there are infinite possibilities of available memory transformation functions. Thus,
a single deterministic transformation is insufficient for modeling the underlying high diversity in
the memory transformation functions. Furthermore, (Lu et al.; Liu et al., 2019) show that adding
uncertainty modeling for the network is beneficial to avoid overfitting.

We thus model the memory transformation process as a stochastic dynamic system with a path-valued
random variable X : [0, T ] → Rd, where each random variable at time t, i.e., Xt, is to model the
distribution of the transformed memory data xm(t) at time t. We use d to denote the memory data
dimension. Let W : [0, T ] → Ww be a w-dimensional Brownian motion (Øksendal, 2014) which
is a continuous time stochastic process such that Wt+s −Ws follows a Gaussian distribution with
mean 0 and variance t. Let µϕ : [0, T ]× Rd → Rd be the network for modelling the drift term, and
σϕ : [0, T ]× Rd → Rd×w be the network for modeling the diffusion term. They are parameterised
together by ϕ. For notation and presentation clarity, we still use the same notations, ϕ, as DCMT to
denote the parameters of memory transformer. The memory transformation stochastic process can be
modeled as the following stochastic differential equations (SDE):

dXt = µϕ(t,Xt)dt+ σϕ(t,Xt) ◦ dWt, xm ∼ X0, (6)

where the initial values of the SDE are the raw memory data that can be viewed as samples from
the initial random variable X0. For all t ∈ [0, T ], let X : [0, T ] → Rd denote the solution to Eq.
(6) and ◦dWt denotes Stratonovich integration (defined in Appendix B.11). The stochastic process
{Xt}t∈[0,T ] determined by Eq. (6) can be equivalently expressed as following:

XT = X0 +

∫ T

0

µϕ(t,Xt)dt+

∫ T

0

σϕ(t,Xt) ◦ dWt. (7)

Each random variable Xt of {Xt}t∈[0,T ] models a transformed memory data distribution. Thus, we
obtain infinite transformed memory data distributions. This is in contrast to DCMT, where each
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xm(t) is deterministic. To solve this SDE and achieve cheap backpropagation, we use the adjoint
method, i.e., the reversible Heun method proposed in (Kidger et al., 2021), (algorithm details shown
in Algorithm 5 in Appendix B.12.1). We name this method as Stochastic Continuous Memory
Transformer (SCMT). Therefore, similar to DCMT, SCMT does not need to make a replica of the
raw memory data.

3.5 TRAINING OBJECTIVES FOR CONTINUOUS NEURAL MEMORY TRANSFORMER

The goal of the memory transformer is to make the memory data hard to be memorized for the CL
model. Our overall learning objective is the following bi-level optimization:

min
θ

[
L(xk, yk,θ) + L(x̂m(T ),ym,θ,ϕ∗)

]
(8)

s.t. ϕ∗ = argmax
ϕ

[L(xm(T ),ym,θ,ϕ)− L(xm,ym,θ,ϕ)− λJS(xm,xm(T ))] (9)

where xm(T ) = xm(0) +

∫ T

0

g(xm(t), t,ϕ)dt, x̂m(T ) = xm(0) +

∫ T

0

g(xm(t), t,ϕ∗)dt

(10)

where xm(T ) could be either from DCMT or samples from the terminal state of SCMT, ϕ denotes
the parameters of either DCMT or SCMT. The lower-level optimization, i.e., Eq. (9), is to make
memory buffer data hard to be memorized, and ϕ∗ is the obtained optimal solution. The last
term JS(xm,xm(T )) is to ensure smoother model responses on the original raw and transformed
data; where λ is the regularization strength. We will discuss this in detail in the following. The
upper-level optimization, i.e., Eq. (8), is to replay the transformed memory data. Note that x̂m(T )
is the transformed memory data by the optimal memory transformer with parameter ϕ∗, defined
in Eq. 10 (right). The above bi-level optimization is for DCMT, but the method can also be
directly applied to SCMT. In practice, besides the obtained x̂m(T ), we can obtain infinite time
steps transformed data at any time in the interval [0, T ]. To make the computation tractable, we
can randomly sample time steps, i.e., 0 = t0 < t1 < t2 · · · tn = T and obtain the transformed
memory data x̂m(t0), x̂m(t1), x̂m(t2), · · · , x̂m(T ) without additional cost since they are already
in the integration interval [0, T ], which can be used for memory replay. It is worth noting that the
transformed data at different time stamps are not combined and they will not be added to the memory
buffer. First, previous transformed data has already been learned by the CL learner. For new tasks,
we need to transform the memory data adaptively. Second, storing those data would increase a lot
of memory storage cost. To maintain the diversity of the transformed memory buffer and reduce
computation cost, we randomly sample n from [1, 5] at each CL step. Note that the number of
parameters in DCMT or SCMT, i.e. ϕ, is much smaller than that of CL model, θ, thus negligible
compared to CL model backbone.
Consistency loss. The memory transformer could generate diverse memory data. To ensure that the
network embeds similarly for both the original raw memory data and the transformed memory data,
we use a similar consistency loss (Hendrycks et al., 2020) to regularize the network output to ensure
smoother CL model responses. The goal is to make the CL model respond similarly to xm(T ) and
xm, thus minimize the Jensen-Shannon divergence among the posterior distributions of the original
sample xm and its transformed variants xm(T ). The consistency loss is defined as below:

JS(xm,xm(T ))=(KL(pxm |pmean)+KL(pxm(T )|pmean)))/2,where pmean = (pxm + pxm(T ))/2

where KL denotes the KL divergence between two distributions, pxm = fθ(x
m) is the network output

probabilities of each class for original raw data xm. Similarly, we can define pxm(T ) = fθ(x
m(T )).

The CL model parameters are then updated using the transformed memory data and the mini-batch
data received at timestamp k as follows:

θk+1 = θk − η∇θ[L(θk, x̂m(T ),ym) + L(θk,xk, yk)]

where η is the learning rate. The learning process alternates between updating the memory transformer
parameters ϕ (using adjoint method (Pontryagin et al., 1962) to update the parameters in DCMT or
using the reversible Heun method (Kidger et al., 2021) to update the parameters in SCMT) and the
CL model parameters θ. The complete memory transformation algorithm is shown in Algorithm 1.
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Algorithm 1 Continuous Memory Transformation.

1: REQUIRE: model parameters θ, memory transformer parameters ϕ, CL model learning rate η, memory
transformer learning rate β; transformation time T at each iteration, memory buffer M; K is the number of
iterations during the training process for both task-aware and task-free CL.

2: for k = 1 to K do
3: a mini-batch data (xk, yk) arrives.
4: sample mini-batch data from memory buffer, i.e., (xm, ym) ∼ M
5: xm(T ) = ODEsolver(xm, 0, T ) (Eq. (4)) by Algorithm 3 in Appendix B.12

or xm(T ) ∼ XT = SDEsolver(xm, 0, T ) (Eq. (7)) by Algorithm 4 in Appendix B.12
6: calculate loss function L(θ,ϕ) = [L(xm(T ),ym,θ,ϕ)− L(xm,ym,θ,ϕ)− λJS(xm,xm(T ))]

7: we calculate the gradient ∂L(θ,ϕ)
∂ϕ

with details provided in Appendix B.3 and Algorithm 2.
8: update memory transformer parameters ϕ by gradient ascent to maximize maxϕ L(θ,ϕ)
9: transform memory data at randomly sampled time steps 0= t0<t1 < t2 · · · tn = T , i.e. x̂m(ti) by Eq.

10, for memory replay.
10: update CL model parameters θ: θk+1 = θk − η∇θ[L(θk, x̂m(ti), y) + L(θk,xk, yk)]
11: if restore then
12: restore xm

0 with Eq. (5)
13: end if
14: update memory buffer by reservoir sampling (RS) (Vitter, 1985; Riemer et al., 2019), M =

RS(M, (xk, yk))
15: end for

4 EXPERIMENTS

We evaluate our methods for task-aware CL in Section 4.1 and task-free CL in Section 4.2.

Datasets. We compare different methods on CIFAR10 (Krizhevsky, 2009) with 10 image classes,
CIFAR100 (Krizhevsky, 2009) with 100 image classes, MinImageNet (Vinyals et al., 2016) with
100 image classes and Tiny-ImageNet (Stanford, 2015) with 200 classes.

4.1 TASK-AWARE CL

We perform experiments on both task-incremental (Task-IL) and class-incremental (Class-IL) CL
(van de Ven & Tolias, 2019). Task-IL provides task identities to the CL learner and is the easiest
scenario. Class-IL does not provide task identities and is the hardest scenario in task-aware CL.

Baseline. We compare to various SOTA CL methods, including: 1) regularization-based methods,
Classifier-Projection Regularization (CPR) (Cha et al., 2021), PASS (Zhu et al., 2021), Gradient
Projection Memory (GPM) (Saha et al., 2021), oEWC (Schwarz et al., 2018), synaptic intelligence
(SI) (Zenke et al., 2017a) and Learning without Forgetting (LwF) (Li & Hoiem, 2018); 2) Bayesian-
based methods, UCB (Ebrahimi et al., 2020); 3) architecture-based methods, HAT (Serrá et al., 2018);
4) memory-based CL methods, including ER (Chaudhry et al., 2019b), A-GEM (Chaudhry et al.,
2019a), GSS (Aljundi et al., 2019c), HAL(Chaudhry et al., 2021), DER++ (Buzzega et al., 2020)
and GMED (Jin et al., 2021). The implementation for those baselines (Buzzega et al., 2020) already
applies data augmentation, such as random crops and horizontal flips, etc. We apply the proposed
method on top of those implementations. We adapt PASS(Zhu et al., 2021) to standard CL by adding
noise to memory data. We provide detailed baseline descriptions in Appendix B.2.

Evaluation metrics. We evaluate the performance of the proposed methods and the compared
methods with average accuracy (ACC) and backward transfer (BWT) at the end of CL training
to measure the final performance and the degree of forgetting for different methods. We denote
aN,k as the testing accuracy on task k after learning on task N . The overall accuracy for all the
tasks is ACC = 1

N

∑k=N
k=1 aN,k. To measure catastrophic forgetting, we also evaluate BWT, which

measures the extent of forgetting on previous tasks after learning new ones. Formally, BWT is defined
as: BWT = 1

N−1

∑k=N−1
k=1 (aN,k − ak,k). BWT < 0 indicates forgetting of previous tasks, and

BWT > 0 indicates that learning new tasks is helpful on previous tasks.

Implementation details. We follow (Buzzega et al., 2020) to use ResNet18 (He et al., 2016) as the
classifier for all datasets. Following (Buzzega et al., 2020), we split the CIFAR-10 dataset into 5
disjoint tasks, where each task consists of 2 classes. We split MiniImagenet (Vinyals et al., 2016)
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Table 1: Task-IL and class-IL results on CIFAR10, CIFAR-100 and MiniImagenet, respectively
with memory size 500. ’—’ indicates not applicable.

Algorithm CIFAR-10 CIFAR-100 MiniImagenet
Method Class-IL Task-IL Class-IL Task-IL Class-IL Task-IL

fine-tuning 19.62± 0.05 61.02± 3.33 9.29± 0.33 33.78± 0.42 8.59± 0.29 27.48± 0.38
Joint train 92.20± 0.15 98.31± 0.12 71.32± 0.21 91.31± 0.17 65.56± 0.18 87.74± 0.15

oEWC 19.49± 0.12 68.29± 3.92 8.24± 0.21 21.2± 2.08 7.32± 0.16 22.54± 1.78
SI 19.48± 0.17 68.05± 5.91 9.41± 0.24 31.08± 1.65 8.07± 0.26 30.16± 1.72
LwF 19.61± 0.05 63.29± 2.35 9.70± 0.23 28.07± 1.96 7.65± 1.31 21.49± 2.06
CPR 21.38± 0.19 72.37± 3.51 10.31± 0.24 31.93± 2.31 9.85± 0.23 31.87± 1.91
GPM —– 90.68± 3.29 —– 72.48± 0.40 —– 60.41± 0.61
UCB —– 79.28± 1.87 —– 57.15± 1.67 —– 49.36± 1.09
HAT —– 92.56± 0.78 —– 72.06± 0.50 —– 59.78± 0.57

A-GEM 22.67± 0.57 89.48± 1.45 9.30± 0.32 48.06± 0.57 7.76± 0.12 39.28± 0.43
GSS 49.73± 4.78 91.02± 1.57 13.60± 2.98 57.50± 1.93 11.22± 3.17 50.19± 1.78
HAL 41.79± 4.46 84.54± 2.36 9.05± 2.76 42.94± 1.80 4.46± 1.72 31.97± 1.57

ER 57.74± 0.27 93.61± 0.27 20.98± 0.35 73.37± 0.43 11.76± 0.75 61.58± 0.31
ER+GMED 57.89± 0.38 93.45± 0.39 21.07± 0.43 73.42± 0.49 11.85± 0.81 61.76± 0.37
ER+DCMT 62.07± 0.43 95.16± 0.46 23.54± 0.51 75.93±0.56 14.28± 0.85 64.37± 0.53
ER+SCMT 64.49±0.72 95.35±0.53 24.19±0.63 75.51± 0.67 14.95±0.93 64.91±0.67
DER++ 72.70± 1.36 93.88± 0.50 36.37± 0.85 75.64± 0.60 22.09± 0.63 61.26± 0.57
DER++GMED 72.82± 1.79 93.94± 0.70 36.25± 0.69 75.49± 0.64 22.21± 0.81 61.42± 0.64
DER++noise 72.41± 1.83 93.96± 0.74 36.02± 0.91 75.38± 0.68 22.32± 0.87 61.51± 0.71
DER++DT(Ours) 73.77± 1.79 94.68± 0.82 37.53± 0.97 77.21± 0.79 23.45± 0.93 63.03± 0.75
DER++DCMT(Ours) 74.86± 1.53 95.29± 0.54 38.68±0.81 78.56± 0.82 24.53± 0.89 64.08± 0.78
DER++SCMT(Ours) 75.12±1.62 95.67±0.67 38.56± 0.93 78.75±0.87 24.81±0.97 64.73±0.86

into 10 disjoint tasks, where each task has 10 classes. We also split CIFAR-100 into 10 disjoint
tasks, where each task has 10 classes. The transformation time T at each CL step is T = 0.05. Other
hyperparameter settings follow (Buzzega et al., 2020). The memory buffer has a size of 500 data
points by default. For the DCMT architecture, it is a four-block Resnet with a filter size of 8. For
the SCMT architecture, the drift and diffusion networks are both four-block Resnet with a filter size
of 6. DT (Section 3.2) uses the same architecture as DCMT. Thus, for DT, DCMT and SCMT, they
have a much smaller number of parameters compared to the ResNet18 (He et al., 2016). It only
accounts for about 0.4% parameters of ResNet18, thus is negligible. To exclude the influence of the
number of parameters in performance comparison, we reduce the number of parameters in our base
model ResNet18 to offset the parameters in our transformation component. This ensures that all the
compared models have the same number of parameters. All reported results in our experiments are
the average accuracy and standard deviation with ten runs. The compared methods and our proposed
methods are based on the public implementation 1.

Result. We compare the proposed methods to various CL baselines in Table 1. Due to space
limitations, we put the results on Tiny-ImageNet in Appendix B.9 and backward transfer results
in Appendix B.5. We can observe that our method outperforms those baselines. In particular,
for class-IL, combining ER with DCMT or SCMT outperforms ER by 3.2%, 3.1%, and 6.7%, on
MiniImageNet, CIFAR-100 and CIFAR10, respectively. For task-IL, integrating ER with DCMT
or SCMT outperforms ER by 3.3%, 2.6% and 1.7% on MiniImageNet, CIFAR-100, and CIFAR10,
respectively. Furthermore, for class-IL, combining DER++ with DCMT or SCMT, outperforms
DER++ by 2.7%, 2.3% and 2.4% on MiniImageNet, CIFAR-100 and CIFAR10 respectively. For
task-IL, integrating DER++ with DCMT or SCMT, outperforms DER++ by 3.5%, 3.1%, and 1.8%
on MiniImageNet, CIFAR-100 and CIFAR10 respectively. SCMT can further improve over DCMT
due to the increased data diversity. GMED brings little or even worse performance, consistent with
the observations of (Jin et al., 2021). We believe this is because, in task-aware CL, memory buffer
data could be replayed many epochs, and GMED may edit the memory data too much so that they
may significantly deviate from the original raw data. Adding random noise marginally helps in some
cases, but some cases brings worse performance. We believe that adding noise only adds a simple
transformation pattern, and still lacks diversity. When training for a long time, the network could
also memorize the noise pattern. DT improves the performance compared to baselines since discrete
step transformation by neural network can be viewed as discrete approximation of our continuous
transformation. The performance of DT is upper bound by our continuous transformation. Also, DT
needs to store intermediate transformations. In contrast, DCMT and SCMT do not need to store them.
Our method outperforms baselines because the memory transformation function is highly expressive

1https://github.com/aimagelab/mammoth
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and flexible and provides significantly more memory diversity. The transformed memory buffer is
more difficult for the CL model to overfit.

Ablation Study (1) Due to space limitations, we put hyperparameter analysis, including λ, T , etc. in
Appendix B.6. (2) Memory size 2000 in Appendix B.4. (3) Memory visualization in Appendix B.7.

4.2 TASK-FREE CL

Table 2: Task-free CL results on CIFAR10,
CIFAR-100 and MiniImagenet, respectively.

Algorithm CIFAR10 CIFAR-100 MiniImagenet
fine-tuning 18.9± 0.1 3.1± 0.2 2.9± 0.5
A-GEM 19.0± 0.3 2.4± 0.2 3.0± 0.4
GSS-Greedy 29.9± 1.5 19.5± 1.3 17.4± 0.9

ER 33.3± 2.8 20.1± 1.2 24.8± 1.0
ER+DCMT 36.5± 2.6 21.9±1.3 27.6± 1.5
ER+SCMT 37.3±3.0 21.6± 1.5 27.9±1.6
MIR 34.4± 2.4 20.0± 1.7 25.3± 1.7
MIR+DCMT 36.8± 2.7 21.3± 1.8 27.5± 1.9
MIR+SCMT 37.6±2.9 21.7±2.1 27.8±2.0
GMED (ER) 34.8± 2.2 20.9± 1.6 27.3± 1.8
GMED+DCMT 37.1± 2.4 21.6± 1.8 28.1± 1.7
GMED+SCMT 37.9±2.7 21.8±1.9 28.5±1.9
ERaug 46.3± 2.7 18.3± 1.9 30.8± 2.2
ERaug+DCMT 48.2±2.9 20.4± 2.1 31.7± 2.4
ERaug+SCMT 47.9± 3.0 20.6±2.5 32.1±2.3

Baseline. We performed experiments by compar-
ing to the following task-free CL baselines, includ-
ing ER (Chaudhry et al., 2019b), MIR (Aljundi
et al., 2019a), AGEM (Chaudhry et al., 2019a),
GSS-Greedy (Aljundi et al., 2019c) and GMED
(Jin et al., 2021) with single epoch training. Fur-
thermore, following (Jin et al., 2021), we also
compare data augmentation, such as random ro-
tations, scaling, and horizontal flipping applied to
ER method, named ERaug. More descriptions of
baselines are placed in Appendix B.2.

Implementation details. We use Resnet-18 as
(Aljundi et al., 2019a). The transformation time T
at each CL step is T = 0.03. By default, following
(Jin et al., 2021), we set the memory buffer size
to be 500 for CIFAR-10, 10K for MiniImagenet,
and 5K for CIFAR-100. Other hyperparameters
are the same as (Aljundi et al., 2019a). All reported results are the average accuracy and standard
deviation with ten runs.

Table 3: Task-free CL results on CIFAR-100 and
MiniImagenet with different memory size

Algorithm CIFAR-100 MiniImagenet
Memory size 2000 3000 2000 5000

ER 11.2± 1.0 15.0± 0.9 11.0± 0.3 17.9± 1.6
ER+ DCMT 14.5± 1.1 17.1± 1.1 14.1± 0.5 21.0± 1.7
ER+ SCMT 14.9±1.3 17.6±1.4 14.5±0.6 21.3±1.9
MIR 11.6± 0.8 15.6± 1.0 11.2± 0.4 17.4± 1.2
MIR+DCMT 14.8±1.0 16.7± 0.9 14.6± 0.8 20.6± 1.4
MIR+SCMT 14.6± 1.1 17.0±1.2 15.0±1.1 21.0±1.6

Result. We compare to various CL baselines
and combination with ER, MIR, and GMED in
Table 2. We observe that our method outper-
forms these baselines. Particularly, combining
ER with DCMT or SCMT outperforms ER by
4.0%, 3.1%, and 1.8% on CIFAR10, MiniIma-
geNet and CIFAR-100, respectively. Combining
MIR with DCMT or SCMT outperforms MIR
by 3.2%, 2.5% and 1.7% on CIFAR10, MiniIma-
geNet and CIFAR-100. Combining GMED with
DCMT or SCMT outperforms GMED by 3.1%,
1.2% and 0.9% on CIFAR10, MiniImageNet and CIFAR-100. Our method outperforms baselines for
reasons similar to task-aware CL.

Ablation Study: The smaller memory size of 2000 and 3000 for CIFAR100; memory sizes of 2000
and 5000 for Mini-imageNet are provided in Table 3. This further shows the significant improvement
of DCMT and SCMT with more than 3% improvements in many cases.

Complexity analysis. Our current implementation has comparable computation cost compared to
GMED. We put our efficiency improvement techniques and detailed complexity analysis in Appendix
B.8. We put the formal complexity analysis in Table 10 and run time versus performance evaluation
in Table 11 in Appendix B.8.

5 CONCLUSION

This paper explores the memory overfitting issues and proposes a novel continuous memory trans-
former. We apply the proposed method to both task-aware and task-free CL. Compared to existing
works, our proposed methods are very flexible and can make the memory data diverse and hard to
overfit. Extensive experiments with both strong baselines of task-aware and task-free CL demon-
strate the effectiveness of the proposed methods. Future work includes automatically learning the
transformation time interval to obtain the optimal transformed memory data.
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REPRODUCIBILITY STATEMENT

We provided detailed implementation details and codebase we used to implement our methods.
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A APPENDIX

We provide more experimental details and results in Section B and theoretical analysis in Section ??.

B EXPERIMENTS

B.1 MORE IMPLEMENTATION DETAILS

We use NVIDIA RTX A6000 GPU to do the experiments. For the hyperparameters values of DER++,
ER and all the other baselines, we follow the implementation in (Buzzega et al., 2020).

B.2 BASELINE DESCRIPTIONS

Experience Replay (ER) (Chaudhry et al., 2019b) stores a small subset data from previous tasks
with reservoir sampling (Chaudhry et al., 2019b). When training with new tasks, we randomly sample
a subset of examples from the memory buffer to train with the received new mini-batch data together
to mitigate forgetting.

Maximally Interfering Retrieval (MIR) (Aljundi et al., 2019a), the goal of MIR is to select the
examples that are most easily forgettable for replay. We follow similar setting in GMED (Jin et al.,
2021) for a fair comparison. We evaluate the CL model forgetting with 25 memory examples for
Mini-ImageNet dataset, and 50 memory examples for other datasets.

Averaged Gradient Episodic Memory (AGEM) (Chaudhry et al., 2019a). At every CL training
step, AGEM ensures that the average memory buffer data loss over the previous tasks does not
increase. AGEM projects the gradient update direction to the closest gradient direction in L2 space
that keeps the gradient angle less than 90 degree to ensure the memory data are less interfered with
current data.

Gradient-Based Sample Selection (GSS-Greedy) (Aljundi et al., 2019c) encourages storing
diverse examples in the memory buffer. We use GSS-Greedy, which is efficient and performs the best
in the variants proposed in (Aljundi et al., 2019c).

Gradient based Memory Editing (GMED) (Jin et al., 2021). The goal of GMED is to edit the
memory buffer data with gradient information so that they are harder to be memorized, which shares
the similar goal as MIR(Aljundi et al., 2019a).

Dark Experience Replay (DER) (Buzzega et al., 2020) is a memory replay-based methods that
combines memory replay with knowledge distillation to mitigate forgetting. DER++ is one of the
state-of-art methods in CL.

Hindsight Anchor Learning (HAL) (Chaudhry et al., 2021) regularizes the training objective with
one data point per class per task, named anchors by maximizing its estimated forgetting. Keeping the
model prediction fixed on those anchor points preserves the performance of previous tasks.

Task-free CL additional baselines Following (Aljundi et al., 2019a), we also additionally compare:
(1) iid online: which trains the model with a single-pass through the iid sampled data on the same set
of samples; (2) iid offline: which trains the model with multiple epochs through the iid sampled data.
We train the model with 5 epochs for this baseline and the performance serves as upper-bound. Table
4 shows the results of these two baselines.
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Table 4: Results for Task-free CL iid online and iid offline training on CIFAR10, CIFAR-100 and
MiniImagenet, respectively.

Algorithm CIFAR10 CIFAR-100 MiniImagenet
iid online 60.3± 1.4 18.7± 1.2 17.7± 1.5
iid offline 78.7± 1.1 42.0± 0.9 39.8± 1.4

B.3 BI-LEVEL OPTIMIZATION

xm(T ) = xm(0) +

∫ T

0

g(xm(t), t,ϕ)dt (11)

We first define adjoint-state at time t as a(t) = dL(xm(T ),y)
dxm(t) = dL

dxm(t) , here we abbreviate the
notation L(xm(T ), y) as L, which follows the following differential equation:

da(t)

dt
= −a(t)T

∂g(xm(t), t,ϕ)

xm
, aT =

dL
dxm(T )

(12)

The adjoint-state equation Eq. (12) can be viewed as the continuous version of backpropagation (for
discrete number of layers). Therefore, we can obtain a(0) = dL

dxm(0) by the reverse time ODE in the
time interval [T, 0] with initial state, i.e., aT = dL

dxm(T ) . We can compute the gradient with respect to
the memory transformer parameters ϕ as the following equation:

∂L
∂ϕ

= −
∫ 0

T

a(t)T
∂g(xm(t), t,ϕ)

∂ϕ
(13)

The Eq. (11) serves as for transforming the memory data. Eq.(12) serves as for calculating the
adjoint state a(t). Eq. (13) calculates the gradient with respect to the memory transformer ϕ. Those
three integration can be jointly solved together in a single pass by concatenating the transformed
memory data, the adjoint state and derivatives with respect to the parameters. The entire algorithm for
calculating the derivative with respect to the memory transformer parameters is shown in Algorithm
2 in the following.

Algorithm 2 Reverse-mode derivative for calculating the gradient w.r.t ϕ of DCMT.

1: REQUIRE: memory transformer parameters ϕ, transformation time interval [0, T ], final transformation
state at time T , i.e., xm(T ), loss gradient ∂L

∂xm(T )
.

2: s0 = [xm(T ), ∂L
∂xm(T )

,0|ϕ|]; calculate adjoint state at =
dL

dxm(t)

3: def aug-dynamics([xm(t),at, ·]):
4: return[g(xm(t), t,ϕ),−aT

t
∂g

∂xm ,−aT
t

∂g
∂ϕ

]

5: [xm(0), ∂L
∂xm(0)

, ∂L
∂ϕ

] = ODEsolver(s0, aug − dynamics, T, 0)

6: Return ∂L
∂xm(0)

, ∂L
∂ϕ

B.4 TASK-AWARE (CLASS-IL AND TASK-IL) MEMORY SIZE 2000

Table 5 shows the results for task-IL and class-IL on CIFAR-100 and MiniImagenet, respectively with
memory size 2000. Our methods still significantly outperform strong baselines by a large margin.
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Table 5: Task-IL and class-IL results on CIFAR-100 and MiniImagenet, respectively with memory
size 2000

Algorithm CIFAR-100 MiniImagenet
Method Class-IL Task-IL Class-IL Task-IL

A-GEM 9.36± 0.39 49.62± 1.08 8.10± 0.28 38.75± 0.89
GSS 16.31± 3.76 65.52± 1.86 14.01± 3.64 55.39± 2.03
HAL 15.61± 3.94 48.28± 2.04 7.88± 2.78 32.91± 1.75

ER 36.87± 0.64 82.07± 0.42 22.78± 0.57 72.25± 0.32
ER+ GMED 36.35± 0.77 81.38± 0.45 22.86± 0.65 72.16± 0.39
ER+ DCMT 38.90± 0.71 83.45± 0.51 24.94± 0.78 74.57±0.46
ER+ SCMT 39.28±0.89 83.79 ±0.68 25.37±0.87 74.31± 0.57

DER++ 50.72± 0.71 82.43± 0.38 37.82± 0.79 72.02± 0.31
DER++GMED 51.03± 0.68 82.06± 0.41 37.98± 0.85 71.68± 0.41
DER++DCMT 52.93± 0.94 83.81± 0.52 40.16±0.84 74.06± 0.49
DER++SCMT 52.97±0.73 84.26± 0.69 39.91± 0.89 74.29±0.65

B.5 BACKWARD TRANSFER (BWT)

Table 6 shows the backward transfer results with memory size 500 on various datasets. BWT measures
the forgetting of CL model. Note that if one method restrains learning the current task would preserve
the past knowledge with high BWT but achieves overall low accuracy. This would make the current
task not learned well. The results indicate the significant improvement of the proposed methods
(DCMT and SCMT) for mitigating forgetting compared to baseline ER and DER++. The baseline
HAL achieves higher BWT in some cases because HAL does not learn the new task well and achieves
overall much lower accuracy as shown in Table 1 (main text).

Table 6: Backward Transfer of various methods with memory size 500.

Method CIFAR10 CIFAR100 MiniImageNet
Class-IL Task-IL Class-IL Task-IL Class-IL Task-IL

finetuning −96.39± 0.12 −46.24± 2.12 −89.68± 0.96 −62.46± 0.78 −82.48± 1.17 −61.5± 0.82

AGEM −94.01± 1.16 −14.26± 1.18 −88.5± 1.56 −45.43± 2.32 −79.86± 1.43 −44.84± 2.81
GSS −62.88± 2.67 −7.73± 3.99 −82.17± 4.16 −33.98± 1.54 −77.21± 3.97 −34.12± 1.85
HAL −62.21± 4.34 −5.41± 1.10 −49.29± 2.82 −13.60± 1.04 −40.55± 2.69 −10.50± 1.70

ER −45.35± 0.07 −3.54± 0.35 −74.84± 1.38 −16.81± 0.97 −78.21± 1.57 −21.96± 0.32
ER+GMED −45.42± 0.31 −3.49± 0.33 −74.60± 1.26 −16.97± 0.91 −77.76± 1.38 −22.10± 0.27
ER+DCMT −43.91± 0.09 −3.15± 0.46 -73.31 ± 1.51 −15.23± 1.08 -76.74 ± 1.72 −20.57± 0.43
ER+SCMT -43.65 ± 0.11 -3.12 ± 0.53 -73.19 ±1.67 -15.02 ± 1.21 −76.92± 1.89 -20.43 ± 0.58
DER++ −22.38± 4.41 −4.66± 1.15 −53.89± 1.85 −14.72± 0.96 −61.85± 2.73 −22.93± 0.91
DER++GMED −22.53± 4.21 −4.57± 1.15 −53.67± 1.71 −14.86± 0.94 −61.72± 2.61 −22.71± 0.87
DER++DCMT −20.61± 4.58 −4.21± 1.26 -52.03 ± 1.93 −13.92± 0.97 −59.49± 2.89 −20.51± 0.98
DER++SCMT -20.27 ± 4.67 -4.08 ± 1.37 −52.31± 2.06 -13.61 ± 1.09 -59.03 ± 2.97 -20.09 ± 1.07

B.6 HYPERPARAMETER ANALYSIS

Table 7 shows the effect of integration (transformation) time T on the performance. We can observe
that the performance becomes better with a longer integration time T . This is because with a longer
integration time T , we can generate more diverse transformed memory data so that the proposed
methods generalize better to previous tasks. If the T is too large (T = 2.0), the transformed data
would significantly deviate from the original data distribution, thus the performance could become
worse. To maintain the transformed memory data distribution not deviate from the original data
distribution too much and reduce computation cost, we use a moderate time T . Table 8 shows the
effect of λ on the model performance. The model achieves best performance at λ = 3.0. Table 9
shows the effect of the number of editing steps N on the performance for combining GMED (Jin
et al., 2021) with DER++. We can observe that with more editing steps, the performance of GMED
drops significantly because the memory data becomes much harder but lacks data diversity, thus
generalizing worse with more editing steps.
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Table 7: Effect of integration (transformation) time T for combining DER++ with DCMT on
CIFAR10, CIFAR-100 and MiniImagenet, respectively.

Integration time T = 0.03 T = 0.05 T = 2.0

CIFAR10 94.78± 0.42 95.29± 0.54 94.42± 0.64
Task-IL MiniImagenet 63.42± 0.67 64.08± 0.78 63.26± 0.90

CIFAR10 74.51± 1.37 74.86± 1.53 74.17± 1.49
Class-IL MiniImagenet 24.16± 0.72 24.53± 0.89 23.93± 0.96

Table 8: Effect of regularization weight λ for combining DER++ with DCMT on CIFAR10, CIFAR-
100 and MiniImagenet, respectively.

regularization weight λ = 0.0 λ = 1.0 λ = 3.0 λ = 5.0

CIFAR10 94.62± 0.49 94.98± 0.54 95.29± 0.54 94.85± 0.57
MiniImagenet 63.71± 0.72 64.37± 0.53 64.08± 0.78 64.11± 0.73

Table 9: Effect of the number of editing steps N for DER++GMED (Jin et al., 2021) on CIFAR10,
CIFAR-100 and MiniImagenet, respectively. We can observe that with more editing steps, the
performance of GMED drops significantly because the memory data becomes much harder but lacks
data diversity, thus generalizing worse with more editing steps.

number of editing steps N = 1 N = 3 N = 5 N = 10

CIFAR10 93.94± 0.70 93.47± 0.67 90.92± 0.61 88.68± 0.79
Task-IL MiniImagenet 61.42± 0.64 58.36± 0.61 52.19± 0.57 46.52± 0.42

CIFAR10 72.82± 1.79 70.59± 1.62 60.96± 1.51 59.40± 0.57
Class-IL MiniImagenet 22.21± 0.81 19.83± 0.71 15.96± 0.62 14.54± 0.53

B.7 MEMORY TRANSFORMATION VISUALIZATION

Figure 3 and 4 show the transformation results at different time t. With longer transformation time,
the transformed data becomes diverse when viewing all the data in the transformation interval [0, T ].
SCMT brings more diversity than DCMT in terms of appearance. This suggests that with gradual and
continuous transformation of memory data can significantly improve the memory data diversity.

(a) t = t0 (b) t = t1 (c) t = t2 (d) t = t3 (e) t = t4 (f) t = t5

Figure 3: Gradual memory transformation by DCMT on CIFAR10.
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(a) t = t0 (b) t = t1 (c) t = t2 (d) t = t3 (e) t = t4 (f) t = t5

Figure 4: Gradual memory transformation by SCMT on CIFAR10.

B.8 COMPLEXITY ANALYSIS AND EFFICIENCY EVALUATION

According to (Xu et al., 2022), the computation cost of backward propagation is two times of forward
propagation.

• DER++: it needs 3 forward and 1 backward pass to replay the memory data, which equiva-
lently requires 3 + 1*2 =5 forward computation.

• DER++GMED: at each CL step, GMED additionally needs 3 forwards and 1 backward
passes (for two mini-batch data) to edit the memory examples for each editing step. So, the
complexity is 6+2*2= 10 forward propagation calculations.

• DER++DCMT, since we uniformly sample the number n from [0, 5], the amortized cost
across different CL steps is to use 3 discrete time points at each CL step in the interval [0, T ].
First, the time complexity of forward ODE calculation at those time points is 3 forward
propagation. Then, we need to calculate the gradients for model parameters. The time
complexity 3 backward gradient calculation at those time points. Thus, the computation
cost of DCMT is equivalent to 6+3*2 forward propagation. We can further reduce the
computation cost of DCMT by backward propagation into the memory transformer for every
S CL step instead of backpropagating into the memory transformer for every CL step. For
example, suppose we have 3 CL steps, i.e., 1, 2, 3; we backpropagate into the memory
transformer at step 1, but use the same memory transformer in the step 2 and 3 to transform
the memory data. This method further reduces the cost of DCMT and SCMT into 6+ 6

3 = 8.
Additionally, the integration and backward computation time for the memory transformer
in the interval [0, T ] is empirically equivalent to 1.6 forward computation of the ResNet
backbone since the memory transformer network is very small. Thus, the total computation
cost is 9.6 forward computation.

• DER++SCMT, the complexity is similar, but it requires evaluating both the drift and
diffusion terms with the corresponding gradient. Thus, the computation cost doubles the
cost of DCMT, and therefore it is equivalent to 6+ 6

3 = 8 forward propagation. Additionally,
the integration and backward computation time for the memory transformer in the interval
[0, T ] is empirically equivalent to 4.2 forward computation of the ResNet backbone since
the memory transformer network is very small. Thus, the total computation cost is 12.2
forward computation.

We summarize the computation complexity of the above methods in table 10. We set DER++ as
the baseline with a running time unit of 1; we compare the computation complexity of all the other
methods with respect to DER++.

Table 11 shows the running time evaluation of different methods on CIFAR-100 for one epoch
training.
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Table 10: Formal analysis of computation complexity of different methods.

Method running time (units)

DER++ 1.0
DER++GMED 2.0
DER++DCMT 1.9
DER++SCMT 2.4

Table 11: Performance verses efficiency evaluation (wall clock time) on CIFAR-100 for one epoch
training. ’—–’ indicates not applicable.

Method Class-IL Task-IL running time (wall clock)

GSS 13.6± 2.98 57.50± 1.93 50.6
HAL 9.05± 2.76 42.94± 1.80 27.9
UCB —– 57.15± 1.67 83.6
DER++ 36.37± 0.85 75.64± 0.60 25.8
DER++GMED 36.25± 0.69 75.49± 0.64 41.7
DER++DCMT 38.68± 0.81 78.56± 0.82 38.9
DER++SCMT 38.56± 0.93 78.75± 0.87 59.1

B.9 RESULTS ON TINY-IMAGENET

Following (Buzzega et al., 2020), we split Tiny-ImageNet with 200 classes into 10 tasks. Each task
has 20 classes. The results are shown in Table 12.

Table 12: Task-IL and class-IL results on Tiny-ImageNet, respectively with memory size 500

Algorithm Tiny-ImageNet
Method Class-IL Task-IL

oEWC 7.58± 0.10 19.20± 0.31
SI 6.58± 0.31 36.32± 0.13
LwF 8.46± 0.22 15.85± 0.58
CPR 8.91± 0.15 20.71± 0.35
UCB —– 46.89± 0.42

A-GEM 8.06± 0.04 25.33± 0.49
ER 9.99± 0.29 48.64± 0.46

DER++ 19.38± 1.41 51.91± 0.68
DER++GMED 18.93± 1.56 51.53± 0.76
DER++DCMT 21.06± 1.26 54.02 ± 0.57
DER++SCMT 21.27 ± 1.42 53.67± 0.73

B.10 T-SNE VISUALIZATION

More T-SNE visualization of ER is shown in Figure 5, GMED is shown in Figure 6, our method is
shown in Figure 7.
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(a) (b) (c) (d)

Figure 5: Experience Replay (ER) T-SNE visualization on CIFAR10. We use features extracted
from the last layer output of ResNet18 as the input to T-SNE. We use four classes of memory data to
illustrate the difference. T-SNE embeds each data point, and each color denotes one class of memory
buffer data. Each figure is a plot at different times.

(a) (b) (c) (d)

Figure 6: GMED T-SNE visualization on CIFAR10. We use features extracted from the last layer
output of ResNet18 as the input to T-SNE. We use four classes of memory data to illustrate the
difference. T-SNE embeds each data point, and each color denotes one class of memory buffer data.
Each figure is a plot at different times.

(a) (b) (c) (d)

Figure 7: DCMT (our method) on CIFAR10 with T-SNE visualization. We use features extracted
from the last layer output of ResNet18 as the input to T-SNE. We use four classes of memory data to
illustrate the difference. T-SNE embeds each data point, and each color denotes one class of memory
buffer data. Each figure is a plot at different times.
B.11 MATH BACKGROUND

Definition 1 (Stratonovich stochastic integral) Suppose {Fs,t}s<t;s,t∈[0,T ] be a two-sided filtra-
tion, where Fs,t is the σ-algebra generated by {Wu − Wv : s ≤ u ≤ v ≤ t} for s, t ∈ [0, T ]
such that s ≤ t. For a continuous semi-martingale {Xt}t∈[0,T ] adapted to the forward filtration,
{F0,t}t∈[0,T ], Stratonovich stochastic integral is

∫ T

0

Xt ◦ dWt = lim
|
∏

|→0

N∑
k=1

(
Xtk +Xtk−1

2
)(Wtk −Wtk−1

) (14)

where
∏

= 0 = t0 < · · · < tN = T is a partition of the interval [0, T ], and |
∏

| = maxk tk − tk−1

denotes the size of largest segment of the partition, and the limit is to be interpreted in the L2 space.
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B.12 TRAINING ALGORITHMS FOR DCMT AND SCMT

We present the Runge-Kutta Method in Algorithm 3 for integrating ODE to obtain its solution. We
present the adjoint method for calculating the gradient with respect to the parameters of DCMT ϕ
in Algorithm 2. We then present the algorithm for calculating the forward pass of SCMT (Eq. 7) in
Algorithm 4. We then present the reversible Heun algorithm for calculating the gradients with respect
to the parameters of SCMT in Algorithm 5.

Algorithm 3 Runge-Kutta Method for integrating ODE.

1: REQUIRE: dxm(t)
dt

= g(xm(t), t,ϕ), xm(0) = xm;
2: dividing the time interval [0, T ] into sub-intervals, [t0, t1], · · · , · · · , [tn, tn+1], · · · , [tN−1, tN ]; where

|tn+1 − tn| = h; h is the sep size.
3: for n = 1 to N do
4: K1 = g(xm

n , tn)h
5: K2 = g(xm

n + 1
2
K1, tn + 1

2
h)h

6: K3 = g(xm
n + 1

2
K2, tn + 1

2
h)h

7: K4 = g(xm
n +K3, tn + h)h

8: xm
n+1 = xm

n + 1
6
(K1 + 2K2 + 2K3 +K4)

9: end for
10: Return xm

N

Algorithm 4 SCMT (SDE) solver (forward pass).

1: REQUIRE: tn,x
m
n , x̂m

n , µn, σn,∆t, Brownian motion W .
2: tn+1 = tn +∆t
3: ∆Wn = Wtn+1 −Wtn

4: x̂m
n+1 = 2xm

n − x̂m
n + µn∆t+ σn∆Wn

5: µn+1 = µ(tn+1, x̂m
n+1)

6: σn+1 = σ(tn+1, x̂m
n+1)

7: xm
n+1 = xm

n + 1
2
(µn + µn+1)∆t+ 1

2
(σn + σn+1)∆Wn

8: Return tn+1,x
m
n+1, x̂

m
n+1, µn+1, σn+1

B.12.1 REVERSIBLE HEUN (KIDGER ET AL., 2021) FOR SOLVING THE SCMT GRADIENTS

Suppose we have the loss L on the terminal random variable XT , then the adjoint process At =
dL(XT )

dXt
∈ Rd is the solution to the following SDE:

dAi
t = −Aj

t

∂µj

∂Xi
(t,Xt)dt−Aj

t

∂σj,k

∂Xi
(t,Xt) ◦ dW k

t (15)

where A0 = dL(XT )
dX0

is the obtained backpropagated gradient. The gradients with respect to the
parameters of the drift and diffusion networks can be obtained by viewing them as an additional part
of the state whose dynamics has zero drift and diffusion (Li et al., 2020). Furthermore, the adjoint
method of reversible Heun (Kidger et al., 2021) utilizes the reversibility of a differential equation:
intermediate computations such as Xt for t < T are restored from XT , so that they do not need to be
held in memory.
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Algorithm 5 Reversible Heun method of Backward computation to calculate the gradients w.r.t the
previous state of SCMT.

1: REQUIRE: tn+1,x
m
n+1, x̂

m
n+1, µn+1, σn+1,∆t, Brownian motion W ,

∂L(xm
T )

∂xm
n+1

,
∂L(xm

T )

∂x̂m
n+1

,
∂L(xm

T )

∂µn+1
,
∂L(xm

T )

∂σn+1
.

2: tn = tn+1 −∆t
3: ∆Wn = Wtn+1 −Wtn

4: x̂m
n = 2xm

n+1 − x̂m
n+1 − µn+1∆t− σn+1∆Wn

5: µn = µ(tn, x̂m
n )

6: σn = σ(tn, x̂m
n )

7: xm
n = xm

n+1 − 1
2
(µn + µn+1)∆t− 1

2
(σn + σn+1)∆Wn

8: xm
n+1, x̂

m
n+1, µn+1, σn+1 = Forward(tn,x

m
n , x̂m

n , µn, σn,∆t,W )
9: Local Backpropagation

10: ∂L(xm
T )

∂(xm
n ,x̂m

n ,µn,σn)
=

∂L(xm
T )

∂(xm
n+1,x̂

m
n+1,µn+1,σn+1)

∂(xm
n+1,x̂

m
n+1,µn+1,σn+1)

∂(xm
n ,x̂m

n ,µn,σn)

11: Return tn,x
m
n , x̂m

n , µn, σn,
∂L(xm

T )

∂xm
n

,
∂L(xm

T )

∂x̂m
n

,
∂L(xm

T )

∂µn
,
∂L(xm

T )

∂σn

B.13 WHY THE ENTIRE TRANSFORMATION IS INVERTIBLE AND THE VELOCITY TERM DOES
NOT NEED TO BE INVERTIBLE

The forward integration is as the following:

xm(T ) = xm(0) +

∫ T

0

g(xm(t), t,ϕ)dt (16)

We then multiple −1 for both sides of the above equations, obtain the following equation:

−xm(T ) = −xm(0)−
∫ T

0

g(xm(t), t,ϕ)dt (17)

We then rearrange the above equation as following:

xm(0) = xm(T )−
∫ T

0

g(xm(t), t,ϕ)dt (18)

Then due to the following property of integration

−
∫ T

0

g(xm(t), t,ϕ)dt =

∫ 0

T

g(xm(t), t,ϕ)dt (19)

We can obtain the following reverse integration:

xm(0) = xm(T ) +

∫ 0

T

g(xm(t), t,ϕ)dt (20)

While we can observe that in the above derivation, there is no restriction that g should be invertible.

C PRELIMINARY AND RELATED WORK

C.1 TASK-AWARE CL

Problem setup. Task-aware CL focuses on the case where there are explicit task definitions dur-
ing CL. Task/domain/class-incremental learning (van de Ven & Tolias, 2019) are the three most
representative CL scenarios. We consider the problem of learning a sequence of tasks denoted as
Dtr = {Dtr

1 ,Dtr
2 , · · · ,Dtr

N}, where N is the number of training tasks. The k-th task training data
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Dtr
k consists of a set of triplets {(xk

i , y
k
i , Tk)

nk
i=1}, where xk

i is the i-th data example in the task,
yki is the corresponding data label, and Tk is the task identifier. The goal is to learn a model fθ
on the training task sequence Dtr so that it performs well on the test set of all the learned tasks
Dte = {Dte

1 ,Dte
2 , · · · ,Dte

N} without forgetting previously learned knowledge.

Existing work. The proposed approaches for task-aware CL can be categorized into: 1) maintaining
a memory buffer that stores previous examples for future replay (Lopez-Paz & Ranzato, 2017; Shin
et al., 2017; Chaudhry et al., 2019a; Riemer et al., 2019; Chaudhry et al., 2019b; Aljundi et al., 2019a;
PourKeshavarzi et al., 2022; Arani et al., 2022); 2) using dynamic network architectures (Rusu et al.,
2016; Fernando et al., 2017; Yoon et al., 2018; Qin et al., 2021; Miao et al., 2022) and remembering
past knowledge by dynamically updated architectures; 3) enforcing regularization to slow down
forgetting (Kirkpatrick et al., 2017; Zenke et al., 2017b; von Oswald et al., 2020; Liu & Liu, 2022;
Raghavan & Balaprakash, 2021); and 4) modeling the parameter update uncertainty with Bayesian
methods (Nguyen et al., 2018; Ebrahimi et al., 2020; Henning et al., 2021). In this paper, we focus on
memory-replay-based methods since they often achieve SOTA performance. Memory-based methods
include experience replay (Chaudhry et al., 2019b), which jointly trains the memory buffer data with
current mini-batch. Meta Experience Replay (MER) (Riemer et al., 2019) adopts meta-learning to
maximize transfer from previous examples and minimize interference. Hindsight Anchor Learning
(HAL) (Chaudhry et al., 2021) using anchor points to mitigate forgetting on previous tasks. GEM
(Lopez-Paz & Ranzato, 2017) and A-GEM (Chaudhry et al., 2019a) use the losses on the memory
buffer data as inequality constraints, avoiding their increase but allowing their decrease to avoid
forgetting. DER (Buzzega et al., 2020) further combines rehearsal with knowledge distillation.

C.2 TASK-FREE CL

Problem setup. Task-free CL (He et al., 2019; Zeno et al., 2019; Aljundi et al., 2019b; Chrysakis &
Moens, 2020; Lee et al., 2020) is a recent generalization of CL to the more complex cases, where
data distribution shift could happen at any time during CL without explicit definition of tasks. A
sequence of mini-batch labeled data (xk, yk, hk) sequentially arrives at each timestamp k and forms
a non-stationary data stream; where xk denotes the mini-batch data received at timestamp k, yk is
the data label associated with xk, and hk is the hidden task identity associated with xk. During both
the training and testing time, the task identity hk is not available to the learner. A more general
definition of task-free CL in (Aljundi et al., 2019b) assumes no explicit partitions of tasks, and the
data distribution can change arbitrarily. However, our proposed methods can be seamlessly applied to
those more general scenarios.

Existing work. Most existing works in task-free CL are memory-replay-based methods (Chaudhry
et al., 2019b;a). They directly perform memory replay on the raw data without any transformation.
MIR (Aljundi et al., 2019a) proposes to replay the samples with which are most interfered. GEN-
MIR (Aljundi et al., 2019a) further uses generative models to synthesize the memory examples.
Gradient-based Sample Selection (GSS) (Aljundi et al., 2019c) focuses on storing diverse examples
which is completely different from our method. Our works share a similar goal with GMED (Jin
et al., 2021) which edits the memory buffer based on ADA, making the memory data harder but lacks
diversity (Madry et al., 2018; Wang et al., 2021). There are several significant differences. First,
GMED is a gradient-based discrete step memory editing method. Our memory transformer can
obtain infinite continuous time steps transformation of memory data, which improves the memory
diversity significantly. Second, GMED overwrites the memory data with the edited ones making the
memory buffer data distribution significantly deviate from the original raw memory data distribution
after many epochs of editing, especially in task-aware CL, which would decrease the performance. In
contrast, our transformation process is reversible, i.e., the original raw data can be recovered from the
transformed data. Thus, we do not need to overwrite the memory buffer data or keep an additional
mini-batch transformed data with extra cost.
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