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ABSTRACT

Both centralized and decentralized approaches have shown excellent performance
and great application value in federated learning (FL). However, current studies do
not provide sufficient evidence to show which one performs better. Although from
the optimization perspective, decentralized methods can approach the comparable
convergence of centralized methods with less communication, its test performance
has always been inefficient in empirical studies. To comprehensively explore their
behaviors in FL, we study their excess risks, including the joint analysis of both
optimization and generalization. We prove that on smooth non-convex objectives,
1) centralized FL (CFL) always generalizes better than decentralized FL (DFL); 2)
from perspectives of the excess risk and test error in CFL, adopting partial partici-
pation is superior to full participation; and, 3) there is a necessary requirement for
the topology in DFL to avoid performance collapse as the training scale increases.
Based on some simple hardware metrics, we could evaluate which framework is
better in practice. Extensive experiments are conducted on common setups in FL
to validate that our theoretical analysis is contextually valid in practical scenarios.

1 INTRODUCTION

Since McMahan et al. (2017) propose FL, it becomes a promising paradigm for training the hetero-
geneous dataset. Classical FedAvg utilizes the CFL framework consisting of a global server and
massive local clients, to jointly train a global model via periodic communication. Though it shines in
large-scale training, CFL has to afford expensive communication costs under a large number of local
clients. To efficiently alleviate this pressure, DFL is introduced as a compromise. Sun et al. (2022)
propose the DFedAvg and analyze its fundamental properties, which adopts one specific topology
across all clients to significantly reduce the number of links for communication. In some scenarios,
it is impossible to set up the global server, in which case DFL becomes the only valid solution. As
two major frameworks in the current FL community, both centralized and decentralized approaches
are well-studied and improved greatly. More and more insights are being revealed to give it huge
potential for applications in practice. However, there is still a question lingering in the studies:

Which framework is better for federated learning? Centralized or decentralized?

Research on this question goes back to distributed learning based on the parallel stochastic gradient
descent (PSGD). Lian et al. (2017) study the comparison between centralized PSGD (C-PSGD) and
decentralized PSGD (D-PSGD), and provide a positive answer for decentralized approaches. D-
PSGD can achieve a comparable convergence rate with linear speedup as the C-PSGD with much
fewer communication links. However, in the FL framework, each local dataset follows the unknown
heterogeneous distribution, which leads to consistently poor experimental performance in DFL. Shi
et al. (2023) also explore that an algorithm often performs worse on the DFL framework under the
same experimental setups. Although some studies provide consequential illustrations based on the
analysis of spectral gaps and consensus, we still don’t know the clear answer to the question above.

Most of the previous works focus on the analysis of convergence rates and ignore the generalization
efficiency, while the test accuracy is highly related to the generalization. Therefore, the incomplete
comparison can easily lead to cognitive misunderstandings. In order to further understand their per-
formance and comprehensively answer the above question, we follow Zhou et al. (2021); Sun et al.
(2023d) to introduce the excess risk as the measurements of test errors, which analyzes the joint im-
pacts of both optimization and generalization. Meanwhile, we utilize the uniform stability (Elisseeff
et al., 2005; Hardt et al., 2016) to learn their generalization abilities. To improve the applicability of
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Table 1: Main results on the excess risk of FedAvg and DFedAvg on the smooth non-convex
objective. κλ is a constant related to spectrum gap 1− λ (Spectrum norm λ is defined in Lemma 1).

Excess Risk ε = εO + εG Optimal Selection Corresponding εG

FedAvg O
(

1
nKT

+ 1
S

n
µL

1+µL

m
(KT )

µL
1+µL

)
n = O

(
m

1+µL
1+2µL

)
O

(
m

− 1+µL
1+2µL

)
DFedAvg O

(
1
T
+ 1

S

(
1+6

√
mκλ

m

) 1
1+µL

(KT )
µL

1+µL

)
κλ = 0 O

(
m

− 1
1+µL

)
n: the number of clients participating in the training per round in CFL; m: the number of total clients;
K: local interval; T : communication rounds; L: Lipschitz constant; µ: specific constant with µ ≤ 1/L.

the vanilla uniform stability analysis on general deep models, we remove the idealized assumption
of bounded full gradients and adopt the bounded uniform stability instead.

Our work provides a novel and comprehensive understanding of comparisons between CFL and
DFL as shown in Table 1. We analyze excess risks for the classical FedAvg and DFedAvg. Both
of them achieve the same results as vanilla SGD (Hardt et al., 2016) on the impact of iterations TK.
Vanilla SGD could achieve O( 1

Sm ) on total Sm data samples. However, due to the local training
process, both CFL and DFL are slower than this rate in generalization. The generalization achieves

O( 1
S

n
µL

1+µL

m ) in CFL and O( 1
S

(
1+6

√
mκλ

m

) 1
1+µL

in DFL respectively. From the generalization per-
spective, CFL always generalizes better than DFL. From the excess risk and test error perspectives,
to achieve optimal performance, CFL only needs partial clients to simultaneously participate in the
training per communication round. Our analysis not only quantifies the differences between them
but also demonstrates some discussions on the negative impact of topology in DFL. As a compro-
mise of CFL to save communication costs, the topology adopted in DFL has a specific minimum
requirement to avoid performance collapse when the number of local clients increases. We also con-
duct extensive experiments on the widely used FL setups to validate our analysis. Both theoretical
and empirical studies confirm the validity of our answers to the question above.

We summarize the main contributions of this paper as follows:

• We provide the uniform stability and excess risks analysis for the FedAvg and DFedAvg
algorithms without adopting the idealized assumption of bounded full gradients.

• We prove centralized approaches always generalize better than decentralized ones, and CFL
only needs partial participation to achieve optimal test error. Furthermore, we can estimate
at what scale of devices, CFL would be suitable under the acceptable communication costs.

• We prove even with adopting DFL as a compromise of CFL, there is a minimum require-
ment on the topology. Otherwise, even with more local clients and training data samples,
its generalization performance still gets worse.

• We conduct empirical studies to validate our theoretical analysis and support our answer.

2 RELATED WORK

Centralized federated learning. Since McMahan et al. (2017) propose the fundamental CFL al-
gorithm FedAvg, several studies explore its strengths and weaknesses. Yang et al. (2021) prove
its convergence rate on the non-convex and smooth objectives satisfies the linear speedup property.
Furthermore, Karimireddy et al. (2020) study the client-drift problems in FL and adopt the variance
reduction technique to alleviate the local overfitting. Li et al. (2020) introduce the proxy term to
force the local models to be close to the global model. Zhang et al. (2021); Acar et al. (2021);
Gong et al. (2022); Sun et al. (2023b) study the primal-dual methods in CFL and prove it achieves
faster convergence. This is also the optimal convergence rate that can be achieved in the current
algorithms. With the deepening of research, researchers begin to pay attention to its generalization
ability. One of the most common analyses is the PAC-Bayesian bound. Yuan et al. (2021) learn the
components in the generalization and formulate them as two expectations. Reisizadeh et al. (2020)
define the margin-based generalization error of the PAC-Bayesian bound. Qu et al. (2022); Cal-
darola et al. (2022); Sun et al. (2023b) study the generalization efficiency in CFL via local sharpness
aware minimization. Sun et al. (2023a) re-define the global margin-based generalization error and
discuss the differences between local and global margins. Sefidgaran et al. (2023) also learn the
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reduction of the communication may improve the generalization performance. In addition, uniform
stability (Elisseeff et al., 2005; Hardt et al., 2016) is another powerful tool adopted to measure the
generality. Yagli et al. (2020) learn the generalization error and privacy leakage in federated learning
via the information-theoretic bounds. Sun et al. (2023e) provide the stability analysis for several FL
methods. Sun et al. (2023d) prove stability in CFL is mainly affected by the consistency.

Decentralized approaches. Since Wang & Joshi (2021) learn a unified framework on the local-
updates-based methods, Yuan et al. (2020) explore the impact of the bias correction in a distributed
framework and reveal its efficiency in the training. Based on (Shi et al., 2015) which analyzes the
consensus in decentralized approaches, Alghunaim & Yuan (2022) provide a novel unified analysis
for the non-convex decentralized learning. After that, local updates also draw much attention to
efficient training. Mishchenko et al. (2022); Nguyen et al. (2022); Alghunaim (2023) learn the
advantages in the local process in both centralized and decentralized approaches.

Decentralized federated learning. Since Lalitha et al. (2018) propose the prototype of DFL, it is
becoming a promising approach as the compromise of CFL to save the communication costs. Lian
et al. (2018); Yu et al. (2019); Assran et al. (2019); Koloskova et al. (2020) learn the stability of
decentralized SGD which contributes to the research on the heterogeneous dataset. Hu et al. (2019)
study the gossip communication and validate its validity. Hegedűs et al. (2021) explore the em-
pirical comparison between the prototype of DFL and CFL. Lim et al. (2021) propose a dynamic
resource allocation for efficient hierarchical federated learning. Sun et al. (2022) propose the al-
gorithm DFedAvg and prove that it achieves the comparable convergence rate as the vanilla SGD
method. Gholami et al. (2022) also learn the trusted DFL framework on the limited communica-
tions. Hashemi et al. (2021); Shi et al. (2023) verify that DFL suffers from the consensus and may
be improved by multi-gossip. Li et al. (2023) propose the adaptation of the variant of the primal-dual
optimizer in the DFL framework. However, experiments in DFL are generally unsatisfactory. Re-
search on its generalization has gradually become one of the hot topics. Sun et al. (2021) provide the
uniform stability analysis of the decentralized approach and indicate that it could be dominated by
the spectrum coefficient. Zhu et al. (2023) prove the decentralized approach may be asymptotically
equivalent to the SAM optimizer with flat loss landscape and higher generality. Different from the
previous work, our study mainly focuses on providing a clear and specific answer to the question
we ask in Section 1. Meanwhile, our analysis helps to understand whether a topology is suitable for
DFL, and how to choose the most suitable training mode under existing conditions in practice.

3 PROBLEM FORMULATION
Table 2: Notation tables.

Symbol Definition

m number of total clients in CFL/DFL
n number of participating clients in CFL
G topology connection in DFL
U upper bound of loss value

Notations. We first introduce some notations and
marks adopted in our paper as follows and in Ta-
ble 2. In this paper, unless otherwise specified,
we use italics for scalars, e.g. n, and capital bold-
face for matrix, e.g. M. [n] denotes a sequence
of positive integers from 1 to n. E[·] denotes the
expectation of · term with respect to the potential
probability spaces. ∥ · ∥ denotes the l2-norm of a vector and the Frobenius norm of a matrix. ∥ · ∥op
denotes the spectral norm of a matrix. | · | denotes the absolute value of a scalar. Unless otherwise
specified, all four arithmetic operators conform to element-wise operations.

Fundamental Problems. We formulate the fundamental problem as minimizing a finite-sum prob-
lem with privacy on each local heterogeneous dataset. We suppose the following simplified scenario:
a total of m clients jointly participate in the training whose indexes are recorded as i where i ∈ [m].
On each client i, there is a private dataset Si with S data samples. Each sample is denoted as zi,j
where j ∈ [S]. Each dataset Si follows a different and independent distribution Di. We consider the
population risk minimization on the finite-sum problem of several non-convex objectives fi(w, z):

min
w

F (w) ≜
1

m

∑
i∈[m]

Fi(w), Fi(w) ≜ Ez∼Difi(w, z), (1)

where F (w) : Rd → R is denoted as the global objective with respect to the parameters w. In the
general cases, we use the surrogate empirical risk minimization (ERM) objective to replace Eq.(1):

min
w

f(w) ≜
1

m

∑
i∈[m]

fi(w), fi(w) ≜
1

S

∑
z∈Si

fi(w, z). (2)
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Algorithm 1: FedAvg Algorithm

Input: initial model w0,T ,K, η
Output: optimized global model wT .

1 for t = 0, 1, ..., T − 1 do
2 randomly select a subset N from [m]
3 for i ∈ N in parallel do
4 send wt to the client i as wt

i,0

5 wt
i,K ← SGD-Opt(wt

i,0, η,K)

6 send the wt
i,K to the server

7 end
8 wt+1 ← 1

n

∑
i∈N wt

i,K

9 end

Centralized FL. Centralized federated learning
employs a global server to coordinate several lo-
cal clients to collaboratively train a global model.
To alleviate the communication costs, it randomly
activates a subsetN (|N | = n) among all clients.
At the beginning of each round, the global server
sends the global model to the active clients as
the initialization state. Then they will train the
model on their local dataset. After the local train-
ing, the optimized local models will be sent to
the global server for aggregation. The aggregated
model will become the global model in the next
round and continue to participate in training until
it is well optimized. Algorithm 1 shows the clas-
sical FedAvg method (McMahan et al., 2017).

Algorithm 2: DFedAvg Algorithm

Input: initial models w−1
i,K ,T ,K, η, G

Output: optimized global model wT .

1 for t = 0, 1, ..., T − 1 do
2 for i ∈ [m] in parallel do
3 send wt−1

i,K to its neighbors
4 wt

i,0 ←
∑

j∈Ai
aijw

t−1
i,K

5 wt
i,K ← SGD-Opt(wt

i,0, η,K)

6 end
7 end

Decentralized FL. Decentralized FL allows each
local client to only communicate with its neigh-
bors on an undirected graph G, which is defined
as a collection of clients and connections between
clients G = (I, E). I denotes the clients’ set [m]
and E ⊆ I × I denotes the their connections.
The relationships are associated with an adjacent
matrix A = [aij ] ∈ Rm×m. If (i, j) ∈ E , the cor-
responding element aij > 0, otherwise aij = 0.
In the decentralized setting, all clients first aggre-
gate the models within their neighborhoods and
then train them on their local dataset. Algorithm 2
shows the classical DFedAvg (Sun et al., 2022).

Definition 1 (Adjacent Matrix) The adjacent matrix A = [aij ] ∈ Rm×m satisfies the following
properties: (1) non-negative: aij ≥ 0; (2) symmetry: A⊤ = A; (3) null {I−A} = span {1}; (4)
spectral: I ⪰ A ≻ −I; (5) double stochastic: 1⊤A = 1⊤,A · 1 = 1 where 1 = [1, 1, 1, · · · , 1]⊤.

Lemma 1 The eigenvalues λi of matrix A satisfies 1 = λ1 > λ2 > · · · > λm > −1, where λi

denotes the i-th largest eigenvalue of A. By defining λ ≜ max {|λ2|, |λm|} > 0, we can bound the
spectral gap of the adjacent matrix A by λ, which could measure the connections of this topology.

Lemma 2 ((Montenegro et al., 2006)) Let the matrix P = 11⊤/m ∈ Rm×m, given a positive
t ∈ Z+, the adjacent matrix A satisfies ∥At−P∥op ≤ λt, which measures the ability of aggregation.

Generalization Gap. Because of the unknown distribution Di in Eq.(1), we often generate the op-
timized solution with Eq.(2). Therefore, there is an inevitable gap between the expected solution
and the obtained one. An intuitive example is that the model finely trained on the training set often
performs poorly on the test set, which leads to overfitting. This also makes studying how general-
ization gaps are affected by the training process a key challenge in the field of machine learning.
We denote C as the joint dataset of total local dataset Si. We consider using the specific random
algorithm A to solve the Eq.(2) on the joint dataset C and obtain the solution A(C). Therefore, the
gap could be defined as the generalization error εG = EC,A [F (A(C))− f(A(C))]. It reflects the
joint impact caused by the dataset C and the algorithm A. As an important term of the excess risk
error, the generalization error εG demonstrates the potential instability of the proposed algorithm.
To comprehensively explore the impacts, motivated by the previous studies (Hardt et al., 2016; Sun
et al., 2021; Zhou et al., 2021; Sun et al., 2023d;e), we adopt the uniform stability analysis.

Definition 2 (Uniform Stability) We construct a new joint dataset C̃ which only differs from the
vanilla dataset C at most one data sample. Then we say A is an ϵ-uniformly stable algorithm if:

sup
z∼∪Di

E
[
f(A(C), z)− f(A(C̃), z)

]
≤ ϵ. (3)

Lemma 3 (Elisseeff et al., 2005; Hardt et al., 2016) If the stochastic algorithm A is ϵ-uniformly
stable, we could bound its generalization error as εG ≤ ϵ on the corresponding dataset distribution.
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Excess Risk. According to the definition of εG, it represents the performance errors on the optimized
modelA (C) between the training samples and the real data distribution. However, the real test error
also should include the error from the A (C) itself, which is, the error between the optimized model
A (C) and the real optimum w⋆. Therefore, we introduce the excess risk to measure the error of the
test accuracy. Generally, it could be approximated as the term E [F (A (C))] instead.

Definition 3 (Excess Risk) We denote the w⋆ as the true optimum which can be achieved by the
algorithm A on the dataset C. E [f(w⋆)] is usually very small. Thus the excess risk is defined as:

ε = E [F (A(C))− f(w⋆)] = E [F (A(C))− f(A(C))]︸ ︷︷ ︸
εG

+E [f(A(C))− f(w⋆)]︸ ︷︷ ︸
εO

. (4)

The excess risk can effectively measure the true test performance E [F (A(C))], which is also one
of the very important concerns in current studies of machine learning. Many previous studies have
studied the optimization error εO of general centralized and decentralized federated learning frame-
works. Our work mainly focuses on the generalization error bounds for these two frameworks and
we also provide a comprehensive theoretical analysis of their excess risks in the Section 4.

4 THEORETICAL ANALYSIS

In this part, we mainly introduce the theoretical analysis of the generalization error bound and pro-
vide a comparison between centralized and decentralized setups in FL paradigms. We first introduce
the main assumptions adopted in this paper and discuss their applicability and our improvements
compared with previous studies. Then we state the main theorems, corollaries, and discussions.

4.1 ASSUMPTIONS

Assumption 1 For ∀ w1, w2 ∈ Rd, the objective fi(w) is L-smooth for arbitrary data sample z:

∥∇fi(w1, z)−∇fi(w2, z)∥ ≤ L∥w1 − w2∥. (5)

Assumption 2 For ∀ w ∈ Rd, the stochastic gradient gi = ∇fi(w, z) where z ∈ Si is an unbiased
estimator of the full local gradient∇fi(w) ≜ Ez∼Di

[∇fi(w, z)] with a bounded variance, i.e.,

Ez[ gi −∇fi(w)] = 0, Ez∥gi −∇fi(w)∥2 ≤ σ2
l . (6)

Assumption 3 ForA (C) ,A(C̃) ∈ Rd which are well trained by an ϵ-uniformly stable algorithmA
on dataset C and C̃, the global objective f(w) satisfies G-Lipschitz continuity between them, i.e.,

|f(A(C))− f(A(C̃))| ≤ G∥A(C)−A(C̃)∥. (7)

Discussions. Assumption 1 and 2 are two general assumptions that are widely adopted in the anal-
ysis of federated stochastic optimization (Reddi et al., 2020; Karimireddy et al., 2020; Gorbunov
et al., 2021; Yang et al., 2021; Xu et al., 2021; Gong et al., 2022; Qu et al., 2022; Sun et al., 2023c;
Huang et al., 2023). Assumption 3 is a variant of the vanilla Lipschitz continuity assumption. The
vanilla Lipschitz continuity is widely used in the uniform stability analysis (Elisseeff et al., 2005;
Hardt et al., 2016; Zhou et al., 2021; Sun et al., 2021; Xiao et al., 2022; Zhu et al., 2022; Sun
et al., 2023d). Vanilla Lipschitz continuity assumption implies the objective have bounded gradients
∥∇f(w)∥ ≤ G for ∀ w ∈ Rd. However, several recent works have shown that it may not always
hold in current deep learning (Kim et al., 2021; Mai & Johansson, 2021; Patel & Berahas, 2022;
Das et al., 2023). Therefore, in order to improve the applicability of the stability analysis on general
deep models, we use Assumption 3 instead, which could be approximated as a specific Lipschitz
continuity only at the minimumA(C). The main challenge without the strong assumption is that the
boundedness of the iterative process cannot be ensured. Our proof indicates that even if the iterative
process is not necessarily bounded, the uniform stability can still maintain the vanilla upper bound.

4.2 STABILITY OF CENTRALIZED FEDERATED LEARNING

In this part, we introduce the stability of the centralized federated learning setup. We consider the
classical FedAvg (Algorithm 1) and analyze its stability during the training process.

Theorem 1 Under Assumption 1∼ 3, let the active ratio per communication round be n/m, and let

the learning rate η = O
(

1
tK+k

)
= µ

tK+k is decayed per iteration τ = tK+k where µ is a specific

5



Under review as a conference paper at ICLR 2024

constant which satisfies µ ≤ 1
L , let U be the maximization of loss value, the stability of centralized

federated learning satisfies:

E|f(wT+1; z)− f(w̃T+1; z)| ≤ 2σlG

mSL

(
TK

τ0

)µL

+
nUτ0
mS

. (8)

By selecting a proper τ0 =
(
2σlG
nUL

) 1
1+µL (TK)

µL
1+µL , we can minimize the error bound:

E|f(wT+1; z)− f(w̃T+1; z)| ≤ 4

S

(
σlG

L

) 1
1+µL

(
n

µL
1+µL

m

)
(UTK)

µL
1+µL . (9)

Corollary 1.1 (Stability.) The stability of the centralized federated learning (CFL) is mainly af-
fected by the number of samples S, the number of total clients m, the number of active clients n,
and the total iterations TK. The vanilla SGD achieves the upper bound of O

(
T

µL
1+µL /S

)
(Hardt

et al., 2016), while stability of CFL is worse thanO
(
T

µL
1+µL /S

)
due to additional negative impacts

of n and K. Specifically, when the number of active clients and local intervals increases, its per-
formance will decrease significantly. An intuitive understanding is that when the number of active
clients increases, it will be easier to select new samples that are not consistent with the current
understanding. This results in the model having to make updates to adapt to the new knowledge.

Corollary 1.2 (Excess Risk.) Haddadpour & Mahdavi (2019); Zhou et al. (2021) provide the anal-
ysis of εO = E

[
f(wT )− f(w⋆)

]
under PŁ-condition. The convergence rate of FedAvg is domi-

nated byO (1/nKT ) rate on non-convex smooth objectives. Therefore, when the number of dataset

samples S is fixed, the excess risk of CFL is dominated by O
(
1/nKT + (nKT )

µL
1+µL /m

)
. Both

terms are caused by the stochastic variance σl. Discussions are stated as follows.

When m = n = K = 1, it degenerates into the conclusion of the vanilla SGD. When m = n and
K > 1, it degenerates into the conclusion of the local SGD. The analysis in centralized federated
learning requires the m ≥ n > 1 and K > 1. In Corollary 1.2, our analysis points out it is a
trade-off on n, K, and T in FedAvg and centralized federated learning. We meticulously provide
the recommended selection for the number of active clients n to achieve optimal efficiency.

Generally, the communication round T is decided by the training costs and local computing power.
Therefore, under a fixed local interval K, increasing partial participation rates (increasing n) may
hurt the final test performance. When the optimization error εO dominates the excess risk, increasing
n brings linear speedup property and effectively reduces the optimization error (Yang et al., 2021).
Most of the advanced federated methods have also been proven to benefit from this speedup. How-
ever, when the generalization error dominates the excess risk, large n is counterproductive. Charles
et al. (2021) similarly observe the experiments that larger cohorts (larger n) uniformly lead to worse
generalization. We theoretically prove this phenomenon and provide a rough estimation of the best
value of active ratios. When the number of total clients m is fixed, the optimal number of the active
clients in centralized federated learning satisfies n⋆ = O(m

1+µL
1+2µL ), which could efficiently balance

the optimization and generalization error. When jointly considering the impact of the local interval,
the optimal value could be adjusted as n⋆ = O(m

1+µL
1+2µL /K). We summarize them as follows:

• The best number of active clients per round is approximately in the order of (m
2
3 ,m).

• When local intervals increase, decreasing n appropriately can achieve better performance.

Empirical studies on centralized federated learning are shown in Section 5.1 and Appendix A.2.1.

4.3 STABILITY OF DECENTRALIZED FEDERATED LEARNING

In this part, we introduce the stability of the decentralized federated learning setup. We consider the
classical DFedAvg (Algorithm 2) and analyze its excess risk in the whole training process.

Theorem 2 Under Assumption 1∼ 3, let the communication graph be A as introduced in Defini-
tion 1 which satisfies the conditions of spectrum gap λ in the Lemma 1 and 2, and let the learning
rate η = O

(
1

tK+k

)
= µ

tK+k is decayed per iteration τ = tK + k where µ is a specific con-

stant which satisfies µ ≤ 1
L , let U be the maximization of loss value, the stability of decentralized
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federated learning (Algorithm 2) satisfies:

E
[
|f(wT+1; z)− f(w̃T+1; z)|

]
≤ 2σlG

SL

(
1 + 6

√
mκλ

m

)(
TK

τ0

)µL

+
Uτ0
S

. (10)

where κλ ≈ O
(

1
λ ln 1

λ

)
is a constant coefficient related to the spectrum norm λ.

By selecting a proper τ0 =
(

2σlG
UL

1+6
√
mκλ

m

) 1
1+µL

(TK)
µL

1+µL , we can minimize the error bound:

E|f(wT+1; z)− f(w̃T+1; z)| ≤ 4

S

(
σlG

L

) 1
1+µL

(
1 + 6

√
mκλ

m

) 1
1+µL

(UTK)
µL

1+µL . (11)

Corollary 2.1 (Stability.) The stability of decentralized federated learning (DFL) performs with
the impact of the number of samples S, the number of total clients m, and total iterations TK.
Differently, it is also affected by the topology. κλ is also a widely used coefficient related to the λ that
could measure different connections in the topology. Its stability achieves the best performance when
we select the κλ = 0, which corresponds to the fully connected topology. In practical scenarios,
DFL prefers a small κλ coefficient to improve generalization performance as much as possible.

Corollary 2.2 (Excess Risk.) Similarly, we need to comprehensively consider the performance of
the excess risk in the DFL framework. Haddadpour & Mahdavi (2019); Sun et al. (2022) study
the convergence under the PŁ-condition and provide the analysis that the spectrum gap λ generally
exists in the non-dominant term, which indicates the optimization convergence achieves O (1/T )
under the sufficiently large communication round T . Therefore, the excess risk of DFL is dominated
by O

(
1/T + ((1 + 6

√
mκλ)/m)

1
1+µL (KT )

µL
1+µL

)
. Further discussions are stated as follows.

Table 3: Comparison of common topolo-
gies. The arrow denotes the trends as m in-
creases. Õ(m) means the order of m

1
1+µL .

Topologies κλ εG

full 0 Õ
(
m−1

)
↓

exp O (lnm) Õ
(
m−0.5

)
↓

grid O (m lnm) Õ
(
m0.5

)
↑

ring O
(
m2

)
Õ

(
m1.5

)
↑

star O
(
m2

)
Õ

(
m1.5

)
↑

Corollary 2.2 explains that the spectrum gap mainly
affects εG. Similarly, we consider the communication
rounds T to be determined by local computing power.
When the local interval K is fixed, selecting the topol-
ogy with larger κλ will achieve a bad performance.
As stated in Corollary 2.1, when κλ = 0 it achieves
a minimal upper bound. This also indicates that the
fully connected topology is the best selection. Ac-
cording to the research of Ying et al. (2021), we show
some classical topologies in Table 3 to compare their
generalization performance. The classical topologies,
i.e. grid, ring, and star, will lead to a significant
drop in stability as total clients m increase. In contrast, the full and exp topologies show better
performance which can reduce the generalization error as m increases. However, small κλ always
means more connections in the topology and more communication costs, which is similar to the
spectrum gap 1 − λ being large enough (λ is small enough). This also gives us a clear insight into
the design of the topology. We summarize the conclusions as follows:

• A better topology must satisfy the spectrum coefficient κλ is small enough.

• To avoid performance collapse as m increases, the topology should satisfy κλ ≤ O (
√
m).

Empirical studies on decentralized federated learning are shown in Section 5.2 and Appendix A.2.2.

4.4 COMPARISONS BETWEEN CFL & DFL
In this section, we mainly discuss the strengths and weaknesses of each framework. In Table 1, we
summarize Corollary 1.2 and 2.2 and their optimal selections with respect to the order of m.

n represents the “topology” in CFL which indicates the connections and κλ represents the impacts
from the topology in DFL. Therefore, to understand which mode is better, we can directly study
the impacts of their connections. In Table 4, we could know FedAvg always generalizes better
than DFedAvg, which largely benefits from regularly averaging on a global server. In the whole
training process, centralized approaches always maintain a high global consensus. Though Lian
et al. (2017) have learned that the computational complexity of the C/D-PSGD may be similar in
the optimization, from the perspective of test error and excess risk, CFL shows stronger stability
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Table 4: Comparison of the order of generalization εG on n in CFL and κλ in DFL.

FedAvg DFedAvg

εG O
(

1
S

(
n

µL
1+µL

m

))
O

(
1
S

(
1+6

√
mκλ

m

) 1
1+µL

)
best selection to minimize εG n = 1 κλ = 0 (full-topology)

best εG O
(

1
Sm

)
O

(
1
S

(
1
m

) 1
1+µL

)
worst selection to maximize εG n = m (full-participation) κλ → ∞

worst εG O
(

1
S

(
1
m

) 1
1+µL

)
∞

best selection to minimize εG + εO n = O
(
m

1+µL
1+2µL

)
< m κλ = 0 (full-topology)

corresponding εG O
(

1
S

(
1
m

) 1+µL
1+2µL

)
O

(
1
S

(
1
m

) 1
1+µL

)

and more excellent generalization ability. However, the high communication costs in centralized
approaches nevertheless are unavoidable. The communication bottleneck is one of the important
concerns restricting the development of federated learning. To achieve reliable performance, the
number of active clients n in CFL must satisfy at least a polynomial order of m. Too small n
will always hurt the performance of the optimization. In the DFL framework, communication is
determined by the average degree of the adjacent matrix. For instance, in the exponential topology,
the communication achieves O (logm) at most in one client (Ying et al., 2021), which is much less
than the communication overhead in CFL. Therefore, when we have to consider the communication
bottleneck, it is also possible to select DFL at the expense of generalization performance.

We summarize our analysis as follows. We can simply assume that: (1) the communication band-
width of the global server in CFL is ρ× wider than the common clients; (2) each local client can
support at most ND connections simultaneously. If m ≤ (ρND)

1+2µL
1+µL ≤ (ρND)

1.5, the centralized
approaches definitely performs better. When m is very large, although DFL can save communica-
tions as a compromise, its generalization performance will be far worse than CFL.

5 EXPERIMENTS

In this part, we mainly introduce the empirical studies including setups, hyperparameter selections,
and main experiments to validate our analysis. Other details can be referred to in the Appendix A.

Dataset and Models. We mainly test the experiments on the image classification task on the CIFAR-
10 dataset (Krizhevsky et al., 2009). Our experiments focus on the validation of the theoretical anal-
ysis above and we follow Hsu et al. (2019) to split the dataset with a Dirichlet distribution, which
is widely used in the field of federated learning. We denote Dirichlet-β as different heterogeneous
levels that are controlled by the concentration parameter β = 0.1. The number of total clients is se-
lected from [100, 200, 500]. We adopt the ResNet-18 (He et al., 2016) model as the backbone which
is implemented in the Pytorch Model Zoo and follow the previous work (Hsieh et al., 2020) to re-
place the BatchNorm layers with GroupNorm layers. Details can be referred to in the Appendix A.1.

Hyperparameters. We follow the previous studies (Xu et al., 2021; Shi et al., 2023) to set the local
learning rate as 0.1 in both CFL and DFL, which is decayed by 0.998 per round. Total communi-
cation rounds are set as T = 1000. Weight decay is set as 0.001 without momentum. To eliminate
biases caused by batchsize, we grid search for the corresponding optimal value in each setup from
[10, 20, 40, 80]. Local epochs are selected from [5, 20]. Due to the page limitations, other details can
be referred to the Appendix A.1 including the curves and performance of their best selections.

5.1 CENTRALIZED FEDERATED LEARNING

Different Participation Ratios. Our theoretical analysis in Theorem 1 indicates that active ratios in
CFL balance the optimization and generalization errors. To achieve the best performance, it usually
does not require all clients to participate in the training process per round. As shown in Figure 1,
under the total 100 clients and local epochs E = 5, when it achieves the best performance the active
ratio is approximately 30%. As the number of total clients increases to 500, the best selection of the
active ratio is approximately 40%. When this critical value is exceeded, continuing to increase the
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(b) m = 200, E = 5
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(c) m = 500, E = 5
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(d) m = 100, E = 20
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(e) m = 200, E = 20
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(f) m = 500, E = 20

Figure 1: We test different active ratios in CFL on the CIFAR-10 dataset with the ResNet-18 model.
m is the number of clients and E is the number of local epochs. Each setup is repeated 5 times.

Table 5: Comparison on the CFL and DFL. In the CFL setup, we assume that the global server can
support 2× the communication capabilities of local clients. FedAvg-n means the number of active
clients equals n, which is determined by the corresponding topology. Each setup is repeated 3 times.

m = 100 m = 200 m = 500

E = 5 E = 20 E = 5 E = 20 E = 5 E = 20

DFEDAVG-RING 59.20±.15 46.65±.17 50.14±.17 50.70±.12 41.19±.14 45.20±.11

FEDAVG-3 67.71±.48 68.96±.26 67.06±.33 66.66±.41 63.33±.24 62.72±.47

FEDAVG-6 74.17±.35 73.63±.39 73.08±.31 72.00±.27 68.05±.54 67.50±.34

DFEDAVG-GRID 73.27±.19 73.45±.11 67.70±.09 68.60±.17 58.20±.39 59.36±.17

FEDAVG-5 73.13±.37 72.97±.33 71.95±.26 70.84±.35 67.10±.38 66.27±.55

FEDAVG-10 75.48±.44 75.03±.29 73.97±.18 73.39±.57 71.06±.27 70.44±.41

DFEDAVG-EXP 76.54±.11 76.12±.08 74.05±.12 74.43±.15 67.28±.12 68.11±.13

FEDAVG-logm 75.26±.42 74.42±.36 74.11±.29 73.93±.22 70.04±.28 69.55±.34

FEDAVG-2 logm 77.19±.17 76.09±.23 75.57±.26 74.86±.17 71.61±.34 71.49±.28

active ratio causes significant performance degradation. The optimal active ratio is roughly between
40% and 80%. When all clients participating in the training as n = m, CFL could be considered
as DFL on the full-connected topology. Therefore, we can intuitively see the poor generalization of
the decentralized in Figure 1, i.e., full participation is worse than partial participation.

Different Local Intervals. According to the Corollary 1.2 and the corresponding discussions, we
know the optimal number of the active ratio will decrease as the local interval K increases. Figure 1
also validates this in the experiments. When we fix the total clients m, we can see that the best
performance corresponds to smaller active ratios when local epochs E increase from 5 to 20. For
instance, when m = 100, the optimal selection of the active ratio approximately decreases from
80% to 40%. And, when the local interval K increases, we can see that test errors increase. As
claimed by Karimireddy et al. (2020), FL suffers from the client-drift problem. When K is large
enough, local models will overfit the local optimums and get far away from the global optimum.
Due to the space limitation, full curves of the loss and accuracy are stated in Appendix A.2.1.

5.2 DECENTRALIZED FEDERATED LEARNING

CFL v.s. DFL. Table 5 shows the test accuracy between DFL with different topologies and cor-
responding CFL. To achieve fair comparisons, we copy the DFL’s optimal hyperparameters to the
CFL setup and select a proper partial participation ratio in CFL which follows that the communica-
tion bandwidth of the global server is 1× or 2× of the local clients. For instance, ring-topology is
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equivalent to 3 local clients jointly train one model. Therefore, we test the number of active clients
in CFL equals 3 (1×) and 6 (2×) respectively. In fact, the global server is much more than twice
the communication capacity of local devices in practice. From the results, we can clearly see CFL
always generalizes better than the DFL on 2× bandwidth. Even if the global server has the same
bandwidth as local clients, DFL is only slightly better than CFL on the m = 100 setup. With the in-
crease of m, DFL’s performance degradation is very severe. This is also in line with our conclusions
in Table 1 and 4, which demonstrates the poor generalization and excess risk in DFL. Actually, it
doesn’t save as much bandwidth as one might think in practice, especially with high heterogeneity.
When m is large enough, even though CFL and DFL maintain similar communication costs, the
generalization performance of CFL is much higher than that of DFL.

Table 6: Performance collapse in DFL if the topol-
ogy does not satisfy the minimal condition. We fix
S = 100 and increase the m to test performance
trends (arrow) on common topologies.

total m 300 350 400 450 500

full 67.86 69.90 70.94 72.10 73.12 ↑
exp 64.64 65.85 66.23 67.04 67.28 ↑
grid 57.28 58.14 59.11 58.31 58.20 ↓
ring 43.68 44.54 43.56 42.01 41.19 ↓

Performance Collapse. Another important
point of our analysis is the potential perfor-
mance collapse in DFL. In Table 5, because
the total amount of data remains unchanged,
the number of local data samples S will de-
crease as m increases. To eliminate this im-
pact, we fix the local amount of data S = 100
for each client in the horizontal comparison
to validate the minimal condition required to
avoid performance collapse. m × S means
the total data samples. Under a fixed S, in-
creasing m also means enlarging the dataset. As shown in Table 6, we can clearly see that on the
full and exp topologies, increasing clients can effectively increase the test accuracy. However,
on the grid and ring topologies, since they do not satisfy the minimal condition of κλ as shown
in Table 3, even increasing m (enlarging dataset) will cause significant performance degradation.

6 CONCLUSION

In this paper, we provide the analysis of the uniform stability and excess risk between CFL and DFL
without the idealized assumption of bounded gradients. Our analysis provides a comprehensive and
novel understanding of the comparison between CFL and DFL. From the generalization perspective,
CFL is always better than DFL. Furthermore, we prove that to achieve minimal excess risk and test
error, CFL only requires partial local clients to participate in the training per round. Moreover,
though decentralized approaches are adopted as the compromise of centralized ones which could
significantly reduce the communication rounds theoretically, the topology must satisfy the minimal
requirement to avoid performance collapse. In summary, our analysis clearly answers the question
in Section 1 and points out how to choose the suitable training mode in real-world scenarios.

REFERENCES

Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N Whatmough,
and Venkatesh Saligrama. Federated learning based on dynamic regularization. arXiv preprint
arXiv:2111.04263, 2021.

Sulaiman A Alghunaim. Local exact-diffusion for decentralized optimization and learning. arXiv
preprint arXiv:2302.00620, 2023.

Sulaiman A Alghunaim and Kun Yuan. A unified and refined convergence analysis for non-convex
decentralized learning. IEEE Transactions on Signal Processing, 70:3264–3279, 2022.

Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, and Mike Rabbat. Stochastic gradient push
for distributed deep learning. In International Conference on Machine Learning, pp. 344–353.
PMLR, 2019.

Debora Caldarola, Barbara Caputo, and Marco Ciccone. Improving generalization in federated
learning by seeking flat minima. In European Conference on Computer Vision, pp. 654–672.
Springer, 2022.

Zachary Charles, Zachary Garrett, Zhouyuan Huo, Sergei Shmulyian, and Virginia Smith. On large-
cohort training for federated learning. Advances in neural information processing systems, 34:
20461–20475, 2021.

10



Under review as a conference paper at ICLR 2024

Rudrajit Das, Satyen Kale, Zheng Xu, Tong Zhang, and Sujay Sanghavi. Beyond uniform lips-
chitz condition in differentially private optimization. In International Conference on Machine
Learning, pp. 7066–7101. PMLR, 2023.

Andre Elisseeff, Theodoros Evgeniou, Massimiliano Pontil, and Leslie Pack Kaelbing. Stability of
randomized learning algorithms. Journal of Machine Learning Research, 6(1), 2005.

Anousheh Gholami, Nariman Torkzaban, and John S Baras. Trusted decentralized federated learn-
ing. In 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC),
pp. 1–6. IEEE, 2022.

Yonghai Gong, Yichuan Li, and Nikolaos M Freris. Fedadmm: A robust federated deep learning
framework with adaptivity to system heterogeneity. In 2022 IEEE 38th International Conference
on Data Engineering (ICDE), pp. 2575–2587. IEEE, 2022.

Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. Local sgd: Unified theory and new efficient
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In the appendix, we state additional experiments (Section A) and introduce detailed proofs of the
main theorems (Section B).

A ADDITIONAL EXPERIMENTS

In this part, we mainly introduce the details of experimental setups and some additional experimental
results to validate the conclusions of the theoretical analysis. To make the curves smooth, we use
the tsmoothie.smoother package and the ConvolutionSmoother function to adjust the
curves (window len=30, window type=’hanning’).

A.1 SETUPS DETAILS

Dataset. The CIFAR dataset (Krizhevsky et al., 2009) is a fundamental dataset in the computer
version tasks. We use the CIFAR-10 dataset. There are 50,000 images for training and 10,000
images for testing. Each data sample is with a resolution of 3× 32× 32.

Table 7: Dataset introductions.

Training Testing Categories Resolution

CIFAR-10 50,000 10,000 10 3×32×32

Model. ResNet (He et al., 2016) is a fundamental backbone in the studies of federated learning.
Most previous works have performed validation experiments based on this model. However, there
are various fine-tuning structures adopted in different studies which makes the test accuracy claimed
in different papers difficult to compare directly. We also try some structural modifications, i.e. using
a small convolution size at the beginning, which may improve the performance without any other
tricks. In order to avoid errors in reproduction or comparison, we use the implementation in the
Pytorch Model Zoo without other handcraft adjustments. The out dimension of the last linear layer
is decided by the total classes of the dataset.

Hyperparameter Selections. We select different hyperparameters to ensure the models can be
well-trained fairly on the two setups. Details of the selections are shown as follows.

• Batchsize: Current works mainly prefer two selections of the batchsize. One is 50 (Karim-
ireddy et al., 2020; Acar et al., 2021; Sun et al., 2023b;a), and the other is 128 (Qu et al.,
2022; Shi et al., 2023). Xu et al. (2021) also discuss some different selections based on
manual adjustments. Motivated by the previous works and the fact that batchsize is af-
fected by the local intervals and the learning rate, we conduct extensive experiments and
select the optimal value which could achieve significant performance.

Total Clients E Selection Optimal

m = 500 10
m = 200 5 20
m = 100 20

CFL [10, 20, 40, 80]
m = 500 20
m = 200 20 40
m = 100 80

m = 500 40
m = 200 5 40
m = 100 40

DFL [10, 20, 40, 80]
m = 500 40
m = 200 20 80
m = 100 80

Corresponding curves are shown in Figure 2.
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Figure 2: We test different batchsizes in CFL on the Dirichlet-0.1 split of the CIFAR-10 dataset
with the ResNet-18 models. m is the number of clients and E is the number of local epochs.
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Figure 3: We test different batchsizes in DFL on the Dirichlet-0.1 split of the CIFAR-10 dataset
with the ResNet-18 models. m is the number of clients and E is the number of local epochs.

• Learning rate: In the previous studies, they unanimously select the local learning rate as
0.1. Xu et al. (2021); Shi et al. (2023) also test different selections and confirm the optimal
selection as 0.1. We follow this selection to fairly compare their performance.

• Weight Decay: We test some common selections from [0.01, 0.001, 0.0005, 0.0001]. Its
optimal selection jumps between 0.01 and 0.005. Even in similar scenarios, there will be
some differences in their optimal values. The fluctuation amplitude reflected in the test
accuracy is about 0.4%. For a fair comparison, we fix it as a median value of 0.001.
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A.2 ADDITIONAL EXPERIMENTS

A.2.1 DIFFERENT ACTIVE RATIOS IN CFL
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Figure 4: Loss curves of different active ratios in CFL.

Obviously, increasing n helps to accelerate the optimization. A larger active ratio means a faster
convergence rate. As shown in Figure 4, we can see this phenomenon very clearly in the subfig-
ure (c) and (f). Though the real acceleration is not as fast as linear speedup, from the optimization
perspective, increasing the active ratio can truly achieve a lower loss value. This is also consistent
with the conclusions of previous work in the optimization process analysis.
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Figure 5: Accuracy curves of different active ratios in CFL.

However, as shown in Figure 5, increasing n does not always mean higher test accuracy. In CFL,
there is an optimal active ratio, which means the active number of clients is limited. In our analysis,
the optimal selection is between the order of m

2
3 and m. In practice, it is about from 0.4m to 0.8m.

17



Under review as a conference paper at ICLR 2024

A.2.2 DIFFERENT TOPOLOGY IN DFL
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Figure 6: Accuracy curves of different topologies in DFL and corresponding CFL.

As Figure 6 shows, under similar communication costs, DFL can not be better than CFL. FL always
maintains stronger generalization performance, except at very low active ratios where its perfor-
mance is severely compromised. We can also observe a more significant phenomenon. The gap
between CFL and DFL will be larger as m increases. This is also lined with our analysis.
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Figure 7: Accuracy difference of different topologies between DFL and corresponding CFL.

As shown in Figure 7, we can clearly see that the difference between CFL and DFL increases sig-
nificantly as m increases. We calculate the difference by (test accuracy of CFL - test accuracy of
DFL) under the same communication costs. According to our analysis, the excess risk of CFL is
much smaller than that of DFL, which is O(m− 1+µL

1+2µL ) and O(m− 1
1+µL ) respectively. Therefore,

we can know that CFL generalizes better than DFL at most with the rate of O(m
(µL)2

(1+µL)(1+2µL) ). In
general cases, the worst generalization of CFL equals to the best generalization of DFL. Therefore,
when the generalization error dominates the test accuracy, CFL is always better than DFL.
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B PROOF OF THEOREMS AND LEMMAS

In this part, we mainly introduce the proofs of the theorems and some important lemmas which are
adopted in this work.

B.1 IMPORTANT LEMMAS

Both centralized and decentralized FL setups minimize the finite-sum problem. Therefore, we de-
note ∆t

k =
∑

i∈[m] ∥wt
i,k − w̃t

i,k∥ as the average difference. Here we define an event ξ. If ∆t0
k0

= 0

happens at k0-th iteration of t0-th round, ξ = 1 otherwise 0. Because the index of the data samples
on the joint dataset C and C̃ are selected simultaneously, it describes whether the different samples
in the two datasets have been selected before k0-th iteration of t0-th round. We denote τ = tK + k
as the index of training iterations. We denote zi⋆,j⋆ and z̃i⋆,j⋆ are the only different data samples
between the dataset C and C̃. The following Table 8 summarizes the details.

Table 8: Additional notations adopted in the proofs.

Notation Formulation Description

τ tK + k index of the iterations
τ0 t0K + k0 index of the observed iteration in event ξ

(i⋆, j⋆) - index of the different data sample on C and C̃
∆t

k

∑
i∈[m] ∥wt

i,k − w̃t
i,k∥ local stability on k-th iteration of t-th round

Lemma 4 (Stability in FedAvg) Let function f(w) satisfies Assumption 3, the models wT = A(C)
and w̃T = A(C̃) are generated after T training rounds by the centralized FedAvg method (Algo-
rithm 1), we can bound their objective difference as:

E
[
|f(wT ; z)− f(w̃T ; z)|

]
≤ GE

[
∥wT − w̃T ∥ | ξ

]
+

nUτ0
mS

. (12)

where U = supw,z f(w; z) < +∞ is the upper bound of the loss and τ0 = t0K + k0 is a specific
index of the total iterations.

Proof. Via the expansion of the probability we have:

E
[
|f(wT ; z)− f(w̃T ; z)|

]
= P (ξ)E

[
|f(wT ; z)− f(w̃T ; z)| | ξ

]
+ P (ξc)E

[
|f(wT ; z)− f(w̃T ; z)| | ξc

]
≤ GE

[
∥wT − w̃T ∥ | ξ

]
+ UP (ξc).

Let the variable I assume the index of the first time to use the data sample z̃i⋆,j⋆ on the dataset S̃i⋆ .
When I > t0K + k0, then ∆t0

k0
= 0 must happens. Thus we have:

P (ξc) = P (∆t0
k0

> 0) ≤ P (I ≤ t0K + k0). (13)

On each step τ , the data sample is uniformly sampled from the local dataset. When the dataset Si⋆
is selected, the probability of sampling zi⋆,j⋆ is 1/S. Let χ denote the event that Si⋆ is selected or
not. Thus we have the union bound:

P (I ≤ t0K + k0) ≤
t0−1∑
t=0

K−1∑
k=0

P (I = tK + k;χ) +

k0∑
k=0

P (I = t0K + k;χ)

=

t0−1∑
t=0

K−1∑
k=0

∑
χ

P (I = tK + k|χ)P (χ) +

k0∑
k=0

∑
χ

P (I = t0K + k|χ)P (χ)

=
n

m

(
t0−1∑
t=0

K−1∑
k=0

P (I = tK + k) +

k0∑
k=0

P (I = t0K + k)

)

=
n(t0K + k0)

mS
=

nτ0
mS

.

The second equality adopts the fact of random active clients with the probability of n/m. □
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Lemma 5 (Stability in DFedAvg) Let function f(w) satisfies Assumption 3, the models wT =

A(C) and w̃T = A(C̃) are generated after T training rounds by the centralized DFedAvg
method (Algorithm 2), we can bound their objective difference as:

E
[
|f(wT ; z)− f(w̃T ; z)|

]
≤ GE

[
∥wT − w̃T ∥ | ξ

]
+

Uτ0
S

. (14)

Proof. The most part is the same as the proof in Lemma 4 except the probability P (χ) = 1 in a
decentralized federated learning setup (because all clients will participate in the training). □

Lemma 6 (Same Sample) Let the function fi satisfies Assumption 1, and the local updates be
wt

i,k+1 = wt
i,k − ηgti,k and w̃t

i,k+1 = w̃t
i,k − ηg̃ti,k, by sampling the same data z (not the zi⋆,j⋆ ), we

have:
E∥wt

i,k+1 − w̃t
i,k+1∥ ≤ (1 + ηL)E∥wt

i,k − w̃t
i,k∥. (15)

Proof. In each round t, we have:

E∥wt
i,k+1 − w̃t

i,k+1∥ = E∥wt
i,k − w̃t

i,k − η(gti,k − g̃ti,k)∥
≤ E∥wt

i,k − w̃t
i,k∥+ ηE∥∇fi(wt

i,k, z)−∇fi(w̃t
i,k, z)∥

≤ (1 + ηL)E∥wt
i,k − w̃t

i,k∥.

□

Lemma 7 (Different Sample) Let the function fi satisfies Assumption 1 and 2, and the local up-
dates be wt

i⋆,k+1 = wt
i⋆,k − ηgti⋆,k and w̃t

i⋆,k+1 = w̃t
i⋆,k − ηg̃ti⋆,k, by sampling the different data

samples zi⋆,j⋆ and z̃i⋆,j⋆ (simplified to z and z̃), we have:

E∥wt
i⋆,k+1 − w̃t

i⋆,k+1∥ ≤ (1 + ηL)E∥wt
i⋆,k − w̃t

i⋆,k∥+ 2ησl. (16)

Proof. In each round t, we have:

E∥wt
i⋆,k+1 − w̃t

i⋆,k+1∥ = E∥wt
i⋆,k − w̃t

i⋆,k − η(gti⋆,k − g̃ti⋆,k)∥
≤ E∥wt

i⋆,k − w̃t
i⋆,k∥+ ηE∥∇fi⋆(wt

i⋆,k, z)−∇fi⋆(w̃t
i⋆,k, z̃)∥

≤ E∥wt
i⋆,k − w̃t

i⋆,k∥+ ηE∥∇fi⋆(wt
i⋆,k, z)−∇fi⋆(w̃t

i⋆,k, z)∥
+ ηE∥∇fi⋆(w̃t

i⋆,k, z)−∇fi⋆(w̃t
i⋆,k, z̃)∥

≤ (1 + ηL)E∥wt
i⋆,k − w̃t

i⋆,k∥+ ηE∥∇fi⋆(w̃t
i⋆,k, z)−∇fi⋆(w̃t

i⋆,k)∥
+ ηE∥∇fi⋆(w̃t

i⋆,k, z̃)−∇fi⋆(w̃t
i⋆,k)∥

≤ (1 + ηL)E∥wt
i⋆,k − w̃t

i⋆,k∥+ 2ησl.

The last inequality adopts E [x] =

√
(E [x])

2
=

√
E [x2]− E [x− E [x]]

2 ≤
√

E [x2]. □

Lemma 8 (Upper Bound of Aggregation Gaps) According to Algorithm 1 and 2, the aggregation
of centralized federated learning is wt+1

i,0 = wt+1 = 1
n

∑
N wt

i,K , and the aggregation of decen-
tralized federated learning is wt+1

i,0 =
∑

j∈Ai
aijw

t
i,K . On both setups, we can upper bound the

aggregation gaps by:
∆t+1

0 ≤ ∆t
K . (17)

Proof. We prove them respectively.

(1) Centralized federated learning setup (Acar et al., 2021).

In centralized federated learning, we select a subsetN in each communication round. Thus we have:

∆t+1
0

=
∑
i∈[m]

E∥wt+1
i,0 − w̃t+1

i,0 ∥ =
∑
i∈[m]

E∥wt+1 − w̃t+1∥ =
∑
i∈[m]

E∥ 1
n

∑
i∈N

(
wt

i,K − w̃t
i,K

)
∥
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≤
∑
i∈[m]

1

n
E

[∑
i∈N
∥wt

i,K − w̃t
i,K∥

]
=
∑
i∈[m]

1

n

n

m

∑
i∈[m]

E∥wt
i,K − w̃t

i,K∥

=
∑
i∈[m]

1

m

∑
i∈[m]

E∥wt
i,K − w̃t

i,K∥ =
∑
i∈[m]

E∥wt
i,K − w̃t

i,K∥ = ∆t
K .

(2) Decentralized federated learning setup.

In decentralized federated learning, we aggregate the models in each neighborhood. Thus we have:

∆t+1
0

=
∑
i∈[m]

E∥wt+1
i,0 − w̃t+1

i,0 ∥ =
∑
i∈[m]

E∥
∑
j∈Ai

aij
(
wt

j,K − w̃t
j,K

)
∥ ≤

∑
i∈[m]

∑
j∈Ai

aijE∥wt
j,K − w̃t

j,K∥

=
∑
j∈[m]

∑
i∈Aj

ajiE∥wt
j,K − w̃t

j,K∥ ≤
∑
j∈[m]

E∥wt
j,K − w̃t

j,K∥ = ∆t
K .

The last equality adopts the symmetry of the adjacent matrix A = A⊤. □

Lemma 9 (Recursion) According to the Lemma 6 and 7, we can bound the recursion in the local
training:

∆t
k+1 +

2σl

SL
≤ (1 + ηL)

(
∆t

k +
2σl

SL

)
. (18)

Proof. In each iteration, the specific j⋆-th data sample in the Si⋆ and S̃i⋆ is uniformly selected
with the probability of 1/S. In other datasets Si, all the data samples are the same. Thus we have:

∆t
k+1 =

∑
i ̸=i⋆

E
[
∥wt

i,k+1 − w̃t
i,k+1∥

]
+ E

[
∥wt

i⋆,k+1 − w̃t
i⋆,k+1∥

]
≤ (1 + ηL)

∑
i ̸=i⋆

E
[
∥wt

i,k+1 − w̃t
i,k+1∥

]
+

(
1− 1

S

)
(1 + ηL)E

[
∥wt

i⋆,k − w̃t
i⋆,k∥

]
+

1

S

[
(1 + ηL)E

[
∥wt

i⋆,k − w̃t
i⋆,k∥

]
+ 2ησl

]
= (1 + ηL)∆t

k +
2ησl

S
.

There we can bound the recursion formulation as ∆t
k+1 +

2σl

SL ≤ (1 + ηL)
(
∆t

k + 2σl

SL

)
. □

Lemma 10 For 0 < λ < 1 and 0 < α < 1, we have the following inequality:
t−1∑
s=0

λt−s−1

(s+ 1)
α ≤

κλ

tα
, (19)

where κλ =
(
α
e

)α 1

λ(ln 1
λ )

α + 2α

(1−α)eλ ln 1
λ

+ 2α

λ ln 1
λ

.

Proof. According to the accumulation, we have:
t−1∑
s=0

λt−s−1

(s+ 1)
α = λt−1 +

t−1∑
s=1

λt−s−1

(s+ 1)
α ≤ λt−1 +

∫ s=t

s=1

λt−s−1

sα
ds

= λt−1 +

∫ s= t
2

s=1

λt−s−1

sα
ds+

∫ s=t

s= t
2

λt−s−1

sα
ds

≤ λt−1 + λ
t
2−1

∫ s= t
2

s=1

1

sα
ds+

(
2

t

)α ∫ s=t

s= t
2

λt−s−1ds

≤ λt−1 + λ
t
2−1 1

1− α

(
t

2

)1−α

+

(
2

t

)α
λ−1

ln 1
λ

.

Thus we have LHS ≤ 1
tα

(
λt−1tα + λ

t
2−1 t

(1−α)21−α + 2α

λ ln 1
λ

)
. The first term can be bounded as

λt−1tα ≤
(
α
e

)α 1

λ(ln 1
λ )

α and the second term can be bounded as λ
t
2−1t ≤ 2

eλ ln 1
λ

, which indicates
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the selection of the constant κλ =
(
α
e

)α 1

λ(ln 1
λ )

α + 2α

(1−α)eλ ln 1
λ

+ 2α

λ ln 1
λ

. Furthermore, if 0 <

α ≤ 1
2 < 1, we have κλ ≤ 1

λ(ln 1
λ )

α + 2
√
2

eλ ln 1
λ

+
√
2

λ ln 1
λ

≤ max

{
1
λ ,

1

λ
√

ln 1
λ

}
+ (2+e)

√
2

eλ ln 1
λ

=

O
(
max

{
1
λ ,

1

λ
√

ln 1
λ

}
+ 1

λ ln 1
λ

)
with respect to the constant λ. □

B.2 STABILITY OF CENTRALIZED FL (THEOREM 1)
According to the Lemma 8 and 9, it is easy to bound the local stability term. We still obverse it
when the event ξ happens, and we have ∆t0

k0
= 0. Therefore, we unwind the recurrence formulation

from T,K to t0, k0. Let the learning rate η = µ
τ = µ

tK+k is decayed as the communication round t

and iteration k where µ ≤ 1
L is a specific constant, we have:

∆T
K ≤

 TK∏
τ=(T−1)K+1

(
1 +

µL

τ

)(∆T
0 +

2σl

SL

)
≤

 TK∏
τ=(T−1)K+1

(
1 +

µL

τ

)(∆T−1
K +

2σl

SL

)

≤

[
TK∏

τ=t0K+k0+1

(
1 +

µL

τ

)](
∆t0

k0
+

2σl

SL

)

≤

[
TK∏

τ=t0K+k0+1

e(
µL
τ )

](
2σl

SL

)
= eµL(

∑TK
τ=t0K+k0+1

1
τ ) 2σl

SL

≤ e
µL ln

(
TK

t0K+k0

)
2σl

SL
≤
(
TK

τ0

)µL
2σl

SL
.

According to the Lemma 4, the first term in the stability (condition is omitted for abbreviation) can
be bound as:

E∥wT+1 − w̃T+1∥ = E∥ 1
n

∑
i∈N

(
wT

i,K − w̃T
i,K

)
∥ = 1

n
E∥
∑
i∈N

(
wT

i,K − w̃T
i,K

)
∥

≤ 1

n
E
∑
i∈N
∥
(
wT

i,K − w̃T
i,K

)
∥ = 1

n

n

m
E
∑
i∈[m]

∥
(
wT

i,K − w̃T
i,K

)
∥

=
1

m

∑
i∈[m]

E∥
(
wT

i,K − w̃T
i,K

)
∥ = 1

m
∆T

K ≤
(
TK

τ0

)µL
2σl

mSL
.

Therefore, we can upper bound the stability in centralized federated learning as:

E|f(wT+1; z)− f(w̃T+1; z)| ≤ GE∥wT+1 − w̃T+1∥+ nUτ0
mS

≤ 2σlG

mSL

(
TK

τ0

)µL

+
nUτ0
mS

.

Obviously, we can select a proper event ξ with a proper τ0 to minimize the upper bound. For

τ ∈ [1, TK], by selecting τ0 =
(
2σlG
nUL

) 1
1+µL (TK)

µL
1+µL , we can minimize the bound with respect

to τ0 as:

E|f(wT+1; z)− f(w̃T+1; z)| ≤ 2nUτ0
mS

=
2nU

mS

(
2σlG

nUL

) 1
1+µL

(TK)
µL

1+µL

≤ 4

S

(
σlG

L

) 1
1+µL

(
n

µL
1+µL

m

)
(UTK)

µL
1+µL .

B.3 STABILITY OF DECENTRALIZED FL (THEOREM 2)
B.3.1 AGGREGATION BOUND WITH SPECTRUM GAPS

The same as the proofs in the last part, according to the Lemma 8 and 9, we also can bound the local
stability term. Let the learning rate η = µ

τ = µ
tK+k is decayed as the communication round t and

iteration k where µ is a specific constant, we have:

∆t
k +

2σl

SL
≤
(

τ

τ0

)µL
2σl

SL
. (20)
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If we directly combine this inequality with Lemma 5, we will get the vanilla stability of the vanilla
SGD optimizer. However, this will be a larger upper bound which does not help us understand the
advantages and disadvantages of decentralization. In the decentralized setups, an important study is
learning how to evaluate the impact of the spectrum gaps. Thus we must search for a more precise
upper bound than above. Therefore, we calculate a more refined upper bound for its aggregation
step (Lemma 8) with the spectrum gap 1− λ.

Let Wt
k =

[
wt

0,k, w
t
1,k, · · · , wt

m,k

]⊤
is the parameter matrix of all clients. In the stability anal-

ysis, we focus more on the parameter difference instead. Therefore, we denote the matrix of the

parameter differences Φt
k = Wt

k − W̃t
k =

[
wt

0,k − w̃t
0,k, w

t
1,k − w̃t

1,k, · · · , wt
m,k − w̃t

m,k

]⊤
as the

difference between the models trained on C and C̃ on the k-th iteration of t-th communication round.
Meanwhile, consider the update rules, we have:

Φt
k+1 = Φt

k − ηtkΓ
t
k,

where Γt
k =

[
gt0,k − g̃t0,k, g

t
1,k − g̃t1,k, · · · , gtm,k − g̃tm,k

]⊤
.

In the DFedAvg method shown in Algorithm 2, the aggregation performs after K local updates
which demonstrates that the initial state of each round is Wt

0 = AWt−1
K . It also works on their

difference Φt
0 = AΦt−1

K . Therefore, we have:

Φt
K = Φt

0 −
K−1∑
k=0

ηtkΓ
t
k = AΦt−1

K −
K−1∑
k=0

ηtkΓ
t
k.

Then we prove the recurrence between adjacent rounds. Let P = 1
m11⊤ ∈ Rm×m and I ∈ Rm×m

is the identity matrix, due to the double stochastic property of the adjacent matrix A, we have:

AP = PA = P.

Thus we have:

(I−P) Φt
K = (I−P)AΦt−1

K − (I−P)

K−1∑
k=0

ηtkΓ
t
k

=

(
AΦt−1

K −
K−1∑
k=0

ηtkΓ
t
k

)
−PAΦt−1

K +PAΦt−1
K −P

(
AΦt−1

K −
K−1∑
k=0

ηtkΓ
t
k

)
.

By taking the expectation of the norm on both sides, we have:

E∥ (I−P) Φt
K∥ ≤ E∥AΦt−1

K −
K−1∑
k=0

ηtkΓ
t
k −PAΦt−1

K ∥+ E∥
K−1∑
k=0

ηtkΓ
t
k∥

≤ E∥AΦt−1
K −PAΦt−1

K ∥+ 2E∥
K−1∑
k=0

ηtkΓ
t
k∥

= E∥ (A−P) (I−P) Φt−1
K ∥+ 2E∥

K−1∑
k=0

ηtkΓ
t
k∥

≤ λE∥ (I−P) Φt−1
K ∥+ 2E∥

K−1∑
k=0

ηtkΓ
t
k∥.

The equality adopts (A−P) (I−P) = A −P −AP +PP = A −PA. We know the fact that
Φt

k = 0 where (t, k) ∈ (t0, k0). Thus unwinding the above inequality we have:

E∥ (I−P) Φt
K∥ ≤ λt−t0+1E∥ (I−P) Φt0−1

K ∥+ 2

t∑
s=t0

λt−sE∥
K−1∑
k=0

ηskΓ
s
k∥
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= 2

t∑
s=t0

λt−sE∥
K−1∑
k=0

ηskΓ
s
k∥.

To maintain the term of A, we have:

(A−P) Φt
K = (A−P)AΦt−1

K − (A−P)

K−1∑
k=0

ηtkΓ
t
k

= (A−P) (A−P) Φt−1
K − (A−P)

K−1∑
k=0

ηtkΓ
t
k.

The second equality adopts (A−P) (A−P) = (A−P)A−AP+PP = (A−P)A. Therefore
we have the following recursive formula:

E∥ (A−P) Φt
K∥ ≤ E∥ (A−P) (A−P) Φt−1

K ∥+ E∥ (A−P)

K−1∑
k=0

ηtkΓ
t
k∥

≤ λE∥ (A−P) Φt−1
K ∥+ λE∥

K−1∑
k=0

ηtkΓ
t
k∥.

The same as above, we can unwind this recurrence formulation from t to t0 as:

E∥ (A−P) Φt
K∥ ≤ λt−t0+1E∥ (A−P) Φt0−1

K ∥+
t∑

s=t0

λt−s+1E∥
K−1∑
k=0

ηskΓ
s
k∥

=

t∑
s=t0

λt−s+1E∥
K−1∑
k=0

ηskΓ
s
k∥.

Both two terms required to know the upper bound of the accumulation of the gradient differences.
In previous works, they often use the Assumption of the bounded gradient to upper bound this
term as a constant. However, this assumption may not always hold as we introduced in the main
text. Therefore, we provide a new upper bound instead. When (t, k) < (t0, k0), the sampled
data is always the same between the different datasets, which shows Γt

k = 0. When t = t0, only
those updates at k ≥ k0 are different. When t > t0, all the local gradients difference during local K
iterations are non-zero. Thus we can first explore the upper bound of the stages with full K iterations
when t > t0. Let the data sample z be the same random data sample and z/z̃ be a different sample
pair for abbreviation, when t ≥ t0, we have:

E∥ηΓt
k∥ = E∥η

[
gt0,k − g̃t0,k, g

t
1,k − g̃t1,k, · · · , gtm,k − g̃tm,k

]⊤ ∥ ≤ η
∑
i∈[m]

E∥gti,k − g̃ti,k∥

≤ η
∑
i ̸=i⋆

E∥∇fi(wt
i,k, z)−∇fi(w̃t

i,k, z)∥+
(S − 1)η

S
E∥∇fi⋆(wt

i⋆,k, z)−∇fi⋆(w̃t
i⋆,k, z)∥

+
η

S
E∥∇fi⋆(wt

i⋆,k, z)−∇fi⋆(w̃t
i⋆,k, z) +∇fi⋆(w̃t

i⋆,k, z)−∇fi⋆(w̃t
i⋆,k, z̃)∥

≤ ηL
∑
i ̸=i⋆

E∥wt
i,k − w̃t

i,k∥+
(S − 1)η

S
E∥wt

i⋆,k − w̃t
i⋆,k∥+

η

S
E∥wt

i⋆,k − w̃t
i⋆,k∥

+
η

S
E∥
(
∇fi⋆(w̃t

i⋆,k, z)−∇fi⋆(w̃t
i⋆,k)

)
−
(
∇fi⋆(w̃t

i⋆,k, z̃)−∇fi⋆(w̃t
i⋆,k)

)
∥

≤ ηL
∑
i∈[m]

E∥wt
i,k − w̃t

i,k∥+
2ησl

S
= ηL

(
∆t

k +
2σl

SL

)
.

According to the Lemma 8, 9 and Eq.(20), we bound the gradient difference as:

E∥ηΓt
k∥ ≤ ηL

(
∆t

k +
2σl

SL

)
≤
(

τ

τ0

)µL
2µσl

τS
.
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where τ = tK + k.

Unwinding the summation on k and adopting Lemma 10, we have:

t∑
s=t0

λt−sE∥
K−1∑
k=0

ηskΓ
s
k∥ ≤

t∑
s=t0

λt−s
K−1∑
k=0

E∥ηskΓs
k∥ ≤

2µσl

SτµL0

t∑
s=t0

λt−s
K−1∑
k=0

τµL

τ

≤ 2µσl

SτµL0

t∑
s=t0

λt−s
K−1∑
k=0

(sK)
µL

sK
=

2µσl

S

(
K

τ0

)µL t∑
s=t0

λt−s

s1−µL

≤ 2µσl

S

(
K

τ0

)µL t−1∑
s=t0−1

λt−s−1

(s+ 1)
1−µL

≤ 2µσlκλ

S

(
K

τ0

)µL
1

t1−µL
.

Therefore, we get an upper bound on the aggregation gap which is related to the spectrum gap:

E∥ (I−P) Φt
K∥ ≤ 2

t∑
s=t0

λt−sE∥
K−1∑
k=0

ηskΓ
s
k∥ ≤

4µσlκλ

S

(
K

τ0

)µL
1

t1−µL
, (21)

E∥ (A−P) Φt
K∥ ≤

t∑
s=t0

λt−s+1E∥
K−1∑
k=0

ηskΓ
s
k∥ ≤

2µσlλκλ

S

(
K

τ0

)µL
1

t1−µL
. (22)

The first inequality provides the upper bound between the difference between the averaged state and
the vanilla state, and the second inequality provides the upper bound between the aggregated state
and the averaged state.

B.3.2 STABILITY BOUND

Now, rethinking the update rules in one round and we have:∑
i∈[m]

E∥wt+1
i,K − w̃t+1

i,K ∥

=
∑
i∈[m]

E∥
(
wt+1

i,0 − w̃t+1
i,0

)
−

K−1∑
k=0

ηtk
(
gti,k − g̃ti,k

)
∥

=
∑
i∈[m]

E∥
(
wt+1

i,0 − w̃t+1
i,0

)
−
(
wt

i,K − w̃t
i,K

)
+
(
wt

i,K − w̃t
i,K

)
−

K−1∑
k=0

ηtk
(
gti,k − g̃ti,k

)
∥

≤
∑
i∈[m]

[
E∥
(
wt+1

i,0 − w̃t+1
i,0

)
−
(
wt

i,K − w̃t
i,K

)
∥+ E∥

(
wt

i,K − w̃t
i,K

)
∥+ E∥

K−1∑
k=0

ηtk
(
gti,k − g̃ti,k

)
∥

]

≤
∑
i∈[m]

E∥
(
wt

i,K − w̃t
i,K

)
∥+mE

 1

m

∑
i∈[m]

∥
(
wt+1

i,0 − w̃t+1
i,0

)
−
(
wt

i,K − w̃t
i,K

)
∥


+
∑
i∈[m]

E∥
K−1∑
k=0

ηtk
(
gti,k − g̃ti,k

)
∥

≤
∑
i∈[m]

E∥
(
wt

i,K − w̃t
i,K

)
∥+mE

√√√√ 1

m

∑
i∈[m]

∥
(
wt+1

i,0 − w̃t+1
i,0

)
−
(
wt

i,K − w̃t
i,K

)
∥2

+
∑
i∈[m]

E∥
K−1∑
k=0

ηtk
(
gti,k − g̃ti,k

)
∥

=
∑
i∈[m]

E∥
(
wt

i,K − w̃t
i,K

)
∥+
√
mE∥Φt+1

0 − Φt
K∥+

∑
i∈[m]

E∥
K−1∑
k=0

ηtk
(
gti,k − g̃ti,k

)
∥
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=
∑
i∈[m]

E∥
(
wt

i,K − w̃t
i,K

)
∥+
√
mE∥AΦt

K − Φt
K∥+

∑
i∈[m]

E∥
K−1∑
k=0

ηtk
(
gti,k − g̃ti,k

)
∥

≤
∑
i∈[m]

E∥
(
wt

i,K − w̃t
i,K

)
∥+
√
mE∥ (A−P) Φt

K∥+
√
mE∥ (P− I) Φt

K∥

+
∑
i∈[m]

E∥
K−1∑
k=0

ηtk
(
gti,k − g̃ti,k

)
∥.

Therefore, we can bound this by two terms in one complete communication round. One is the
process of local K SGD iterations, and the other is the aggregation step. For the local training
process, we can continue to use Lemma 6, 7, and 9. Let τ = tK + k as above, we have:

∆t
K +

2σl

SL

≤

[
K−1∏
k=0

(
1 + ηtkL

)](
∆t

0 +
2σl

SL

)
=

[
K−1∏
k=0

(
1 +

µL

τ

)](
∆t

0 +
2σl

SL

)

≤
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k=0

e
µL
τ

](
∆t

0 +
2σl

SL

)
= eµL

∑K−1
k=0

1
τ

(
∆t

0 +
2σl

SL

)

≤ eµL ln( t+1
t )
(
∆t

0 +
2σl

SL

)
=

(
t

t− 1

)µL(
∆t

0 +
2σl

SL

)
≤
(

t

t− 1

)µL [
∆t−1

K +
√
m
(
E∥ (A−P) Φt

K∥+ E∥ (P− I) Φt
K∥
)
+

2σl

SL

]
≤
(

t

t− 1

)µL(
∆t−1

K +
2σl

SL

)
+
√
m

(
t

t− 1

)µL (
E∥ (A−P) Φt

K∥+ E∥ (P− I) Φt
K∥
)

≤
(

t

t− 1

)µL(
∆t−1

K +
2σl

SL

)
︸ ︷︷ ︸

local updates

+
6
√
mµσlκλ

S

(
K

τ0

)µL(
t

t− 1

)µL
1

t1−µL︸ ︷︷ ︸
aggregation gaps

,

The last adopts the Eq.(21) and (22), and the fact λ ≤ 1.
Obviously, in the decentralized federated learning setup, the first term still comes from the updates
of the local training. The second term comes from the aggregation gaps, which is related to the
spectrum gap λ. Unwinding this from t0 to T , we have:

∆T
K +

2σl

SL
≤
(
TK

τ0

)µL
2σl

SL
+

6
√
mµσlκλ

S

(
K

τ0

)µL T∑
t=t0+1

(
t

t− 1

)µL
1

t1−µL

≤
(
TK

τ0

)µL
2σl

SL
+

12
√
mµσlκλ

S

(
K

τ0

)µL T∑
t=t0+1

1

t1−µL

≤
(
TK

τ0

)µL
2σl

SL
+

12
√
mµσlκλ

S

(
K

τ0

)µL
tµL

µL

∣∣∣∣∣
t=T

t=t0+1

≤
(
TK

τ0

)µL
2 (1 + 6

√
mκλ)σl

SL
.

The second inequality adopts the fact that 1 < t
t−1 ≤ 2 when t > 1 and the fact of 0 < µ < 1

L .

According to the Lemma 5, the first term in the stability (conditions is omitted for abbreviation) can
be bounded as:

E∥wT+1 − w̃T+1∥ ≤ 1

m

∑
i∈[m]

E∥
(
wT

i,K − w̃T
i,K

)
∥ ≤

(
TK

τ0

)µL
2 (1 + 6

√
mκλ)σl

mSL
.
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Therefore, we can upper bound the stability in decentralized federated learning as:

E
[
|f(wT+1; z)− f(w̃T+1; z)|

]
≤ GE

[
∥wT+1 − w̃T+1∥ | ξ

]
+

Uτ0
S

≤ 2σlG

SL

(
1 + 6

√
mκλ

m

)(
TK

τ0

)µL

+
Uτ0
S

.

The same as the centralized setup, to minimize the error of the stability, we can select a proper event

ξ with a proper τ0. For τ ∈ [1, TK], by selecting τ0 =
(

2σlG
UL

1+6
√
mκλ

m

) 1
1+µL

(TK)
µL

1+µL , we get
the minimal:

E
[
|f(wT+1; z)− f(w̃T+1; z)|

]
≤ 2Uτ0

S
=

2U

S

(
2σlG

UL

1 + 6
√
mκλ

m

) 1
1+µL

(TK)
µL

1+µL

=
4

S

(
σlG

L

) 1
1+µL

(
1 + 6

√
mκλ

m

) 1
1+µL

(UTK)
µL

1+µL .
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