
From Language to Action: Employing Foundation Models in Autonomous
Robots

Anonymous ACL submission

Abstract

Foundation models have demonstrated remark-001
able capabilities in natural language processing002
tasks, generating interest in their potential for003
robotic applications. However, the existing lit-004
erature lacks a transparent and comprehensive005
synthesis of these advancements. This paper006
utilizes the PRISMA framework to systemati-007
cally review and explore the integration of foun-008
dation models in robotic applications. Through009
an in-depth analysis of 76 studies, we investi-010
gate current trends in models, modalities, and011
experimental methods. Additionally, this study012
maps the state-of-the-art applications of foun-013
dation models in robotics tasks, and illustrate014
how these tasks are interconnected. Synthesiz-015
ing these findings, we identified key challenges016
and future direction. This study establishes a017
benchmark and offers insights into future re-018
search directions for developing safe and au-019
tonomous embodied foundation models. All020
data, and findings are available on the project021
repository 1.022

1 Introduction023

Foundation models are defined as large-scale Arti-024

ficial Intelligence (AI) models trained on an exten-025

sive and internet-scale dataset, capable of generaliz-026

ing knowledge across a wide range of tasks. These027

models utilize massive datasets in a self-supervised028

manner to learn from unannoted data, allowing029

them to be adapted to various downstream tasks030

(Bommasani et al., 2021). Generalizing across031

diverse tasks without tasks-specific fine-tunning032

in models, such as GPT-4 (Achiam et al., 2023)033

Llama-2 (Touvron et al., 2023) Gemini (Anil et al.,034

2023) Claude (Anthropic, 2023), have significantly035

advanced the natural language processing (NLP)036

field. Such strengths along with their adaptability037

and ability to process multi-modal data (text, im-038

age, sound) have drawn the attention of researchers039

1will be available in the final version

in various domains, ranging from the medical field 040

(Cho et al., 2023) to robotics (Xiao et al., 2023) 041

to bring cognitive capabilities of these models to 042

physical world applications. 043

To achieve a degree of autonomy in physi- 044

cal world, embodied agents or robots have been 045

utilized from many years ago (Smithers, 1997). 046

There are generally two broad solution categories 047

for automating these embodied agents: (1) pre- 048

programming robots for specific scenarios; (2) tele- 049

operating robots to leverage human cognitive abili- 050

ties (Saidi et al., 2016). The first category already 051

employed AI paradigms, such as reinforcement 052

learning (Delgado and Oyedele, 2022) and deep 053

learning (Karoly et al., 2021), to automate specific 054

labor-intensive and repetitive tasks (Bruun et al., 055

2022; Yu et al., 2009). While these robots can 056

deliver satisfactory precision in designated tasks, 057

their adaptability and generalizability are often lim- 058

ited due to training on narrowly focused datasets 059

designed for specific tasks. Consequently, man- 060

ual adjustments may be necessary to accommodate 061

even minor task variations in physical world appli- 062

cations (Cully et al., 2015). In contrast, the second 063

category involves tele-operated robots, which can 064

be remotely operated by experts, allowing them to 065

adapt to various tasks without the need for manual 066

reprogramming. However, their dependency on hu- 067

man operators has limited their performance and 068

productivity. For example, even slight connection 069

delays can significantly impede robot performance 070

in extraterrestrial physical worlds (Seo et al., 2024). 071

On the other hand, foundation models are trained 072

on vast amounts of data to exhibit adaptability, 073

generalizability, and overall performance across 074

a variety of domains (Chang et al., 2023). This 075

intrinsic feature can be seen as a solution to move 076

embodied agents and robots to a higher level of 077

autonomy for physical world applications. Conse- 078

quently, this study aims to: (1) systematically ex- 079

plore the current state of the art of tools, methods, 080
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and applications of foundation models in robotic081

applications; (2) investigate how foundation mod-082

els have impacted the cooperation of cognitive and083

acting tasks in physical environments; (3) identify084

current challenges and provide future directions085

for future embodied foundation models. Therefore,086

this study can serve as a benchmark for other re-087

searchers to track progress toward future safe and088

fully autonomous embodied agents.089

2 Autonomous Robot Components090

Figure 1 illustrates essential components of a robot091

operating within a physical world. Autonomous092

robots are comprised of two main platforms: (1) the093

deliberation platform; and (2) the execution plat-094

form. The execution platform, which is influenced095

by the robot’s morphology, includes various actua-096

tors, motors, sensors, end effectors, and manipula-097

tors. Developments in this platform are beyond the098

scope of this study, as our primary focus is on the099

deliberation platform. This platform is responsible100

for receiving objectives and percepts (mostly from101

various sensors), processing them, and generating102

actionable commands or communication signals.103

The deliberation platform employs two main104

modules: (1) the cognitive module, which is respon-105

sible for all cognitive processes in robots; and (2)106

the acting module, which translates cognitive out-107

puts into fine-grained actionable commands. Rea-108

soning is the highest-level cognitive process, infer-109

ring new information from existing signals. Mid-110

level processes include planning, which involves111

decision sequences to achieve goals, and decision-112

making, which selects actions based on percepts113

and predefined criteria. Human-robot interaction114

enables communication through speech recogni-115

tion, natural language processing, and understand-116

ing gestures or facial expressions. Perception in-117

volves processing environmental information, in-118

cluding object recognition, scene understanding,119

SLAM, and gesture recognition. The acting mod-120

ule controls actuators for executing actions, nav-121

igating through environments with path planning122

and obstacle avoidance, and manipulating objects.123

2.1 Related Studies124

To date of drafting this manuscript, three studies125

have surveyed the application of foundation mod-126

els in robotics. The first review paper by Firoozi127

et al. 2023 surveyed the application of foundation128

models in robotics with an emphasis on future chal-129
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Figure 1: Conceptual view of robot in physical world
applications

lenges and opportunities. The second review paper 130

by Xiao et al. 2023 explored existing studies fo- 131

cused on robot learning using foundation models to 132

identify potential future areas. In the third review, 133

Hu et al. 2023 examined different studies relevant 134

to foundation models and investigated how their 135

application could be adapted to the robotics field. 136

These studies lack a transparent and reproducible 137

approach for categorizing their findings and pro- 138

viding insights for future research. While they do 139

categorize studies, they fail to accurately highlight 140

the significance of each field, making it difficult 141

to compare and analyze which applications need 142

more attention from researchers. This method also 143

falls short in identifying subtle research gaps that 144

are not apparent through narrative categorization. 145

Consequently, there is a lack of an objective bench- 146

mark in the field to track progress and ensure that 147

studies are advancing safely and aligning with our 148

goals. This study is distinguished from previous 149

ones for the following reasons: (1) Our study builds 150

an objective picture of the current state-of-the-art 151

in employing foundation models for robotic appli- 152

cations. We map the impact of these models across 153

different cognitive and acting tasks and explore the 154

correlations between them. (2) The provided cur- 155

rent state-of-the-art are synthesized to identify new 156

challenges and potential future research directions, 157

paving the way for a safe and autonomous future in 158

the field. (3) Our study employs a transparent and 159

2



reproducible methodology, aiming to establish a160

clear and objective benchmark for future research.161

3 Methodology162

A systematic review approach has been selected163

for this study based on PRISMA framework (Page164

et al., 2021) to explore the embodiment of founda-165

tion models in physical worlds through robots.166

3.1 Databases167

Web of Science (WoS) and Scopus are two compre-168

hensive databases serving as major tools for sys-169

tematic review in the field of science, technology,170

engineering and mathematics (STEM) (Kandall,171

2017; Visser et al., 2020). In addition to these,172

ArXiv is selected as the main source for preprint173

studies within the scope of our study because: (1)174

it serves as one of the main sources of studies re-175

lated to foundation models from 2018 up to now176

(Gusenbauer and Haddaway, 2020); (2) it helps us177

to cover emerging ideas that are not yet published178

in journals due to the long process of publishing179

(Movva et al., 2023).180

3.2 Search query181

Query-based search is one of the most fundamen-182

tal methods for identifying relevant studies in a183

field of research (Chen and Song, 2019). To max-184

imize the potential of identifying relevant studies185

within our scope, we constructed two word-family186

blocks, containing keywords relevant to our tar-187

geted studies (see Figure 2). Within these blocks,188

keywords are connected with “OR” command to189

maximize the likelihood of retrieving relevant stud-190

ies. Among these blocks, the word-family block191

for foundation models (left block) is connected192

with "AND" command to the word-family block193

for robotics (right block). Linking the left block194

with the right block generates a search query suit-195

able for exploring the application of foundation196

models in robotics for physical world applications.197

198

3.3 Screening199

Figure 3 illustrates the process of identifying rel-200

evant studies for this survey. It should be noted201

that the number of studies at each step is depen-202

dent on the date of drafting this manuscript was203

drafted (March 2024). Initially, the search query204

was applied to identified databases, followed by the205

exclusion of duplicate studies. Subsequently, sev-206

eral eligibility refinements, such as language, date,207

and study types were made to the search outputs 208

to align them more closely with the study’s scope. 209

Noting that the first versions of foundation models 210

emerged in 2018, we restricted the identified stud- 211

ies to the time frame of 2018 to 2024. In the next 212

step, we established two set of screening criteria to 213

ensure that the identified studies are relevant to our 214

scope. 215

4 Results 216

This section aims to provide an objective picture 217

of the current state-of-the-art in the applicability of 218

foundation models for automating tasks in physical 219

world using robots. To achieve this goal, all iden- 220

tified studies were subjected to a comprehensive 221

whole-text content analysis. We extract a set of 20 222

features to have a detailed and complete overview 223

of the recent trend. 224

These features can be categorized to two 10 fea- 225

ture groups: (1) general features: authors, title, 226

published year, source title, DOI, link to paper, 227

author affiliations, abstract, author and index key- 228

words; (2) specific features: applications, founda- 229

tion model use, applied tasks, domain, study objec- 230

tive, robot morphology, evaluation method, modal- 231

ities, transformer architecture, and open source sta- 232

tus. Due to the limited space, we present a subset 233

of the features in the main paper while description 234

and details of all other features are available under 235

the open source licence 2. 236

4.1 Foundation model usage trends 237

This section investigates the frequency of utilizing 238

foundation models for robotic and physical world 239

applications. As seen in Figure 4, the integration 240

of foundation models into robotics is dominated by 241

GPT-Based models, which account for over 44% 242

of foundation model usage. GPT-3.5 is the most 243

frequently used LLM, highlighting its applicability 244

and ease of use. Although GPT-4 is located in third 245

usage place, it should be noted that the usage of 246

GPT-4 is rapidly growing. 247

Another interesting finding is that CLIP model is 248

the most frequent used models among Visual Lan- 249

guage Models (VLMs) and second place among all 250

foundation model usages in robotic applications. 251

CLIP is primarily utilized for bridging similari- 252

ties between text, as the first source of receiving 253

language instructions, and images, as the primary 254

means of understanding environments. It has been 255

2will be available in the final version
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Figure 3: Process of identifying relevant records
(PRISMA)

Figure 4: Frequency of using different foundation mod-
els in robotic field

used in various studies to perform Vision-Language 256

Navigation (VLN) related tasks (Lan et al., 2023; 257

Lin et al., 2022), as well as other manipulation 258

tasks (Cui et al., 2022; Liao et al., 2023; Shridhar 259

et al., 2021), and even high-level recognition tasks, 260

such as reasoning (Kamath et al., 2023). As seen 261

in Figure 4, the frequency of remaining models is 262

five or fewer, 263

4.2 Modalities 264

As mentioned in Table 1, more than half of the iden- 265

tified studies utilize only text for developing their 266

use cases. Although it indicates the early stages 267

of studies in this field, 31% multimodal text and 268

image models indicate the move toward more mul- 269

timodal models. However, the number of studies 270

using other modalities such as 3d and audio data 271

is very limited. This lack of diversity in modalities 272

may hinder the development of more comprehen- 273

sive and robust robotic systems capable of perceiv- 274

ing and interacting with the real world, which is 275

inherently multimodal. 276

4.3 Experiment method 277

Within the final records, %42 studies tested their 278

findings through implementation in real-world ex- 279

periments (see Table 2. However, this amount for 280
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Status Number Percentage
Text 39 %51
Image 5 %6
Image and text 24 %31
3D data 1 %1
Audio 1 %1
Not available 1 %10

Table 1: Modalities of foundation models utilized in
identified studies.

Experiment method Number Percentage
Real-world 32 %42
Simulation 10 %13
Dataset 7 %9
Not available 27 %36

Table 2: Experiment methods of foundation models
utilized in identified studies.

simulation and dataset experiments are respectively281

%13 and %9. This indicates a gap that there is still282

a need for more comprehensive and diverse evalu-283

ation methods. Moreover, a considerable amount284

of studies (%36) are conceptual and doesn’t vali-285

date their findings through experiments. Therefore,286

more studies are needed in this field to bridge the287

gap between theory and practice, and to thoroughly288

evaluate the performance and limitations of foun-289

dation models in realistic robotic applications.290

4.4 Current State of the Art: Application of291

Foundation Models in Robotics292

This section aims to provide a map of the current293

state of the use of different foundation models in294

robotic tasks. To achieve this, the identified records295

were labeled based on the foundation models used296

and the specific tasks to which these models were297

applied (foundation model use and applied tasks298

features). Figure 5 illustrates the flow of applying299

different foundation models for robotic tasks. This300

figure is organized across four analytical layers:301

foundation models, their categories, and categories302

of robotic tasks, and the specific robotic tasks.303

Foundation model categories: Within the foun-304

dation model categories, Large Language Models305

(LLMs) contributed to 69% of foundation mod-306

els utilized for robotic applications, indicating that307

most studies are exploring the text modalities and308

capabilities of this category for addressing classic309

challenges in robotic domains. For example, some310

studies utilize the capabilities of these foundation311

models in understanding language and coding to 312

generate robotics execution codes in industries (Fan 313

et al., 2024; Yoshikawa et al., 2023). VLMs also 314

contributed another 20% of foundation model ap- 315

plications in robotic tasks, helping to bridge lan- 316

guage instructions with vision perception in vari- 317

ous studies (Kawaharazuka et al., 2023). However, 318

less attention has been given to the application of 319

LVMs (%7) in the robotic domain, where further 320

studies are needed. Moreover, a few studies have 321

gone beyond text or image-based foundation mod- 322

els by creating robot transformers (Brohan et al., 323

2023; Stone et al., 2023), yet more studies, such 324

as MiniGPT-3D (Tang et al., 2024), are felt nec- 325

essary to build 3D foundation models as they can 326

contribute more significantly to robot-specific tasks 327

that require direct interaction with the 3D world. 328

Planning and perception tasks: When it comes 329

to robotic tasks, foundation models are primarily 330

(72%) utilized for cognitive tasks rather than acting 331

tasks (28%). Within the cognitive domain, percep- 332

tion and planning are most common goal of us- 333

ing foundation models in many identified records. 334

For example, studies utilized capabilities of Chat- 335

GPT in understanding text to change the traditional 336

method of robot planning, by generating behavior- 337

tree (Cao and Lee, 2023) or considering the current 338

state of robots in plan generation (Xie et al., 2023). 339

Furthermore, some studies focused on providing 340

robots with better perception by utilizing founda- 341

tion models in complex robotic tasks, such as scene 342

anomaly detection (Obinata et al., 2023). 343

Human-Robot Interaction (HRI) is another 344

important use case of foundation models in the 345

robotics field. The use of foundation models in HRI 346

can be categorized into three main streams. First, 347

some studies utilize LLMs to improve HRI through 348

better extraction of machine-understandable infor- 349

mation from human instructions (Bimbatti et al., 350

2023; Tabone and Winter, 2023). Another group 351

of studies uses foundation models to understand 352

public perceptions toward robots (Brandtzaeg et al., 353

2023; Jangjarat et al., 2023; ?). The last group ap- 354

plies the capabilities of LLMs to generate human- 355

like text to respond to humans and improve trust 356

between humans and robots (Mishra et al., 2023; 357

Ye et al., 2023; Sevilla-Salcedo et al., 2023). 358

Reasoning and decision-making tasks: In 359

terms of reasoning, one mainstream application 360

is the use of foundation models for providing com- 361

monsense knowledge to robots (Jain et al., 2023; 362

Zhou et al., 2023b). Commonsense reasoning is 363
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a hard task for machines but it is crucial in many364

tasks. For example, Krause and Stolzenburg 2024365

utilized LLM commonsense reasoning capabilities366

in the field of question answering (QA), which is367

one of the most important tasks of NLP. Ocker368

et al. 2023 found that LLMs are not sufficient369

enough on their own to provide commonsense rea-370

soning but they are effective in synergy with formal371

knowledge representations. On the other hand, few372

studies investigate the decision-making abilities of373

LLMs in connection with different robotic tasks,374

such as planning (Ouyang and Li) and manipula-375

tion (Lew et al., 2023).376

Control, manipulation, and navigation: Be-377

yond cognitive tasks, the capabilities of foundation378

models in acting tasks are less explored. For exam-379

ple, some studies use language understanding of380

LLMs as a translation module between human and381

robot for controlling the simple motion of robots382

(Tanaka and Katsura, 2023; Kawaharazuka et al.,383

2023). Some other studies are providing innova-384

tive frameworks for improving spatial reasoning385

required in LLMs for robotic manipulation tasks386

(Shridhar et al., 2021; Jin et al., 2023). Navigation387

is another challenging tasks that recent foundation388

models are used to allow researchers to have se-389

mantic reasoning and go beyond conventional map-390

based systems (Gadre et al., 2022; Yu et al., 2023). 391

Despite these examples, acting tasks are usually 392

come with other cognitive tasks such as planning, 393

and perception. As a result, a network of connec- 394

tion between these tasks help us to achieve better 395

interpretation of foundation model capabilities. 396

4.5 Robotic Task Integration 397

Robotic cognitive and acting tasks are utilized in 398

studies in an interconnected manner to automate 399

specific tasks. Accordingly, most identified records 400

employ foundation models across a variety of cog- 401

nitive and acting tasks in a interconnected man- 402

ner to evaluate and validate their research. Con- 403

sequently, there is a need for a network diagram 404

that shows how foundation models are used to in- 405

terconnect different robotic tasks. Figure 6 illus- 406

trates the co-occurrence network of robotic tasks, 407

where cognitive and acting tasks are represented 408

as nodes. The edges between nodes represent the 409

co-occurrence of two tasks within a single study. 410

The size of each node is proportionate to the num- 411

ber of its connections, indicating that larger nodes 412

are more frequently utilized in conjunction with 413

other tasks in studies. The thickness of the edges 414

indicates the frequency of concurrent task usage in 415

the studies. 416
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Figure 6: Co-occurrence network of robotic tasks using
foundation models

As illustrated in Figure 6, the most significant417

connection is the use of foundation models for HRI418

and Perception. This finding, coupled with the419

dominance of LLMs in foundation models, indi-420

cates that most studies leverage the text analytical421

capabilities of foundation models to extract both422

defined and undefined information for other sig-423

nificant robotics tasks, including planning, control,424

and manipulation.425

The navigation node is smaller than other nodes,426

indicating that navigation tasks less frequently co-427

occur with other robotic tasks. This suggests that428

the majority of the field is interested in validating429

the capabilities of foundation models in cognitive430

tasks, and some acting tasks such as control and431

manipulation, rather than incorporating the com-432

plexity of moving in a 3D environment into their433

studies. Another interesting finding is that all edges434

leading to the decision-making node are thin, which435

indicates that this task is also overlooked in many436

studies. Despite the small size of the reasoning task437

node, there is a considerable connection between438

this node and the perception node. This represents439

a major category within this field, which involves440

utilizing reasoning capabilities to perceive situa-441

tions where only a small amount of information442

is available, such as unseen scenes and undefined443

events (Ocker et al., 2023; Ren et al., 2023; Zhang444

et al., 2024)445

5 Discussion: Challenges and future 446

prospects 447

5.1 Situated Reasoning 448

Currently, more studies are focused on robotic cog- 449

nitive tasks (see Figure 5), which can be attributed 450

to the fact that the current architecture of most 451

foundation models is designed for sequential to- 452

kens, making them better suited for cognitive tasks 453

rather than acting tasks that require extensive situ- 454

ated reasoning and direct interaction with 3D data. 455

One of the main challenges in utilizing foundation 456

models for acting tasks is the scarcity of 3D data 457

compared to text and image data. A potential so- 458

lution to this challenge can be the use of Digital 459

Twins as a source for training foundation models 460

on 3D data. 461

5.2 Physical Laws 462

Furthermore, the generative models, such as Sora 463

(Liu et al., 2024), can be leveraged to create simula- 464

tions of real-world environments, providing a rich 465

source of data for training and testing. However, a 466

significant obstacle in expanding generative models 467

for creating simulations is their current limitation 468

in accurately modeling physical laws, such as grav- 469

ity, collisions, and other laws that are crucial for 470

realistic simulations and interactions with the phys- 471

ical world. Addressing this challenge is pivotal for 472

enabling foundation models to reason effectively 473

about the complex dynamics and constraints of the 474

physical world. 475

5.3 Hallucination 476

A primary issue toward effective integration of 477

robots and foundation models is the tendency 478

of these models to "hallucinate," meaning they 479

sometime generate outputs that are factually incor- 480

rect, logically inconsistent, or physically infeasible. 481

This uncertainty becomes particularly critical when 482

robots are expected to perform a broader range of 483

general tasks in 3D environments, especially those 484

rarely encountered in their mostly textual and im- 485

age data. Despite retrieval-based and other related 486

path toward addressing this issue, some studies 487

seek methods that enable LLMs to ask for help in 488

uncertain situations (Ren et al., 2023). 489

5.4 Error Handling 490

Furthermore, this uncertainty challenge can lead 491

to error handling due to various potential to robot 492
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action failures. These failures include: (1) execu-493

tion failures, where the model understands the task494

and environment correctly but fails to achieve the495

expected outcome; (2) planning failures, where the496

model generates an incorrect or infeasible sequence497

of actions despite comprehending the task and en-498

vironment; and (3) comprehension failures, where499

the model misinterprets the context of the environ-500

ment or task. To address these issues, several ap-501

proaches have been proposed. Prompt engineering502

methods allows the model to prompt itself with the503

output plan and the latest environment observations504

for potential corrections. Additionally, incorporat-505

ing models with enhanced situated reasoning can506

provide more accurate predictions of robot capabil-507

ities in complex environments. Another effective508

strategy is leveraging human feedback, which can509

resolve various types of errors.510

5.5 Model Biases511

Recent studies highlight different biases in GPT-512

family models (Rutinowski et al., 2023; Sinha,513

2023; Toro, 2023). Considering that currently most514

studies use GPT-based models (refer to Section515

4.1), further research is needed to investigate the516

biases of using single models or a combination of517

different agents in more sensitive tasks, such as518

human-robot interaction or decision-making. Iden-519

tifying these biases is a critical challenge that is520

crucial to tackle to ensure the safe and reliable inte-521

gration of foundation models into robotic systems,522

especially in applications involving direct interac-523

tion with humans or decision-making processes.524

5.6 Ethical considerations525

While a comprehensive discussion of ethics goes526

beyond the scope of this study and requires exten-527

sive exploration of various ethical frameworks, it528

is essential to encourage more researchers to en-529

gage with this sensitive area. Key ethical considera-530

tions include privacy, safety, responsibility, and the531

moral behavior of robots, each of which warrants532

thorough examination. As a potential approach to533

addressing these issues, (Zhou et al., 2023a) have534

proposed a framework that equips foundation mod-535

els with the capability for moral reasoning, drawing536

on diverse ethical theories. Such research is appro-537

priate first-step as it advances the preparation of538

robots for deeper integration into human-centric539

environments, ensuring their actions are guided by540

sound ethical principles.541

5.7 Toward unstructured environment 542

Most studies have tested the integration of founda- 543

tion models in organized and structured environ- 544

ments, such as housing settings. However, unstruc- 545

tured environments are in greater need of founda- 546

tion model capabilities due to the limitations of 547

traditional hard-coded approaches that are unsuit- 548

able for these settings. The flexibility and general- 549

izability inherent in foundation models can signifi- 550

cantly enhance performance and adoption in such 551

complex environments. Nonetheless, there are chal- 552

lenges in this endeavor. Unstructured environments 553

are difficult for real-world testing applications, and 554

we currently lack a simulation solution that accu- 555

rately represents the dynamic events and unpre- 556

dictability of these settings. A crucial first step is 557

to systematically identify inherent features in un- 558

structured environment tasks that hinder robotic 559

adoption. For instance, future studies can explore 560

how commonsense reasoning in foundation models 561

can aid robot decision-making in situations where 562

information is highly dynamic or scarce. 563

6 Conclusion 564

The integration of foundation models into robotics 565

is an emerging field with significant potential for 566

enabling advanced cognitive and acting capabilities 567

in physical world applications. While the current 568

research landscape is dominated by leveraging the 569

language understanding abilities of LLMs, there is 570

a growing interest in exploring multimodal and 3D 571

foundation models for more comprehensive scene 572

understanding and situated reasoning. However, 573

several key challenges need to be addressed, includ- 574

ing scarcity of 3D data, improving the modeling of 575

physical laws in simulations, mitigating hallucina- 576

tions, developing robust error-handling strategies, 577

and addressing ethical concerns surrounding the de- 578

ployment of embodied agents. Overcoming these 579

hurdles will be crucial for realizing the vision of 580

safe and fully autonomous embodied foundation 581

models capable of generalizing across a wide range 582

of unstructured environments and tasks. 583

7 Limitation 584

Despite the contributions of this study as discussed 585

before; all research studies have limitations, and 586

the present attempt is no exception to this rule. The 587

survey process only considered studies in English, 588

and used a particular set of keywords for search- 589

ing. Besides, the screening process of core studies 590
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can be considered subjective in nature, although591

the process was performed three separate times to592

minimize the error. In addition, all analyses are593

based on the data retrieved from WoS, Scopus, and594

Arxiv databases. Therefore, the findings may not595

fully reflect the entire available efforts and studies596

in the field.597
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