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ABSTRACT

Neural Architecture Search (NAS) has been explosively studied to automate the
discovery of top-performer neural networks. Current works require heavy train-
ing of supernet or intensive architecture evaluations, thus suffering from heavy
resource consumption and often incurring search bias due to truncated training
or approximations. Can we select the best neural architectures without involving
any training and eliminate a drastic portion of the search cost? We provide an
affirmative answer, by proposing a novel framework called training-free neural
architecture search (TE-NAS). TE-NAS ranks architectures by analyzing the spec-
trum of the neural tangent kernel (NTK) and the number of linear regions in the
input space. Both are motivated by recent theory advances in deep networks and
can be computed without any training and any label. We show that: (1) these
two measurements imply the trainability and expressivity of a neural network; (2)
they strongly correlate with the network’s test accuracy. Further on, we design a
pruning-based NAS mechanism to achieve a more flexible and superior trade-off
between the trainability and expressivity during the search. In NAS-Bench-201
and DARTS search spaces, TE-NAS completes high-quality search but only costs
0.5 and 4 GPU hours with one 1080Ti on CIFAR-10 and ImageNet, respectively.
We hope our work inspires more attempts in bridging the theoretical findings of
deep networks and practical impacts in real NAS applications. Code is available at:
https://github.com/VITA-Group/TENAS.

1 INTRODUCTION
The recent development of deep networks significantly contributes to the success of computer vision.
Thanks to many efforts by human designers, the performance of deep networks have been significantly
boosted (Krizhevsky et al., 2012; Simonyan & Zisserman, 2014; Szegedy et al., 2015; He et al., 2016;
Xie et al., 2017). However, the manual creation of new network architectures not only costs enormous
time and resources due to trial-and-error, but also depends on the design experience that does not
always scale up. To reduce the human efforts and costs, neural architecture search (NAS) has recently
amassed explosive interests, leading to principled and automated discovery for good architectures in
a given search space of candidates (Zoph & Le, 2016; Brock et al., 2017; Pham et al., 2018; Liu et al.,
2018a; Chen et al., 2018; Bender et al., 2018; Gong et al., 2019; Chen et al., 2020a; Fu et al., 2020).

As an optimization problem, NAS faces two core questions: 1) “how to evaluate”, i.e. the objective
function that defines what are good architectures we want; 2) “how to optimize”, i.e. by what means
we could effectively optimize the objective function. These two questions are entangled and highly
non-trivial, since the search spaces are of extremely high dimension, and the generalization ability
of architectures cannot be easily inferred (Dong & Yang, 2020; Dong et al., 2020). Existing NAS
methods mainly leverage the validation set and conduct accuracy-driven architecture optimization.
They either formulate the search space as a super-network (“supernet”) and make the training loss
differentiable through the architecture parameters (Liu et al., 2018b), or treat the architecture selection
as a sequential decision making process (Zoph & Le, 2016) or evolution of genetics (Real et al.,
2019). However, these NAS algorithms suffer from heavy consumption of both time and GPU
resources. Training a supernet till convergence is extremely slow, even with many effective heuristics
for sampling or channel approximations (Dong & Yang, 2019; Xu et al., 2019). Approximated proxy
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inference such as truncated training/early stopping can accelerate the search, but is well known to
introduce search bias to the inaccurate results obtained (Pham et al., 2018; Liang et al., 2019; Tan
et al., 2020). The heavy search cost not only slows down the discovery of novel architectures, but
also blocks us from more meaningfully understanding the NAS behaviors.

On the other hand, the analysis of neural network's trainability (how effective a network can be
optimized via gradient descent) and expressivity (how complex the function a network can represent)
has witnessed exciting development recently in the deep learning theory �elds. By formulating neural
networks as a Gaussian Process (no training involved), the gradient descent training dynamics can be
characterized by the Neural Tangent Kernel (NTK) of in�nite (Lee et al., 2019) or �nite (Yang, 2019)
width networks, from which several useful measures can be derived to depict the network trainability
at the initialization. Hanin & Rolnick (2019a;b); Xiong et al. (2020) describe another measure of
network expressivity, also without any training, by counting the number of unique linear regions that
a neural network can divide in its input space. We are therefore inspired to ask:

� How to optimizeNAS at network's initialization without involving any training, thus signi�cantly
eliminating a heavy portion of the search cost?

� Can we de�nehow to evaluatein NAS by analyzing the trainability and expressivity of architectures,
and further bene�t our understanding of the search process?

Our answers areyesto both questions. In this work, we propose TE-NAS, a framework fortraining-
free neuralarchitecturesearch. We leveragetwo indicators, the condition number of NTK and
the number of linear regions, that can decouple and effectively characterize the trainability and
expressivity of architectures respectively in complex NAS search spaces. Most importantly, these
two indicators can be measured in a training-free and label-free manner, thus largely accelerates
the NAS search process and bene�ts the understanding of discovered architectures. To our best
knowledge, TE-NAS makes the �rst attempt to bridge the theoretical �ndings of deep neural networks
and real-world NAS applications. While we intend not to claim that the two indicators we use are the
only nor the best options, we hope our work opens a door to theoretically-inspired NAS and inspires
the discovery of more deep network indicators. Our contributions are summarized as below:

� We identify and investigate two training-free and label-free indicators to rank the quality of deep
architectures: the spectrum of their NTKs, and the number of linear regions in their input space.
Our study �nds that they reliably indicate the trainability and expressivity of a deep network
respectively, and are strongly correlated with the network's test accuracy.

� We leverage the above two theoretically-inspired indicators to establish a training-free NAS
framework,TE-NAS, therefore eliminating a drastic portion of the search cost. We further
introduce a pruning-based mechanism, to boost search ef�ciency and to more �exibly trade-off
between trainability and expressivity.

� In NAS-Bench-201/DARTS search spaces,TE-NAS discovers architectures with a strong perfor-
mance at remarkably lower search costs, compared to previous efforts. With just one 1080Ti, it
only costs 0.5 GPU hours to search on CIFAR10, and 4 GPU hours on ImageNet, respectively,
setting the new record for ultra-ef�cient yet high-quality NAS.

2 RELATED WORKS

Neural architecture search (NAS)is recently proposed to accelerate the principled and automated
discovery of high-performance networks. However, most works suffer from heavy search cost, for
both weight-sharing based methods (Liu et al., 2018b; Dong & Yang, 2019; Liu et al., 2019; Yu
et al., 2020a; Li et al., 2020a; Yang et al., 2020a) and single-path sampling-based methods (Pham
et al., 2018; Guo et al., 2019; Real et al., 2019; Tan et al., 2020; Li et al., 2020c; Yang et al., 2020b).
A one-shot super network can share its parameters to sampled sub-networks and accelerate the
architecture evaluations, but it is very heavy and hard to optimize and suffers from a poor correlation
between its accuracy and those of the sub-networks (Yu et al., 2020c). Sampling-based methods
achieve more accurate architecture evaluations, but their truncated training still imposes bias to the
performance ranking since this is based on the results of early training stages.

Instead of estimating architecture performance by direct training, people also try to predict network's
accuracy (or ranking), calledpredictor based NASmethods (Liu et al., 2018a; Luo et al., 2018; Dai
et al., 2019; Luo et al., 2020). Graph neural network (GNN) is a popular choice as the predictor
model (Wen et al., 2019; Chen et al., 2020b). Siems et al. (2020) even propose the �rst large-scale
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surrogate benchmark, where most of the architectures' accuracies are predicted by a pretrained GNN
predictor. The learned predictor can achieve highly accurate performance evaluation. However,
the data collection step - sampling representative architectures and train them till converge - still
requires extremely high cost. People have to sample and train 2,000 to 50,000 architectures to serve
as the training data for the predictor. Moreover, none of these works can demonstrate the cross-space
transferability of their predictors. This means one has to repeat the data collection and predictor
training whenever facing an unseen search space, which is highly nonscalable.

The heavy cost of architecture evaluation hinders theunderstandingof the NAS search process. Re-
cent pioneer works like Shu et al. (2019) observed that DARTS and ENAS tend to favor architectures
with wide and shallow cell structures due to their smooth loss landscape. Siems et al. (2020) studied
the distribution of test error for different cell depths and numbers of parameter-free operators. Chen
& Hsieh (2020) for the �rst time regularizes the Hessian norm of the validation loss and visualizes
the smoother loss landscape of the supernet. Li et al. (2020b) proposed to approximate the validation
loss landscape by learning a mapping from neural architectures to their corresponding validate losses.
Still, these analyses cannot be directly leveraged to guide the design of network architectures.

Mellor et al. (2020) recently proposed a NAS framework that does not involve training, which
shares the same motivation with us towards training-free architecture search at initialization. They
empirically �nd that the correlation between sample-wise input-output Jacobian can indicate the
architecture's test performance. However, why does the Jacobian work is not well explained and
demonstrated. Their search performance on NAS-Bench-201 is still left behind by the state-of-the-art
NAS works, and they did not extend to DARTs space.

Meanwhile, we see the evolving development ofdeep learning theoryon neural networks. NTK
(neural tangent kernel) is proposed to characterize the gradient descent training dynamics of in�nite
wide (Jacot et al., 2018) or �nite wide deep networks (Hanin & Nica, 2019). Wide networks are also
proved to evolve as linear models under gradient descent (Lee et al., 2019). This is further leveraged
to decouple the trainability and generalization of networks (Xiao et al., 2019). Besides, a natural
measure of ReLU network's expressivity is the number of linear regions it can separate in its input
space (Raghu et al., 2017; Montúfar, 2017; Serra et al., 2018; Hanin & Rolnick, 2019a;b; Xiong
et al., 2020). In our work, we for the �rst time discover two important indicators that can effectively
rank architectures, thus bridging the theoretic �ndings and real-world NAS applications. Instead of
claiming the two indicators we discover are the best, we believe there are more meaningful properties
of deep networks that can bene�t the architecture search process. We leave them as open questions
and encourage the community to study.

3 METHODS

The core motivation of our TE-NAS framework is to achieve architecture evaluation without involving
any training, to signi�cantly accelerate the NAS search process and reduce the search cost. In section
3.1 we present our study on two important indicators that re�ect the trainability and expressivity
of a neural network, and in section 3.2 we design a novel pruning-based method that can achieve a
superior trade-off between the two indicators.

3.1 ANALYZING TRAINABILITY AND EXPRESSIVITY OFDEEPNETWORKS

Trainability and expressivity are distinct notions regarding a neural network (Xiao et al., 2019). A
network can achieve high performance only if the function it can represent is complex enough and at
the same time, it can be effectively trained by gradient descent.

3.1.1 TRAINABILITY BY CONDITION NUMBER OF NTK

The trainability of a neural network indicates how effective it can be optimized using gradient descent
(Burkholz & Dubatovka, 2019; Hayou et al., 2019; Shin & Karniadakis, 2020). Although some heavy
networks can theoretically represent complex functions, they not necessarily can be effectively trained
by gradient descent. One typical example is that, even with a much more number of parameters, Vgg
networks (Simonyan & Zisserman, 2014) usually perform worse and require more special engineering
tricks compared with ResNet family (He et al., 2016), whose superior trainability property is studied
by Yang & Schoenholz (2017).
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Recent work (Jacot et al., 2018; Lee et al., 2019; Chizat et al., 2019) studied the gradient descent
training of neural networks using a quantity called the neural tangent kernel (NTK). The �nite width
NTK is de�ned by �̂( x ; x 0) = J (x )J (x 0)T , whereJ i� (x ) = @� � zL

i (x ) is the Jacobian evaluated at
a pointx for parameter� � , andzL

i is the output of thei -th neuron in the last output layerL .

Lee et al. (2019) further proves that wide neural networks evolve as linear models using gradient
descent, and their training dynamics is controlled by ODEs that can be solved as

� t (X train) = ( I � e� � �̂ traint )Ytrain (1)

for training data. Here� t (x ) = E[zL
i (x )] is the expected outputs of an in�nitely wide network.�̂ train

denotes the NTK between the training inputs, andX train andYtrain are drawn from the training set
Dtrain. As the training stept tends to in�nity we can see that Eq. 1 reduce to� (X train) = Ytrain.

The relationship between the conditioning of�̂ and the trainability of networks is studied by Xiao
et al. (2019), and we brief the conclusion as below. We can write Eq. 1 in terms of the spectrum of� :

� t (X train) i = ( I � e� �� i t )Ytrain;i ; (2)

Figure 1: Condition number of NTK� N exhibits
negative correlation with the test accuracy of archi-
tectures in NAS-Bench201 (Dong & Yang, 2020).

where� i are the eigenvalues of̂� train and we order
the eigenvalues� 0 � � � � � � m . As it has been
hypothesized by Lee et al. (2019) that the maximum
feasible learning rate scales as� � 2=� 0, plugging
this scaling for� into Eq. 2 we see that the� m
will converge exponentially at a rate given by1=� ,
where� = � 0=� m is the condition number. Then
we can conclude that if the� of the NTK associated
with a neural network diverges then it will become
untrainable, so we use� as a metric for trainability:

� N =
� 0

� m
: (3)

� N is calculated without any gradient descent or label. Figure 1 demonstrates that the� N is
negatively correlated with the architecture's test accuracy, with the Kendall-tau correlation as� 0:42.
Therefore, minimizing the� N during the search will encourage the discovery of architectures with
high performance.

3.1.2 EXPRESSIVITY BY NUMBER OF L INEAR REGIONS

Figure 2: Example of linear
regions divided by a ReLU
network1

The expressivity of a neural network indicates how complex the function
it can represent (Hornik et al., 1989; Giryes et al., 2016). For ReLU
networks, each ReLU function de�nes a linear boundary and divides
its input space into two regions. Since the composition of piecewise
linear functions is still piecewise linear, every ReLU network can be
seen as a piecewise linear function. The input space of a ReLU network
can be partitioned into distinct pieces (i.e. linear regions) (Figure 2),
each of which is associated with a set of af�ne parameters, and the
function represented by the network is af�ne when restricted to each
piece. Therefore, it is natural to measure the expressivity of a ReLU
network with the number of linear regions it can separate.

Following Raghu et al. (2017); Montúfar (2017); Serra et al. (2018); Hanin & Rolnick (2019a;b);
Xiong et al. (2020), we �rst introduce the following de�nition of activation patterns and linear regions
for ReLU CNNs.

De�nition 1. Activation Patterns and Linear Regions (Xiong et al. (2020)) Let N be a ReLU
CNN. An activation pattern ofN is a functionP from the set of neurons tof 1; � 1g, i.e., for each
neuronz in N , we haveP (z) 2 f 1; � 1g. Let � be a �xed set of parameters (weights and biases) in
N , andP be an activation pattern. The region corresponding toP and� is

R (P ; � ) := f x 0 2 RC � H � W : z(x 0; � ) � P (z) > 0; 8z 2 N g ; (4)
wherez(x 0; � ) is the pre-activation of a neuronz. LetRN ;� denote the number of linear regions of
N at � , i.e.,RN ;� := # f R (P ; � ) : R (P ; � ) 6= ; for some activation patternP g:

1Plot is generated by us with the same method described by Hanin & Rolnick (2019a).

4



Published as a conference paper at ICLR 2021

Figure 3: Number of linear regionŝRN of
architectures in NAS-Bench201 exhibits pos-
itive correlation with test accuracies.

Eq. 4 tells us that a linear region in the input space is a
set of input datax 0 that satis�es a certain �xed activation
patternP (z), and therefore the number of linear regions
RN ;� measures how many unique activation patterns that
can be divided by the network.

In our work, we repeat the measurement of the number of
linear regions by sampling network parameters from the
Kaiming Norm Initialization (He et al., 2015), and calculate
the average as the approximation to its expectation:

R̂N ' E� RN ;� (5)

Figure 4: � N andR̂N prefer different operators
in NAS-Bench201.

We iterate through all architectures in NAS-Bench-201
(Dong & Yang, 2020), and calculate their numbers of
linear regions (without any gradient descent or label).
Figure 3 demonstrates that the number of linear regions
is positively correlated with the architecture's test accu-
racy, with the Kendall-tau correlation as0:5. Therefore,
maximizing the number of linear regions during the
search will also encourage the discovery of architec-
tures with high performance.

Finally, in Figure 4 we analyze the operator composi-
tion of top 10% architecture by maximizinĝRN and
minimizing � N , respectively. We can clearly see that
R̂N and� N have different preferences for choosing operators. They both choose a large ratio of
conv3 � 3 for high generalization performance. But meanwhile,R̂N heavily selects conv1 � 1, and
� N leads to skip-connect, favoring the gradient �ow.

3.2 PRUNING-BY-IMPORTANCE ARCHITECTURESEARCH

Given the strong correlation between the architecture's test accuracy and its� N andR̂N , how to build
an ef�cient NAS framework on top of them? We motivate this section by addressing two questions:

1. How to combine� N andR̂N together, with a good explicit trade-off?

We �rst need to turn the two measurements� N andR̂N into one combined function, based on which
we can rank architectures. As seen in Figure 1 and 3, the magnitudes of� N andR̂N differ much.
To avoid one overwhelming the other numerically, one possible remedy is normalization; but we
cannot pre-know the ranges nor the value distributions of� N andR̂N , before computing them over a
search space. In order to make our combined functionwell de�ned before searchandagnostic to the
search space, instead of using the numerical values of� N andR̂N , we could refer to their relative
rankings. Speci�cally, each time by comparing the sampled set of architectures peer-to-peer, we can
directly sum up the two relative rankings of� N andR̂N as the selection criterion. The equal-weight
summation treats trainability and expressivity with the same importance conceptually1 and delivers
the best empirical result: we thus choose it as our default combined function. We also tried some
other means to combine the two, and the ablation studies can be found in Appendix D.2.

2. How to search more ef�ciently?

Sampling-based methods like reinforcement learning or evolution can use rankings as the reward
or �ltering metric. However, they are inef�cient, especially for complex cell-based search space.
Consider a network stacked by repeated cells (directed acyclic graphs) (Zoph et al., 2018; Liu et al.,
2018b). Each cell hasE edges, and on each edge we only select one operator out ofjOj (O is the
set of operator candidates). There arejOj E unique cells, and for sampling-based methods,
 � jOj E

networks have to be sampled during the search. The ratio
 can be interpreted as the sampling
ef�ciency: a method with small
 can �nd good architectures faster. However, the search time cost of
sampling-based methods still scales up with the size of the search space, i.e.,jOj E .

1We tried some weighted summations of the two, and �nd their equal-weight summation to perform the best.
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Inspired by recent works on pruning-from-scratch (Lee et al., 2018; Wang et al., 2020), we propose
a pruning-by-importance NAS mechanism to quickly shrink the search possibilities and boost the
ef�ciency further, reducing the cost fromjOj E to jOj � E . Speci�cally, we start the search with a
super-networkN0 composed of all possible operators and edges. In the outer loop, for every round we
prune one operator on each edge. The outer-loop stops when the current supernetN t is a single-path
network2, i.e., the algorithm will return us the �nal searched architecture. For the inner-loop, we
measure the change of� N andR̂N before and after pruning each individual operator, and assess its
importance using the sum of two ranks. We order all currently available operators in terms of their
importance, and prune the lowest-importance operator on each edge.

The whole pruning process is extremely fast. As we will demonstrate later, our approach is principled
and can be applied to different spaces without making any modi�cations. This pruning-by-importance
mechanism may also be extended to indicators beyond� N andR̂N . We summarize our training-free
and pruning-based NAS framework, TE-NAS, in Algorithm 1.

Algorithm 1: TE-NAS: Training-free Pruning-based NAS via Ranking of� N andR̂N .
1 Input: supernetN 0 stacked by cells, each cell hasE edges, each edge hasjOj operators, stept = 0 .
2 while N t is not a single-path networkdo
3 for each operatoroj in N t do
4 � � t;o j = � N t � � N t no j . the higher� � t;o j the more likely we will pruneoj

5 � R t;o j = RN t � RN t no j . the lower� R t;o j the more likely we will pruneoj

6 Get importance by� N : s� (oj ) = index ofoj in descendinglysorted list[� � t;o 1 ; :::; � � t;o jN t j ]
7 Get importance byRN : sR (oj ) = index ofoj in ascendinglysorted list[� Rt;o 1 ; :::; � R t;o jN t j ]
8 Get importances(oj ) = s� (oj ) + sR (oj )
9 N t +1 = N t

10 for each edgeei , i = 1 ; :::; E do
11 j � = arg min j f s(oj ) : oj 2 ei g . �nd the operator with greatest importanceon each edge.
12 N t +1 = N t +1 noj �

13 t = t + 1

14 return Pruned single-path networkN t .

3.2.1 VISUALIZATION OF SEARCH PROCESS

Figure 5: Pruning trajectory on NAS-Bench-201
(top) and DARTs search space (bottom). Number “0”
indicates the supernetN 0 before any pruning, which
is of high expressivity but poor trainability.

TE-NAS bene�ts us towards a better understanding
of the search process. We can analyze the trajec-
tory of � N andR̂N during the search. It is worth
noting that our starting pointN0, the un-pruned
supernet, is assumed to be of the highest expressiv-
ity (as it is composed of all operators in the search
space and has the largest number of parameters and
ReLU functions). However, it has poor trainability,
as people �nd many engineering techniques are re-
quired to effectively training the supernet (Yu et al.,
2020a;b). Therefore, during pruning we are expect-
ing to strengthen the trainability of the supernet,
while retaining its expressivity as much as possible.

As we observe in Figure 5, the supernetN is �rst
pruned by quickly reducing� N , i.e., increasing the
network's trainability. After that, as the improve-
ment of� N is almost plateaued, the method care-
fully �ne-tunes the architecture without sacri�cing
too much expressivitŷRN .

2Different search spaces may have different criteria for the single-path network. In NAS-Bench201 (Dong
& Yang, 2020) each edge only keeps one operator at the end of the search, while in DARTS space (Liu et al.,
2018b) there are two operators on each edge in the searched network.
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4 EXPERIMENTS

In this section, we evaluate our TE-NAS on two search spaces: NAS-Bench-201 (Dong & Yang,
2020) and DARTS (Liu et al., 2018b). Search and training protocols are summarized in Appendix A.
Our code is available at:https://github.com/VITA-Group/TENAS .

4.1 RESULTS ONNAS-BENCH-201

NAS-Bench-201 (Dong & Yang, 2020) provides a standard cell-based search space (containing
15,625 architectures) and a database of architecture's performance evaluated under a uni�ed protocol.
The network's test accuracy can be directly obtained by querying the database, which facilitates
people to focus on studying NAS algorithms without network evaluation. NAS-Bench-201 supports
three datasets (CIFAR-10, CIFAR-100, ImageNet-16-120 (Chrabaszcz et al., 2017)). The operation
space containsnone(zero), skip connection, conv1 � 1, conv3 � 3 convolution, andaverage pooling
3 � 3. We refer to their paper for details of the space. Our search is dataset-speci�c, i.e. the search
and evaluation are conducted on the same dataset.

Table 1: Comparison with state-of-the-art NAS methods on NAS-Bench-201. Test accuracy with mean and
deviation are reported. “optimal” indicates the best test accuracy achievable in NAS-Bench-201 search space.

Architecture CIFAR-10 CIFAR-100 ImageNet-16-120
Search Cost
(GPU sec.)

Search
Method

ResNet (He et al., 2016) 93.97 70.86 43.63 - -

RSPS (Li & Talwalkar, 2020) 87:66(1:69) 58:33(4:34) 31:14(3:88) 8007.13 random
ENAS (Pham et al., 2018) 54:30(0:00) 15:61(0:00) 16:32(0:00) 13314.51 RL
DARTS (1st) (Liu et al., 2018b) 54:30(0:00) 15:61(0:00) 16:32(0:00) 10889.87 gradient
DARTS (2nd) (Liu et al., 2018b) 54:30(0:00) 15:61(0:00) 16:32(0:00) 29901.67 gradient
GDAS (Dong & Yang, 2019) 93:61(0:09) 70:70(0:30) 41:84(0:90) 28925.91 gradient

NAS w.o. Training (Mellor et al., 2020) 91:78(1:45) 67:05(2:89) 37:07(6:39) 4.8 training-free
TE-NAS (ours) 93:9(0:47) 71:24(0:56) 42:38(0:46) 1558 training-free

Optimal 94.37 73.51 47.31 - -

We run TE-NAS for four independent times with different random seeds, and report the mean and
standard deviation in Table 1. We can see that TE-NAS achieves the best accuracy on all three
datasets, and largely reduces the search cost (5� � 19� reduction). Although Mellor et al. (2020)
requires even less search time (by only sampling 25 architectures), they suffer from much inferior
accuracy performance, with notably larger deviations across different search rounds.

4.2 RESULTS ONCIFAR-10 WITH DARTS SEARCH SPACE

Architecture Space The DARTs operation spaceO contains eight choices:none(zero), skip
connection, separable convolution3 � 3 and5 � 5, dilated separable convolution3 � 3 and5 � 5,
max pooling3 � 3, average pooling3 � 3. Following previous works (Liu et al., 2018b; Chen et al.,
2019; Xu et al., 2019), for evaluation phases, we stack 20 cells to compose the network and set the

Table 2: Comparison with state-of-the-art NAS methods on CIFAR-10.

Architecture
Test Error

(%)
Params

(M)
Search Cost
(GPU days)

Search
Method

AmoebaNet-A (Real et al., 2019) 3:34(0 :06) 3.2 3150 evolution
PNAS (Liu et al., 2018a)? 3:41(0 :09) 3.2 225 SMBO
ENAS (Pham et al., 2018) 2.89 4.6 0.5 RL
NASNet-A (Zoph et al., 2018) 2.65 3.3 2000 RL

DARTS (1st) (Liu et al., 2018b) 3:00(0 :14) 3.3 0.4 gradient
DARTS (2nd) (Liu et al., 2018b) 2:76(0 :09) 3.3 1.0 gradient
SNAS (Xie et al., 2018) 2:85(0 :02) 2.8 1.5 gradient
GDAS (Dong & Yang, 2019) 2.82 2.5 0.17 gradient
BayesNAS (Zhou et al., 2019) 2:81(0 :04) 3.4 0.2 gradient
ProxylessNAS (Cai et al., 2018)y 2.08 5.7 4.0 gradient
P-DARTS (Chen et al., 2019) 2.50 3.4 0.3 gradient
PC-DARTS (Xu et al., 2019) 2:57(0 :07) 3.6 0.1 gradient
SDARTS-ADV (Chen & Hsieh, 2020) 2:61(0 :02) 3.3 1.3 gradient

TE-NAS (ours) 2:63(0 :064) 3.8 0.05z training-free
? No cutout augmentation.
y Different space: PyramidNet (Han et al., 2017) as the backbone.
z Recorded on a single GTX 1080Ti GPU.
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initial channel number as 36. We place the reduction cells at the 1/3 and 2/3 of the network and each
cell consists of six nodes.

Results We run TE-NAS for four independent times with different random seeds, and report the
mean and standard deviation. Table 2 summarizes the performance of TE-NAS compared with other
popular NAS methods. TE-NAS achieves a test error of 2.63%, ranking among the top of recent NAS
results, but meanwhile largely reduces the search cost to only 0.05 GPU-day. ProxylessNAS achieves
the lowest test error, but it searches on a different space with a much longer search time and has a
larger model size. Besides, Mellor et al. (2020) did not extend to their Jacobian-based framework to
DARTs search space for CIFAR-10 or ImageNet classi�cation.

4.3 RESULTS ONIMAGENET WITH DARTS SEARCH SPACE

Architecture Space Following previous works (Xu et al., 2019; Chen et al., 2019), the architecture
for ImageNet is slightly different from that for CIFAR-10. During retraining evaluation, the network
is stacked with 14 cells with the initial channel number set to 48, and we follow the mobile setting to
control the FLOPs not exceed 600 MB by adjusting the channel number. The spatial resolution is
downscaled from224� 224to 28� 28with the �rst three convolution layers of stride 2.

Results As shown in Table 3, we achieve a top-1/5 test error of 24.5%/7.5%, achieving competitive
performance with recent state-of-the-art works in the ImageNet mobile setting. However, TE-NAS
only cost four GPU hours with only one 1080Ti. Searching on ImageNet takes a longer time than on
CIFAR-10 due to the larger input size and more network parameters.

Table 3: Comparison with state-of-the-art NAS methods on ImageNet under the mobile setting.

Architecture Test Error(%) Params
(M)

Search Cost
(GPU days)

Search
Methodtop-1 top-5

NASNet-A (Zoph et al., 2018) 26.0 8.4 5.3 2000 RL
AmoebaNet-C (Real et al., 2019) 24.3 7.6 6.4 3150 evolution
PNAS (Liu et al., 2018a) 25.8 8.1 5.1 225 SMBO
MnasNet-92 (Tan et al., 2019) 25.2 8.0 4.4 - RL

DARTS (2nd) (Liu et al., 2018b) 26.7 8.7 4.7 4.0 gradient
SNAS (mild) (Xie et al., 2018) 27.3 9.2 4.3 1.5 gradient
GDAS (Dong & Yang, 2019) 26.0 8.5 5.3 0.21 gradient
BayesNAS (Zhou et al., 2019) 26.5 8.9 3.9 0.2 gradient
P-DARTS (CIFAR-10) (Chen et al., 2019) 24.4 7.4 4.9 0.3 gradient
P-DARTS (CIFAR-100) (Chen et al., 2019) 24.7 7.5 5.1 0.3 gradient
PC-DARTS (CIFAR-10) (Xu et al., 2019) 25.1 7.8 5.3 0.1 gradient
TE-NAS (ours) 26.2 8.3 6.3 0.05 training-free

PC-DARTS (ImageNet) (Xu et al., 2019)y 24.2 7.3 5.3 3.8 gradient
ProxylessNAS (GPU) (Cai et al., 2018)y 24.9 7.5 7.1 8.3 gradient
TE-NAS (ours)y 24.5 7.5 5.4 0.17 training-free

y The architecture is searched on ImageNet, otherwise it is searched on CIFAR-10 or CIFAR-100.

5 CONCLUSION

The key questions in Neural Architecture Search (NAS) are “what are good architectures” and “how
to �nd them”. Validation loss or accuracy are possible answers but not enough, due to their search
bias and heavy evaluation cost. Our work demonstrates that two theoretically inspired indicators, the
spectrum of NTK and the number of linear regions, not only strongly correlate with the network's
performance, but also bene�t the reduced search cost and decoupled analysis of the network's
trainability and expressivity. Without involving any training, our TE-NAS achieve competitive NAS
performance with minimum search time. We for the �rst time bridge the gap between the theoretic
�ndings of deep neural networks and real-world NAS applications, and we encourage the community
to further explore more meaningful network properties so that we will have a better understanding of
good architectures and how to search them.
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